1/*  $NetBSD: if_wpi.c,v 1.50.2.3 2012/08/12 18:55:10 martin Exp $    */
2
3/*-
4 * Copyright (c) 2006, 2007
5 *	Damien Bergamini <damien.bergamini@free.fr>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20#include <sys/cdefs.h>
21__KERNEL_RCSID(0, "$NetBSD: if_wpi.c,v 1.50.2.3 2012/08/12 18:55:10 martin Exp $");
22
23/*
24 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25 */
26
27
28#include <sys/param.h>
29#include <sys/sockio.h>
30#include <sys/sysctl.h>
31#include <sys/mbuf.h>
32#include <sys/kernel.h>
33#include <sys/socket.h>
34#include <sys/systm.h>
35#include <sys/malloc.h>
36#include <sys/mutex.h>
37#include <sys/once.h>
38#include <sys/conf.h>
39#include <sys/kauth.h>
40#include <sys/callout.h>
41#include <sys/proc.h>
42
43#include <sys/bus.h>
44#include <machine/endian.h>
45#include <sys/intr.h>
46
47#include <dev/pci/pcireg.h>
48#include <dev/pci/pcivar.h>
49#include <dev/pci/pcidevs.h>
50
51#include <net/bpf.h>
52#include <net/if.h>
53#include <net/if_arp.h>
54#include <net/if_dl.h>
55#include <net/if_ether.h>
56#include <net/if_media.h>
57#include <net/if_types.h>
58
59#include <net80211/ieee80211_var.h>
60#include <net80211/ieee80211_amrr.h>
61#include <net80211/ieee80211_radiotap.h>
62
63#include <netinet/in.h>
64#include <netinet/in_systm.h>
65#include <netinet/in_var.h>
66#include <netinet/ip.h>
67
68#include <dev/firmload.h>
69
70#include <dev/pci/if_wpireg.h>
71#include <dev/pci/if_wpivar.h>
72
73#ifdef WPI_DEBUG
74#define DPRINTF(x)	if (wpi_debug > 0) printf x
75#define DPRINTFN(n, x)	if (wpi_debug >= (n)) printf x
76int wpi_debug = 1;
77#else
78#define DPRINTF(x)
79#define DPRINTFN(n, x)
80#endif
81
82/*
83 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
84 */
85static const struct ieee80211_rateset wpi_rateset_11a =
86	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
87
88static const struct ieee80211_rateset wpi_rateset_11b =
89	{ 4, { 2, 4, 11, 22 } };
90
91static const struct ieee80211_rateset wpi_rateset_11g =
92	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
93
94static const char wpi_firmware_name[] = "iwlwifi-3945.ucode";
95static once_t wpi_firmware_init;
96static kmutex_t wpi_firmware_mutex;
97static size_t wpi_firmware_users;
98static uint8_t *wpi_firmware_image;
99static size_t wpi_firmware_size;
100
101static int  wpi_match(device_t, cfdata_t, void *);
102static void wpi_attach(device_t, device_t, void *);
103static int  wpi_detach(device_t , int);
104static int  wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *,
105	void **, bus_size_t, bus_size_t, int);
106static void wpi_dma_contig_free(struct wpi_dma_info *);
107static int  wpi_alloc_shared(struct wpi_softc *);
108static void wpi_free_shared(struct wpi_softc *);
109static int  wpi_alloc_fwmem(struct wpi_softc *);
110static void wpi_free_fwmem(struct wpi_softc *);
111static struct wpi_rbuf *wpi_alloc_rbuf(struct wpi_softc *);
112static void wpi_free_rbuf(struct mbuf *, void *, size_t, void *);
113static int  wpi_alloc_rpool(struct wpi_softc *);
114static void wpi_free_rpool(struct wpi_softc *);
115static int  wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
116static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
117static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
118static int  wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *, int,
119	int);
120static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
121static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
122static struct ieee80211_node * wpi_node_alloc(struct ieee80211_node_table *);
123static void wpi_newassoc(struct ieee80211_node *, int);
124static int  wpi_media_change(struct ifnet *);
125static int  wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
126static void	wpi_fix_channel(struct ieee80211com *, struct mbuf *);
127static void wpi_mem_lock(struct wpi_softc *);
128static void wpi_mem_unlock(struct wpi_softc *);
129static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t);
130static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
131static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
132								   const uint32_t *, int);
133static int  wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
134static int  wpi_load_microcode(struct wpi_softc *,  const uint8_t *, int);
135static int  wpi_cache_firmware(struct wpi_softc *);
136static void wpi_release_firmware(void);
137static int  wpi_load_firmware(struct wpi_softc *);
138static void wpi_calib_timeout(void *);
139static void wpi_iter_func(void *, struct ieee80211_node *);
140static void wpi_power_calibration(struct wpi_softc *, int);
141static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
142	struct wpi_rx_data *);
143static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
144static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
145static void wpi_notif_intr(struct wpi_softc *);
146static int  wpi_intr(void *);
147static void wpi_read_eeprom(struct wpi_softc *);
148static void wpi_read_eeprom_channels(struct wpi_softc *, int);
149static void wpi_read_eeprom_group(struct wpi_softc *, int);
150static uint8_t wpi_plcp_signal(int);
151static int  wpi_tx_data(struct wpi_softc *, struct mbuf *,
152	struct ieee80211_node *, int);
153static void wpi_start(struct ifnet *);
154static void wpi_watchdog(struct ifnet *);
155static int  wpi_ioctl(struct ifnet *, u_long, void *);
156static int  wpi_cmd(struct wpi_softc *, int, const void *, int, int);
157static int  wpi_wme_update(struct ieee80211com *);
158static int  wpi_mrr_setup(struct wpi_softc *);
159static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
160static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
161static int  wpi_set_txpower(struct wpi_softc *,
162			    struct ieee80211_channel *, int);
163static int  wpi_get_power_index(struct wpi_softc *,
164		struct wpi_power_group *, struct ieee80211_channel *, int);
165static int  wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
166static int  wpi_auth(struct wpi_softc *);
167static int  wpi_scan(struct wpi_softc *, uint16_t);
168static int  wpi_config(struct wpi_softc *);
169static void wpi_stop_master(struct wpi_softc *);
170static int  wpi_power_up(struct wpi_softc *);
171static int  wpi_reset(struct wpi_softc *);
172static void wpi_hw_config(struct wpi_softc *);
173static int  wpi_init(struct ifnet *);
174static void wpi_stop(struct ifnet *, int);
175static bool wpi_resume(device_t, const pmf_qual_t *);
176static int	wpi_getrfkill(struct wpi_softc *);
177static void wpi_sysctlattach(struct wpi_softc *);
178
179CFATTACH_DECL_NEW(wpi, sizeof (struct wpi_softc), wpi_match, wpi_attach,
180	wpi_detach, NULL);
181
182static int
183wpi_match(device_t parent, cfdata_t match __unused, void *aux)
184{
185	struct pci_attach_args *pa = aux;
186
187	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
188		return 0;
189
190	if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 ||
191	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2)
192		return 1;
193
194	return 0;
195}
196
197/* Base Address Register */
198#define WPI_PCI_BAR0	0x10
199
200static int
201wpi_attach_once(void)
202{
203
204	mutex_init(&wpi_firmware_mutex, MUTEX_DEFAULT, IPL_NONE);
205	return 0;
206}
207
208static void
209wpi_attach(device_t parent __unused, device_t self, void *aux)
210{
211	struct wpi_softc *sc = device_private(self);
212	struct ieee80211com *ic = &sc->sc_ic;
213	struct ifnet *ifp = &sc->sc_ec.ec_if;
214	struct pci_attach_args *pa = aux;
215	const char *intrstr;
216	bus_space_tag_t memt;
217	bus_space_handle_t memh;
218	pci_intr_handle_t ih;
219	pcireg_t data;
220	int error, ac;
221
222	RUN_ONCE(&wpi_firmware_init, wpi_attach_once);
223	sc->fw_used = false;
224
225	sc->sc_dev = self;
226	sc->sc_pct = pa->pa_pc;
227	sc->sc_pcitag = pa->pa_tag;
228
229	callout_init(&sc->calib_to, 0);
230	callout_setfunc(&sc->calib_to, wpi_calib_timeout, sc);
231
232	pci_aprint_devinfo(pa, NULL);
233
234	/* enable bus-mastering */
235	data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
236	data |= PCI_COMMAND_MASTER_ENABLE;
237	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
238
239	/* map the register window */
240	error = pci_mapreg_map(pa, WPI_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
241		PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, &sc->sc_sz);
242	if (error != 0) {
243		aprint_error_dev(self, "could not map memory space\n");
244		return;
245	}
246
247	sc->sc_st = memt;
248	sc->sc_sh = memh;
249	sc->sc_dmat = pa->pa_dmat;
250
251	if (pci_intr_map(pa, &ih) != 0) {
252		aprint_error_dev(self, "could not map interrupt\n");
253		return;
254	}
255
256	intrstr = pci_intr_string(sc->sc_pct, ih);
257	sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, wpi_intr, sc);
258	if (sc->sc_ih == NULL) {
259		aprint_error_dev(self, "could not establish interrupt");
260		if (intrstr != NULL)
261			aprint_error(" at %s", intrstr);
262		aprint_error("\n");
263		return;
264	}
265	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
266
267	if (wpi_reset(sc) != 0) {
268		aprint_error_dev(self, "could not reset adapter\n");
269		return;
270	}
271
272 	/*
273	 * Allocate DMA memory for firmware transfers.
274	 */
275	if ((error = wpi_alloc_fwmem(sc)) != 0)
276		return;
277
278	/*
279	 * Allocate shared page and Tx/Rx rings.
280	 */
281	if ((error = wpi_alloc_shared(sc)) != 0) {
282		aprint_error_dev(self, "could not allocate shared area\n");
283		goto fail1;
284	}
285
286	if ((error = wpi_alloc_rpool(sc)) != 0) {
287		aprint_error_dev(self, "could not allocate Rx buffers\n");
288		goto fail2;
289	}
290
291	for (ac = 0; ac < 4; ac++) {
292		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
293		if (error != 0) {
294			aprint_error_dev(self, "could not allocate Tx ring %d\n", ac);
295			goto fail3;
296		}
297	}
298
299	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
300	if (error != 0) {
301		aprint_error_dev(self, "could not allocate command ring\n");
302		goto fail3;
303	}
304
305	if (wpi_alloc_rx_ring(sc, &sc->rxq) != 0) {
306		aprint_error_dev(self, "could not allocate Rx ring\n");
307		goto fail4;
308	}
309
310	ic->ic_ifp = ifp;
311	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
312	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
313	ic->ic_state = IEEE80211_S_INIT;
314
315	/* set device capabilities */
316	ic->ic_caps =
317#ifdef notyet
318		IEEE80211_C_IBSS |       /* IBSS mode support */
319#endif
320		IEEE80211_C_WPA |        /* 802.11i */
321		IEEE80211_C_MONITOR |    /* monitor mode supported */
322		IEEE80211_C_TXPMGT |     /* tx power management */
323		IEEE80211_C_SHSLOT |     /* short slot time supported */
324		IEEE80211_C_SHPREAMBLE | /* short preamble supported */
325		IEEE80211_C_WME;         /* 802.11e */
326
327	/* read supported channels and MAC address from EEPROM */
328	wpi_read_eeprom(sc);
329
330	/* set supported .11a, .11b, .11g rates */
331	ic->ic_sup_rates[IEEE80211_MODE_11A] = wpi_rateset_11a;
332	ic->ic_sup_rates[IEEE80211_MODE_11B] = wpi_rateset_11b;
333	ic->ic_sup_rates[IEEE80211_MODE_11G] = wpi_rateset_11g;
334
335	ic->ic_ibss_chan = &ic->ic_channels[0];
336
337	ifp->if_softc = sc;
338	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
339	ifp->if_init = wpi_init;
340	ifp->if_stop = wpi_stop;
341	ifp->if_ioctl = wpi_ioctl;
342	ifp->if_start = wpi_start;
343	ifp->if_watchdog = wpi_watchdog;
344	IFQ_SET_READY(&ifp->if_snd);
345	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
346
347	if_attach(ifp);
348	ieee80211_ifattach(ic);
349	/* override default methods */
350	ic->ic_node_alloc = wpi_node_alloc;
351	ic->ic_newassoc = wpi_newassoc;
352	ic->ic_wme.wme_update = wpi_wme_update;
353
354	/* override state transition machine */
355	sc->sc_newstate = ic->ic_newstate;
356	ic->ic_newstate = wpi_newstate;
357	ieee80211_media_init(ic, wpi_media_change, ieee80211_media_status);
358
359	sc->amrr.amrr_min_success_threshold = 1;
360	sc->amrr.amrr_max_success_threshold = 15;
361
362	wpi_sysctlattach(sc);
363
364	if (pmf_device_register(self, NULL, wpi_resume))
365		pmf_class_network_register(self, ifp);
366	else
367		aprint_error_dev(self, "couldn't establish power handler\n");
368
369	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
370	    sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
371	    &sc->sc_drvbpf);
372
373	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
374	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
375	sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
376
377	sc->sc_txtap_len = sizeof sc->sc_txtapu;
378	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
379	sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
380
381	ieee80211_announce(ic);
382
383	return;
384
385fail4:  wpi_free_tx_ring(sc, &sc->cmdq);
386fail3:  while (--ac >= 0)
387			wpi_free_tx_ring(sc, &sc->txq[ac]);
388	wpi_free_rpool(sc);
389fail2:	wpi_free_shared(sc);
390fail1:	wpi_free_fwmem(sc);
391}
392
393static int
394wpi_detach(device_t self, int flags __unused)
395{
396	struct wpi_softc *sc = device_private(self);
397	struct ifnet *ifp = sc->sc_ic.ic_ifp;
398	int ac;
399
400	wpi_stop(ifp, 1);
401
402	if (ifp != NULL)
403		bpf_detach(ifp);
404	ieee80211_ifdetach(&sc->sc_ic);
405	if (ifp != NULL)
406		if_detach(ifp);
407
408	for (ac = 0; ac < 4; ac++)
409		wpi_free_tx_ring(sc, &sc->txq[ac]);
410	wpi_free_tx_ring(sc, &sc->cmdq);
411	wpi_free_rx_ring(sc, &sc->rxq);
412	wpi_free_rpool(sc);
413	wpi_free_shared(sc);
414
415	if (sc->sc_ih != NULL) {
416		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
417		sc->sc_ih = NULL;
418	}
419
420	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
421
422	if (sc->fw_used) {
423		sc->fw_used = false;
424		wpi_release_firmware();
425	}
426
427	return 0;
428}
429
430static int
431wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma,
432	void **kvap, bus_size_t size, bus_size_t alignment, int flags)
433{
434	int nsegs, error;
435
436	dma->tag = tag;
437	dma->size = size;
438
439	error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map);
440	if (error != 0)
441		goto fail;
442
443	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
444	    flags);
445	if (error != 0)
446		goto fail;
447
448	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags);
449	if (error != 0)
450		goto fail;
451
452	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags);
453	if (error != 0)
454		goto fail;
455
456	memset(dma->vaddr, 0, size);
457
458	dma->paddr = dma->map->dm_segs[0].ds_addr;
459	if (kvap != NULL)
460		*kvap = dma->vaddr;
461
462	return 0;
463
464fail:   wpi_dma_contig_free(dma);
465	return error;
466}
467
468static void
469wpi_dma_contig_free(struct wpi_dma_info *dma)
470{
471	if (dma->map != NULL) {
472		if (dma->vaddr != NULL) {
473			bus_dmamap_unload(dma->tag, dma->map);
474			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
475			bus_dmamem_free(dma->tag, &dma->seg, 1);
476			dma->vaddr = NULL;
477		}
478		bus_dmamap_destroy(dma->tag, dma->map);
479		dma->map = NULL;
480	}
481}
482
483/*
484 * Allocate a shared page between host and NIC.
485 */
486static int
487wpi_alloc_shared(struct wpi_softc *sc)
488{
489	int error;
490	/* must be aligned on a 4K-page boundary */
491	error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma,
492			(void **)&sc->shared, sizeof (struct wpi_shared),
493			WPI_BUF_ALIGN,BUS_DMA_NOWAIT);
494	if (error != 0)
495		aprint_error_dev(sc->sc_dev,
496				"could not allocate shared area DMA memory\n");
497
498	return error;
499}
500
501static void
502wpi_free_shared(struct wpi_softc *sc)
503{
504	wpi_dma_contig_free(&sc->shared_dma);
505}
506
507/*
508 * Allocate DMA-safe memory for firmware transfer.
509 */
510static int
511wpi_alloc_fwmem(struct wpi_softc *sc)
512{
513	int error;
514	/* allocate enough contiguous space to store text and data */
515	error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
516	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 0,
517	    BUS_DMA_NOWAIT);
518
519	if (error != 0)
520		aprint_error_dev(sc->sc_dev,
521			"could not allocate firmware transfer area"
522			"DMA memory\n");
523	return error;
524}
525
526static void
527wpi_free_fwmem(struct wpi_softc *sc)
528{
529	wpi_dma_contig_free(&sc->fw_dma);
530}
531
532
533static struct wpi_rbuf *
534wpi_alloc_rbuf(struct wpi_softc *sc)
535{
536	struct wpi_rbuf *rbuf;
537
538	mutex_enter(&sc->rxq.freelist_mtx);
539	rbuf = SLIST_FIRST(&sc->rxq.freelist);
540	if (rbuf != NULL) {
541		SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
542		sc->rxq.nb_free_entries --;
543	}
544	mutex_exit(&sc->rxq.freelist_mtx);
545
546	return rbuf;
547}
548
549/*
550 * This is called automatically by the network stack when the mbuf to which our
551 * Rx buffer is attached is freed.
552 */
553static void
554wpi_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
555{
556	struct wpi_rbuf *rbuf = arg;
557	struct wpi_softc *sc = rbuf->sc;
558
559	/* put the buffer back in the free list */
560
561	mutex_enter(&sc->rxq.freelist_mtx);
562	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
563	mutex_exit(&sc->rxq.freelist_mtx);
564	/* No need to protect this with a mutex, see wpi_rx_intr */
565	sc->rxq.nb_free_entries ++;
566
567	if (__predict_true(m != NULL))
568		pool_cache_put(mb_cache, m);
569}
570
571static int
572wpi_alloc_rpool(struct wpi_softc *sc)
573{
574	struct wpi_rx_ring *ring = &sc->rxq;
575	struct wpi_rbuf *rbuf;
576	int i, error;
577
578	/* allocate a big chunk of DMA'able memory.. */
579	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
580	    WPI_RBUF_COUNT * WPI_RBUF_SIZE, WPI_BUF_ALIGN, BUS_DMA_NOWAIT);
581	if (error != 0) {
582		aprint_normal_dev(sc->sc_dev,
583						  "could not allocate Rx buffers DMA memory\n");
584		return error;
585	}
586
587	/* ..and split it into 3KB chunks */
588	mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
589	SLIST_INIT(&ring->freelist);
590	for (i = 0; i < WPI_RBUF_COUNT; i++) {
591		rbuf = &ring->rbuf[i];
592		rbuf->sc = sc;	/* backpointer for callbacks */
593		rbuf->vaddr = (char *)ring->buf_dma.vaddr + i * WPI_RBUF_SIZE;
594		rbuf->paddr = ring->buf_dma.paddr + i * WPI_RBUF_SIZE;
595
596		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
597	}
598
599	ring->nb_free_entries = WPI_RBUF_COUNT;
600	return 0;
601}
602
603static void
604wpi_free_rpool(struct wpi_softc *sc)
605{
606	wpi_dma_contig_free(&sc->rxq.buf_dma);
607}
608
609static int
610wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
611{
612	struct wpi_rx_data *data;
613	struct wpi_rbuf *rbuf;
614	int i, error;
615
616	ring->cur = 0;
617
618	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
619		(void **)&ring->desc,
620		WPI_RX_RING_COUNT * sizeof (struct wpi_rx_desc),
621		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
622	if (error != 0) {
623		aprint_error_dev(sc->sc_dev, "could not allocate rx ring DMA memory\n");
624		goto fail;
625	}
626
627	/*
628	 * Setup Rx buffers.
629	 */
630	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
631		data = &ring->data[i];
632
633		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
634		if (data->m == NULL) {
635			aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf\n");
636			error = ENOMEM;
637			goto fail;
638		}
639		if ((rbuf = wpi_alloc_rbuf(sc)) == NULL) {
640			m_freem(data->m);
641			data->m = NULL;
642			aprint_error_dev(sc->sc_dev, "could not allocate rx cluster\n");
643			error = ENOMEM;
644			goto fail;
645		}
646		/* attach Rx buffer to mbuf */
647		MEXTADD(data->m, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
648		    rbuf);
649		data->m->m_flags |= M_EXT_RW;
650
651		ring->desc[i] = htole32(rbuf->paddr);
652	}
653
654	return 0;
655
656fail:	wpi_free_rx_ring(sc, ring);
657	return error;
658}
659
660static void
661wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
662{
663	int ntries;
664
665	wpi_mem_lock(sc);
666
667	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
668	for (ntries = 0; ntries < 100; ntries++) {
669		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
670			break;
671		DELAY(10);
672	}
673#ifdef WPI_DEBUG
674	if (ntries == 100 && wpi_debug > 0)
675		aprint_error_dev(sc->sc_dev, "timeout resetting Rx ring\n");
676#endif
677	wpi_mem_unlock(sc);
678
679	ring->cur = 0;
680}
681
682static void
683wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
684{
685	int i;
686
687	wpi_dma_contig_free(&ring->desc_dma);
688
689	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
690		if (ring->data[i].m != NULL)
691			m_freem(ring->data[i].m);
692	}
693}
694
695static int
696wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
697	int qid)
698{
699	struct wpi_tx_data *data;
700	int i, error;
701
702	ring->qid = qid;
703	ring->count = count;
704	ring->queued = 0;
705	ring->cur = 0;
706
707	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
708		(void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
709		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
710	if (error != 0) {
711		aprint_error_dev(sc->sc_dev, "could not allocate tx ring DMA memory\n");
712		goto fail;
713	}
714
715	/* update shared page with ring's base address */
716	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
717
718	error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
719		(void **)&ring->cmd,
720		count * sizeof (struct wpi_tx_cmd), 4, BUS_DMA_NOWAIT);
721	if (error != 0) {
722		aprint_error_dev(sc->sc_dev, "could not allocate tx cmd DMA memory\n");
723		goto fail;
724	}
725
726	ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
727		M_NOWAIT);
728	if (ring->data == NULL) {
729		aprint_error_dev(sc->sc_dev, "could not allocate tx data slots\n");
730		goto fail;
731	}
732
733	memset(ring->data, 0, count * sizeof (struct wpi_tx_data));
734
735	for (i = 0; i < count; i++) {
736		data = &ring->data[i];
737
738		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
739			WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
740			&data->map);
741		if (error != 0) {
742			aprint_error_dev(sc->sc_dev, "could not create tx buf DMA map\n");
743			goto fail;
744		}
745	}
746
747	return 0;
748
749fail:	wpi_free_tx_ring(sc, ring);
750	return error;
751}
752
753static void
754wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
755{
756	struct wpi_tx_data *data;
757	int i, ntries;
758
759	wpi_mem_lock(sc);
760
761	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
762	for (ntries = 0; ntries < 100; ntries++) {
763		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
764			break;
765		DELAY(10);
766	}
767#ifdef WPI_DEBUG
768	if (ntries == 100 && wpi_debug > 0) {
769		aprint_error_dev(sc->sc_dev, "timeout resetting Tx ring %d\n",
770									   ring->qid);
771	}
772#endif
773	wpi_mem_unlock(sc);
774
775	for (i = 0; i < ring->count; i++) {
776		data = &ring->data[i];
777
778		if (data->m != NULL) {
779			bus_dmamap_unload(sc->sc_dmat, data->map);
780			m_freem(data->m);
781			data->m = NULL;
782		}
783	}
784
785	ring->queued = 0;
786	ring->cur = 0;
787}
788
789static void
790wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
791{
792	struct wpi_tx_data *data;
793	int i;
794
795	wpi_dma_contig_free(&ring->desc_dma);
796	wpi_dma_contig_free(&ring->cmd_dma);
797
798	if (ring->data != NULL) {
799		for (i = 0; i < ring->count; i++) {
800			data = &ring->data[i];
801
802			if (data->m != NULL) {
803				bus_dmamap_unload(sc->sc_dmat, data->map);
804				m_freem(data->m);
805			}
806		}
807		free(ring->data, M_DEVBUF);
808	}
809}
810
811/*ARGUSED*/
812static struct ieee80211_node *
813wpi_node_alloc(struct ieee80211_node_table *nt __unused)
814{
815	struct wpi_node *wn;
816
817	wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
818
819	return (struct ieee80211_node *)wn;
820}
821
822static void
823wpi_newassoc(struct ieee80211_node *ni, int isnew)
824{
825	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
826	int i;
827
828	ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn);
829
830	/* set rate to some reasonable initial value */
831	for (i = ni->ni_rates.rs_nrates - 1;
832	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
833	     i--);
834	ni->ni_txrate = i;
835}
836
837static int
838wpi_media_change(struct ifnet *ifp)
839{
840	int error;
841
842	error = ieee80211_media_change(ifp);
843	if (error != ENETRESET)
844		return error;
845
846	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
847		wpi_init(ifp);
848
849	return 0;
850}
851
852static int
853wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
854{
855	struct ifnet *ifp = ic->ic_ifp;
856	struct wpi_softc *sc = ifp->if_softc;
857	struct ieee80211_node *ni;
858	int error;
859
860	callout_stop(&sc->calib_to);
861
862	switch (nstate) {
863	case IEEE80211_S_SCAN:
864
865		if (sc->is_scanning)
866			break;
867
868		sc->is_scanning = true;
869		ieee80211_node_table_reset(&ic->ic_scan);
870		ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
871
872		/* make the link LED blink while we're scanning */
873		wpi_set_led(sc, WPI_LED_LINK, 20, 2);
874
875		if ((error = wpi_scan(sc, IEEE80211_CHAN_G)) != 0) {
876			aprint_error_dev(sc->sc_dev, "could not initiate scan\n");
877			ic->ic_flags &= ~(IEEE80211_F_SCAN | IEEE80211_F_ASCAN);
878			return error;
879		}
880
881		ic->ic_state = nstate;
882		return 0;
883
884	case IEEE80211_S_ASSOC:
885		if (ic->ic_state != IEEE80211_S_RUN)
886			break;
887		/* FALLTHROUGH */
888	case IEEE80211_S_AUTH:
889		sc->config.associd = 0;
890		sc->config.filter &= ~htole32(WPI_FILTER_BSS);
891		if ((error = wpi_auth(sc)) != 0) {
892			aprint_error_dev(sc->sc_dev,
893							"could not send authentication request\n");
894			return error;
895		}
896		break;
897
898	case IEEE80211_S_RUN:
899		if (ic->ic_opmode == IEEE80211_M_MONITOR) {
900			/* link LED blinks while monitoring */
901			wpi_set_led(sc, WPI_LED_LINK, 5, 5);
902			break;
903		}
904
905		ni = ic->ic_bss;
906
907		if (ic->ic_opmode != IEEE80211_M_STA) {
908			(void) wpi_auth(sc);    /* XXX */
909			wpi_setup_beacon(sc, ni);
910		}
911
912		wpi_enable_tsf(sc, ni);
913
914		/* update adapter's configuration */
915		sc->config.associd = htole16(ni->ni_associd & ~0xc000);
916		/* short preamble/slot time are negotiated when associating */
917		sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
918			WPI_CONFIG_SHSLOT);
919		if (ic->ic_flags & IEEE80211_F_SHSLOT)
920			sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
921		if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
922			sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
923		sc->config.filter |= htole32(WPI_FILTER_BSS);
924		if (ic->ic_opmode != IEEE80211_M_STA)
925			sc->config.filter |= htole32(WPI_FILTER_BEACON);
926
927/* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
928
929		DPRINTF(("config chan %d flags %x\n", sc->config.chan,
930			sc->config.flags));
931		error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
932			sizeof (struct wpi_config), 1);
933		if (error != 0) {
934			aprint_error_dev(sc->sc_dev, "could not update configuration\n");
935			return error;
936		}
937
938		/* configuration has changed, set Tx power accordingly */
939		if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
940			aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
941			return error;
942		}
943
944		if (ic->ic_opmode == IEEE80211_M_STA) {
945			/* fake a join to init the tx rate */
946			wpi_newassoc(ni, 1);
947		}
948
949		/* start periodic calibration timer */
950		sc->calib_cnt = 0;
951		callout_schedule(&sc->calib_to, hz/2);
952
953		/* link LED always on while associated */
954		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
955		break;
956
957	case IEEE80211_S_INIT:
958		sc->is_scanning = false;
959		break;
960	}
961
962	return sc->sc_newstate(ic, nstate, arg);
963}
964
965/*
966 * XXX: Hack to set the current channel to the value advertised in beacons or
967 * probe responses. Only used during AP detection.
968 * XXX: Duplicated from if_iwi.c
969 */
970static void
971wpi_fix_channel(struct ieee80211com *ic, struct mbuf *m)
972{
973	struct ieee80211_frame *wh;
974	uint8_t subtype;
975	uint8_t *frm, *efrm;
976
977	wh = mtod(m, struct ieee80211_frame *);
978
979	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
980		return;
981
982	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
983
984	if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
985	    subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
986		return;
987
988	frm = (uint8_t *)(wh + 1);
989	efrm = mtod(m, uint8_t *) + m->m_len;
990
991	frm += 12;	/* skip tstamp, bintval and capinfo fields */
992	while (frm < efrm) {
993		if (*frm == IEEE80211_ELEMID_DSPARMS)
994#if IEEE80211_CHAN_MAX < 255
995		if (frm[2] <= IEEE80211_CHAN_MAX)
996#endif
997			ic->ic_curchan = &ic->ic_channels[frm[2]];
998
999		frm += frm[1] + 2;
1000	}
1001}
1002
1003/*
1004 * Grab exclusive access to NIC memory.
1005 */
1006static void
1007wpi_mem_lock(struct wpi_softc *sc)
1008{
1009	uint32_t tmp;
1010	int ntries;
1011
1012	tmp = WPI_READ(sc, WPI_GPIO_CTL);
1013	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1014
1015	/* spin until we actually get the lock */
1016	for (ntries = 0; ntries < 1000; ntries++) {
1017		if ((WPI_READ(sc, WPI_GPIO_CTL) &
1018			(WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1019			break;
1020		DELAY(10);
1021	}
1022	if (ntries == 1000)
1023		aprint_error_dev(sc->sc_dev, "could not lock memory\n");
1024}
1025
1026/*
1027 * Release lock on NIC memory.
1028 */
1029static void
1030wpi_mem_unlock(struct wpi_softc *sc)
1031{
1032	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1033	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1034}
1035
1036static uint32_t
1037wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1038{
1039	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1040	return WPI_READ(sc, WPI_READ_MEM_DATA);
1041}
1042
1043static void
1044wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1045{
1046	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1047	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1048}
1049
1050static void
1051wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1052						const uint32_t *data, int wlen)
1053{
1054	for (; wlen > 0; wlen--, data++, addr += 4)
1055		wpi_mem_write(sc, addr, *data);
1056}
1057
1058
1059/*
1060 * Read `len' bytes from the EEPROM.  We access the EEPROM through the MAC
1061 * instead of using the traditional bit-bang method.
1062 */
1063static int
1064wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1065{
1066	uint8_t *out = data;
1067	uint32_t val;
1068	int ntries;
1069
1070	wpi_mem_lock(sc);
1071	for (; len > 0; len -= 2, addr++) {
1072		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1073
1074		for (ntries = 0; ntries < 10; ntries++) {
1075			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) &
1076			    WPI_EEPROM_READY)
1077				break;
1078			DELAY(5);
1079		}
1080		if (ntries == 10) {
1081			aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
1082			return ETIMEDOUT;
1083		}
1084		*out++ = val >> 16;
1085		if (len > 1)
1086			*out++ = val >> 24;
1087	}
1088	wpi_mem_unlock(sc);
1089
1090	return 0;
1091}
1092
1093/*
1094 * The firmware boot code is small and is intended to be copied directly into
1095 * the NIC internal memory.
1096 */
1097int
1098wpi_load_microcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
1099{
1100	int ntries;
1101
1102	size /= sizeof (uint32_t);
1103
1104	wpi_mem_lock(sc);
1105
1106	/* copy microcode image into NIC memory */
1107	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1108	    (const uint32_t *)ucode, size);
1109
1110	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1111	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1112	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1113
1114	/* run microcode */
1115	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1116
1117	/* wait for transfer to complete */
1118	for (ntries = 0; ntries < 1000; ntries++) {
1119		if (!(wpi_mem_read(sc, WPI_MEM_UCODE_CTL) & WPI_UC_RUN))
1120			break;
1121		DELAY(10);
1122	}
1123	if (ntries == 1000) {
1124		wpi_mem_unlock(sc);
1125		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1126		return ETIMEDOUT;
1127	}
1128	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1129
1130	wpi_mem_unlock(sc);
1131
1132	return 0;
1133}
1134
1135static int
1136wpi_cache_firmware(struct wpi_softc *sc)
1137{
1138	const char *const fwname = wpi_firmware_name;
1139	firmware_handle_t fw;
1140	int error;
1141
1142	/* sc is used here only to report error messages.  */
1143
1144	mutex_enter(&wpi_firmware_mutex);
1145
1146	if (wpi_firmware_users == SIZE_MAX) {
1147		mutex_exit(&wpi_firmware_mutex);
1148		return ENFILE;	/* Too many of something in the system...  */
1149	}
1150	if (wpi_firmware_users++) {
1151		KASSERT(wpi_firmware_image != NULL);
1152		KASSERT(wpi_firmware_size > 0);
1153		mutex_exit(&wpi_firmware_mutex);
1154		return 0;	/* Already good to go.  */
1155	}
1156
1157	KASSERT(wpi_firmware_image == NULL);
1158	KASSERT(wpi_firmware_size == 0);
1159
1160	/* load firmware image from disk */
1161	if ((error = firmware_open("if_wpi", fwname, &fw)) != 0) {
1162		aprint_error_dev(sc->sc_dev,
1163		    "could not open firmware file %s: %d\n", fwname, error);
1164		goto fail0;
1165	}
1166
1167	wpi_firmware_size = firmware_get_size(fw);
1168
1169	if (wpi_firmware_size > sizeof (struct wpi_firmware_hdr) +
1170	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ +
1171	    WPI_FW_INIT_TEXT_MAXSZ + WPI_FW_INIT_DATA_MAXSZ +
1172	    WPI_FW_BOOT_TEXT_MAXSZ) {
1173		aprint_error_dev(sc->sc_dev,
1174		    "firmware file %s too large: %zu bytes\n",
1175		    fwname, wpi_firmware_size);
1176		error = EFBIG;
1177		goto fail1;
1178	}
1179
1180	if (wpi_firmware_size < sizeof (struct wpi_firmware_hdr)) {
1181		aprint_error_dev(sc->sc_dev,
1182		    "firmware file %s too small: %zu bytes\n",
1183		    fwname, wpi_firmware_size);
1184		error = EINVAL;
1185		goto fail1;
1186	}
1187
1188	wpi_firmware_image = firmware_malloc(wpi_firmware_size);
1189	if (wpi_firmware_image == NULL) {
1190		aprint_error_dev(sc->sc_dev,
1191		    "not enough memory for firmware file %s\n", fwname);
1192		error = ENOMEM;
1193		goto fail1;
1194	}
1195
1196	error = firmware_read(fw, 0, wpi_firmware_image, wpi_firmware_size);
1197	if (error != 0) {
1198		aprint_error_dev(sc->sc_dev,
1199		    "error reading firmware file %s: %d\n", fwname, error);
1200		goto fail2;
1201	}
1202
1203	/* Success!  */
1204	firmware_close(fw);
1205	mutex_exit(&wpi_firmware_mutex);
1206	return 0;
1207
1208fail2:
1209	firmware_free(wpi_firmware_image, wpi_firmware_size);
1210	wpi_firmware_image = NULL;
1211fail1:
1212	wpi_firmware_size = 0;
1213	firmware_close(fw);
1214fail0:
1215	KASSERT(wpi_firmware_users == 1);
1216	wpi_firmware_users = 0;
1217	KASSERT(wpi_firmware_image == NULL);
1218	KASSERT(wpi_firmware_size == 0);
1219
1220	mutex_exit(&wpi_firmware_mutex);
1221	return error;
1222}
1223
1224static void
1225wpi_release_firmware(void)
1226{
1227
1228	mutex_enter(&wpi_firmware_mutex);
1229
1230	KASSERT(wpi_firmware_users > 0);
1231	KASSERT(wpi_firmware_image != NULL);
1232	KASSERT(wpi_firmware_size != 0);
1233
1234	if (--wpi_firmware_users == 0) {
1235		firmware_free(wpi_firmware_image, wpi_firmware_size);
1236		wpi_firmware_image = NULL;
1237		wpi_firmware_size = 0;
1238	}
1239
1240	mutex_exit(&wpi_firmware_mutex);
1241}
1242
1243static int
1244wpi_load_firmware(struct wpi_softc *sc)
1245{
1246	struct wpi_dma_info *dma = &sc->fw_dma;
1247	struct wpi_firmware_hdr hdr;
1248	const uint8_t *init_text, *init_data, *main_text, *main_data;
1249	const uint8_t *boot_text;
1250	uint32_t init_textsz, init_datasz, main_textsz, main_datasz;
1251	uint32_t boot_textsz;
1252	size_t size;
1253	int error;
1254
1255	if (!sc->fw_used) {
1256		if ((error = wpi_cache_firmware(sc)) != 0)
1257			return error;
1258		sc->fw_used = true;
1259	}
1260
1261	KASSERT(sc->fw_used);
1262	KASSERT(wpi_firmware_image != NULL);
1263	KASSERT(wpi_firmware_size > sizeof(hdr));
1264
1265	memcpy(&hdr, wpi_firmware_image, sizeof(hdr));
1266
1267	main_textsz = le32toh(hdr.main_textsz);
1268	main_datasz = le32toh(hdr.main_datasz);
1269	init_textsz = le32toh(hdr.init_textsz);
1270	init_datasz = le32toh(hdr.init_datasz);
1271	boot_textsz = le32toh(hdr.boot_textsz);
1272
1273	/* sanity-check firmware segments sizes */
1274	if (main_textsz > WPI_FW_MAIN_TEXT_MAXSZ ||
1275	    main_datasz > WPI_FW_MAIN_DATA_MAXSZ ||
1276	    init_textsz > WPI_FW_INIT_TEXT_MAXSZ ||
1277	    init_datasz > WPI_FW_INIT_DATA_MAXSZ ||
1278	    boot_textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
1279	    (boot_textsz & 3) != 0) {
1280		aprint_error_dev(sc->sc_dev, "invalid firmware header\n");
1281		error = EINVAL;
1282		goto free_firmware;
1283	}
1284
1285	/* check that all firmware segments are present */
1286	size = sizeof (struct wpi_firmware_hdr) + main_textsz +
1287	    main_datasz + init_textsz + init_datasz + boot_textsz;
1288	if (wpi_firmware_size < size) {
1289		aprint_error_dev(sc->sc_dev,
1290		    "firmware file truncated: %zu bytes, expected %zu bytes\n",
1291		    wpi_firmware_size, size);
1292		error = EINVAL;
1293		goto free_firmware;
1294	}
1295
1296	/* get pointers to firmware segments */
1297	main_text = wpi_firmware_image + sizeof (struct wpi_firmware_hdr);
1298	main_data = main_text + main_textsz;
1299	init_text = main_data + main_datasz;
1300	init_data = init_text + init_textsz;
1301	boot_text = init_data + init_datasz;
1302
1303	/* copy initialization images into pre-allocated DMA-safe memory */
1304	memcpy(dma->vaddr, init_data, init_datasz);
1305	memcpy((char *)dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, init_text,
1306	    init_textsz);
1307
1308	/* tell adapter where to find initialization images */
1309	wpi_mem_lock(sc);
1310	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1311	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, init_datasz);
1312	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1313	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
1314	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, init_textsz);
1315	wpi_mem_unlock(sc);
1316
1317	/* load firmware boot code */
1318	if ((error = wpi_load_microcode(sc, boot_text, boot_textsz)) != 0) {
1319		aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1320		return error;
1321	}
1322
1323	/* now press "execute" ;-) */
1324	WPI_WRITE(sc, WPI_RESET, 0);
1325
1326	/* ..and wait at most one second for adapter to initialize */
1327	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1328		/* this isn't what was supposed to happen.. */
1329		aprint_error_dev(sc->sc_dev,
1330		    "timeout waiting for adapter to initialize\n");
1331	}
1332
1333	/* copy runtime images into pre-allocated DMA-safe memory */
1334	memcpy(dma->vaddr, main_data, main_datasz);
1335	memcpy((char *)dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, main_text,
1336	    main_textsz);
1337
1338	/* tell adapter where to find runtime images */
1339	wpi_mem_lock(sc);
1340	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1341	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, main_datasz);
1342	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1343	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
1344	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | main_textsz);
1345	wpi_mem_unlock(sc);
1346
1347	/* wait at most one second for second alive notification */
1348	if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1349		/* this isn't what was supposed to happen.. */
1350		aprint_error_dev(sc->sc_dev,
1351		    "timeout waiting for adapter to initialize\n");
1352	}
1353
1354	return error;
1355
1356free_firmware:
1357	sc->fw_used = false;
1358	wpi_release_firmware();
1359	return error;
1360}
1361
1362static void
1363wpi_calib_timeout(void *arg)
1364{
1365	struct wpi_softc *sc = arg;
1366	struct ieee80211com *ic = &sc->sc_ic;
1367	int temp, s;
1368
1369	/* automatic rate control triggered every 500ms */
1370	if (ic->ic_fixed_rate == -1) {
1371		s = splnet();
1372		if (ic->ic_opmode == IEEE80211_M_STA)
1373			wpi_iter_func(sc, ic->ic_bss);
1374		else
1375                	ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc);
1376		splx(s);
1377	}
1378
1379	/* update sensor data */
1380	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
1381
1382	/* automatic power calibration every 60s */
1383	if (++sc->calib_cnt >= 120) {
1384		wpi_power_calibration(sc, temp);
1385		sc->calib_cnt = 0;
1386	}
1387
1388	callout_schedule(&sc->calib_to, hz/2);
1389}
1390
1391static void
1392wpi_iter_func(void *arg, struct ieee80211_node *ni)
1393{
1394	struct wpi_softc *sc = arg;
1395	struct wpi_node *wn = (struct wpi_node *)ni;
1396
1397	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1398}
1399
1400/*
1401 * This function is called periodically (every 60 seconds) to adjust output
1402 * power to temperature changes.
1403 */
1404void
1405wpi_power_calibration(struct wpi_softc *sc, int temp)
1406{
1407	/* sanity-check read value */
1408	if (temp < -260 || temp > 25) {
1409		/* this can't be correct, ignore */
1410		DPRINTF(("out-of-range temperature reported: %d\n", temp));
1411		return;
1412	}
1413
1414	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
1415
1416	/* adjust Tx power if need be */
1417	if (abs(temp - sc->temp) <= 6)
1418		return;
1419
1420	sc->temp = temp;
1421
1422	if (wpi_set_txpower(sc, sc->sc_ic.ic_bss->ni_chan, 1) != 0) {
1423		/* just warn, too bad for the automatic calibration... */
1424		aprint_error_dev(sc->sc_dev, "could not adjust Tx power\n");
1425	}
1426}
1427
1428static void
1429wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1430	struct wpi_rx_data *data)
1431{
1432	struct ieee80211com *ic = &sc->sc_ic;
1433	struct ifnet *ifp = ic->ic_ifp;
1434	struct wpi_rx_ring *ring = &sc->rxq;
1435	struct wpi_rx_stat *stat;
1436	struct wpi_rx_head *head;
1437	struct wpi_rx_tail *tail;
1438	struct wpi_rbuf *rbuf;
1439	struct ieee80211_frame *wh;
1440	struct ieee80211_node *ni;
1441	struct mbuf *m, *mnew;
1442	int data_off ;
1443
1444	stat = (struct wpi_rx_stat *)(desc + 1);
1445
1446	if (stat->len > WPI_STAT_MAXLEN) {
1447		aprint_error_dev(sc->sc_dev, "invalid rx statistic header\n");
1448		ifp->if_ierrors++;
1449		return;
1450	}
1451
1452	head = (struct wpi_rx_head *)((char *)(stat + 1) + stat->len);
1453	tail = (struct wpi_rx_tail *)((char *)(head + 1) + le16toh(head->len));
1454
1455	DPRINTFN(4, ("rx intr: idx=%d len=%d stat len=%d rssi=%d rate=%x "
1456		"chan=%d tstamp=%" PRId64 "\n", ring->cur, le32toh(desc->len),
1457		le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1458		le64toh(tail->tstamp)));
1459
1460	/*
1461	 * Discard Rx frames with bad CRC early (XXX we may want to pass them
1462	 * to radiotap in monitor mode).
1463	 */
1464	if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1465		DPRINTF(("rx tail flags error %x\n", le32toh(tail->flags)));
1466		ifp->if_ierrors++;
1467		return;
1468	}
1469
1470	/* Compute where are the useful datas */
1471	data_off = (char*)(head + 1) - mtod(data->m, char*);
1472
1473	/*
1474	 * If the number of free entry is too low
1475	 * just dup the data->m socket and reuse the same rbuf entry
1476	 * Note that thi test is not protected by a mutex because the
1477	 * only path that causes nb_free_entries to decrease is through
1478	 * this interrupt routine, which is not re-entrent.
1479	 * What may not be obvious is that the safe path is if that test
1480	 * evaluates as true, so nb_free_entries can grow any time.
1481	 */
1482	if (sc->rxq.nb_free_entries <= WPI_RBUF_LOW_LIMIT) {
1483
1484		/* Prepare the mbuf for the m_dup */
1485		data->m->m_pkthdr.len = data->m->m_len = le16toh(head->len);
1486		data->m->m_data = (char*) data->m->m_data + data_off;
1487
1488		m = m_dup(data->m,0,M_COPYALL,M_DONTWAIT);
1489
1490		/* Restore the m_data pointer for future use */
1491		data->m->m_data = (char*) data->m->m_data - data_off;
1492
1493		if (m == NULL) {
1494			ifp->if_ierrors++;
1495			return;
1496		}
1497	} else {
1498
1499		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1500		if (mnew == NULL) {
1501			ifp->if_ierrors++;
1502			return;
1503		}
1504
1505		rbuf = wpi_alloc_rbuf(sc);
1506		KASSERT(rbuf != NULL);
1507
1508 		/* attach Rx buffer to mbuf */
1509		MEXTADD(mnew, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
1510		 	rbuf);
1511		mnew->m_flags |= M_EXT_RW;
1512
1513		m = data->m;
1514		data->m = mnew;
1515
1516		/* update Rx descriptor */
1517		ring->desc[ring->cur] = htole32(rbuf->paddr);
1518
1519		m->m_data = (char*)m->m_data + data_off;
1520		m->m_pkthdr.len = m->m_len = le16toh(head->len);
1521	}
1522
1523	/* finalize mbuf */
1524	m->m_pkthdr.rcvif = ifp;
1525
1526	if (ic->ic_state == IEEE80211_S_SCAN)
1527		wpi_fix_channel(ic, m);
1528
1529	if (sc->sc_drvbpf != NULL) {
1530		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1531
1532		tap->wr_flags = 0;
1533		tap->wr_chan_freq =
1534			htole16(ic->ic_channels[head->chan].ic_freq);
1535		tap->wr_chan_flags =
1536			htole16(ic->ic_channels[head->chan].ic_flags);
1537		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1538		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1539		tap->wr_tsft = tail->tstamp;
1540		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1541		switch (head->rate) {
1542		/* CCK rates */
1543		case  10: tap->wr_rate =   2; break;
1544		case  20: tap->wr_rate =   4; break;
1545		case  55: tap->wr_rate =  11; break;
1546		case 110: tap->wr_rate =  22; break;
1547		/* OFDM rates */
1548		case 0xd: tap->wr_rate =  12; break;
1549		case 0xf: tap->wr_rate =  18; break;
1550		case 0x5: tap->wr_rate =  24; break;
1551		case 0x7: tap->wr_rate =  36; break;
1552		case 0x9: tap->wr_rate =  48; break;
1553		case 0xb: tap->wr_rate =  72; break;
1554		case 0x1: tap->wr_rate =  96; break;
1555		case 0x3: tap->wr_rate = 108; break;
1556		/* unknown rate: should not happen */
1557		default:  tap->wr_rate =   0;
1558		}
1559		if (le16toh(head->flags) & 0x4)
1560			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1561
1562		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1563	}
1564
1565	/* grab a reference to the source node */
1566	wh = mtod(m, struct ieee80211_frame *);
1567	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1568
1569	/* send the frame to the 802.11 layer */
1570	ieee80211_input(ic, m, ni, stat->rssi, 0);
1571
1572	/* release node reference */
1573	ieee80211_free_node(ni);
1574}
1575
1576static void
1577wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1578{
1579	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1580	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1581	struct wpi_tx_data *txdata = &ring->data[desc->idx];
1582	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1583	struct wpi_node *wn = (struct wpi_node *)txdata->ni;
1584
1585	DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x "
1586		"duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries,
1587		stat->nkill, stat->rate, le32toh(stat->duration),
1588		le32toh(stat->status)));
1589
1590	/*
1591	 * Update rate control statistics for the node.
1592	 * XXX we should not count mgmt frames since they're always sent at
1593	 * the lowest available bit-rate.
1594	 */
1595	wn->amn.amn_txcnt++;
1596	if (stat->ntries > 0) {
1597		DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries));
1598		wn->amn.amn_retrycnt++;
1599	}
1600
1601	if ((le32toh(stat->status) & 0xff) != 1)
1602		ifp->if_oerrors++;
1603	else
1604		ifp->if_opackets++;
1605
1606	bus_dmamap_unload(sc->sc_dmat, txdata->map);
1607	m_freem(txdata->m);
1608	txdata->m = NULL;
1609	ieee80211_free_node(txdata->ni);
1610	txdata->ni = NULL;
1611
1612	ring->queued--;
1613
1614	sc->sc_tx_timer = 0;
1615	ifp->if_flags &= ~IFF_OACTIVE;
1616	wpi_start(ifp);
1617}
1618
1619static void
1620wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1621{
1622	struct wpi_tx_ring *ring = &sc->cmdq;
1623	struct wpi_tx_data *data;
1624
1625	if ((desc->qid & 7) != 4)
1626		return;	/* not a command ack */
1627
1628	data = &ring->data[desc->idx];
1629
1630	/* if the command was mapped in a mbuf, free it */
1631	if (data->m != NULL) {
1632		bus_dmamap_unload(sc->sc_dmat, data->map);
1633		m_freem(data->m);
1634		data->m = NULL;
1635	}
1636
1637	wakeup(&ring->cmd[desc->idx]);
1638}
1639
1640static void
1641wpi_notif_intr(struct wpi_softc *sc)
1642{
1643	struct ieee80211com *ic = &sc->sc_ic;
1644	struct ifnet *ifp =  ic->ic_ifp;
1645	struct wpi_rx_desc *desc;
1646	struct wpi_rx_data *data;
1647	uint32_t hw;
1648
1649	hw = le32toh(sc->shared->next);
1650	while (sc->rxq.cur != hw) {
1651		data = &sc->rxq.data[sc->rxq.cur];
1652
1653		desc = mtod(data->m, struct wpi_rx_desc *);
1654
1655		DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d "
1656			"len=%d\n", desc->qid, desc->idx, desc->flags,
1657			desc->type, le32toh(desc->len)));
1658
1659		if (!(desc->qid & 0x80))	/* reply to a command */
1660			wpi_cmd_intr(sc, desc);
1661
1662		switch (desc->type) {
1663		case WPI_RX_DONE:
1664			/* a 802.11 frame was received */
1665			wpi_rx_intr(sc, desc, data);
1666			break;
1667
1668		case WPI_TX_DONE:
1669			/* a 802.11 frame has been transmitted */
1670			wpi_tx_intr(sc, desc);
1671			break;
1672
1673		case WPI_UC_READY:
1674		{
1675			struct wpi_ucode_info *uc =
1676				(struct wpi_ucode_info *)(desc + 1);
1677
1678			/* the microcontroller is ready */
1679			DPRINTF(("microcode alive notification version %x "
1680				"alive %x\n", le32toh(uc->version),
1681				le32toh(uc->valid)));
1682
1683			if (le32toh(uc->valid) != 1) {
1684				aprint_error_dev(sc->sc_dev,
1685					"microcontroller initialization failed\n");
1686			}
1687			break;
1688		}
1689		case WPI_STATE_CHANGED:
1690		{
1691			uint32_t *status = (uint32_t *)(desc + 1);
1692
1693			/* enabled/disabled notification */
1694			DPRINTF(("state changed to %x\n", le32toh(*status)));
1695
1696			if (le32toh(*status) & 1) {
1697				/* the radio button has to be pushed */
1698				aprint_error_dev(sc->sc_dev, "Radio transmitter is off\n");
1699				/* turn the interface down */
1700				ifp->if_flags &= ~IFF_UP;
1701				wpi_stop(ifp, 1);
1702				return;	/* no further processing */
1703			}
1704			break;
1705		}
1706		case WPI_START_SCAN:
1707		{
1708			struct wpi_start_scan *scan =
1709				(struct wpi_start_scan *)(desc + 1);
1710
1711			DPRINTFN(2, ("scanning channel %d status %x\n",
1712				scan->chan, le32toh(scan->status)));
1713
1714			/* fix current channel */
1715			ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
1716			break;
1717		}
1718		case WPI_STOP_SCAN:
1719		{
1720			struct wpi_stop_scan *scan =
1721				(struct wpi_stop_scan *)(desc + 1);
1722
1723			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
1724				scan->nchan, scan->status, scan->chan));
1725
1726			if (scan->status == 1 && scan->chan <= 14) {
1727				/*
1728				 * We just finished scanning 802.11g channels,
1729				 * start scanning 802.11a ones.
1730				 */
1731				if (wpi_scan(sc, IEEE80211_CHAN_A) == 0)
1732					break;
1733			}
1734			sc->is_scanning = false;
1735			ieee80211_end_scan(ic);
1736			break;
1737		}
1738		}
1739
1740		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1741	}
1742
1743	/* tell the firmware what we have processed */
1744	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1745	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1746}
1747
1748static int
1749wpi_intr(void *arg)
1750{
1751	struct wpi_softc *sc = arg;
1752	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1753	uint32_t r;
1754
1755	r = WPI_READ(sc, WPI_INTR);
1756	if (r == 0 || r == 0xffffffff)
1757		return 0;	/* not for us */
1758
1759	DPRINTFN(5, ("interrupt reg %x\n", r));
1760
1761	/* disable interrupts */
1762	WPI_WRITE(sc, WPI_MASK, 0);
1763	/* ack interrupts */
1764	WPI_WRITE(sc, WPI_INTR, r);
1765
1766	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1767		aprint_error_dev(sc->sc_dev, "fatal firmware error\n");
1768		sc->sc_ic.ic_ifp->if_flags &= ~IFF_UP;
1769		wpi_stop(sc->sc_ic.ic_ifp, 1);
1770		return 1;
1771	}
1772
1773	if (r & WPI_RX_INTR)
1774		wpi_notif_intr(sc);
1775
1776	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
1777		wakeup(sc);
1778
1779	/* re-enable interrupts */
1780	if (ifp->if_flags & IFF_UP)
1781		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1782
1783	return 1;
1784}
1785
1786static uint8_t
1787wpi_plcp_signal(int rate)
1788{
1789	switch (rate) {
1790	/* CCK rates (returned values are device-dependent) */
1791	case 2:		return 10;
1792	case 4:		return 20;
1793	case 11:	return 55;
1794	case 22:	return 110;
1795
1796	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1797	/* R1-R4, (u)ral is R4-R1 */
1798	case 12:	return 0xd;
1799	case 18:	return 0xf;
1800	case 24:	return 0x5;
1801	case 36:	return 0x7;
1802	case 48:	return 0x9;
1803	case 72:	return 0xb;
1804	case 96:	return 0x1;
1805	case 108:	return 0x3;
1806
1807	/* unsupported rates (should not get there) */
1808	default:	return 0;
1809	}
1810}
1811
1812/* quickly determine if a given rate is CCK or OFDM */
1813#define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1814
1815static int
1816wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1817	int ac)
1818{
1819	struct ieee80211com *ic = &sc->sc_ic;
1820	struct wpi_tx_ring *ring = &sc->txq[ac];
1821	struct wpi_tx_desc *desc;
1822	struct wpi_tx_data *data;
1823	struct wpi_tx_cmd *cmd;
1824	struct wpi_cmd_data *tx;
1825	struct ieee80211_frame *wh;
1826	struct ieee80211_key *k;
1827	const struct chanAccParams *cap;
1828	struct mbuf *mnew;
1829	int i, error, rate, hdrlen, noack = 0;
1830
1831	desc = &ring->desc[ring->cur];
1832	data = &ring->data[ring->cur];
1833
1834	wh = mtod(m0, struct ieee80211_frame *);
1835
1836	if (IEEE80211_QOS_HAS_SEQ(wh)) {
1837		cap = &ic->ic_wme.wme_chanParams;
1838		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
1839	}
1840
1841	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1842		k = ieee80211_crypto_encap(ic, ni, m0);
1843		if (k == NULL) {
1844			m_freem(m0);
1845			return ENOBUFS;
1846		}
1847
1848		/* packet header may have moved, reset our local pointer */
1849		wh = mtod(m0, struct ieee80211_frame *);
1850	}
1851
1852	hdrlen = ieee80211_anyhdrsize(wh);
1853
1854	/* pickup a rate */
1855	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1856		IEEE80211_FC0_TYPE_MGT) {
1857		/* mgmt frames are sent at the lowest available bit-rate */
1858		rate = ni->ni_rates.rs_rates[0];
1859	} else {
1860		if (ic->ic_fixed_rate != -1) {
1861			rate = ic->ic_sup_rates[ic->ic_curmode].
1862				rs_rates[ic->ic_fixed_rate];
1863		} else
1864			rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1865	}
1866	rate &= IEEE80211_RATE_VAL;
1867
1868
1869	if (sc->sc_drvbpf != NULL) {
1870		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1871
1872		tap->wt_flags = 0;
1873		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
1874		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
1875		tap->wt_rate = rate;
1876		tap->wt_hwqueue = ac;
1877		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1878			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1879
1880		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1881	}
1882
1883	cmd = &ring->cmd[ring->cur];
1884	cmd->code = WPI_CMD_TX_DATA;
1885	cmd->flags = 0;
1886	cmd->qid = ring->qid;
1887	cmd->idx = ring->cur;
1888
1889	tx = (struct wpi_cmd_data *)cmd->data;
1890	tx->flags = 0;
1891
1892	if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1893		tx->flags |= htole32(WPI_TX_NEED_ACK);
1894	} else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold)
1895		tx->flags |= htole32(WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP);
1896
1897	tx->flags |= htole32(WPI_TX_AUTO_SEQ);
1898
1899	/* retrieve destination node's id */
1900	tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
1901		WPI_ID_BSS;
1902
1903	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1904		IEEE80211_FC0_TYPE_MGT) {
1905		/* tell h/w to set timestamp in probe responses */
1906		if ((wh->i_fc[0] &
1907		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1908		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1909			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1910
1911		if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1912			 IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
1913			((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1914			 IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
1915			tx->timeout = htole16(3);
1916		else
1917			tx->timeout = htole16(2);
1918	} else
1919		tx->timeout = htole16(0);
1920
1921	tx->rate = wpi_plcp_signal(rate);
1922
1923	/* be very persistant at sending frames out */
1924	tx->rts_ntries = 7;
1925	tx->data_ntries = 15;
1926
1927	tx->ofdm_mask = 0xff;
1928	tx->cck_mask = 0xf;
1929	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1930
1931	tx->len = htole16(m0->m_pkthdr.len);
1932
1933	/* save and trim IEEE802.11 header */
1934	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
1935	m_adj(m0, hdrlen);
1936
1937	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1938		BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1939	if (error != 0 && error != EFBIG) {
1940		aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n", error);
1941		m_freem(m0);
1942		return error;
1943	}
1944	if (error != 0) {
1945		/* too many fragments, linearize */
1946		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1947		if (mnew == NULL) {
1948			m_freem(m0);
1949			return ENOMEM;
1950		}
1951
1952		M_COPY_PKTHDR(mnew, m0);
1953		if (m0->m_pkthdr.len > MHLEN) {
1954			MCLGET(mnew, M_DONTWAIT);
1955			if (!(mnew->m_flags & M_EXT)) {
1956				m_freem(m0);
1957				m_freem(mnew);
1958				return ENOMEM;
1959			}
1960		}
1961
1962		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
1963		m_freem(m0);
1964		mnew->m_len = mnew->m_pkthdr.len;
1965		m0 = mnew;
1966
1967		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1968			BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1969		if (error != 0) {
1970			aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1971							 error);
1972			m_freem(m0);
1973			return error;
1974		}
1975	}
1976
1977	data->m = m0;
1978	data->ni = ni;
1979
1980	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1981		ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs));
1982
1983	/* first scatter/gather segment is used by the tx data command */
1984	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
1985		(1 + data->map->dm_nsegs) << 24);
1986	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1987		ring->cur * sizeof (struct wpi_tx_cmd));
1988	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data) +
1989						 ((hdrlen + 3) & ~3));
1990
1991	for (i = 1; i <= data->map->dm_nsegs; i++) {
1992		desc->segs[i].addr =
1993			htole32(data->map->dm_segs[i - 1].ds_addr);
1994		desc->segs[i].len  =
1995			htole32(data->map->dm_segs[i - 1].ds_len);
1996	}
1997
1998	ring->queued++;
1999
2000	/* kick ring */
2001	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2002	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2003
2004	return 0;
2005}
2006
2007static void
2008wpi_start(struct ifnet *ifp)
2009{
2010	struct wpi_softc *sc = ifp->if_softc;
2011	struct ieee80211com *ic = &sc->sc_ic;
2012	struct ieee80211_node *ni;
2013	struct ether_header *eh;
2014	struct mbuf *m0;
2015	int ac;
2016
2017	/*
2018	 * net80211 may still try to send management frames even if the
2019	 * IFF_RUNNING flag is not set...
2020	 */
2021	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2022		return;
2023
2024	for (;;) {
2025		IF_DEQUEUE(&ic->ic_mgtq, m0);
2026		if (m0 != NULL) {
2027
2028			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
2029			m0->m_pkthdr.rcvif = NULL;
2030
2031			/* management frames go into ring 0 */
2032			if (sc->txq[0].queued > sc->txq[0].count - 8) {
2033				ifp->if_oerrors++;
2034				continue;
2035			}
2036			bpf_mtap3(ic->ic_rawbpf, m0);
2037			if (wpi_tx_data(sc, m0, ni, 0) != 0) {
2038				ifp->if_oerrors++;
2039				break;
2040			}
2041		} else {
2042			if (ic->ic_state != IEEE80211_S_RUN)
2043				break;
2044			IFQ_POLL(&ifp->if_snd, m0);
2045			if (m0 == NULL)
2046				break;
2047
2048			if (m0->m_len < sizeof (*eh) &&
2049			    (m0 = m_pullup(m0, sizeof (*eh))) == NULL) {
2050				ifp->if_oerrors++;
2051				continue;
2052			}
2053			eh = mtod(m0, struct ether_header *);
2054			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2055			if (ni == NULL) {
2056				m_freem(m0);
2057				ifp->if_oerrors++;
2058				continue;
2059			}
2060
2061			/* classify mbuf so we can find which tx ring to use */
2062			if (ieee80211_classify(ic, m0, ni) != 0) {
2063				m_freem(m0);
2064				ieee80211_free_node(ni);
2065				ifp->if_oerrors++;
2066				continue;
2067			}
2068
2069			/* no QoS encapsulation for EAPOL frames */
2070			ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
2071			    M_WME_GETAC(m0) : WME_AC_BE;
2072
2073			if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2074				/* there is no place left in this ring */
2075				ifp->if_flags |= IFF_OACTIVE;
2076				break;
2077			}
2078			IFQ_DEQUEUE(&ifp->if_snd, m0);
2079			bpf_mtap(ifp, m0);
2080			m0 = ieee80211_encap(ic, m0, ni);
2081			if (m0 == NULL) {
2082				ieee80211_free_node(ni);
2083				ifp->if_oerrors++;
2084				continue;
2085			}
2086			bpf_mtap3(ic->ic_rawbpf, m0);
2087			if (wpi_tx_data(sc, m0, ni, ac) != 0) {
2088				ieee80211_free_node(ni);
2089				ifp->if_oerrors++;
2090				break;
2091			}
2092		}
2093
2094		sc->sc_tx_timer = 5;
2095		ifp->if_timer = 1;
2096	}
2097}
2098
2099static void
2100wpi_watchdog(struct ifnet *ifp)
2101{
2102	struct wpi_softc *sc = ifp->if_softc;
2103
2104	ifp->if_timer = 0;
2105
2106	if (sc->sc_tx_timer > 0) {
2107		if (--sc->sc_tx_timer == 0) {
2108			aprint_error_dev(sc->sc_dev, "device timeout\n");
2109			ifp->if_oerrors++;
2110			ifp->if_flags &= ~IFF_UP;
2111			wpi_stop(ifp, 1);
2112			return;
2113		}
2114		ifp->if_timer = 1;
2115	}
2116
2117	ieee80211_watchdog(&sc->sc_ic);
2118}
2119
2120static int
2121wpi_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2122{
2123#define IS_RUNNING(ifp) \
2124	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
2125
2126	struct wpi_softc *sc = ifp->if_softc;
2127	struct ieee80211com *ic = &sc->sc_ic;
2128	int s, error = 0;
2129
2130	s = splnet();
2131
2132	switch (cmd) {
2133	case SIOCSIFFLAGS:
2134		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2135			break;
2136		if (ifp->if_flags & IFF_UP) {
2137			if (!(ifp->if_flags & IFF_RUNNING))
2138				wpi_init(ifp);
2139		} else {
2140			if (ifp->if_flags & IFF_RUNNING)
2141				wpi_stop(ifp, 1);
2142		}
2143		break;
2144
2145	case SIOCADDMULTI:
2146	case SIOCDELMULTI:
2147		/* XXX no h/w multicast filter? --dyoung */
2148		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2149			/* setup multicast filter, etc */
2150			error = 0;
2151		}
2152		break;
2153
2154	default:
2155		error = ieee80211_ioctl(ic, cmd, data);
2156	}
2157
2158	if (error == ENETRESET) {
2159		if (IS_RUNNING(ifp) &&
2160			(ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
2161			wpi_init(ifp);
2162		error = 0;
2163	}
2164
2165	splx(s);
2166	return error;
2167
2168#undef IS_RUNNING
2169}
2170
2171/*
2172 * Extract various information from EEPROM.
2173 */
2174static void
2175wpi_read_eeprom(struct wpi_softc *sc)
2176{
2177	struct ieee80211com *ic = &sc->sc_ic;
2178	char domain[4];
2179	int i;
2180
2181	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap, 1);
2182	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 2);
2183	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2184
2185	DPRINTF(("cap=%x rev=%x type=%x\n", sc->cap, le16toh(sc->rev),
2186	    sc->type));
2187
2188	/* read and print regulatory domain */
2189	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, domain, 4);
2190	aprint_normal_dev(sc->sc_dev, "%.4s", domain);
2191
2192	/* read and print MAC address */
2193	wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
2194	aprint_normal(", address %s\n", ether_sprintf(ic->ic_myaddr));
2195
2196	/* read the list of authorized channels */
2197	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2198		wpi_read_eeprom_channels(sc, i);
2199
2200	/* read the list of power groups */
2201	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2202		wpi_read_eeprom_group(sc, i);
2203}
2204
2205static void
2206wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
2207{
2208	struct ieee80211com *ic = &sc->sc_ic;
2209	const struct wpi_chan_band *band = &wpi_bands[n];
2210	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
2211	int chan, i;
2212
2213	wpi_read_prom_data(sc, band->addr, channels,
2214	    band->nchan * sizeof (struct wpi_eeprom_chan));
2215
2216	for (i = 0; i < band->nchan; i++) {
2217		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID))
2218			continue;
2219
2220		chan = band->chan[i];
2221
2222		if (n == 0) {	/* 2GHz band */
2223			ic->ic_channels[chan].ic_freq =
2224			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
2225			ic->ic_channels[chan].ic_flags =
2226			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
2227			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
2228
2229		} else {	/* 5GHz band */
2230			/*
2231			 * Some 3945abg adapters support channels 7, 8, 11
2232			 * and 12 in the 2GHz *and* 5GHz bands.
2233			 * Because of limitations in our net80211(9) stack,
2234			 * we can't support these channels in 5GHz band.
2235			 */
2236			if (chan <= 14)
2237				continue;
2238
2239			ic->ic_channels[chan].ic_freq =
2240			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
2241			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
2242		}
2243
2244		/* is active scan allowed on this channel? */
2245		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
2246			ic->ic_channels[chan].ic_flags |=
2247			    IEEE80211_CHAN_PASSIVE;
2248		}
2249
2250		/* save maximum allowed power for this channel */
2251		sc->maxpwr[chan] = channels[i].maxpwr;
2252
2253		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
2254		    chan, channels[i].flags, sc->maxpwr[chan]));
2255	}
2256}
2257
2258static void
2259wpi_read_eeprom_group(struct wpi_softc *sc, int n)
2260{
2261	struct wpi_power_group *group = &sc->groups[n];
2262	struct wpi_eeprom_group rgroup;
2263	int i;
2264
2265	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
2266	    sizeof rgroup);
2267
2268	/* save power group information */
2269	group->chan   = rgroup.chan;
2270	group->maxpwr = rgroup.maxpwr;
2271	/* temperature at which the samples were taken */
2272	group->temp   = (int16_t)le16toh(rgroup.temp);
2273
2274	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
2275	    group->chan, group->maxpwr, group->temp));
2276
2277	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
2278		group->samples[i].index = rgroup.samples[i].index;
2279		group->samples[i].power = rgroup.samples[i].power;
2280
2281		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
2282		    group->samples[i].index, group->samples[i].power));
2283	}
2284}
2285
2286/*
2287 * Send a command to the firmware.
2288 */
2289static int
2290wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2291{
2292	struct wpi_tx_ring *ring = &sc->cmdq;
2293	struct wpi_tx_desc *desc;
2294	struct wpi_tx_cmd *cmd;
2295
2296	KASSERT(size <= sizeof cmd->data);
2297
2298	desc = &ring->desc[ring->cur];
2299	cmd = &ring->cmd[ring->cur];
2300
2301	cmd->code = code;
2302	cmd->flags = 0;
2303	cmd->qid = ring->qid;
2304	cmd->idx = ring->cur;
2305	memcpy(cmd->data, buf, size);
2306
2307	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2308	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2309		ring->cur * sizeof (struct wpi_tx_cmd));
2310	desc->segs[0].len  = htole32(4 + size);
2311
2312	/* kick cmd ring */
2313	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2314	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2315
2316	return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz);
2317}
2318
2319static int
2320wpi_wme_update(struct ieee80211com *ic)
2321{
2322#define WPI_EXP2(v)	htole16((1 << (v)) - 1)
2323#define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
2324	struct wpi_softc *sc = ic->ic_ifp->if_softc;
2325	const struct wmeParams *wmep;
2326	struct wpi_wme_setup wme;
2327	int ac;
2328
2329	/* don't override default WME values if WME is not actually enabled */
2330	if (!(ic->ic_flags & IEEE80211_F_WME))
2331		return 0;
2332
2333	wme.flags = 0;
2334	for (ac = 0; ac < WME_NUM_AC; ac++) {
2335		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2336		wme.ac[ac].aifsn = wmep->wmep_aifsn;
2337		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2338		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2339		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
2340
2341		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2342		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2343		    wme.ac[ac].cwmax, wme.ac[ac].txop));
2344	}
2345
2346	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2347#undef WPI_USEC
2348#undef WPI_EXP2
2349}
2350
2351/*
2352 * Configure h/w multi-rate retries.
2353 */
2354static int
2355wpi_mrr_setup(struct wpi_softc *sc)
2356{
2357	struct ieee80211com *ic = &sc->sc_ic;
2358	struct wpi_mrr_setup mrr;
2359	int i, error;
2360
2361	/* CCK rates (not used with 802.11a) */
2362	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2363		mrr.rates[i].flags = 0;
2364		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2365		/* fallback to the immediate lower CCK rate (if any) */
2366		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2367		/* try one time at this rate before falling back to "next" */
2368		mrr.rates[i].ntries = 1;
2369	}
2370
2371	/* OFDM rates (not used with 802.11b) */
2372	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2373		mrr.rates[i].flags = 0;
2374		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2375		/* fallback to the immediate lower rate (if any) */
2376		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2377		mrr.rates[i].next = (i == WPI_OFDM6) ?
2378		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2379			WPI_OFDM6 : WPI_CCK2) :
2380		    i - 1;
2381		/* try one time at this rate before falling back to "next" */
2382		mrr.rates[i].ntries = 1;
2383	}
2384
2385	/* setup MRR for control frames */
2386	mrr.which = htole32(WPI_MRR_CTL);
2387	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2388	if (error != 0) {
2389		aprint_error_dev(sc->sc_dev, "could not setup MRR for control frames\n");
2390		return error;
2391	}
2392
2393	/* setup MRR for data frames */
2394	mrr.which = htole32(WPI_MRR_DATA);
2395	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2396	if (error != 0) {
2397		aprint_error_dev(sc->sc_dev, "could not setup MRR for data frames\n");
2398		return error;
2399	}
2400
2401	return 0;
2402}
2403
2404static void
2405wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2406{
2407	struct wpi_cmd_led led;
2408
2409	led.which = which;
2410	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2411	led.off = off;
2412	led.on = on;
2413
2414	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2415}
2416
2417static void
2418wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2419{
2420	struct wpi_cmd_tsf tsf;
2421	uint64_t val, mod;
2422
2423	memset(&tsf, 0, sizeof tsf);
2424	memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2425	tsf.bintval = htole16(ni->ni_intval);
2426	tsf.lintval = htole16(10);
2427
2428	/* compute remaining time until next beacon */
2429	val = (uint64_t)ni->ni_intval  * 1024;	/* msecs -> usecs */
2430	mod = le64toh(tsf.tstamp) % val;
2431	tsf.binitval = htole32((uint32_t)(val - mod));
2432
2433	DPRINTF(("TSF bintval=%u tstamp=%" PRId64 ", init=%u\n",
2434	    ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod)));
2435
2436	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2437		aprint_error_dev(sc->sc_dev, "could not enable TSF\n");
2438}
2439
2440/*
2441 * Update Tx power to match what is defined for channel `c'.
2442 */
2443static int
2444wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
2445{
2446	struct ieee80211com *ic = &sc->sc_ic;
2447	struct wpi_power_group *group;
2448	struct wpi_cmd_txpower txpower;
2449	u_int chan;
2450	int i;
2451
2452	/* get channel number */
2453	chan = ieee80211_chan2ieee(ic, c);
2454
2455	/* find the power group to which this channel belongs */
2456	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2457		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
2458			if (chan <= group->chan)
2459				break;
2460	} else
2461		group = &sc->groups[0];
2462
2463	memset(&txpower, 0, sizeof txpower);
2464	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
2465	txpower.chan = htole16(chan);
2466
2467	/* set Tx power for all OFDM and CCK rates */
2468	for (i = 0; i <= 11 ; i++) {
2469		/* retrieve Tx power for this channel/rate combination */
2470		int idx = wpi_get_power_index(sc, group, c,
2471		    wpi_ridx_to_rate[i]);
2472
2473		txpower.rates[i].plcp = wpi_ridx_to_plcp[i];
2474
2475		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2476			txpower.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
2477			txpower.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
2478		} else {
2479			txpower.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
2480			txpower.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
2481		}
2482		DPRINTF(("chan %d/rate %d: power index %d\n", chan,
2483		    wpi_ridx_to_rate[i], idx));
2484	}
2485
2486	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
2487}
2488
2489/*
2490 * Determine Tx power index for a given channel/rate combination.
2491 * This takes into account the regulatory information from EEPROM and the
2492 * current temperature.
2493 */
2494static int
2495wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
2496    struct ieee80211_channel *c, int rate)
2497{
2498/* fixed-point arithmetic division using a n-bit fractional part */
2499#define fdivround(a, b, n)	\
2500	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
2501
2502/* linear interpolation */
2503#define interpolate(x, x1, y1, x2, y2, n)	\
2504	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
2505
2506	struct ieee80211com *ic = &sc->sc_ic;
2507	struct wpi_power_sample *sample;
2508	int pwr, idx;
2509	u_int chan;
2510
2511	/* get channel number */
2512	chan = ieee80211_chan2ieee(ic, c);
2513
2514	/* default power is group's maximum power - 3dB */
2515	pwr = group->maxpwr / 2;
2516
2517	/* decrease power for highest OFDM rates to reduce distortion */
2518	switch (rate) {
2519	case 72:	/* 36Mb/s */
2520		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
2521		break;
2522	case 96:	/* 48Mb/s */
2523		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
2524		break;
2525	case 108:	/* 54Mb/s */
2526		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
2527		break;
2528	}
2529
2530	/* never exceed channel's maximum allowed Tx power */
2531	pwr = min(pwr, sc->maxpwr[chan]);
2532
2533	/* retrieve power index into gain tables from samples */
2534	for (sample = group->samples; sample < &group->samples[3]; sample++)
2535		if (pwr > sample[1].power)
2536			break;
2537	/* fixed-point linear interpolation using a 19-bit fractional part */
2538	idx = interpolate(pwr, sample[0].power, sample[0].index,
2539	    sample[1].power, sample[1].index, 19);
2540
2541	/*
2542	 * Adjust power index based on current temperature:
2543	 * - if cooler than factory-calibrated: decrease output power
2544	 * - if warmer than factory-calibrated: increase output power
2545	 */
2546	idx -= (sc->temp - group->temp) * 11 / 100;
2547
2548	/* decrease power for CCK rates (-5dB) */
2549	if (!WPI_RATE_IS_OFDM(rate))
2550		idx += 10;
2551
2552	/* keep power index in a valid range */
2553	if (idx < 0)
2554		return 0;
2555	if (idx > WPI_MAX_PWR_INDEX)
2556		return WPI_MAX_PWR_INDEX;
2557	return idx;
2558
2559#undef interpolate
2560#undef fdivround
2561}
2562
2563/*
2564 * Build a beacon frame that the firmware will broadcast periodically in
2565 * IBSS or HostAP modes.
2566 */
2567static int
2568wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2569{
2570	struct ieee80211com *ic = &sc->sc_ic;
2571	struct wpi_tx_ring *ring = &sc->cmdq;
2572	struct wpi_tx_desc *desc;
2573	struct wpi_tx_data *data;
2574	struct wpi_tx_cmd *cmd;
2575	struct wpi_cmd_beacon *bcn;
2576	struct ieee80211_beacon_offsets bo;
2577	struct mbuf *m0;
2578	int error;
2579
2580	desc = &ring->desc[ring->cur];
2581	data = &ring->data[ring->cur];
2582
2583	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2584	if (m0 == NULL) {
2585		aprint_error_dev(sc->sc_dev, "could not allocate beacon frame\n");
2586		return ENOMEM;
2587	}
2588
2589	cmd = &ring->cmd[ring->cur];
2590	cmd->code = WPI_CMD_SET_BEACON;
2591	cmd->flags = 0;
2592	cmd->qid = ring->qid;
2593	cmd->idx = ring->cur;
2594
2595	bcn = (struct wpi_cmd_beacon *)cmd->data;
2596	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2597	bcn->id = WPI_ID_BROADCAST;
2598	bcn->ofdm_mask = 0xff;
2599	bcn->cck_mask = 0x0f;
2600	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2601	bcn->len = htole16(m0->m_pkthdr.len);
2602	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2603		wpi_plcp_signal(12) : wpi_plcp_signal(2);
2604	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2605
2606	/* save and trim IEEE802.11 header */
2607	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh);
2608	m_adj(m0, sizeof (struct ieee80211_frame));
2609
2610	/* assume beacon frame is contiguous */
2611	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2612		BUS_DMA_READ | BUS_DMA_NOWAIT);
2613	if (error) {
2614		aprint_error_dev(sc->sc_dev, "could not map beacon\n");
2615		m_freem(m0);
2616		return error;
2617	}
2618
2619	data->m = m0;
2620
2621	/* first scatter/gather segment is used by the beacon command */
2622	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2623	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2624		ring->cur * sizeof (struct wpi_tx_cmd));
2625	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2626	desc->segs[1].addr = htole32(data->map->dm_segs[0].ds_addr);
2627	desc->segs[1].len  = htole32(data->map->dm_segs[0].ds_len);
2628
2629	/* kick cmd ring */
2630	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2631	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2632
2633	return 0;
2634}
2635
2636static int
2637wpi_auth(struct wpi_softc *sc)
2638{
2639	struct ieee80211com *ic = &sc->sc_ic;
2640	struct ieee80211_node *ni = ic->ic_bss;
2641	struct wpi_node_info node;
2642	int error;
2643
2644	/* update adapter's configuration */
2645	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2646	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2647	sc->config.flags = htole32(WPI_CONFIG_TSF);
2648	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2649		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2650		    WPI_CONFIG_24GHZ);
2651	}
2652	switch (ic->ic_curmode) {
2653	case IEEE80211_MODE_11A:
2654		sc->config.cck_mask  = 0;
2655		sc->config.ofdm_mask = 0x15;
2656		break;
2657	case IEEE80211_MODE_11B:
2658		sc->config.cck_mask  = 0x03;
2659		sc->config.ofdm_mask = 0;
2660		break;
2661	default:	/* assume 802.11b/g */
2662		sc->config.cck_mask  = 0x0f;
2663		sc->config.ofdm_mask = 0x15;
2664	}
2665
2666	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2667		sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2668	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2669		sizeof (struct wpi_config), 1);
2670	if (error != 0) {
2671		aprint_error_dev(sc->sc_dev, "could not configure\n");
2672		return error;
2673	}
2674
2675	/* configuration has changed, set Tx power accordingly */
2676	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2677		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
2678		return error;
2679	}
2680
2681	/* add default node */
2682	memset(&node, 0, sizeof node);
2683	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2684	node.id = WPI_ID_BSS;
2685	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2686	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2687	node.action = htole32(WPI_ACTION_SET_RATE);
2688	node.antenna = WPI_ANTENNA_BOTH;
2689	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2690	if (error != 0) {
2691		aprint_error_dev(sc->sc_dev, "could not add BSS node\n");
2692		return error;
2693	}
2694
2695	return 0;
2696}
2697
2698/*
2699 * Send a scan request to the firmware.  Since this command is huge, we map it
2700 * into a mbuf instead of using the pre-allocated set of commands.
2701 */
2702static int
2703wpi_scan(struct wpi_softc *sc, uint16_t flags)
2704{
2705	struct ieee80211com *ic = &sc->sc_ic;
2706	struct wpi_tx_ring *ring = &sc->cmdq;
2707	struct wpi_tx_desc *desc;
2708	struct wpi_tx_data *data;
2709	struct wpi_tx_cmd *cmd;
2710	struct wpi_scan_hdr *hdr;
2711	struct wpi_scan_chan *chan;
2712	struct ieee80211_frame *wh;
2713	struct ieee80211_rateset *rs;
2714	struct ieee80211_channel *c;
2715	enum ieee80211_phymode mode;
2716	uint8_t *frm;
2717	int nrates, pktlen, error;
2718
2719	desc = &ring->desc[ring->cur];
2720	data = &ring->data[ring->cur];
2721
2722	MGETHDR(data->m, M_DONTWAIT, MT_DATA);
2723	if (data->m == NULL) {
2724		aprint_error_dev(sc->sc_dev,
2725						"could not allocate mbuf for scan command\n");
2726		return ENOMEM;
2727	}
2728
2729	MCLGET(data->m, M_DONTWAIT);
2730	if (!(data->m->m_flags & M_EXT)) {
2731		m_freem(data->m);
2732		data->m = NULL;
2733		aprint_error_dev(sc->sc_dev,
2734						 "could not allocate mbuf for scan command\n");
2735		return ENOMEM;
2736	}
2737
2738	cmd = mtod(data->m, struct wpi_tx_cmd *);
2739	cmd->code = WPI_CMD_SCAN;
2740	cmd->flags = 0;
2741	cmd->qid = ring->qid;
2742	cmd->idx = ring->cur;
2743
2744	hdr = (struct wpi_scan_hdr *)cmd->data;
2745	memset(hdr, 0, sizeof (struct wpi_scan_hdr));
2746	hdr->txflags = htole32(WPI_TX_AUTO_SEQ);
2747	hdr->id = WPI_ID_BROADCAST;
2748	hdr->lifetime = htole32(WPI_LIFETIME_INFINITE);
2749
2750	/*
2751	 * Move to the next channel if no packets are received within 5 msecs
2752	 * after sending the probe request (this helps to reduce the duration
2753	 * of active scans).
2754	 */
2755	hdr->quiet = htole16(5);        /* timeout in milliseconds */
2756	hdr->plcp_threshold = htole16(1);	/* min # of packets */
2757
2758	if (flags & IEEE80211_CHAN_A) {
2759		hdr->crc_threshold = htole16(1);
2760		/* send probe requests at 6Mbps */
2761		hdr->rate = wpi_plcp_signal(12);
2762	} else {
2763		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2764		/* send probe requests at 1Mbps */
2765		hdr->rate = wpi_plcp_signal(2);
2766	}
2767
2768	/* for directed scans, firmware inserts the essid IE itself */
2769	hdr->essid[0].id  = IEEE80211_ELEMID_SSID;
2770	hdr->essid[0].len = ic->ic_des_esslen;
2771	memcpy(hdr->essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
2772
2773	/*
2774	 * Build a probe request frame.  Most of the following code is a
2775	 * copy & paste of what is done in net80211.
2776	 */
2777	wh = (struct ieee80211_frame *)(hdr + 1);
2778	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2779		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2780	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2781	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
2782	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
2783	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
2784	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2785	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2786
2787	frm = (uint8_t *)(wh + 1);
2788
2789	/* add empty essid IE (firmware generates it for directed scans) */
2790	*frm++ = IEEE80211_ELEMID_SSID;
2791	*frm++ = 0;
2792
2793	mode = ieee80211_chan2mode(ic, ic->ic_ibss_chan);
2794	rs = &ic->ic_sup_rates[mode];
2795
2796	/* add supported rates IE */
2797	*frm++ = IEEE80211_ELEMID_RATES;
2798	nrates = rs->rs_nrates;
2799	if (nrates > IEEE80211_RATE_SIZE)
2800		nrates = IEEE80211_RATE_SIZE;
2801	*frm++ = nrates;
2802	memcpy(frm, rs->rs_rates, nrates);
2803	frm += nrates;
2804
2805	/* add supported xrates IE */
2806	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2807		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2808		*frm++ = IEEE80211_ELEMID_XRATES;
2809		*frm++ = nrates;
2810		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2811		frm += nrates;
2812	}
2813
2814	/* setup length of probe request */
2815	hdr->paylen = htole16(frm - (uint8_t *)wh);
2816
2817	chan = (struct wpi_scan_chan *)frm;
2818	for (c  = &ic->ic_channels[1];
2819	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2820		if ((c->ic_flags & flags) != flags)
2821			continue;
2822
2823		chan->chan = ieee80211_chan2ieee(ic, c);
2824		chan->flags = 0;
2825		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2826			chan->flags |= WPI_CHAN_ACTIVE;
2827			if (ic->ic_des_esslen != 0)
2828				chan->flags |= WPI_CHAN_DIRECT;
2829		}
2830		chan->dsp_gain = 0x6e;
2831		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2832			chan->rf_gain = 0x3b;
2833			chan->active = htole16(10);
2834			chan->passive = htole16(110);
2835		} else {
2836			chan->rf_gain = 0x28;
2837			chan->active = htole16(20);
2838			chan->passive = htole16(120);
2839		}
2840		hdr->nchan++;
2841		chan++;
2842
2843		frm += sizeof (struct wpi_scan_chan);
2844	}
2845	hdr->len = htole16(frm - (uint8_t *)hdr);
2846	pktlen = frm - (uint8_t *)cmd;
2847
2848	error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen,
2849		NULL, BUS_DMA_NOWAIT);
2850	if (error) {
2851		aprint_error_dev(sc->sc_dev, "could not map scan command\n");
2852		m_freem(data->m);
2853		data->m = NULL;
2854		return error;
2855	}
2856
2857	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2858	desc->segs[0].addr = htole32(data->map->dm_segs[0].ds_addr);
2859	desc->segs[0].len  = htole32(data->map->dm_segs[0].ds_len);
2860
2861	/* kick cmd ring */
2862	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2863	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2864
2865	return 0;	/* will be notified async. of failure/success */
2866}
2867
2868static int
2869wpi_config(struct wpi_softc *sc)
2870{
2871	struct ieee80211com *ic = &sc->sc_ic;
2872	struct ifnet *ifp = ic->ic_ifp;
2873	struct wpi_power power;
2874	struct wpi_bluetooth bluetooth;
2875	struct wpi_node_info node;
2876	int error;
2877
2878	memset(&power, 0, sizeof power);
2879	power.flags = htole32(WPI_POWER_CAM | 0x8);
2880	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2881	if (error != 0) {
2882		aprint_error_dev(sc->sc_dev, "could not set power mode\n");
2883		return error;
2884	}
2885
2886	/* configure bluetooth coexistence */
2887	memset(&bluetooth, 0, sizeof bluetooth);
2888	bluetooth.flags = 3;
2889	bluetooth.lead = 0xaa;
2890	bluetooth.kill = 1;
2891	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2892		0);
2893	if (error != 0) {
2894		aprint_error_dev(sc->sc_dev,
2895			"could not configure bluetooth coexistence\n");
2896		return error;
2897	}
2898
2899	/* configure adapter */
2900	memset(&sc->config, 0, sizeof (struct wpi_config));
2901	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2902	IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
2903	/*set default channel*/
2904	sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
2905	sc->config.flags = htole32(WPI_CONFIG_TSF);
2906	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan)) {
2907		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2908		    WPI_CONFIG_24GHZ);
2909	}
2910	sc->config.filter = 0;
2911	switch (ic->ic_opmode) {
2912	case IEEE80211_M_STA:
2913		sc->config.mode = WPI_MODE_STA;
2914		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2915		break;
2916	case IEEE80211_M_IBSS:
2917	case IEEE80211_M_AHDEMO:
2918		sc->config.mode = WPI_MODE_IBSS;
2919		break;
2920	case IEEE80211_M_HOSTAP:
2921		sc->config.mode = WPI_MODE_HOSTAP;
2922		break;
2923	case IEEE80211_M_MONITOR:
2924		sc->config.mode = WPI_MODE_MONITOR;
2925		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2926			WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2927		break;
2928	}
2929	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
2930	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
2931	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2932		sizeof (struct wpi_config), 0);
2933	if (error != 0) {
2934		aprint_error_dev(sc->sc_dev, "configure command failed\n");
2935		return error;
2936	}
2937
2938	/* configuration has changed, set Tx power accordingly */
2939	if ((error = wpi_set_txpower(sc, ic->ic_ibss_chan, 0)) != 0) {
2940		aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
2941		return error;
2942	}
2943
2944	/* add broadcast node */
2945	memset(&node, 0, sizeof node);
2946	IEEE80211_ADDR_COPY(node.bssid, etherbroadcastaddr);
2947	node.id = WPI_ID_BROADCAST;
2948	node.rate = wpi_plcp_signal(2);
2949	node.action = htole32(WPI_ACTION_SET_RATE);
2950	node.antenna = WPI_ANTENNA_BOTH;
2951	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2952	if (error != 0) {
2953		aprint_error_dev(sc->sc_dev, "could not add broadcast node\n");
2954		return error;
2955	}
2956
2957	if ((error = wpi_mrr_setup(sc)) != 0) {
2958		aprint_error_dev(sc->sc_dev, "could not setup MRR\n");
2959		return error;
2960	}
2961
2962	return 0;
2963}
2964
2965static void
2966wpi_stop_master(struct wpi_softc *sc)
2967{
2968	uint32_t tmp;
2969	int ntries;
2970
2971	tmp = WPI_READ(sc, WPI_RESET);
2972	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
2973
2974	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2975	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2976		return;	/* already asleep */
2977
2978	for (ntries = 0; ntries < 100; ntries++) {
2979		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2980			break;
2981		DELAY(10);
2982	}
2983	if (ntries == 100) {
2984		aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
2985	}
2986}
2987
2988static int
2989wpi_power_up(struct wpi_softc *sc)
2990{
2991	uint32_t tmp;
2992	int ntries;
2993
2994	wpi_mem_lock(sc);
2995	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2996	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2997	wpi_mem_unlock(sc);
2998
2999	for (ntries = 0; ntries < 5000; ntries++) {
3000		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
3001			break;
3002		DELAY(10);
3003	}
3004	if (ntries == 5000) {
3005		aprint_error_dev(sc->sc_dev, "timeout waiting for NIC to power up\n");
3006		return ETIMEDOUT;
3007	}
3008	return 0;
3009}
3010
3011static int
3012wpi_reset(struct wpi_softc *sc)
3013{
3014	uint32_t tmp;
3015	int ntries;
3016
3017	/* clear any pending interrupts */
3018	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3019
3020	tmp = WPI_READ(sc, WPI_PLL_CTL);
3021	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
3022
3023	tmp = WPI_READ(sc, WPI_CHICKEN);
3024	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
3025
3026	tmp = WPI_READ(sc, WPI_GPIO_CTL);
3027	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
3028
3029	/* wait for clock stabilization */
3030	for (ntries = 0; ntries < 1000; ntries++) {
3031		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
3032			break;
3033		DELAY(10);
3034	}
3035	if (ntries == 1000) {
3036		aprint_error_dev(sc->sc_dev,
3037						 "timeout waiting for clock stabilization\n");
3038		return ETIMEDOUT;
3039	}
3040
3041	/* initialize EEPROM */
3042	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
3043	if ((tmp & WPI_EEPROM_VERSION) == 0) {
3044		aprint_error_dev(sc->sc_dev, "EEPROM not found\n");
3045		return EIO;
3046	}
3047	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
3048
3049	return 0;
3050}
3051
3052static void
3053wpi_hw_config(struct wpi_softc *sc)
3054{
3055	uint32_t rev, hw;
3056
3057	/* voodoo from the reference driver */
3058	hw = WPI_READ(sc, WPI_HWCONFIG);
3059
3060	rev = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
3061	rev = PCI_REVISION(rev);
3062	if ((rev & 0xc0) == 0x40)
3063		hw |= WPI_HW_ALM_MB;
3064	else if (!(rev & 0x80))
3065		hw |= WPI_HW_ALM_MM;
3066
3067	if (sc->cap == 0x80)
3068		hw |= WPI_HW_SKU_MRC;
3069
3070	hw &= ~WPI_HW_REV_D;
3071	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
3072		hw |= WPI_HW_REV_D;
3073
3074	if (sc->type > 1)
3075		hw |= WPI_HW_TYPE_B;
3076
3077	DPRINTF(("setting h/w config %x\n", hw));
3078	WPI_WRITE(sc, WPI_HWCONFIG, hw);
3079}
3080
3081static int
3082wpi_init(struct ifnet *ifp)
3083{
3084	struct wpi_softc *sc = ifp->if_softc;
3085	struct ieee80211com *ic = &sc->sc_ic;
3086	uint32_t tmp;
3087	int qid, ntries, error;
3088
3089	wpi_stop(ifp,1);
3090	(void)wpi_reset(sc);
3091
3092	wpi_mem_lock(sc);
3093	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3094	DELAY(20);
3095	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3096	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3097	wpi_mem_unlock(sc);
3098
3099	(void)wpi_power_up(sc);
3100	wpi_hw_config(sc);
3101
3102	/* init Rx ring */
3103	wpi_mem_lock(sc);
3104	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3105	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3106	    offsetof(struct wpi_shared, next));
3107	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3108	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3109	wpi_mem_unlock(sc);
3110
3111	/* init Tx rings */
3112	wpi_mem_lock(sc);
3113	wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3114	wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
3115	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3116	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3117	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3118	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3119	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3120
3121	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3122	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3123
3124	for (qid = 0; qid < 6; qid++) {
3125		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3126		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3127		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3128	}
3129	wpi_mem_unlock(sc);
3130
3131	/* clear "radio off" and "disable command" bits (reversed logic) */
3132	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3133	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3134
3135	/* clear any pending interrupts */
3136	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3137	/* enable interrupts */
3138	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3139
3140	/* not sure why/if this is necessary... */
3141	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3142	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3143
3144	if ((error = wpi_load_firmware(sc)) != 0)
3145		/* wpi_load_firmware prints error messages for us.  */
3146		goto fail1;
3147
3148	/* Check the status of the radio switch */
3149	if (wpi_getrfkill(sc)) {
3150		aprint_error_dev(sc->sc_dev,
3151		    "radio is disabled by hardware switch\n");
3152		error = EBUSY;
3153		goto fail1;
3154	}
3155
3156	/* wait for thermal sensors to calibrate */
3157	for (ntries = 0; ntries < 1000; ntries++) {
3158		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3159			break;
3160		DELAY(10);
3161	}
3162	if (ntries == 1000) {
3163		aprint_error_dev(sc->sc_dev,
3164		    "timeout waiting for thermal sensors calibration\n");
3165		error = ETIMEDOUT;
3166		goto fail1;
3167	}
3168
3169	DPRINTF(("temperature %d\n", sc->temp));
3170
3171	if ((error = wpi_config(sc)) != 0) {
3172		aprint_error_dev(sc->sc_dev, "could not configure device\n");
3173		goto fail1;
3174	}
3175
3176	ifp->if_flags &= ~IFF_OACTIVE;
3177	ifp->if_flags |= IFF_RUNNING;
3178
3179	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
3180		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
3181			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3182	}
3183	else
3184		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
3185
3186	return 0;
3187
3188fail1:	wpi_stop(ifp, 1);
3189	return error;
3190}
3191
3192
3193static void
3194wpi_stop(struct ifnet *ifp, int disable)
3195{
3196	struct wpi_softc *sc = ifp->if_softc;
3197	struct ieee80211com *ic = &sc->sc_ic;
3198	uint32_t tmp;
3199	int ac;
3200
3201	ifp->if_timer = sc->sc_tx_timer = 0;
3202	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3203
3204	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
3205
3206	/* disable interrupts */
3207	WPI_WRITE(sc, WPI_MASK, 0);
3208	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3209	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3210	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3211
3212	wpi_mem_lock(sc);
3213	wpi_mem_write(sc, WPI_MEM_MODE, 0);
3214	wpi_mem_unlock(sc);
3215
3216	/* reset all Tx rings */
3217	for (ac = 0; ac < 4; ac++)
3218		wpi_reset_tx_ring(sc, &sc->txq[ac]);
3219	wpi_reset_tx_ring(sc, &sc->cmdq);
3220
3221	/* reset Rx ring */
3222	wpi_reset_rx_ring(sc, &sc->rxq);
3223
3224	wpi_mem_lock(sc);
3225	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3226	wpi_mem_unlock(sc);
3227
3228	DELAY(5);
3229
3230	wpi_stop_master(sc);
3231
3232	tmp = WPI_READ(sc, WPI_RESET);
3233	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3234}
3235
3236static bool
3237wpi_resume(device_t dv, const pmf_qual_t *qual)
3238{
3239	struct wpi_softc *sc = device_private(dv);
3240
3241	(void)wpi_reset(sc);
3242
3243	return true;
3244}
3245
3246/*
3247 * Return whether or not the radio is enabled in hardware
3248 * (i.e. the rfkill switch is "off").
3249 */
3250static int
3251wpi_getrfkill(struct wpi_softc *sc)
3252{
3253	uint32_t tmp;
3254
3255	wpi_mem_lock(sc);
3256	tmp = wpi_mem_read(sc, WPI_MEM_RFKILL);
3257	wpi_mem_unlock(sc);
3258
3259	return !(tmp & 0x01);
3260}
3261
3262static int
3263wpi_sysctl_radio(SYSCTLFN_ARGS)
3264{
3265	struct sysctlnode node;
3266	struct wpi_softc *sc;
3267	int val, error;
3268
3269	node = *rnode;
3270	sc = (struct wpi_softc *)node.sysctl_data;
3271
3272	val = !wpi_getrfkill(sc);
3273
3274	node.sysctl_data = &val;
3275	error = sysctl_lookup(SYSCTLFN_CALL(&node));
3276
3277	if (error || newp == NULL)
3278		return error;
3279
3280	return 0;
3281}
3282
3283static void
3284wpi_sysctlattach(struct wpi_softc *sc)
3285{
3286	int rc;
3287	const struct sysctlnode *rnode;
3288	const struct sysctlnode *cnode;
3289
3290	struct sysctllog **clog = &sc->sc_sysctllog;
3291
3292	if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
3293	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
3294	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0)
3295		goto err;
3296
3297	if ((rc = sysctl_createv(clog, 0, &rnode, &rnode,
3298	    CTLFLAG_PERMANENT, CTLTYPE_NODE, device_xname(sc->sc_dev),
3299	    SYSCTL_DESCR("wpi controls and statistics"),
3300	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL)) != 0)
3301		goto err;
3302
3303	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
3304	    CTLFLAG_PERMANENT, CTLTYPE_INT, "radio",
3305	    SYSCTL_DESCR("radio transmitter switch state (0=off, 1=on)"),
3306	    wpi_sysctl_radio, 0, sc, 0, CTL_CREATE, CTL_EOL)) != 0)
3307		goto err;
3308
3309#ifdef WPI_DEBUG
3310	/* control debugging printfs */
3311	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
3312	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
3313	    "debug", SYSCTL_DESCR("Enable debugging output"),
3314	    NULL, 0, &wpi_debug, 0, CTL_CREATE, CTL_EOL)) != 0)
3315		goto err;
3316#endif
3317
3318	return;
3319err:
3320	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
3321}
3322