1/*	$NetBSD: rf_map.c,v 1.44 2009/03/15 17:17:23 cegger Exp $	*/
2/*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21 *  School of Computer Science
22 *  Carnegie Mellon University
23 *  Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29/**************************************************************************
30 *
31 * map.c -- main code for mapping RAID addresses to physical disk addresses
32 *
33 **************************************************************************/
34
35#include <sys/cdefs.h>
36__KERNEL_RCSID(0, "$NetBSD: rf_map.c,v 1.44 2009/03/15 17:17:23 cegger Exp $");
37
38#include <dev/raidframe/raidframevar.h>
39
40#include "rf_threadstuff.h"
41#include "rf_raid.h"
42#include "rf_general.h"
43#include "rf_map.h"
44#include "rf_shutdown.h"
45
46static void rf_FreePDAList(RF_PhysDiskAddr_t *pda_list);
47static void rf_FreeASMList(RF_AccessStripeMap_t *asm_list);
48
49/***************************************************************************
50 *
51 * MapAccess -- main 1st order mapping routine.  Maps an access in the
52 * RAID address space to the corresponding set of physical disk
53 * addresses.  The result is returned as a list of AccessStripeMap
54 * structures, one per stripe accessed.  Each ASM structure contains a
55 * pointer to a list of PhysDiskAddr structures, which describe the
56 * physical locations touched by the user access.  Note that this
57 * routine returns only static mapping information, i.e. the list of
58 * physical addresses returned does not necessarily identify the set
59 * of physical locations that will actually be read or written.  The
60 * routine also maps the parity.  The physical disk location returned
61 * always indicates the entire parity unit, even when only a subset of
62 * it is being accessed.  This is because an access that is not stripe
63 * unit aligned but that spans a stripe unit boundary may require
64 * access two distinct portions of the parity unit, and we can't yet
65 * tell which portion(s) we'll actually need.  We leave it up to the
66 * algorithm selection code to decide what subset of the parity unit
67 * to access.  Note that addresses in the RAID address space must
68 * always be maintained as longs, instead of ints.
69 *
70 * This routine returns NULL if numBlocks is 0
71 *
72 * raidAddress - starting address in RAID address space
73 * numBlocks   - number of blocks in RAID address space to access
74 * buffer      - buffer to supply/recieve data
75 * remap       - 1 => remap address to spare space
76 ***************************************************************************/
77
78RF_AccessStripeMapHeader_t *
79rf_MapAccess(RF_Raid_t *raidPtr, RF_RaidAddr_t raidAddress,
80	     RF_SectorCount_t numBlocks, void *buffer, int remap)
81{
82	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
83	RF_AccessStripeMapHeader_t *asm_hdr = NULL;
84	RF_AccessStripeMap_t *asm_list = NULL, *asm_p = NULL;
85	int     faultsTolerated = layoutPtr->map->faultsTolerated;
86	/* we'll change raidAddress along the way */
87	RF_RaidAddr_t startAddress = raidAddress;
88	RF_RaidAddr_t endAddress = raidAddress + numBlocks;
89	RF_RaidDisk_t *disks = raidPtr->Disks;
90	RF_PhysDiskAddr_t *pda_p;
91#if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
92	RF_PhysDiskAddr_t *pda_q;
93#endif
94	RF_StripeCount_t numStripes = 0;
95	RF_RaidAddr_t stripeRealEndAddress, stripeEndAddress,
96		nextStripeUnitAddress;
97	RF_RaidAddr_t startAddrWithinStripe, lastRaidAddr;
98	RF_StripeCount_t totStripes;
99	RF_StripeNum_t stripeID, lastSID, SUID, lastSUID;
100	RF_AccessStripeMap_t *asmList, *t_asm;
101	RF_PhysDiskAddr_t *pdaList, *t_pda;
102
103	/* allocate all the ASMs and PDAs up front */
104	lastRaidAddr = raidAddress + numBlocks - 1;
105	stripeID = rf_RaidAddressToStripeID(layoutPtr, raidAddress);
106	lastSID = rf_RaidAddressToStripeID(layoutPtr, lastRaidAddr);
107	totStripes = lastSID - stripeID + 1;
108	SUID = rf_RaidAddressToStripeUnitID(layoutPtr, raidAddress);
109	lastSUID = rf_RaidAddressToStripeUnitID(layoutPtr, lastRaidAddr);
110
111	asmList = rf_AllocASMList(totStripes);
112
113	/* may also need pda(s) per stripe for parity */
114	pdaList = rf_AllocPDAList(lastSUID - SUID + 1 +
115				  faultsTolerated * totStripes);
116
117
118	if (raidAddress + numBlocks > raidPtr->totalSectors) {
119		RF_ERRORMSG1("Unable to map access because offset (%d) was invalid\n",
120		    (int) raidAddress);
121		return (NULL);
122	}
123#if RF_DEBUG_MAP
124	if (rf_mapDebug)
125		rf_PrintRaidAddressInfo(raidPtr, raidAddress, numBlocks);
126#endif
127	for (; raidAddress < endAddress;) {
128		/* make the next stripe structure */
129		RF_ASSERT(asmList);
130		t_asm = asmList;
131		asmList = asmList->next;
132		memset((char *) t_asm, 0, sizeof(RF_AccessStripeMap_t));
133		if (!asm_p)
134			asm_list = asm_p = t_asm;
135		else {
136			asm_p->next = t_asm;
137			asm_p = asm_p->next;
138		}
139		numStripes++;
140
141		/* map SUs from current location to the end of the stripe */
142		asm_p->stripeID =	/* rf_RaidAddressToStripeID(layoutPtr,
143		        raidAddress) */ stripeID++;
144		stripeRealEndAddress = rf_RaidAddressOfNextStripeBoundary(layoutPtr, raidAddress);
145		stripeEndAddress = RF_MIN(endAddress, stripeRealEndAddress);
146		asm_p->raidAddress = raidAddress;
147		asm_p->endRaidAddress = stripeEndAddress;
148
149		/* map each stripe unit in the stripe */
150		pda_p = NULL;
151
152		/* Raid addr of start of portion of access that is
153                   within this stripe */
154		startAddrWithinStripe = raidAddress;
155
156		for (; raidAddress < stripeEndAddress;) {
157			RF_ASSERT(pdaList);
158			t_pda = pdaList;
159			pdaList = pdaList->next;
160			memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t));
161			if (!pda_p)
162				asm_p->physInfo = pda_p = t_pda;
163			else {
164				pda_p->next = t_pda;
165				pda_p = pda_p->next;
166			}
167
168			pda_p->type = RF_PDA_TYPE_DATA;
169			(layoutPtr->map->MapSector) (raidPtr, raidAddress,
170						     &(pda_p->col),
171						     &(pda_p->startSector),
172						     remap);
173
174			/* mark any failures we find.  failedPDA is
175			 * don't-care if there is more than one
176			 * failure */
177
178			/* the RAID address corresponding to this
179                           physical diskaddress */
180			pda_p->raidAddress = raidAddress;
181			nextStripeUnitAddress = rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, raidAddress);
182			pda_p->numSector = RF_MIN(endAddress, nextStripeUnitAddress) - raidAddress;
183			RF_ASSERT(pda_p->numSector != 0);
184			rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 0);
185			pda_p->bufPtr = (char *)buffer + rf_RaidAddressToByte(raidPtr, (raidAddress - startAddress));
186			asm_p->totalSectorsAccessed += pda_p->numSector;
187			asm_p->numStripeUnitsAccessed++;
188
189			raidAddress = RF_MIN(endAddress, nextStripeUnitAddress);
190		}
191
192		/* Map the parity. At this stage, the startSector and
193		 * numSector fields for the parity unit are always set
194		 * to indicate the entire parity unit. We may modify
195		 * this after mapping the data portion. */
196		switch (faultsTolerated) {
197		case 0:
198			break;
199		case 1:	/* single fault tolerant */
200			RF_ASSERT(pdaList);
201			t_pda = pdaList;
202			pdaList = pdaList->next;
203			memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t));
204			pda_p = asm_p->parityInfo = t_pda;
205			pda_p->type = RF_PDA_TYPE_PARITY;
206			(layoutPtr->map->MapParity) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe),
207			    &(pda_p->col), &(pda_p->startSector), remap);
208			pda_p->numSector = layoutPtr->sectorsPerStripeUnit;
209			/* raidAddr may be needed to find unit to redirect to */
210			pda_p->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe);
211			rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 1);
212			rf_ASMParityAdjust(asm_p->parityInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p);
213
214			break;
215#if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
216		case 2:	/* two fault tolerant */
217			RF_ASSERT(pdaList && pdaList->next);
218			t_pda = pdaList;
219			pdaList = pdaList->next;
220			memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t));
221			pda_p = asm_p->parityInfo = t_pda;
222			pda_p->type = RF_PDA_TYPE_PARITY;
223			t_pda = pdaList;
224			pdaList = pdaList->next;
225			memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t));
226			pda_q = asm_p->qInfo = t_pda;
227			pda_q->type = RF_PDA_TYPE_Q;
228			(layoutPtr->map->MapParity) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe),
229			    &(pda_p->col), &(pda_p->startSector), remap);
230			(layoutPtr->map->MapQ) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe),
231			    &(pda_q->col), &(pda_q->startSector), remap);
232			pda_q->numSector = pda_p->numSector = layoutPtr->sectorsPerStripeUnit;
233			/* raidAddr may be needed to find unit to redirect to */
234			pda_p->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe);
235			pda_q->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe);
236			/* failure mode stuff */
237			rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 1);
238			rf_ASMCheckStatus(raidPtr, pda_q, asm_p, disks, 1);
239			rf_ASMParityAdjust(asm_p->parityInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p);
240			rf_ASMParityAdjust(asm_p->qInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p);
241			break;
242#endif
243		}
244	}
245	RF_ASSERT(asmList == NULL && pdaList == NULL);
246	/* make the header structure */
247	asm_hdr = rf_AllocAccessStripeMapHeader();
248	RF_ASSERT(numStripes == totStripes);
249	asm_hdr->numStripes = numStripes;
250	asm_hdr->stripeMap = asm_list;
251
252#if RF_DEBUG_MAP
253	if (rf_mapDebug)
254		rf_PrintAccessStripeMap(asm_hdr);
255#endif
256	return (asm_hdr);
257}
258
259/***************************************************************************
260 * This routine walks through an ASM list and marks the PDAs that have
261 * failed.  It's called only when a disk failure causes an in-flight
262 * DAG to fail.  The parity may consist of two components, but we want
263 * to use only one failedPDA pointer.  Thus we set failedPDA to point
264 * to the first parity component, and rely on the rest of the code to
265 * do the right thing with this.
266 ***************************************************************************/
267
268void
269rf_MarkFailuresInASMList(RF_Raid_t *raidPtr,
270			 RF_AccessStripeMapHeader_t *asm_h)
271{
272	RF_RaidDisk_t *disks = raidPtr->Disks;
273	RF_AccessStripeMap_t *asmap;
274	RF_PhysDiskAddr_t *pda;
275
276	for (asmap = asm_h->stripeMap; asmap; asmap = asmap->next) {
277		asmap->numDataFailed = 0;
278		asmap->numParityFailed = 0;
279		asmap->numQFailed = 0;
280		asmap->numFailedPDAs = 0;
281		memset((char *) asmap->failedPDAs, 0,
282		    RF_MAX_FAILED_PDA * sizeof(RF_PhysDiskAddr_t *));
283		for (pda = asmap->physInfo; pda; pda = pda->next) {
284			if (RF_DEAD_DISK(disks[pda->col].status)) {
285				asmap->numDataFailed++;
286				asmap->failedPDAs[asmap->numFailedPDAs] = pda;
287				asmap->numFailedPDAs++;
288			}
289		}
290		pda = asmap->parityInfo;
291		if (pda && RF_DEAD_DISK(disks[pda->col].status)) {
292			asmap->numParityFailed++;
293			asmap->failedPDAs[asmap->numFailedPDAs] = pda;
294			asmap->numFailedPDAs++;
295		}
296		pda = asmap->qInfo;
297		if (pda && RF_DEAD_DISK(disks[pda->col].status)) {
298			asmap->numQFailed++;
299			asmap->failedPDAs[asmap->numFailedPDAs] = pda;
300			asmap->numFailedPDAs++;
301		}
302	}
303}
304
305/***************************************************************************
306 *
307 * routines to allocate and free list elements.  All allocation
308 * routines zero the structure before returning it.
309 *
310 * FreePhysDiskAddr is static.  It should never be called directly,
311 * because FreeAccessStripeMap takes care of freeing the PhysDiskAddr
312 * list.
313 *
314 ***************************************************************************/
315
316#define RF_MAX_FREE_ASMHDR 128
317#define RF_MIN_FREE_ASMHDR  32
318
319#define RF_MAX_FREE_ASM 192
320#define RF_MIN_FREE_ASM  64
321
322#define RF_MAX_FREE_PDA 192
323#define RF_MIN_FREE_PDA  64
324
325#define RF_MAX_FREE_ASMHLE 64
326#define RF_MIN_FREE_ASMHLE 16
327
328#define RF_MAX_FREE_FSS 128
329#define RF_MIN_FREE_FSS  32
330
331#define RF_MAX_FREE_VFPLE 128
332#define RF_MIN_FREE_VFPLE  32
333
334#define RF_MAX_FREE_VPLE 128
335#define RF_MIN_FREE_VPLE  32
336
337
338/* called at shutdown time.  So far, all that is necessary is to
339   release all the free lists */
340static void rf_ShutdownMapModule(void *);
341static void
342rf_ShutdownMapModule(void *ignored)
343{
344	pool_destroy(&rf_pools.asm_hdr);
345	pool_destroy(&rf_pools.asmap);
346	pool_destroy(&rf_pools.asmhle);
347	pool_destroy(&rf_pools.pda);
348	pool_destroy(&rf_pools.fss);
349	pool_destroy(&rf_pools.vfple);
350	pool_destroy(&rf_pools.vple);
351}
352
353int
354rf_ConfigureMapModule(RF_ShutdownList_t **listp)
355{
356
357	rf_pool_init(&rf_pools.asm_hdr, sizeof(RF_AccessStripeMapHeader_t),
358		     "rf_asmhdr_pl", RF_MIN_FREE_ASMHDR, RF_MAX_FREE_ASMHDR);
359	rf_pool_init(&rf_pools.asmap, sizeof(RF_AccessStripeMap_t),
360		     "rf_asm_pl", RF_MIN_FREE_ASM, RF_MAX_FREE_ASM);
361	rf_pool_init(&rf_pools.asmhle, sizeof(RF_ASMHeaderListElem_t),
362		     "rf_asmhle_pl", RF_MIN_FREE_ASMHLE, RF_MAX_FREE_ASMHLE);
363	rf_pool_init(&rf_pools.pda, sizeof(RF_PhysDiskAddr_t),
364		     "rf_pda_pl", RF_MIN_FREE_PDA, RF_MAX_FREE_PDA);
365	rf_pool_init(&rf_pools.fss, sizeof(RF_FailedStripe_t),
366		     "rf_fss_pl", RF_MIN_FREE_FSS, RF_MAX_FREE_FSS);
367	rf_pool_init(&rf_pools.vfple, sizeof(RF_VoidFunctionPointerListElem_t),
368		     "rf_vfple_pl", RF_MIN_FREE_VFPLE, RF_MAX_FREE_VFPLE);
369	rf_pool_init(&rf_pools.vple, sizeof(RF_VoidPointerListElem_t),
370		     "rf_vple_pl", RF_MIN_FREE_VPLE, RF_MAX_FREE_VPLE);
371	rf_ShutdownCreate(listp, rf_ShutdownMapModule, NULL);
372
373	return (0);
374}
375
376RF_AccessStripeMapHeader_t *
377rf_AllocAccessStripeMapHeader(void)
378{
379	RF_AccessStripeMapHeader_t *p;
380
381	p = pool_get(&rf_pools.asm_hdr, PR_WAITOK);
382	memset((char *) p, 0, sizeof(RF_AccessStripeMapHeader_t));
383
384	return (p);
385}
386
387void
388rf_FreeAccessStripeMapHeader(RF_AccessStripeMapHeader_t *p)
389{
390	pool_put(&rf_pools.asm_hdr, p);
391}
392
393
394RF_VoidFunctionPointerListElem_t *
395rf_AllocVFPListElem(void)
396{
397	RF_VoidFunctionPointerListElem_t *p;
398
399	p = pool_get(&rf_pools.vfple, PR_WAITOK);
400	memset((char *) p, 0, sizeof(RF_VoidFunctionPointerListElem_t));
401
402	return (p);
403}
404
405void
406rf_FreeVFPListElem(RF_VoidFunctionPointerListElem_t *p)
407{
408
409	pool_put(&rf_pools.vfple, p);
410}
411
412
413RF_VoidPointerListElem_t *
414rf_AllocVPListElem(void)
415{
416	RF_VoidPointerListElem_t *p;
417
418	p = pool_get(&rf_pools.vple, PR_WAITOK);
419	memset((char *) p, 0, sizeof(RF_VoidPointerListElem_t));
420
421	return (p);
422}
423
424void
425rf_FreeVPListElem(RF_VoidPointerListElem_t *p)
426{
427
428	pool_put(&rf_pools.vple, p);
429}
430
431RF_ASMHeaderListElem_t *
432rf_AllocASMHeaderListElem(void)
433{
434	RF_ASMHeaderListElem_t *p;
435
436	p = pool_get(&rf_pools.asmhle, PR_WAITOK);
437	memset((char *) p, 0, sizeof(RF_ASMHeaderListElem_t));
438
439	return (p);
440}
441
442void
443rf_FreeASMHeaderListElem(RF_ASMHeaderListElem_t *p)
444{
445
446	pool_put(&rf_pools.asmhle, p);
447}
448
449RF_FailedStripe_t *
450rf_AllocFailedStripeStruct(void)
451{
452	RF_FailedStripe_t *p;
453
454	p = pool_get(&rf_pools.fss, PR_WAITOK);
455	memset((char *) p, 0, sizeof(RF_FailedStripe_t));
456
457	return (p);
458}
459
460void
461rf_FreeFailedStripeStruct(RF_FailedStripe_t *p)
462{
463	pool_put(&rf_pools.fss, p);
464}
465
466
467
468
469
470RF_PhysDiskAddr_t *
471rf_AllocPhysDiskAddr(void)
472{
473	RF_PhysDiskAddr_t *p;
474
475	p = pool_get(&rf_pools.pda, PR_WAITOK);
476	memset((char *) p, 0, sizeof(RF_PhysDiskAddr_t));
477
478	return (p);
479}
480/* allocates a list of PDAs, locking the free list only once when we
481 * have to call calloc, we do it one component at a time to simplify
482 * the process of freeing the list at program shutdown.  This should
483 * not be much of a performance hit, because it should be very
484 * infrequently executed.  */
485RF_PhysDiskAddr_t *
486rf_AllocPDAList(int count)
487{
488	RF_PhysDiskAddr_t *p, *prev;
489	int i;
490
491	p = NULL;
492	prev = NULL;
493	for (i = 0; i < count; i++) {
494		p = pool_get(&rf_pools.pda, PR_WAITOK);
495		p->next = prev;
496		prev = p;
497	}
498
499	return (p);
500}
501
502void
503rf_FreePhysDiskAddr(RF_PhysDiskAddr_t *p)
504{
505	pool_put(&rf_pools.pda, p);
506}
507
508static void
509rf_FreePDAList(RF_PhysDiskAddr_t *pda_list)
510{
511	RF_PhysDiskAddr_t *p, *tmp;
512
513	p=pda_list;
514	while (p) {
515		tmp = p->next;
516		pool_put(&rf_pools.pda, p);
517		p = tmp;
518	}
519}
520
521/* this is essentially identical to AllocPDAList.  I should combine
522 * the two.  when we have to call calloc, we do it one component at a
523 * time to simplify the process of freeing the list at program
524 * shutdown.  This should not be much of a performance hit, because it
525 * should be very infrequently executed.  */
526RF_AccessStripeMap_t *
527rf_AllocASMList(int count)
528{
529	RF_AccessStripeMap_t *p, *prev;
530	int i;
531
532	p = NULL;
533	prev = NULL;
534	for (i = 0; i < count; i++) {
535		p = pool_get(&rf_pools.asmap, PR_WAITOK);
536		p->next = prev;
537		prev = p;
538	}
539	return (p);
540}
541
542static void
543rf_FreeASMList(RF_AccessStripeMap_t *asm_list)
544{
545	RF_AccessStripeMap_t *p, *tmp;
546
547	p=asm_list;
548	while (p) {
549		tmp = p->next;
550		pool_put(&rf_pools.asmap, p);
551		p = tmp;
552	}
553}
554
555void
556rf_FreeAccessStripeMap(RF_AccessStripeMapHeader_t *hdr)
557{
558	RF_AccessStripeMap_t *p;
559	RF_PhysDiskAddr_t *pdp, *trailer, *pdaList = NULL, *pdaEnd = NULL;
560	int     count = 0, t, asm_count = 0;
561
562	for (p = hdr->stripeMap; p; p = p->next) {
563
564		/* link the 3 pda lists into the accumulating pda list */
565
566		if (!pdaList)
567			pdaList = p->qInfo;
568		else
569			pdaEnd->next = p->qInfo;
570		for (trailer = NULL, pdp = p->qInfo; pdp;) {
571			trailer = pdp;
572			pdp = pdp->next;
573			count++;
574		}
575		if (trailer)
576			pdaEnd = trailer;
577
578		if (!pdaList)
579			pdaList = p->parityInfo;
580		else
581			pdaEnd->next = p->parityInfo;
582		for (trailer = NULL, pdp = p->parityInfo; pdp;) {
583			trailer = pdp;
584			pdp = pdp->next;
585			count++;
586		}
587		if (trailer)
588			pdaEnd = trailer;
589
590		if (!pdaList)
591			pdaList = p->physInfo;
592		else
593			pdaEnd->next = p->physInfo;
594		for (trailer = NULL, pdp = p->physInfo; pdp;) {
595			trailer = pdp;
596			pdp = pdp->next;
597			count++;
598		}
599		if (trailer)
600			pdaEnd = trailer;
601
602		asm_count++;
603	}
604
605	/* debug only */
606	for (t = 0, pdp = pdaList; pdp; pdp = pdp->next)
607		t++;
608	RF_ASSERT(t == count);
609
610	if (pdaList)
611		rf_FreePDAList(pdaList);
612	rf_FreeASMList(hdr->stripeMap);
613	rf_FreeAccessStripeMapHeader(hdr);
614}
615/* We can't use the large write optimization if there are any failures
616 * in the stripe.  In the declustered layout, there is no way to
617 * immediately determine what disks constitute a stripe, so we
618 * actually have to hunt through the stripe looking for failures.  The
619 * reason we map the parity instead of just using asm->parityInfo->col
620 * is because the latter may have been already redirected to a spare
621 * drive, which would mess up the computation of the stripe offset.
622 *
623 * ASSUMES AT MOST ONE FAILURE IN THE STRIPE.  */
624int
625rf_CheckStripeForFailures(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
626{
627	RF_RowCol_t tcol, pcol, *diskids, i;
628	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
629	RF_StripeCount_t stripeOffset;
630	int     numFailures;
631	RF_RaidAddr_t sosAddr;
632	RF_SectorNum_t diskOffset, poffset;
633
634	/* quick out in the fault-free case.  */
635	rf_lock_mutex2(raidPtr->mutex);
636	numFailures = raidPtr->numFailures;
637	rf_unlock_mutex2(raidPtr->mutex);
638	if (numFailures == 0)
639		return (0);
640
641	sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr,
642						     asmap->raidAddress);
643	(layoutPtr->map->IdentifyStripe) (raidPtr, asmap->raidAddress,
644					  &diskids);
645	(layoutPtr->map->MapParity) (raidPtr, asmap->raidAddress,
646				     &pcol, &poffset, 0);	/* get pcol */
647
648	/* this need not be true if we've redirected the access to a
649	 * spare in another row RF_ASSERT(row == testrow); */
650	stripeOffset = 0;
651	for (i = 0; i < layoutPtr->numDataCol + layoutPtr->numParityCol; i++) {
652		if (diskids[i] != pcol) {
653			if (RF_DEAD_DISK(raidPtr->Disks[diskids[i]].status)) {
654				if (raidPtr->status != rf_rs_reconstructing)
655					return (1);
656				RF_ASSERT(raidPtr->reconControl->fcol == diskids[i]);
657				layoutPtr->map->MapSector(raidPtr,
658				    sosAddr + stripeOffset * layoutPtr->sectorsPerStripeUnit,
659				    &tcol, &diskOffset, 0);
660				RF_ASSERT(tcol == diskids[i]);
661				if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, diskOffset))
662					return (1);
663				asmap->flags |= RF_ASM_REDIR_LARGE_WRITE;
664				return (0);
665			}
666			stripeOffset++;
667		}
668	}
669	return (0);
670}
671#if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0) || (RF_INCLUDE_EVENODD >0)
672/*
673   return the number of failed data units in the stripe.
674*/
675
676int
677rf_NumFailedDataUnitsInStripe(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
678{
679	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
680	RF_RowCol_t tcol, i;
681	RF_SectorNum_t diskOffset;
682	RF_RaidAddr_t sosAddr;
683	int     numFailures;
684
685	/* quick out in the fault-free case.  */
686	rf_lock_mutex2(raidPtr->mutex);
687	numFailures = raidPtr->numFailures;
688	rf_unlock_mutex2(raidPtr->mutex);
689	if (numFailures == 0)
690		return (0);
691	numFailures = 0;
692
693	sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr,
694						     asmap->raidAddress);
695	for (i = 0; i < layoutPtr->numDataCol; i++) {
696		(layoutPtr->map->MapSector) (raidPtr, sosAddr + i * layoutPtr->sectorsPerStripeUnit,
697		    &tcol, &diskOffset, 0);
698		if (RF_DEAD_DISK(raidPtr->Disks[tcol].status))
699			numFailures++;
700	}
701
702	return numFailures;
703}
704#endif
705
706/****************************************************************************
707 *
708 * debug routines
709 *
710 ***************************************************************************/
711#if RF_DEBUG_MAP
712void
713rf_PrintAccessStripeMap(RF_AccessStripeMapHeader_t *asm_h)
714{
715	rf_PrintFullAccessStripeMap(asm_h, 0);
716}
717#endif
718
719/* prbuf - flag to print buffer pointers */
720void
721rf_PrintFullAccessStripeMap(RF_AccessStripeMapHeader_t *asm_h, int prbuf)
722{
723	int     i;
724	RF_AccessStripeMap_t *asmap = asm_h->stripeMap;
725	RF_PhysDiskAddr_t *p;
726	printf("%d stripes total\n", (int) asm_h->numStripes);
727	for (; asmap; asmap = asmap->next) {
728		/* printf("Num failures: %d\n",asmap->numDataFailed); */
729		/* printf("Num sectors:
730		 * %d\n",(int)asmap->totalSectorsAccessed); */
731		printf("Stripe %d (%d sectors), failures: %d data, %d parity: ",
732		    (int) asmap->stripeID,
733		    (int) asmap->totalSectorsAccessed,
734		    (int) asmap->numDataFailed,
735		    (int) asmap->numParityFailed);
736		if (asmap->parityInfo) {
737			printf("Parity [c%d s%d-%d", asmap->parityInfo->col,
738			    (int) asmap->parityInfo->startSector,
739			    (int) (asmap->parityInfo->startSector +
740				asmap->parityInfo->numSector - 1));
741			if (prbuf)
742				printf(" b0x%lx", (unsigned long) asmap->parityInfo->bufPtr);
743			if (asmap->parityInfo->next) {
744				printf(", c%d s%d-%d", asmap->parityInfo->next->col,
745				    (int) asmap->parityInfo->next->startSector,
746				    (int) (asmap->parityInfo->next->startSector +
747					asmap->parityInfo->next->numSector - 1));
748				if (prbuf)
749					printf(" b0x%lx", (unsigned long) asmap->parityInfo->next->bufPtr);
750				RF_ASSERT(asmap->parityInfo->next->next == NULL);
751			}
752			printf("]\n\t");
753		}
754		for (i = 0, p = asmap->physInfo; p; p = p->next, i++) {
755			printf("SU c%d s%d-%d ", p->col, (int) p->startSector,
756			    (int) (p->startSector + p->numSector - 1));
757			if (prbuf)
758				printf("b0x%lx ", (unsigned long) p->bufPtr);
759			if (i && !(i & 1))
760				printf("\n\t");
761		}
762		printf("\n");
763		p = asm_h->stripeMap->failedPDAs[0];
764		if (asm_h->stripeMap->numDataFailed + asm_h->stripeMap->numParityFailed > 1)
765			printf("[multiple failures]\n");
766		else
767			if (asm_h->stripeMap->numDataFailed + asm_h->stripeMap->numParityFailed > 0)
768				printf("\t[Failed PDA: c%d s%d-%d]\n", p->col,
769				    (int) p->startSector, (int) (p->startSector + p->numSector - 1));
770	}
771}
772
773#if RF_MAP_DEBUG
774void
775rf_PrintRaidAddressInfo(RF_Raid_t *raidPtr, RF_RaidAddr_t raidAddr,
776			RF_SectorCount_t numBlocks)
777{
778	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
779	RF_RaidAddr_t ra, sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, raidAddr);
780
781	printf("Raid addrs of SU boundaries from start of stripe to end of access:\n\t");
782	for (ra = sosAddr; ra <= raidAddr + numBlocks; ra += layoutPtr->sectorsPerStripeUnit) {
783		printf("%d (0x%x), ", (int) ra, (int) ra);
784	}
785	printf("\n");
786	printf("Offset into stripe unit: %d (0x%x)\n",
787	    (int) (raidAddr % layoutPtr->sectorsPerStripeUnit),
788	    (int) (raidAddr % layoutPtr->sectorsPerStripeUnit));
789}
790#endif
791/* given a parity descriptor and the starting address within a stripe,
792 * range restrict the parity descriptor to touch only the correct
793 * stuff.  */
794void
795rf_ASMParityAdjust(RF_PhysDiskAddr_t *toAdjust,
796		   RF_StripeNum_t startAddrWithinStripe,
797		   RF_SectorNum_t endAddress,
798		   RF_RaidLayout_t *layoutPtr,
799		   RF_AccessStripeMap_t *asm_p)
800{
801	RF_PhysDiskAddr_t *new_pda;
802
803	/* when we're accessing only a portion of one stripe unit, we
804	 * want the parity descriptor to identify only the chunk of
805	 * parity associated with the data.  When the access spans
806	 * exactly one stripe unit boundary and is less than a stripe
807	 * unit in size, it uses two disjoint regions of the parity
808	 * unit.  When an access spans more than one stripe unit
809	 * boundary, it uses all of the parity unit.
810	 *
811	 * To better handle the case where stripe units are small, we
812	 * may eventually want to change the 2nd case so that if the
813	 * SU size is below some threshold, we just read/write the
814	 * whole thing instead of breaking it up into two accesses. */
815	if (asm_p->numStripeUnitsAccessed == 1) {
816		int     x = (startAddrWithinStripe % layoutPtr->sectorsPerStripeUnit);
817		toAdjust->startSector += x;
818		toAdjust->raidAddress += x;
819		toAdjust->numSector = asm_p->physInfo->numSector;
820		RF_ASSERT(toAdjust->numSector != 0);
821	} else
822		if (asm_p->numStripeUnitsAccessed == 2 && asm_p->totalSectorsAccessed < layoutPtr->sectorsPerStripeUnit) {
823			int     x = (startAddrWithinStripe % layoutPtr->sectorsPerStripeUnit);
824
825			/* create a second pda and copy the parity map info
826			 * into it */
827			RF_ASSERT(toAdjust->next == NULL);
828			/* the following will get freed in rf_FreeAccessStripeMap() via
829			   rf_FreePDAList() */
830			new_pda = toAdjust->next = rf_AllocPhysDiskAddr();
831			*new_pda = *toAdjust;	/* structure assignment */
832			new_pda->next = NULL;
833
834			/* adjust the start sector & number of blocks for the
835			 * first parity pda */
836			toAdjust->startSector += x;
837			toAdjust->raidAddress += x;
838			toAdjust->numSector = rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, startAddrWithinStripe) - startAddrWithinStripe;
839			RF_ASSERT(toAdjust->numSector != 0);
840
841			/* adjust the second pda */
842			new_pda->numSector = endAddress - rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, endAddress);
843			/* new_pda->raidAddress =
844			 * rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr,
845			 * toAdjust->raidAddress); */
846			RF_ASSERT(new_pda->numSector != 0);
847		}
848}
849
850/* Check if a disk has been spared or failed. If spared, redirect the
851 * I/O.  If it has been failed, record it in the asm pointer.  Fourth
852 * arg is whether data or parity.  */
853void
854rf_ASMCheckStatus(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda_p,
855		  RF_AccessStripeMap_t *asm_p, RF_RaidDisk_t *disks,
856		  int parity)
857{
858	RF_DiskStatus_t dstatus;
859	RF_RowCol_t fcol;
860
861	dstatus = disks[pda_p->col].status;
862
863	if (dstatus == rf_ds_spared) {
864		/* if the disk has been spared, redirect access to the spare */
865		fcol = pda_p->col;
866		pda_p->col = disks[fcol].spareCol;
867	} else
868		if (dstatus == rf_ds_dist_spared) {
869			/* ditto if disk has been spared to dist spare space */
870#if RF_DEBUG_MAP
871			RF_RowCol_t oc = pda_p->col;
872			RF_SectorNum_t oo = pda_p->startSector;
873#endif
874			if (pda_p->type == RF_PDA_TYPE_DATA)
875				raidPtr->Layout.map->MapSector(raidPtr, pda_p->raidAddress, &pda_p->col, &pda_p->startSector, RF_REMAP);
876			else
877				raidPtr->Layout.map->MapParity(raidPtr, pda_p->raidAddress, &pda_p->col, &pda_p->startSector, RF_REMAP);
878
879#if RF_DEBUG_MAP
880			if (rf_mapDebug) {
881				printf("Redirected c %d o %d -> c %d o %d\n", oc, (int) oo,
882				    pda_p->col, (int) pda_p->startSector);
883			}
884#endif
885		} else
886			if (RF_DEAD_DISK(dstatus)) {
887				/* if the disk is inaccessible, mark the
888				 * failure */
889				if (parity)
890					asm_p->numParityFailed++;
891				else {
892					asm_p->numDataFailed++;
893				}
894				asm_p->failedPDAs[asm_p->numFailedPDAs] = pda_p;
895				asm_p->numFailedPDAs++;
896#if 0
897				switch (asm_p->numParityFailed + asm_p->numDataFailed) {
898				case 1:
899					asm_p->failedPDAs[0] = pda_p;
900					break;
901				case 2:
902					asm_p->failedPDAs[1] = pda_p;
903				default:
904					break;
905				}
906#endif
907			}
908	/* the redirected access should never span a stripe unit boundary */
909	RF_ASSERT(rf_RaidAddressToStripeUnitID(&raidPtr->Layout, pda_p->raidAddress) ==
910	    rf_RaidAddressToStripeUnitID(&raidPtr->Layout, pda_p->raidAddress + pda_p->numSector - 1));
911	RF_ASSERT(pda_p->col != -1);
912}
913