1/*	$NetBSD$	*/
2/*	$OpenBSD: if_bnx.c,v 1.85 2009/11/09 14:32:41 dlg Exp $ */
3
4/*-
5 * Copyright (c) 2006 Broadcom Corporation
6 *	David Christensen <davidch@broadcom.com>.  All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of Broadcom Corporation nor the name of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written consent.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
22 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31 * THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34#include <sys/cdefs.h>
35#if 0
36__FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $");
37#endif
38__KERNEL_RCSID(0, "$NetBSD$");
39
40/*
41 * The following controllers are supported by this driver:
42 *   BCM5706C A2, A3
43 *   BCM5706S A2, A3
44 *   BCM5708C B1, B2
45 *   BCM5708S B1, B2
46 *   BCM5709C A1, C0
47 *   BCM5709S A1, C0
48 *   BCM5716  C0
49 *
50 * The following controllers are not supported by this driver:
51 *
52 *   BCM5706C A0, A1
53 *   BCM5706S A0, A1
54 *   BCM5708C A0, B0
55 *   BCM5708S A0, B0
56 *   BCM5709C A0  B0, B1, B2 (pre-production)
57 *   BCM5709S A0, B0, B1, B2 (pre-production)
58 */
59
60#include <sys/callout.h>
61#include <sys/mutex.h>
62
63#include <dev/pci/if_bnxreg.h>
64#include <dev/pci/if_bnxvar.h>
65
66#include <dev/microcode/bnx/bnxfw.h>
67
68/****************************************************************************/
69/* BNX Driver Version                                                       */
70/****************************************************************************/
71#define BNX_DRIVER_VERSION	"v0.9.6"
72
73/****************************************************************************/
74/* BNX Debug Options                                                        */
75/****************************************************************************/
76#ifdef BNX_DEBUG
77	u_int32_t bnx_debug = /*BNX_WARN*/ BNX_VERBOSE_SEND;
78
79	/*          0 = Never              */
80	/*          1 = 1 in 2,147,483,648 */
81	/*        256 = 1 in     8,388,608 */
82	/*       2048 = 1 in     1,048,576 */
83	/*      65536 = 1 in        32,768 */
84	/*    1048576 = 1 in         2,048 */
85	/*  268435456 =	1 in             8 */
86	/*  536870912 = 1 in             4 */
87	/* 1073741824 = 1 in             2 */
88
89	/* Controls how often the l2_fhdr frame error check will fail. */
90	int bnx_debug_l2fhdr_status_check = 0;
91
92	/* Controls how often the unexpected attention check will fail. */
93	int bnx_debug_unexpected_attention = 0;
94
95	/* Controls how often to simulate an mbuf allocation failure. */
96	int bnx_debug_mbuf_allocation_failure = 0;
97
98	/* Controls how often to simulate a DMA mapping failure. */
99	int bnx_debug_dma_map_addr_failure = 0;
100
101	/* Controls how often to simulate a bootcode failure. */
102	int bnx_debug_bootcode_running_failure = 0;
103#endif
104
105/****************************************************************************/
106/* PCI Device ID Table                                                      */
107/*                                                                          */
108/* Used by bnx_probe() to identify the devices supported by this driver.    */
109/****************************************************************************/
110static const struct bnx_product {
111	pci_vendor_id_t		bp_vendor;
112	pci_product_id_t	bp_product;
113	pci_vendor_id_t		bp_subvendor;
114	pci_product_id_t	bp_subproduct;
115	const char		*bp_name;
116} bnx_devices[] = {
117#ifdef PCI_SUBPRODUCT_HP_NC370T
118	{
119	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
120	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370T,
121	  "HP NC370T Multifunction Gigabit Server Adapter"
122	},
123#endif
124#ifdef PCI_SUBPRODUCT_HP_NC370i
125	{
126	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
127	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370i,
128	  "HP NC370i Multifunction Gigabit Server Adapter"
129	},
130#endif
131	{
132	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
133	  0, 0,
134	  "Broadcom NetXtreme II BCM5706 1000Base-T"
135	},
136#ifdef PCI_SUBPRODUCT_HP_NC370F
137	{
138	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
139	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370F,
140	  "HP NC370F Multifunction Gigabit Server Adapter"
141	},
142#endif
143	{
144	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
145	  0, 0,
146	  "Broadcom NetXtreme II BCM5706 1000Base-SX"
147	},
148	{
149	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708,
150	  0, 0,
151	  "Broadcom NetXtreme II BCM5708 1000Base-T"
152	},
153	{
154	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S,
155	  0, 0,
156	  "Broadcom NetXtreme II BCM5708 1000Base-SX"
157	},
158	{
159	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709,
160	  0, 0,
161	  "Broadcom NetXtreme II BCM5709 1000Base-T"
162	},
163	{
164	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709S,
165	  0, 0,
166	  "Broadcom NetXtreme II BCM5709 1000Base-SX"
167	},
168	{
169	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716,
170	  0, 0,
171	  "Broadcom NetXtreme II BCM5716 1000Base-T"
172	},
173	{
174	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716S,
175	  0, 0,
176	  "Broadcom NetXtreme II BCM5716 1000Base-SX"
177	},
178};
179
180/****************************************************************************/
181/* Supported Flash NVRAM device data.                                       */
182/****************************************************************************/
183static struct flash_spec flash_table[] =
184{
185#define BUFFERED_FLAGS		(BNX_NV_BUFFERED | BNX_NV_TRANSLATE)
186#define NONBUFFERED_FLAGS	(BNX_NV_WREN)
187	/* Slow EEPROM */
188	{0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
189	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
190	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
191	 "EEPROM - slow"},
192	/* Expansion entry 0001 */
193	{0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
194	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
195	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
196	 "Entry 0001"},
197	/* Saifun SA25F010 (non-buffered flash) */
198	/* strap, cfg1, & write1 need updates */
199	{0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
200	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
201	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
202	 "Non-buffered flash (128kB)"},
203	/* Saifun SA25F020 (non-buffered flash) */
204	/* strap, cfg1, & write1 need updates */
205	{0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
206	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
207	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
208	 "Non-buffered flash (256kB)"},
209	/* Expansion entry 0100 */
210	{0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
211	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
212	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
213	 "Entry 0100"},
214	/* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
215	{0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
216	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
217	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
218	 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
219	/* Entry 0110: ST M45PE20 (non-buffered flash)*/
220	{0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
221	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
222	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
223	 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
224	/* Saifun SA25F005 (non-buffered flash) */
225	/* strap, cfg1, & write1 need updates */
226	{0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
227	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
228	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
229	 "Non-buffered flash (64kB)"},
230	/* Fast EEPROM */
231	{0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
232	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
233	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
234	 "EEPROM - fast"},
235	/* Expansion entry 1001 */
236	{0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
237	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
238	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
239	 "Entry 1001"},
240	/* Expansion entry 1010 */
241	{0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
242	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
243	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
244	 "Entry 1010"},
245	/* ATMEL AT45DB011B (buffered flash) */
246	{0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
247	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
248	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
249	 "Buffered flash (128kB)"},
250	/* Expansion entry 1100 */
251	{0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
252	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
253	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
254	 "Entry 1100"},
255	/* Expansion entry 1101 */
256	{0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
257	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
258	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
259	 "Entry 1101"},
260	/* Ateml Expansion entry 1110 */
261	{0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
262	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
263	 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
264	 "Entry 1110 (Atmel)"},
265	/* ATMEL AT45DB021B (buffered flash) */
266	{0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
267	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
268	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
269	 "Buffered flash (256kB)"},
270};
271
272/*
273 * The BCM5709 controllers transparently handle the
274 * differences between Atmel 264 byte pages and all
275 * flash devices which use 256 byte pages, so no
276 * logical-to-physical mapping is required in the
277 * driver.
278 */
279static struct flash_spec flash_5709 = {
280	.flags		= BNX_NV_BUFFERED,
281	.page_bits	= BCM5709_FLASH_PAGE_BITS,
282	.page_size	= BCM5709_FLASH_PAGE_SIZE,
283	.addr_mask	= BCM5709_FLASH_BYTE_ADDR_MASK,
284	.total_size	= BUFFERED_FLASH_TOTAL_SIZE * 2,
285	.name		= "5709 buffered flash (256kB)",
286};
287
288/****************************************************************************/
289/* OpenBSD device entry points.                                             */
290/****************************************************************************/
291static int	bnx_probe(device_t, cfdata_t, void *);
292void	bnx_attach(device_t, device_t, void *);
293int	bnx_detach(device_t, int);
294
295/****************************************************************************/
296/* BNX Debug Data Structure Dump Routines                                   */
297/****************************************************************************/
298#ifdef BNX_DEBUG
299void	bnx_dump_mbuf(struct bnx_softc *, struct mbuf *);
300void	bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int);
301void	bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int);
302void	bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *);
303void	bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *);
304void	bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *);
305void	bnx_dump_tx_chain(struct bnx_softc *, int, int);
306void	bnx_dump_rx_chain(struct bnx_softc *, int, int);
307void	bnx_dump_status_block(struct bnx_softc *);
308void	bnx_dump_stats_block(struct bnx_softc *);
309void	bnx_dump_driver_state(struct bnx_softc *);
310void	bnx_dump_hw_state(struct bnx_softc *);
311void	bnx_breakpoint(struct bnx_softc *);
312#endif
313
314/****************************************************************************/
315/* BNX Register/Memory Access Routines                                      */
316/****************************************************************************/
317u_int32_t	bnx_reg_rd_ind(struct bnx_softc *, u_int32_t);
318void	bnx_reg_wr_ind(struct bnx_softc *, u_int32_t, u_int32_t);
319void	bnx_ctx_wr(struct bnx_softc *, u_int32_t, u_int32_t, u_int32_t);
320int	bnx_miibus_read_reg(device_t, int, int);
321void	bnx_miibus_write_reg(device_t, int, int, int);
322void	bnx_miibus_statchg(device_t);
323
324/****************************************************************************/
325/* BNX NVRAM Access Routines                                                */
326/****************************************************************************/
327int	bnx_acquire_nvram_lock(struct bnx_softc *);
328int	bnx_release_nvram_lock(struct bnx_softc *);
329void	bnx_enable_nvram_access(struct bnx_softc *);
330void	bnx_disable_nvram_access(struct bnx_softc *);
331int	bnx_nvram_read_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
332	    u_int32_t);
333int	bnx_init_nvram(struct bnx_softc *);
334int	bnx_nvram_read(struct bnx_softc *, u_int32_t, u_int8_t *, int);
335int	bnx_nvram_test(struct bnx_softc *);
336#ifdef BNX_NVRAM_WRITE_SUPPORT
337int	bnx_enable_nvram_write(struct bnx_softc *);
338void	bnx_disable_nvram_write(struct bnx_softc *);
339int	bnx_nvram_erase_page(struct bnx_softc *, u_int32_t);
340int	bnx_nvram_write_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
341	    u_int32_t);
342int	bnx_nvram_write(struct bnx_softc *, u_int32_t, u_int8_t *, int);
343#endif
344
345/****************************************************************************/
346/*                                                                          */
347/****************************************************************************/
348void	bnx_get_media(struct bnx_softc *);
349void	bnx_init_media(struct bnx_softc *);
350int	bnx_dma_alloc(struct bnx_softc *);
351void	bnx_dma_free(struct bnx_softc *);
352void	bnx_release_resources(struct bnx_softc *);
353
354/****************************************************************************/
355/* BNX Firmware Synchronization and Load                                    */
356/****************************************************************************/
357int	bnx_fw_sync(struct bnx_softc *, u_int32_t);
358void	bnx_load_rv2p_fw(struct bnx_softc *, u_int32_t *, u_int32_t,
359	    u_int32_t);
360void	bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *,
361	    struct fw_info *);
362void	bnx_init_cpus(struct bnx_softc *);
363
364void	bnx_stop(struct ifnet *, int);
365int	bnx_reset(struct bnx_softc *, u_int32_t);
366int	bnx_chipinit(struct bnx_softc *);
367int	bnx_blockinit(struct bnx_softc *);
368static int	bnx_add_buf(struct bnx_softc *, struct mbuf *, u_int16_t *,
369	    u_int16_t *, u_int32_t *);
370int	bnx_get_buf(struct bnx_softc *, u_int16_t *, u_int16_t *, u_int32_t *);
371
372int	bnx_init_tx_chain(struct bnx_softc *);
373void	bnx_init_tx_context(struct bnx_softc *);
374int	bnx_init_rx_chain(struct bnx_softc *);
375void	bnx_init_rx_context(struct bnx_softc *);
376void	bnx_free_rx_chain(struct bnx_softc *);
377void	bnx_free_tx_chain(struct bnx_softc *);
378
379int	bnx_tx_encap(struct bnx_softc *, struct mbuf *);
380void	bnx_start(struct ifnet *);
381int	bnx_ioctl(struct ifnet *, u_long, void *);
382void	bnx_watchdog(struct ifnet *);
383int	bnx_init(struct ifnet *);
384
385void	bnx_init_context(struct bnx_softc *);
386void	bnx_get_mac_addr(struct bnx_softc *);
387void	bnx_set_mac_addr(struct bnx_softc *);
388void	bnx_phy_intr(struct bnx_softc *);
389void	bnx_rx_intr(struct bnx_softc *);
390void	bnx_tx_intr(struct bnx_softc *);
391void	bnx_disable_intr(struct bnx_softc *);
392void	bnx_enable_intr(struct bnx_softc *);
393
394int	bnx_intr(void *);
395void	bnx_iff(struct bnx_softc *);
396void	bnx_stats_update(struct bnx_softc *);
397void	bnx_tick(void *);
398
399struct pool *bnx_tx_pool = NULL;
400void	bnx_alloc_pkts(struct work *, void *);
401
402/****************************************************************************/
403/* OpenBSD device dispatch table.                                           */
404/****************************************************************************/
405CFATTACH_DECL3_NEW(bnx, sizeof(struct bnx_softc),
406    bnx_probe, bnx_attach, bnx_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
407
408/****************************************************************************/
409/* Device probe function.                                                   */
410/*                                                                          */
411/* Compares the device to the driver's list of supported devices and        */
412/* reports back to the OS whether this is the right driver for the device.  */
413/*                                                                          */
414/* Returns:                                                                 */
415/*   BUS_PROBE_DEFAULT on success, positive value on failure.               */
416/****************************************************************************/
417static const struct bnx_product *
418bnx_lookup(const struct pci_attach_args *pa)
419{
420	int i;
421	pcireg_t subid;
422
423	for (i = 0; i < __arraycount(bnx_devices); i++) {
424		if (PCI_VENDOR(pa->pa_id) != bnx_devices[i].bp_vendor ||
425		    PCI_PRODUCT(pa->pa_id) != bnx_devices[i].bp_product)
426			continue;
427		if (!bnx_devices[i].bp_subvendor)
428			return &bnx_devices[i];
429		subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
430		if (PCI_VENDOR(subid) == bnx_devices[i].bp_subvendor &&
431		    PCI_PRODUCT(subid) == bnx_devices[i].bp_subproduct)
432			return &bnx_devices[i];
433	}
434
435	return NULL;
436}
437static int
438bnx_probe(device_t parent, cfdata_t match, void *aux)
439{
440	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
441
442	if (bnx_lookup(pa) != NULL)
443		return (1);
444
445	return (0);
446}
447
448/****************************************************************************/
449/* Device attach function.                                                  */
450/*                                                                          */
451/* Allocates device resources, performs secondary chip identification,      */
452/* resets and initializes the hardware, and initializes driver instance     */
453/* variables.                                                               */
454/*                                                                          */
455/* Returns:                                                                 */
456/*   0 on success, positive value on failure.                               */
457/****************************************************************************/
458void
459bnx_attach(device_t parent, device_t self, void *aux)
460{
461	const struct bnx_product *bp;
462	struct bnx_softc	*sc = device_private(self);
463	prop_dictionary_t	dict;
464	struct pci_attach_args	*pa = aux;
465	pci_chipset_tag_t	pc = pa->pa_pc;
466	pci_intr_handle_t	ih;
467	const char 		*intrstr = NULL;
468	u_int32_t		command;
469	struct ifnet		*ifp;
470	u_int32_t		val;
471	int			mii_flags = MIIF_FORCEANEG;
472	pcireg_t		memtype;
473
474	if (bnx_tx_pool == NULL) {
475		bnx_tx_pool = malloc(sizeof(*bnx_tx_pool), M_DEVBUF, M_NOWAIT);
476		if (bnx_tx_pool != NULL) {
477			pool_init(bnx_tx_pool, sizeof(struct bnx_pkt),
478			    0, 0, 0, "bnxpkts", NULL, IPL_NET);
479		} else {
480			aprint_error(": can't alloc bnx_tx_pool\n");
481			return;
482		}
483	}
484
485	bp = bnx_lookup(pa);
486	if (bp == NULL)
487		panic("unknown device");
488
489	sc->bnx_dev = self;
490
491	aprint_naive("\n");
492	aprint_normal(": %s\n", bp->bp_name);
493
494	sc->bnx_pa = *pa;
495
496	/*
497	 * Map control/status registers.
498	*/
499	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
500	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
501	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
502	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
503
504	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
505		aprint_error_dev(sc->bnx_dev,
506		    "failed to enable memory mapping!\n");
507		return;
508	}
509
510	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0);
511	if (pci_mapreg_map(pa, BNX_PCI_BAR0, memtype, 0, &sc->bnx_btag,
512	    &sc->bnx_bhandle, NULL, &sc->bnx_size)) {
513		aprint_error_dev(sc->bnx_dev, "can't find mem space\n");
514		return;
515	}
516
517	if (pci_intr_map(pa, &ih)) {
518		aprint_error_dev(sc->bnx_dev, "couldn't map interrupt\n");
519		goto bnx_attach_fail;
520	}
521
522	intrstr = pci_intr_string(pc, ih);
523
524	/*
525	 * Configure byte swap and enable indirect register access.
526	 * Rely on CPU to do target byte swapping on big endian systems.
527	 * Access to registers outside of PCI configurtion space are not
528	 * valid until this is done.
529	 */
530	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
531	    BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
532	    BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
533
534	/* Save ASIC revsion info. */
535	sc->bnx_chipid =  REG_RD(sc, BNX_MISC_ID);
536
537	/*
538	 * Find the base address for shared memory access.
539	 * Newer versions of bootcode use a signature and offset
540	 * while older versions use a fixed address.
541	 */
542	val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE);
543	if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG)
544		sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0 +
545		    (sc->bnx_pa.pa_function << 2));
546	else
547		sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE;
548
549	DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base);
550
551	/* Set initial device and PHY flags */
552	sc->bnx_flags = 0;
553	sc->bnx_phy_flags = 0;
554
555	/* Get PCI bus information (speed and type). */
556	val = REG_RD(sc, BNX_PCICFG_MISC_STATUS);
557	if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) {
558		u_int32_t clkreg;
559
560		sc->bnx_flags |= BNX_PCIX_FLAG;
561
562		clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS);
563
564		clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
565		switch (clkreg) {
566		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
567			sc->bus_speed_mhz = 133;
568			break;
569
570		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
571			sc->bus_speed_mhz = 100;
572			break;
573
574		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
575		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
576			sc->bus_speed_mhz = 66;
577			break;
578
579		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
580		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
581			sc->bus_speed_mhz = 50;
582			break;
583
584		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
585		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
586		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
587			sc->bus_speed_mhz = 33;
588			break;
589		}
590	} else if (val & BNX_PCICFG_MISC_STATUS_M66EN)
591			sc->bus_speed_mhz = 66;
592		else
593			sc->bus_speed_mhz = 33;
594
595	if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET)
596		sc->bnx_flags |= BNX_PCI_32BIT_FLAG;
597
598	/* Reset the controller. */
599	if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET))
600		goto bnx_attach_fail;
601
602	/* Initialize the controller. */
603	if (bnx_chipinit(sc)) {
604		aprint_error_dev(sc->bnx_dev,
605		    "Controller initialization failed!\n");
606		goto bnx_attach_fail;
607	}
608
609	/* Perform NVRAM test. */
610	if (bnx_nvram_test(sc)) {
611		aprint_error_dev(sc->bnx_dev, "NVRAM test failed!\n");
612		goto bnx_attach_fail;
613	}
614
615	/* Fetch the permanent Ethernet MAC address. */
616	bnx_get_mac_addr(sc);
617	aprint_normal_dev(sc->bnx_dev, "Ethernet address %s\n",
618	    ether_sprintf(sc->eaddr));
619
620	/*
621	 * Trip points control how many BDs
622	 * should be ready before generating an
623	 * interrupt while ticks control how long
624	 * a BD can sit in the chain before
625	 * generating an interrupt.  Set the default
626	 * values for the RX and TX rings.
627	 */
628
629#ifdef BNX_DEBUG
630	/* Force more frequent interrupts. */
631	sc->bnx_tx_quick_cons_trip_int = 1;
632	sc->bnx_tx_quick_cons_trip     = 1;
633	sc->bnx_tx_ticks_int           = 0;
634	sc->bnx_tx_ticks               = 0;
635
636	sc->bnx_rx_quick_cons_trip_int = 1;
637	sc->bnx_rx_quick_cons_trip     = 1;
638	sc->bnx_rx_ticks_int           = 0;
639	sc->bnx_rx_ticks               = 0;
640#else
641	sc->bnx_tx_quick_cons_trip_int = 20;
642	sc->bnx_tx_quick_cons_trip     = 20;
643	sc->bnx_tx_ticks_int           = 80;
644	sc->bnx_tx_ticks               = 80;
645
646	sc->bnx_rx_quick_cons_trip_int = 6;
647	sc->bnx_rx_quick_cons_trip     = 6;
648	sc->bnx_rx_ticks_int           = 18;
649	sc->bnx_rx_ticks               = 18;
650#endif
651
652	/* Update statistics once every second. */
653	sc->bnx_stats_ticks = 1000000 & 0xffff00;
654
655	/* Find the media type for the adapter. */
656	bnx_get_media(sc);
657
658	/*
659	 * Store config data needed by the PHY driver for
660	 * backplane applications
661	 */
662	sc->bnx_shared_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
663	    BNX_SHARED_HW_CFG_CONFIG);
664	sc->bnx_port_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
665	    BNX_PORT_HW_CFG_CONFIG);
666
667	/* Allocate DMA memory resources. */
668	sc->bnx_dmatag = pa->pa_dmat;
669	if (bnx_dma_alloc(sc)) {
670		aprint_error_dev(sc->bnx_dev,
671		    "DMA resource allocation failed!\n");
672		goto bnx_attach_fail;
673	}
674
675	/* Initialize the ifnet interface. */
676	ifp = &sc->bnx_ec.ec_if;
677	ifp->if_softc = sc;
678	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
679	ifp->if_ioctl = bnx_ioctl;
680	ifp->if_stop = bnx_stop;
681	ifp->if_start = bnx_start;
682	ifp->if_init = bnx_init;
683	ifp->if_timer = 0;
684	ifp->if_watchdog = bnx_watchdog;
685	IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD - 1);
686	IFQ_SET_READY(&ifp->if_snd);
687	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
688
689	sc->bnx_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU |
690	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
691
692	ifp->if_capabilities |=
693	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
694	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
695	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
696
697	/* Hookup IRQ last. */
698	sc->bnx_intrhand = pci_intr_establish(pc, ih, IPL_NET, bnx_intr, sc);
699	if (sc->bnx_intrhand == NULL) {
700		aprint_error_dev(self, "couldn't establish interrupt");
701		if (intrstr != NULL)
702			aprint_error(" at %s", intrstr);
703		aprint_error("\n");
704		goto bnx_attach_fail;
705	}
706	aprint_normal_dev(sc->bnx_dev, "interrupting at %s\n", intrstr);
707
708	/* create workqueue to handle packet allocations */
709	if (workqueue_create(&sc->bnx_wq, device_xname(self),
710	    bnx_alloc_pkts, sc, PRI_NONE, IPL_NET, 0) != 0) {
711		aprint_error_dev(self, "failed to create workqueue\n");
712		goto bnx_attach_fail;
713	}
714
715	sc->bnx_mii.mii_ifp = ifp;
716	sc->bnx_mii.mii_readreg = bnx_miibus_read_reg;
717	sc->bnx_mii.mii_writereg = bnx_miibus_write_reg;
718	sc->bnx_mii.mii_statchg = bnx_miibus_statchg;
719
720	/* Handle any special PHY initialization for SerDes PHYs. */
721	bnx_init_media(sc);
722
723	sc->bnx_ec.ec_mii = &sc->bnx_mii;
724	ifmedia_init(&sc->bnx_mii.mii_media, 0, ether_mediachange,
725	    ether_mediastatus);
726
727	/* set phyflags and chipid before mii_attach() */
728	dict = device_properties(self);
729	prop_dictionary_set_uint32(dict, "phyflags", sc->bnx_phy_flags);
730	prop_dictionary_set_uint32(dict, "chipid", sc->bnx_chipid);
731
732	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG)
733		mii_flags |= MIIF_HAVEFIBER;
734	mii_attach(self, &sc->bnx_mii, 0xffffffff,
735	    MII_PHY_ANY, MII_OFFSET_ANY, mii_flags);
736
737	if (LIST_EMPTY(&sc->bnx_mii.mii_phys)) {
738		aprint_error_dev(self, "no PHY found!\n");
739		ifmedia_add(&sc->bnx_mii.mii_media,
740		    IFM_ETHER|IFM_MANUAL, 0, NULL);
741		ifmedia_set(&sc->bnx_mii.mii_media,
742		    IFM_ETHER|IFM_MANUAL);
743	} else {
744		ifmedia_set(&sc->bnx_mii.mii_media,
745		    IFM_ETHER|IFM_AUTO);
746	}
747
748	/* Attach to the Ethernet interface list. */
749	if_attach(ifp);
750	ether_ifattach(ifp,sc->eaddr);
751
752	callout_init(&sc->bnx_timeout, 0);
753
754	if (pmf_device_register(self, NULL, NULL))
755		pmf_class_network_register(self, ifp);
756	else
757		aprint_error_dev(self, "couldn't establish power handler\n");
758
759	/* Print some important debugging info. */
760	DBRUN(BNX_INFO, bnx_dump_driver_state(sc));
761
762	goto bnx_attach_exit;
763
764bnx_attach_fail:
765	bnx_release_resources(sc);
766
767bnx_attach_exit:
768	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
769}
770
771/****************************************************************************/
772/* Device detach function.                                                  */
773/*                                                                          */
774/* Stops the controller, resets the controller, and releases resources.     */
775/*                                                                          */
776/* Returns:                                                                 */
777/*   0 on success, positive value on failure.                               */
778/****************************************************************************/
779int
780bnx_detach(device_t dev, int flags)
781{
782	int s;
783	struct bnx_softc *sc;
784	struct ifnet *ifp;
785
786	sc = device_private(dev);
787	ifp = &sc->bnx_ec.ec_if;
788
789	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
790
791	/* Stop and reset the controller. */
792	s = splnet();
793	if (ifp->if_flags & IFF_RUNNING)
794		bnx_stop(ifp, 1);
795	else {
796		/* Disable the transmit/receive blocks. */
797		REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
798		REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
799		DELAY(20);
800		bnx_disable_intr(sc);
801		bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
802	}
803
804	splx(s);
805
806	pmf_device_deregister(dev);
807	callout_destroy(&sc->bnx_timeout);
808	ether_ifdetach(ifp);
809	workqueue_destroy(sc->bnx_wq);
810
811	/* Delete all remaining media. */
812	ifmedia_delete_instance(&sc->bnx_mii.mii_media, IFM_INST_ANY);
813
814	if_detach(ifp);
815	mii_detach(&sc->bnx_mii, MII_PHY_ANY, MII_OFFSET_ANY);
816
817	/* Release all remaining resources. */
818	bnx_release_resources(sc);
819
820	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
821
822	return(0);
823}
824
825/****************************************************************************/
826/* Indirect register read.                                                  */
827/*                                                                          */
828/* Reads NetXtreme II registers using an index/data register pair in PCI    */
829/* configuration space.  Using this mechanism avoids issues with posted     */
830/* reads but is much slower than memory-mapped I/O.                         */
831/*                                                                          */
832/* Returns:                                                                 */
833/*   The value of the register.                                             */
834/****************************************************************************/
835u_int32_t
836bnx_reg_rd_ind(struct bnx_softc *sc, u_int32_t offset)
837{
838	struct pci_attach_args	*pa = &(sc->bnx_pa);
839
840	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
841	    offset);
842#ifdef BNX_DEBUG
843	{
844		u_int32_t val;
845		val = pci_conf_read(pa->pa_pc, pa->pa_tag,
846		    BNX_PCICFG_REG_WINDOW);
847		DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, "
848		    "val = 0x%08X\n", __func__, offset, val);
849		return (val);
850	}
851#else
852	return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW);
853#endif
854}
855
856/****************************************************************************/
857/* Indirect register write.                                                 */
858/*                                                                          */
859/* Writes NetXtreme II registers using an index/data register pair in PCI   */
860/* configuration space.  Using this mechanism avoids issues with posted     */
861/* writes but is muchh slower than memory-mapped I/O.                       */
862/*                                                                          */
863/* Returns:                                                                 */
864/*   Nothing.                                                               */
865/****************************************************************************/
866void
867bnx_reg_wr_ind(struct bnx_softc *sc, u_int32_t offset, u_int32_t val)
868{
869	struct pci_attach_args  *pa = &(sc->bnx_pa);
870
871	DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
872		__func__, offset, val);
873
874	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
875	    offset);
876	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val);
877}
878
879/****************************************************************************/
880/* Context memory write.                                                    */
881/*                                                                          */
882/* The NetXtreme II controller uses context memory to track connection      */
883/* information for L2 and higher network protocols.                         */
884/*                                                                          */
885/* Returns:                                                                 */
886/*   Nothing.                                                               */
887/****************************************************************************/
888void
889bnx_ctx_wr(struct bnx_softc *sc, u_int32_t cid_addr, u_int32_t ctx_offset,
890    u_int32_t ctx_val)
891{
892	u_int32_t idx, offset = ctx_offset + cid_addr;
893	u_int32_t val, retry_cnt = 5;
894
895	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
896		REG_WR(sc, BNX_CTX_CTX_DATA, ctx_val);
897		REG_WR(sc, BNX_CTX_CTX_CTRL,
898		    (offset | BNX_CTX_CTX_CTRL_WRITE_REQ));
899
900		for (idx = 0; idx < retry_cnt; idx++) {
901			val = REG_RD(sc, BNX_CTX_CTX_CTRL);
902			if ((val & BNX_CTX_CTX_CTRL_WRITE_REQ) == 0)
903				break;
904			DELAY(5);
905		}
906
907#if 0
908		if (val & BNX_CTX_CTX_CTRL_WRITE_REQ)
909			BNX_PRINTF("%s(%d); Unable to write CTX memory: "
910				"cid_addr = 0x%08X, offset = 0x%08X!\n",
911				__FILE__, __LINE__, cid_addr, ctx_offset);
912#endif
913
914	} else {
915		REG_WR(sc, BNX_CTX_DATA_ADR, offset);
916		REG_WR(sc, BNX_CTX_DATA, ctx_val);
917	}
918}
919
920/****************************************************************************/
921/* PHY register read.                                                       */
922/*                                                                          */
923/* Implements register reads on the MII bus.                                */
924/*                                                                          */
925/* Returns:                                                                 */
926/*   The value of the register.                                             */
927/****************************************************************************/
928int
929bnx_miibus_read_reg(device_t dev, int phy, int reg)
930{
931	struct bnx_softc	*sc = device_private(dev);
932	u_int32_t		val;
933	int			i;
934
935	/* Make sure we are accessing the correct PHY address. */
936	if (phy != sc->bnx_phy_addr) {
937		DBPRINT(sc, BNX_VERBOSE,
938		    "Invalid PHY address %d for PHY read!\n", phy);
939		return(0);
940	}
941
942	/*
943	 * The BCM5709S PHY is an IEEE Clause 45 PHY
944	 * with special mappings to work with IEEE
945	 * Clause 22 register accesses.
946	 */
947	if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
948		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
949			reg += 0x10;
950	}
951
952	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
953		val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
954		val &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
955
956		REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
957		REG_RD(sc, BNX_EMAC_MDIO_MODE);
958
959		DELAY(40);
960	}
961
962	val = BNX_MIPHY(phy) | BNX_MIREG(reg) |
963	    BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT |
964	    BNX_EMAC_MDIO_COMM_START_BUSY;
965	REG_WR(sc, BNX_EMAC_MDIO_COMM, val);
966
967	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
968		DELAY(10);
969
970		val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
971		if (!(val & BNX_EMAC_MDIO_COMM_START_BUSY)) {
972			DELAY(5);
973
974			val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
975			val &= BNX_EMAC_MDIO_COMM_DATA;
976
977			break;
978		}
979	}
980
981	if (val & BNX_EMAC_MDIO_COMM_START_BUSY) {
982		BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, "
983		    "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
984		val = 0x0;
985	} else
986		val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
987
988	DBPRINT(sc, BNX_EXCESSIVE,
989	    "%s(): phy = %d, reg = 0x%04X, val = 0x%04X\n", __func__, phy,
990	    (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
991
992	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
993		val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
994		val |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
995
996		REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
997		REG_RD(sc, BNX_EMAC_MDIO_MODE);
998
999		DELAY(40);
1000	}
1001
1002	return (val & 0xffff);
1003}
1004
1005/****************************************************************************/
1006/* PHY register write.                                                      */
1007/*                                                                          */
1008/* Implements register writes on the MII bus.                               */
1009/*                                                                          */
1010/* Returns:                                                                 */
1011/*   The value of the register.                                             */
1012/****************************************************************************/
1013void
1014bnx_miibus_write_reg(device_t dev, int phy, int reg, int val)
1015{
1016	struct bnx_softc	*sc = device_private(dev);
1017	u_int32_t		val1;
1018	int			i;
1019
1020	/* Make sure we are accessing the correct PHY address. */
1021	if (phy != sc->bnx_phy_addr) {
1022		DBPRINT(sc, BNX_WARN, "Invalid PHY address %d for PHY write!\n",
1023		    phy);
1024		return;
1025	}
1026
1027	DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, "
1028	    "val = 0x%04X\n", __func__,
1029	    phy, (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
1030
1031	/*
1032	 * The BCM5709S PHY is an IEEE Clause 45 PHY
1033	 * with special mappings to work with IEEE
1034	 * Clause 22 register accesses.
1035	 */
1036	if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1037		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1038			reg += 0x10;
1039	}
1040
1041	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1042		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1043		val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
1044
1045		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
1046		REG_RD(sc, BNX_EMAC_MDIO_MODE);
1047
1048		DELAY(40);
1049	}
1050
1051	val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val |
1052	    BNX_EMAC_MDIO_COMM_COMMAND_WRITE |
1053	    BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT;
1054	REG_WR(sc, BNX_EMAC_MDIO_COMM, val1);
1055
1056	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
1057		DELAY(10);
1058
1059		val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1060		if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) {
1061			DELAY(5);
1062			break;
1063		}
1064	}
1065
1066	if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) {
1067		BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__,
1068		    __LINE__);
1069	}
1070
1071	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1072		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1073		val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
1074
1075		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
1076		REG_RD(sc, BNX_EMAC_MDIO_MODE);
1077
1078		DELAY(40);
1079	}
1080}
1081
1082/****************************************************************************/
1083/* MII bus status change.                                                   */
1084/*                                                                          */
1085/* Called by the MII bus driver when the PHY establishes link to set the    */
1086/* MAC interface registers.                                                 */
1087/*                                                                          */
1088/* Returns:                                                                 */
1089/*   Nothing.                                                               */
1090/****************************************************************************/
1091void
1092bnx_miibus_statchg(device_t dev)
1093{
1094	struct bnx_softc	*sc = device_private(dev);
1095	struct mii_data		*mii = &sc->bnx_mii;
1096	int			val;
1097
1098	val = REG_RD(sc, BNX_EMAC_MODE);
1099	val &= ~(BNX_EMAC_MODE_PORT | BNX_EMAC_MODE_HALF_DUPLEX |
1100	    BNX_EMAC_MODE_MAC_LOOP | BNX_EMAC_MODE_FORCE_LINK |
1101	    BNX_EMAC_MODE_25G);
1102
1103	/* Set MII or GMII interface based on the speed
1104	 * negotiated by the PHY.
1105	 */
1106	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1107	case IFM_10_T:
1108		if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
1109			DBPRINT(sc, BNX_INFO, "Enabling 10Mb interface.\n");
1110			val |= BNX_EMAC_MODE_PORT_MII_10;
1111			break;
1112		}
1113		/* FALLTHROUGH */
1114	case IFM_100_TX:
1115		DBPRINT(sc, BNX_INFO, "Enabling MII interface.\n");
1116		val |= BNX_EMAC_MODE_PORT_MII;
1117		break;
1118	case IFM_2500_SX:
1119		DBPRINT(sc, BNX_INFO, "Enabling 2.5G MAC mode.\n");
1120		val |= BNX_EMAC_MODE_25G;
1121		/* FALLTHROUGH */
1122	case IFM_1000_T:
1123	case IFM_1000_SX:
1124		DBPRINT(sc, BNX_INFO, "Enabling GMII interface.\n");
1125		val |= BNX_EMAC_MODE_PORT_GMII;
1126		break;
1127	default:
1128		val |= BNX_EMAC_MODE_PORT_GMII;
1129		break;
1130	}
1131
1132	/* Set half or full duplex based on the duplicity
1133	 * negotiated by the PHY.
1134	 */
1135	if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
1136		DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n");
1137		val |= BNX_EMAC_MODE_HALF_DUPLEX;
1138	} else {
1139		DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n");
1140	}
1141
1142	REG_WR(sc, BNX_EMAC_MODE, val);
1143}
1144
1145/****************************************************************************/
1146/* Acquire NVRAM lock.                                                      */
1147/*                                                                          */
1148/* Before the NVRAM can be accessed the caller must acquire an NVRAM lock.  */
1149/* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
1150/* for use by the driver.                                                   */
1151/*                                                                          */
1152/* Returns:                                                                 */
1153/*   0 on success, positive value on failure.                               */
1154/****************************************************************************/
1155int
1156bnx_acquire_nvram_lock(struct bnx_softc *sc)
1157{
1158	u_int32_t		val;
1159	int			j;
1160
1161	DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n");
1162
1163	/* Request access to the flash interface. */
1164	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2);
1165	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1166		val = REG_RD(sc, BNX_NVM_SW_ARB);
1167		if (val & BNX_NVM_SW_ARB_ARB_ARB2)
1168			break;
1169
1170		DELAY(5);
1171	}
1172
1173	if (j >= NVRAM_TIMEOUT_COUNT) {
1174		DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n");
1175		return (EBUSY);
1176	}
1177
1178	return (0);
1179}
1180
1181/****************************************************************************/
1182/* Release NVRAM lock.                                                      */
1183/*                                                                          */
1184/* When the caller is finished accessing NVRAM the lock must be released.   */
1185/* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
1186/* for use by the driver.                                                   */
1187/*                                                                          */
1188/* Returns:                                                                 */
1189/*   0 on success, positive value on failure.                               */
1190/****************************************************************************/
1191int
1192bnx_release_nvram_lock(struct bnx_softc *sc)
1193{
1194	int			j;
1195	u_int32_t		val;
1196
1197	DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n");
1198
1199	/* Relinquish nvram interface. */
1200	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2);
1201
1202	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1203		val = REG_RD(sc, BNX_NVM_SW_ARB);
1204		if (!(val & BNX_NVM_SW_ARB_ARB_ARB2))
1205			break;
1206
1207		DELAY(5);
1208	}
1209
1210	if (j >= NVRAM_TIMEOUT_COUNT) {
1211		DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n");
1212		return (EBUSY);
1213	}
1214
1215	return (0);
1216}
1217
1218#ifdef BNX_NVRAM_WRITE_SUPPORT
1219/****************************************************************************/
1220/* Enable NVRAM write access.                                               */
1221/*                                                                          */
1222/* Before writing to NVRAM the caller must enable NVRAM writes.             */
1223/*                                                                          */
1224/* Returns:                                                                 */
1225/*   0 on success, positive value on failure.                               */
1226/****************************************************************************/
1227int
1228bnx_enable_nvram_write(struct bnx_softc *sc)
1229{
1230	u_int32_t		val;
1231
1232	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n");
1233
1234	val = REG_RD(sc, BNX_MISC_CFG);
1235	REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI);
1236
1237	if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1238		int j;
1239
1240		REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1241		REG_WR(sc, BNX_NVM_COMMAND,
1242		    BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT);
1243
1244		for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1245			DELAY(5);
1246
1247			val = REG_RD(sc, BNX_NVM_COMMAND);
1248			if (val & BNX_NVM_COMMAND_DONE)
1249				break;
1250		}
1251
1252		if (j >= NVRAM_TIMEOUT_COUNT) {
1253			DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n");
1254			return (EBUSY);
1255		}
1256	}
1257
1258	return (0);
1259}
1260
1261/****************************************************************************/
1262/* Disable NVRAM write access.                                              */
1263/*                                                                          */
1264/* When the caller is finished writing to NVRAM write access must be        */
1265/* disabled.                                                                */
1266/*                                                                          */
1267/* Returns:                                                                 */
1268/*   Nothing.                                                               */
1269/****************************************************************************/
1270void
1271bnx_disable_nvram_write(struct bnx_softc *sc)
1272{
1273	u_int32_t		val;
1274
1275	DBPRINT(sc, BNX_VERBOSE,  "Disabling NVRAM write.\n");
1276
1277	val = REG_RD(sc, BNX_MISC_CFG);
1278	REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN);
1279}
1280#endif
1281
1282/****************************************************************************/
1283/* Enable NVRAM access.                                                     */
1284/*                                                                          */
1285/* Before accessing NVRAM for read or write operations the caller must      */
1286/* enabled NVRAM access.                                                    */
1287/*                                                                          */
1288/* Returns:                                                                 */
1289/*   Nothing.                                                               */
1290/****************************************************************************/
1291void
1292bnx_enable_nvram_access(struct bnx_softc *sc)
1293{
1294	u_int32_t		val;
1295
1296	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n");
1297
1298	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1299	/* Enable both bits, even on read. */
1300	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1301	    val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN);
1302}
1303
1304/****************************************************************************/
1305/* Disable NVRAM access.                                                    */
1306/*                                                                          */
1307/* When the caller is finished accessing NVRAM access must be disabled.     */
1308/*                                                                          */
1309/* Returns:                                                                 */
1310/*   Nothing.                                                               */
1311/****************************************************************************/
1312void
1313bnx_disable_nvram_access(struct bnx_softc *sc)
1314{
1315	u_int32_t		val;
1316
1317	DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n");
1318
1319	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1320
1321	/* Disable both bits, even after read. */
1322	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1323	    val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN));
1324}
1325
1326#ifdef BNX_NVRAM_WRITE_SUPPORT
1327/****************************************************************************/
1328/* Erase NVRAM page before writing.                                         */
1329/*                                                                          */
1330/* Non-buffered flash parts require that a page be erased before it is      */
1331/* written.                                                                 */
1332/*                                                                          */
1333/* Returns:                                                                 */
1334/*   0 on success, positive value on failure.                               */
1335/****************************************************************************/
1336int
1337bnx_nvram_erase_page(struct bnx_softc *sc, u_int32_t offset)
1338{
1339	u_int32_t		cmd;
1340	int			j;
1341
1342	/* Buffered flash doesn't require an erase. */
1343	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED))
1344		return (0);
1345
1346	DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n");
1347
1348	/* Build an erase command. */
1349	cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR |
1350	    BNX_NVM_COMMAND_DOIT;
1351
1352	/*
1353	 * Clear the DONE bit separately, set the NVRAM adress to erase,
1354	 * and issue the erase command.
1355	 */
1356	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1357	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1358	REG_WR(sc, BNX_NVM_COMMAND, cmd);
1359
1360	/* Wait for completion. */
1361	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1362		u_int32_t val;
1363
1364		DELAY(5);
1365
1366		val = REG_RD(sc, BNX_NVM_COMMAND);
1367		if (val & BNX_NVM_COMMAND_DONE)
1368			break;
1369	}
1370
1371	if (j >= NVRAM_TIMEOUT_COUNT) {
1372		DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n");
1373		return (EBUSY);
1374	}
1375
1376	return (0);
1377}
1378#endif /* BNX_NVRAM_WRITE_SUPPORT */
1379
1380/****************************************************************************/
1381/* Read a dword (32 bits) from NVRAM.                                       */
1382/*                                                                          */
1383/* Read a 32 bit word from NVRAM.  The caller is assumed to have already    */
1384/* obtained the NVRAM lock and enabled the controller for NVRAM access.     */
1385/*                                                                          */
1386/* Returns:                                                                 */
1387/*   0 on success and the 32 bit value read, positive value on failure.     */
1388/****************************************************************************/
1389int
1390bnx_nvram_read_dword(struct bnx_softc *sc, u_int32_t offset,
1391    u_int8_t *ret_val, u_int32_t cmd_flags)
1392{
1393	u_int32_t		cmd;
1394	int			i, rc = 0;
1395
1396	/* Build the command word. */
1397	cmd = BNX_NVM_COMMAND_DOIT | cmd_flags;
1398
1399	/* Calculate the offset for buffered flash if translation is used. */
1400	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
1401		offset = ((offset / sc->bnx_flash_info->page_size) <<
1402		    sc->bnx_flash_info->page_bits) +
1403		    (offset % sc->bnx_flash_info->page_size);
1404	}
1405
1406	/*
1407	 * Clear the DONE bit separately, set the address to read,
1408	 * and issue the read.
1409	 */
1410	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1411	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1412	REG_WR(sc, BNX_NVM_COMMAND, cmd);
1413
1414	/* Wait for completion. */
1415	for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
1416		u_int32_t val;
1417
1418		DELAY(5);
1419
1420		val = REG_RD(sc, BNX_NVM_COMMAND);
1421		if (val & BNX_NVM_COMMAND_DONE) {
1422			val = REG_RD(sc, BNX_NVM_READ);
1423
1424			val = bnx_be32toh(val);
1425			memcpy(ret_val, &val, 4);
1426			break;
1427		}
1428	}
1429
1430	/* Check for errors. */
1431	if (i >= NVRAM_TIMEOUT_COUNT) {
1432		BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at "
1433		    "offset 0x%08X!\n", __FILE__, __LINE__, offset);
1434		rc = EBUSY;
1435	}
1436
1437	return(rc);
1438}
1439
1440#ifdef BNX_NVRAM_WRITE_SUPPORT
1441/****************************************************************************/
1442/* Write a dword (32 bits) to NVRAM.                                        */
1443/*                                                                          */
1444/* Write a 32 bit word to NVRAM.  The caller is assumed to have already     */
1445/* obtained the NVRAM lock, enabled the controller for NVRAM access, and    */
1446/* enabled NVRAM write access.                                              */
1447/*                                                                          */
1448/* Returns:                                                                 */
1449/*   0 on success, positive value on failure.                               */
1450/****************************************************************************/
1451int
1452bnx_nvram_write_dword(struct bnx_softc *sc, u_int32_t offset, u_int8_t *val,
1453    u_int32_t cmd_flags)
1454{
1455	u_int32_t		cmd, val32;
1456	int			j;
1457
1458	/* Build the command word. */
1459	cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags;
1460
1461	/* Calculate the offset for buffered flash if translation is used. */
1462	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
1463		offset = ((offset / sc->bnx_flash_info->page_size) <<
1464		    sc->bnx_flash_info->page_bits) +
1465		    (offset % sc->bnx_flash_info->page_size);
1466	}
1467
1468	/*
1469	 * Clear the DONE bit separately, convert NVRAM data to big-endian,
1470	 * set the NVRAM address to write, and issue the write command
1471	 */
1472	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1473	memcpy(&val32, val, 4);
1474	val32 = htobe32(val32);
1475	REG_WR(sc, BNX_NVM_WRITE, val32);
1476	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1477	REG_WR(sc, BNX_NVM_COMMAND, cmd);
1478
1479	/* Wait for completion. */
1480	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1481		DELAY(5);
1482
1483		if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE)
1484			break;
1485	}
1486	if (j >= NVRAM_TIMEOUT_COUNT) {
1487		BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at "
1488		    "offset 0x%08X\n", __FILE__, __LINE__, offset);
1489		return (EBUSY);
1490	}
1491
1492	return (0);
1493}
1494#endif /* BNX_NVRAM_WRITE_SUPPORT */
1495
1496/****************************************************************************/
1497/* Initialize NVRAM access.                                                 */
1498/*                                                                          */
1499/* Identify the NVRAM device in use and prepare the NVRAM interface to      */
1500/* access that device.                                                      */
1501/*                                                                          */
1502/* Returns:                                                                 */
1503/*   0 on success, positive value on failure.                               */
1504/****************************************************************************/
1505int
1506bnx_init_nvram(struct bnx_softc *sc)
1507{
1508	u_int32_t		val;
1509	int			j, entry_count, rc = 0;
1510	struct flash_spec	*flash;
1511
1512	DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
1513
1514	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
1515		sc->bnx_flash_info = &flash_5709;
1516		goto bnx_init_nvram_get_flash_size;
1517	}
1518
1519	/* Determine the selected interface. */
1520	val = REG_RD(sc, BNX_NVM_CFG1);
1521
1522	entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
1523
1524	/*
1525	 * Flash reconfiguration is required to support additional
1526	 * NVRAM devices not directly supported in hardware.
1527	 * Check if the flash interface was reconfigured
1528	 * by the bootcode.
1529	 */
1530
1531	if (val & 0x40000000) {
1532		/* Flash interface reconfigured by bootcode. */
1533
1534		DBPRINT(sc,BNX_INFO_LOAD,
1535			"bnx_init_nvram(): Flash WAS reconfigured.\n");
1536
1537		for (j = 0, flash = &flash_table[0]; j < entry_count;
1538		     j++, flash++) {
1539			if ((val & FLASH_BACKUP_STRAP_MASK) ==
1540			    (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
1541				sc->bnx_flash_info = flash;
1542				break;
1543			}
1544		}
1545	} else {
1546		/* Flash interface not yet reconfigured. */
1547		u_int32_t mask;
1548
1549		DBPRINT(sc,BNX_INFO_LOAD,
1550			"bnx_init_nvram(): Flash was NOT reconfigured.\n");
1551
1552		if (val & (1 << 23))
1553			mask = FLASH_BACKUP_STRAP_MASK;
1554		else
1555			mask = FLASH_STRAP_MASK;
1556
1557		/* Look for the matching NVRAM device configuration data. */
1558		for (j = 0, flash = &flash_table[0]; j < entry_count;
1559		    j++, flash++) {
1560			/* Check if the dev matches any of the known devices. */
1561			if ((val & mask) == (flash->strapping & mask)) {
1562				/* Found a device match. */
1563				sc->bnx_flash_info = flash;
1564
1565				/* Request access to the flash interface. */
1566				if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1567					return (rc);
1568
1569				/* Reconfigure the flash interface. */
1570				bnx_enable_nvram_access(sc);
1571				REG_WR(sc, BNX_NVM_CFG1, flash->config1);
1572				REG_WR(sc, BNX_NVM_CFG2, flash->config2);
1573				REG_WR(sc, BNX_NVM_CFG3, flash->config3);
1574				REG_WR(sc, BNX_NVM_WRITE1, flash->write1);
1575				bnx_disable_nvram_access(sc);
1576				bnx_release_nvram_lock(sc);
1577
1578				break;
1579			}
1580		}
1581	}
1582
1583	/* Check if a matching device was found. */
1584	if (j == entry_count) {
1585		sc->bnx_flash_info = NULL;
1586		BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n",
1587			__FILE__, __LINE__);
1588		rc = ENODEV;
1589	}
1590
1591bnx_init_nvram_get_flash_size:
1592	/* Write the flash config data to the shared memory interface. */
1593	val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2);
1594	val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK;
1595	if (val)
1596		sc->bnx_flash_size = val;
1597	else
1598		sc->bnx_flash_size = sc->bnx_flash_info->total_size;
1599
1600	DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = "
1601	    "0x%08X\n", sc->bnx_flash_info->total_size);
1602
1603	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
1604
1605	return (rc);
1606}
1607
1608/****************************************************************************/
1609/* Read an arbitrary range of data from NVRAM.                              */
1610/*                                                                          */
1611/* Prepares the NVRAM interface for access and reads the requested data     */
1612/* into the supplied buffer.                                                */
1613/*                                                                          */
1614/* Returns:                                                                 */
1615/*   0 on success and the data read, positive value on failure.             */
1616/****************************************************************************/
1617int
1618bnx_nvram_read(struct bnx_softc *sc, u_int32_t offset, u_int8_t *ret_buf,
1619    int buf_size)
1620{
1621	int			rc = 0;
1622	u_int32_t		cmd_flags, offset32, len32, extra;
1623
1624	if (buf_size == 0)
1625		return (0);
1626
1627	/* Request access to the flash interface. */
1628	if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1629		return (rc);
1630
1631	/* Enable access to flash interface */
1632	bnx_enable_nvram_access(sc);
1633
1634	len32 = buf_size;
1635	offset32 = offset;
1636	extra = 0;
1637
1638	cmd_flags = 0;
1639
1640	if (offset32 & 3) {
1641		u_int8_t buf[4];
1642		u_int32_t pre_len;
1643
1644		offset32 &= ~3;
1645		pre_len = 4 - (offset & 3);
1646
1647		if (pre_len >= len32) {
1648			pre_len = len32;
1649			cmd_flags =
1650			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1651		} else
1652			cmd_flags = BNX_NVM_COMMAND_FIRST;
1653
1654		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1655
1656		if (rc)
1657			return (rc);
1658
1659		memcpy(ret_buf, buf + (offset & 3), pre_len);
1660
1661		offset32 += 4;
1662		ret_buf += pre_len;
1663		len32 -= pre_len;
1664	}
1665
1666	if (len32 & 3) {
1667		extra = 4 - (len32 & 3);
1668		len32 = (len32 + 4) & ~3;
1669	}
1670
1671	if (len32 == 4) {
1672		u_int8_t buf[4];
1673
1674		if (cmd_flags)
1675			cmd_flags = BNX_NVM_COMMAND_LAST;
1676		else
1677			cmd_flags =
1678			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1679
1680		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1681
1682		memcpy(ret_buf, buf, 4 - extra);
1683	} else if (len32 > 0) {
1684		u_int8_t buf[4];
1685
1686		/* Read the first word. */
1687		if (cmd_flags)
1688			cmd_flags = 0;
1689		else
1690			cmd_flags = BNX_NVM_COMMAND_FIRST;
1691
1692		rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
1693
1694		/* Advance to the next dword. */
1695		offset32 += 4;
1696		ret_buf += 4;
1697		len32 -= 4;
1698
1699		while (len32 > 4 && rc == 0) {
1700			rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0);
1701
1702			/* Advance to the next dword. */
1703			offset32 += 4;
1704			ret_buf += 4;
1705			len32 -= 4;
1706		}
1707
1708		if (rc)
1709			return (rc);
1710
1711		cmd_flags = BNX_NVM_COMMAND_LAST;
1712		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1713
1714		memcpy(ret_buf, buf, 4 - extra);
1715	}
1716
1717	/* Disable access to flash interface and release the lock. */
1718	bnx_disable_nvram_access(sc);
1719	bnx_release_nvram_lock(sc);
1720
1721	return (rc);
1722}
1723
1724#ifdef BNX_NVRAM_WRITE_SUPPORT
1725/****************************************************************************/
1726/* Write an arbitrary range of data from NVRAM.                             */
1727/*                                                                          */
1728/* Prepares the NVRAM interface for write access and writes the requested   */
1729/* data from the supplied buffer.  The caller is responsible for            */
1730/* calculating any appropriate CRCs.                                        */
1731/*                                                                          */
1732/* Returns:                                                                 */
1733/*   0 on success, positive value on failure.                               */
1734/****************************************************************************/
1735int
1736bnx_nvram_write(struct bnx_softc *sc, u_int32_t offset, u_int8_t *data_buf,
1737    int buf_size)
1738{
1739	u_int32_t		written, offset32, len32;
1740	u_int8_t		*buf, start[4], end[4];
1741	int			rc = 0;
1742	int			align_start, align_end;
1743
1744	buf = data_buf;
1745	offset32 = offset;
1746	len32 = buf_size;
1747	align_start = align_end = 0;
1748
1749	if ((align_start = (offset32 & 3))) {
1750		offset32 &= ~3;
1751		len32 += align_start;
1752		if ((rc = bnx_nvram_read(sc, offset32, start, 4)))
1753			return (rc);
1754	}
1755
1756	if (len32 & 3) {
1757	       	if ((len32 > 4) || !align_start) {
1758			align_end = 4 - (len32 & 3);
1759			len32 += align_end;
1760			if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4,
1761			    end, 4))) {
1762				return (rc);
1763			}
1764		}
1765	}
1766
1767	if (align_start || align_end) {
1768		buf = malloc(len32, M_DEVBUF, M_NOWAIT);
1769		if (buf == 0)
1770			return (ENOMEM);
1771
1772		if (align_start)
1773			memcpy(buf, start, 4);
1774
1775		if (align_end)
1776			memcpy(buf + len32 - 4, end, 4);
1777
1778		memcpy(buf + align_start, data_buf, buf_size);
1779	}
1780
1781	written = 0;
1782	while ((written < len32) && (rc == 0)) {
1783		u_int32_t page_start, page_end, data_start, data_end;
1784		u_int32_t addr, cmd_flags;
1785		int i;
1786		u_int8_t flash_buffer[264];
1787
1788	    /* Find the page_start addr */
1789		page_start = offset32 + written;
1790		page_start -= (page_start % sc->bnx_flash_info->page_size);
1791		/* Find the page_end addr */
1792		page_end = page_start + sc->bnx_flash_info->page_size;
1793		/* Find the data_start addr */
1794		data_start = (written == 0) ? offset32 : page_start;
1795		/* Find the data_end addr */
1796		data_end = (page_end > offset32 + len32) ?
1797		    (offset32 + len32) : page_end;
1798
1799		/* Request access to the flash interface. */
1800		if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1801			goto nvram_write_end;
1802
1803		/* Enable access to flash interface */
1804		bnx_enable_nvram_access(sc);
1805
1806		cmd_flags = BNX_NVM_COMMAND_FIRST;
1807		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1808			int j;
1809
1810			/* Read the whole page into the buffer
1811			 * (non-buffer flash only) */
1812			for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) {
1813				if (j == (sc->bnx_flash_info->page_size - 4))
1814					cmd_flags |= BNX_NVM_COMMAND_LAST;
1815
1816				rc = bnx_nvram_read_dword(sc,
1817					page_start + j,
1818					&flash_buffer[j],
1819					cmd_flags);
1820
1821				if (rc)
1822					goto nvram_write_end;
1823
1824				cmd_flags = 0;
1825			}
1826		}
1827
1828		/* Enable writes to flash interface (unlock write-protect) */
1829		if ((rc = bnx_enable_nvram_write(sc)) != 0)
1830			goto nvram_write_end;
1831
1832		/* Erase the page */
1833		if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0)
1834			goto nvram_write_end;
1835
1836		/* Re-enable the write again for the actual write */
1837		bnx_enable_nvram_write(sc);
1838
1839		/* Loop to write back the buffer data from page_start to
1840		 * data_start */
1841		i = 0;
1842		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1843			for (addr = page_start; addr < data_start;
1844				addr += 4, i += 4) {
1845
1846				rc = bnx_nvram_write_dword(sc, addr,
1847				    &flash_buffer[i], cmd_flags);
1848
1849				if (rc != 0)
1850					goto nvram_write_end;
1851
1852				cmd_flags = 0;
1853			}
1854		}
1855
1856		/* Loop to write the new data from data_start to data_end */
1857		for (addr = data_start; addr < data_end; addr += 4, i++) {
1858			if ((addr == page_end - 4) ||
1859			    (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)
1860			    && (addr == data_end - 4))) {
1861
1862				cmd_flags |= BNX_NVM_COMMAND_LAST;
1863			}
1864
1865			rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags);
1866
1867			if (rc != 0)
1868				goto nvram_write_end;
1869
1870			cmd_flags = 0;
1871			buf += 4;
1872		}
1873
1874		/* Loop to write back the buffer data from data_end
1875		 * to page_end */
1876		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1877			for (addr = data_end; addr < page_end;
1878			    addr += 4, i += 4) {
1879
1880				if (addr == page_end-4)
1881					cmd_flags = BNX_NVM_COMMAND_LAST;
1882
1883				rc = bnx_nvram_write_dword(sc, addr,
1884				    &flash_buffer[i], cmd_flags);
1885
1886				if (rc != 0)
1887					goto nvram_write_end;
1888
1889				cmd_flags = 0;
1890			}
1891		}
1892
1893		/* Disable writes to flash interface (lock write-protect) */
1894		bnx_disable_nvram_write(sc);
1895
1896		/* Disable access to flash interface */
1897		bnx_disable_nvram_access(sc);
1898		bnx_release_nvram_lock(sc);
1899
1900		/* Increment written */
1901		written += data_end - data_start;
1902	}
1903
1904nvram_write_end:
1905	if (align_start || align_end)
1906		free(buf, M_DEVBUF);
1907
1908	return (rc);
1909}
1910#endif /* BNX_NVRAM_WRITE_SUPPORT */
1911
1912/****************************************************************************/
1913/* Verifies that NVRAM is accessible and contains valid data.               */
1914/*                                                                          */
1915/* Reads the configuration data from NVRAM and verifies that the CRC is     */
1916/* correct.                                                                 */
1917/*                                                                          */
1918/* Returns:                                                                 */
1919/*   0 on success, positive value on failure.                               */
1920/****************************************************************************/
1921int
1922bnx_nvram_test(struct bnx_softc *sc)
1923{
1924	u_int32_t		buf[BNX_NVRAM_SIZE / 4];
1925	u_int8_t		*data = (u_int8_t *) buf;
1926	int			rc = 0;
1927	u_int32_t		magic, csum;
1928
1929	/*
1930	 * Check that the device NVRAM is valid by reading
1931	 * the magic value at offset 0.
1932	 */
1933	if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0)
1934		goto bnx_nvram_test_done;
1935
1936	magic = bnx_be32toh(buf[0]);
1937	if (magic != BNX_NVRAM_MAGIC) {
1938		rc = ENODEV;
1939		BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! "
1940		    "Expected: 0x%08X, Found: 0x%08X\n",
1941		    __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic);
1942		goto bnx_nvram_test_done;
1943	}
1944
1945	/*
1946	 * Verify that the device NVRAM includes valid
1947	 * configuration data.
1948	 */
1949	if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0)
1950		goto bnx_nvram_test_done;
1951
1952	csum = ether_crc32_le(data, 0x100);
1953	if (csum != BNX_CRC32_RESIDUAL) {
1954		rc = ENODEV;
1955		BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information "
1956		    "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
1957		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
1958		goto bnx_nvram_test_done;
1959	}
1960
1961	csum = ether_crc32_le(data + 0x100, 0x100);
1962	if (csum != BNX_CRC32_RESIDUAL) {
1963		BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration "
1964		    "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
1965		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
1966		rc = ENODEV;
1967	}
1968
1969bnx_nvram_test_done:
1970	return (rc);
1971}
1972
1973/****************************************************************************/
1974/* Identifies the current media type of the controller and sets the PHY     */
1975/* address.                                                                 */
1976/*                                                                          */
1977/* Returns:                                                                 */
1978/*   Nothing.                                                               */
1979/****************************************************************************/
1980void
1981bnx_get_media(struct bnx_softc *sc)
1982{
1983	sc->bnx_phy_addr = 1;
1984
1985	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
1986		u_int32_t val = REG_RD(sc, BNX_MISC_DUAL_MEDIA_CTRL);
1987		u_int32_t bond_id = val & BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID;
1988		u_int32_t strap;
1989
1990		/*
1991		 * The BCM5709S is software configurable
1992		 * for Copper or SerDes operation.
1993		 */
1994		if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
1995			DBPRINT(sc, BNX_INFO_LOAD,
1996			    "5709 bonded for copper.\n");
1997			goto bnx_get_media_exit;
1998		} else if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
1999			DBPRINT(sc, BNX_INFO_LOAD,
2000			    "5709 bonded for dual media.\n");
2001			sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2002			goto bnx_get_media_exit;
2003		}
2004
2005		if (val & BNX_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
2006			strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
2007		else {
2008			strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP)
2009			    >> 8;
2010		}
2011
2012		if (sc->bnx_pa.pa_function == 0) {
2013			switch (strap) {
2014			case 0x4:
2015			case 0x5:
2016			case 0x6:
2017				DBPRINT(sc, BNX_INFO_LOAD,
2018					"BCM5709 s/w configured for SerDes.\n");
2019				sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2020				break;
2021			default:
2022				DBPRINT(sc, BNX_INFO_LOAD,
2023					"BCM5709 s/w configured for Copper.\n");
2024			}
2025		} else {
2026			switch (strap) {
2027			case 0x1:
2028			case 0x2:
2029			case 0x4:
2030				DBPRINT(sc, BNX_INFO_LOAD,
2031					"BCM5709 s/w configured for SerDes.\n");
2032				sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2033				break;
2034			default:
2035				DBPRINT(sc, BNX_INFO_LOAD,
2036					"BCM5709 s/w configured for Copper.\n");
2037			}
2038		}
2039
2040	} else if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT)
2041		sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2042
2043	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) {
2044		u_int32_t val;
2045
2046		sc->bnx_flags |= BNX_NO_WOL_FLAG;
2047
2048		if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709)
2049			sc->bnx_phy_flags |= BNX_PHY_IEEE_CLAUSE_45_FLAG;
2050
2051		/*
2052		 * The BCM5708S, BCM5709S, and BCM5716S controllers use a
2053		 * separate PHY for SerDes.
2054		 */
2055		if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
2056			sc->bnx_phy_addr = 2;
2057			val = REG_RD_IND(sc, sc->bnx_shmem_base +
2058				 BNX_SHARED_HW_CFG_CONFIG);
2059			if (val & BNX_SHARED_HW_CFG_PHY_2_5G) {
2060				sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG;
2061				DBPRINT(sc, BNX_INFO_LOAD,
2062				    "Found 2.5Gb capable adapter\n");
2063			}
2064		}
2065	} else if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) ||
2066		   (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708))
2067		sc->bnx_phy_flags |= BNX_PHY_CRC_FIX_FLAG;
2068
2069bnx_get_media_exit:
2070	DBPRINT(sc, (BNX_INFO_LOAD),
2071		"Using PHY address %d.\n", sc->bnx_phy_addr);
2072}
2073
2074/****************************************************************************/
2075/* Performs PHY initialization required before MII drivers access the       */
2076/* device.                                                                  */
2077/*                                                                          */
2078/* Returns:                                                                 */
2079/*   Nothing.                                                               */
2080/****************************************************************************/
2081void
2082bnx_init_media(struct bnx_softc *sc)
2083{
2084	if (sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) {
2085		/*
2086		 * Configure the BCM5709S / BCM5716S PHYs to use traditional
2087		 * IEEE Clause 22 method. Otherwise we have no way to attach
2088		 * the PHY to the mii(4) layer. PHY specific configuration
2089		 * is done by the mii(4) layer.
2090		 */
2091
2092		/* Select auto-negotiation MMD of the PHY. */
2093		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2094		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT);
2095
2096		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2097		    BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD);
2098
2099		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2100		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
2101	}
2102}
2103
2104/****************************************************************************/
2105/* Free any DMA memory owned by the driver.                                 */
2106/*                                                                          */
2107/* Scans through each data structre that requires DMA memory and frees      */
2108/* the memory if allocated.                                                 */
2109/*                                                                          */
2110/* Returns:                                                                 */
2111/*   Nothing.                                                               */
2112/****************************************************************************/
2113void
2114bnx_dma_free(struct bnx_softc *sc)
2115{
2116	int			i;
2117
2118	DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2119
2120	/* Destroy the status block. */
2121	if (sc->status_block != NULL && sc->status_map != NULL) {
2122		bus_dmamap_unload(sc->bnx_dmatag, sc->status_map);
2123		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->status_block,
2124		    BNX_STATUS_BLK_SZ);
2125		bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg,
2126		    sc->status_rseg);
2127		bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map);
2128		sc->status_block = NULL;
2129		sc->status_map = NULL;
2130	}
2131
2132	/* Destroy the statistics block. */
2133	if (sc->stats_block != NULL && sc->stats_map != NULL) {
2134		bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map);
2135		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->stats_block,
2136		    BNX_STATS_BLK_SZ);
2137		bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg,
2138		    sc->stats_rseg);
2139		bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map);
2140		sc->stats_block = NULL;
2141		sc->stats_map = NULL;
2142	}
2143
2144	/* Free, unmap and destroy all context memory pages. */
2145	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2146		for (i = 0; i < sc->ctx_pages; i++) {
2147			if (sc->ctx_block[i] != NULL) {
2148				bus_dmamap_unload(sc->bnx_dmatag,
2149				    sc->ctx_map[i]);
2150				bus_dmamem_unmap(sc->bnx_dmatag,
2151				    (void *)sc->ctx_block[i],
2152				    BCM_PAGE_SIZE);
2153				bus_dmamem_free(sc->bnx_dmatag,
2154				    &sc->ctx_segs[i], sc->ctx_rsegs[i]);
2155				bus_dmamap_destroy(sc->bnx_dmatag,
2156				    sc->ctx_map[i]);
2157				sc->ctx_block[i] = NULL;
2158			}
2159		}
2160	}
2161
2162	/* Free, unmap and destroy all TX buffer descriptor chain pages. */
2163	for (i = 0; i < TX_PAGES; i++ ) {
2164		if (sc->tx_bd_chain[i] != NULL &&
2165		    sc->tx_bd_chain_map[i] != NULL) {
2166			bus_dmamap_unload(sc->bnx_dmatag,
2167			    sc->tx_bd_chain_map[i]);
2168			bus_dmamem_unmap(sc->bnx_dmatag,
2169			    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
2170			bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
2171			    sc->tx_bd_chain_rseg[i]);
2172			bus_dmamap_destroy(sc->bnx_dmatag,
2173			    sc->tx_bd_chain_map[i]);
2174			sc->tx_bd_chain[i] = NULL;
2175			sc->tx_bd_chain_map[i] = NULL;
2176		}
2177	}
2178
2179	/* Destroy the TX dmamaps. */
2180	/* This isn't necessary since we dont allocate them up front */
2181
2182	/* Free, unmap and destroy all RX buffer descriptor chain pages. */
2183	for (i = 0; i < RX_PAGES; i++ ) {
2184		if (sc->rx_bd_chain[i] != NULL &&
2185		    sc->rx_bd_chain_map[i] != NULL) {
2186			bus_dmamap_unload(sc->bnx_dmatag,
2187			    sc->rx_bd_chain_map[i]);
2188			bus_dmamem_unmap(sc->bnx_dmatag,
2189			    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
2190			bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
2191			    sc->rx_bd_chain_rseg[i]);
2192
2193			bus_dmamap_destroy(sc->bnx_dmatag,
2194			    sc->rx_bd_chain_map[i]);
2195			sc->rx_bd_chain[i] = NULL;
2196			sc->rx_bd_chain_map[i] = NULL;
2197		}
2198	}
2199
2200	/* Unload and destroy the RX mbuf maps. */
2201	for (i = 0; i < TOTAL_RX_BD; i++) {
2202		if (sc->rx_mbuf_map[i] != NULL) {
2203			bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
2204			bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
2205		}
2206	}
2207
2208	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2209}
2210
2211/****************************************************************************/
2212/* Allocate any DMA memory needed by the driver.                            */
2213/*                                                                          */
2214/* Allocates DMA memory needed for the various global structures needed by  */
2215/* hardware.                                                                */
2216/*                                                                          */
2217/* Returns:                                                                 */
2218/*   0 for success, positive value for failure.                             */
2219/****************************************************************************/
2220int
2221bnx_dma_alloc(struct bnx_softc *sc)
2222{
2223	int			i, rc = 0;
2224
2225	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2226
2227	/*
2228	 * Allocate DMA memory for the status block, map the memory into DMA
2229	 * space, and fetch the physical address of the block.
2230	 */
2231	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1,
2232	    BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) {
2233		aprint_error_dev(sc->bnx_dev,
2234		    "Could not create status block DMA map!\n");
2235		rc = ENOMEM;
2236		goto bnx_dma_alloc_exit;
2237	}
2238
2239	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ,
2240	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1,
2241	    &sc->status_rseg, BUS_DMA_NOWAIT)) {
2242		aprint_error_dev(sc->bnx_dev,
2243		    "Could not allocate status block DMA memory!\n");
2244		rc = ENOMEM;
2245		goto bnx_dma_alloc_exit;
2246	}
2247
2248	if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg,
2249	    BNX_STATUS_BLK_SZ, (void **)&sc->status_block, BUS_DMA_NOWAIT)) {
2250		aprint_error_dev(sc->bnx_dev,
2251		    "Could not map status block DMA memory!\n");
2252		rc = ENOMEM;
2253		goto bnx_dma_alloc_exit;
2254	}
2255
2256	if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map,
2257	    sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2258		aprint_error_dev(sc->bnx_dev,
2259		    "Could not load status block DMA memory!\n");
2260		rc = ENOMEM;
2261		goto bnx_dma_alloc_exit;
2262	}
2263
2264	sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr;
2265	memset(sc->status_block, 0, BNX_STATUS_BLK_SZ);
2266
2267	/* DRC - Fix for 64 bit addresses. */
2268	DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n",
2269		(u_int32_t) sc->status_block_paddr);
2270
2271	/* BCM5709 uses host memory as cache for context memory. */
2272	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2273		sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
2274		if (sc->ctx_pages == 0)
2275			sc->ctx_pages = 1;
2276		if (sc->ctx_pages > 4) /* XXX */
2277			sc->ctx_pages = 4;
2278
2279		DBRUNIF((sc->ctx_pages > 512),
2280			BNX_PRINTF(sc, "%s(%d): Too many CTX pages! %d > 512\n",
2281				__FILE__, __LINE__, sc->ctx_pages));
2282
2283
2284		for (i = 0; i < sc->ctx_pages; i++) {
2285			if (bus_dmamap_create(sc->bnx_dmatag, BCM_PAGE_SIZE,
2286			    1, BCM_PAGE_SIZE, BNX_DMA_BOUNDARY,
2287			    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
2288			    &sc->ctx_map[i]) != 0) {
2289				rc = ENOMEM;
2290				goto bnx_dma_alloc_exit;
2291			}
2292
2293			if (bus_dmamem_alloc(sc->bnx_dmatag, BCM_PAGE_SIZE,
2294			    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->ctx_segs[i],
2295			    1, &sc->ctx_rsegs[i], BUS_DMA_NOWAIT) != 0) {
2296				rc = ENOMEM;
2297				goto bnx_dma_alloc_exit;
2298			}
2299
2300			if (bus_dmamem_map(sc->bnx_dmatag, &sc->ctx_segs[i],
2301			    sc->ctx_rsegs[i], BCM_PAGE_SIZE,
2302			    &sc->ctx_block[i], BUS_DMA_NOWAIT) != 0) {
2303				rc = ENOMEM;
2304				goto bnx_dma_alloc_exit;
2305			}
2306
2307			if (bus_dmamap_load(sc->bnx_dmatag, sc->ctx_map[i],
2308			    sc->ctx_block[i], BCM_PAGE_SIZE, NULL,
2309			    BUS_DMA_NOWAIT) != 0) {
2310				rc = ENOMEM;
2311				goto bnx_dma_alloc_exit;
2312			}
2313
2314			bzero(sc->ctx_block[i], BCM_PAGE_SIZE);
2315		}
2316	}
2317
2318	/*
2319	 * Allocate DMA memory for the statistics block, map the memory into
2320	 * DMA space, and fetch the physical address of the block.
2321	 */
2322	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1,
2323	    BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) {
2324		aprint_error_dev(sc->bnx_dev,
2325		    "Could not create stats block DMA map!\n");
2326		rc = ENOMEM;
2327		goto bnx_dma_alloc_exit;
2328	}
2329
2330	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ,
2331	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1,
2332	    &sc->stats_rseg, BUS_DMA_NOWAIT)) {
2333		aprint_error_dev(sc->bnx_dev,
2334		    "Could not allocate stats block DMA memory!\n");
2335		rc = ENOMEM;
2336		goto bnx_dma_alloc_exit;
2337	}
2338
2339	if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg,
2340	    BNX_STATS_BLK_SZ, (void **)&sc->stats_block, BUS_DMA_NOWAIT)) {
2341		aprint_error_dev(sc->bnx_dev,
2342		    "Could not map stats block DMA memory!\n");
2343		rc = ENOMEM;
2344		goto bnx_dma_alloc_exit;
2345	}
2346
2347	if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map,
2348	    sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2349		aprint_error_dev(sc->bnx_dev,
2350		    "Could not load status block DMA memory!\n");
2351		rc = ENOMEM;
2352		goto bnx_dma_alloc_exit;
2353	}
2354
2355	sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr;
2356	memset(sc->stats_block, 0, BNX_STATS_BLK_SZ);
2357
2358	/* DRC - Fix for 64 bit address. */
2359	DBPRINT(sc,BNX_INFO, "stats_block_paddr = 0x%08X\n",
2360	    (u_int32_t) sc->stats_block_paddr);
2361
2362	/*
2363	 * Allocate DMA memory for the TX buffer descriptor chain,
2364	 * and fetch the physical address of the block.
2365	 */
2366	for (i = 0; i < TX_PAGES; i++) {
2367		if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1,
2368		    BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2369		    &sc->tx_bd_chain_map[i])) {
2370			aprint_error_dev(sc->bnx_dev,
2371			    "Could not create Tx desc %d DMA map!\n", i);
2372			rc = ENOMEM;
2373			goto bnx_dma_alloc_exit;
2374		}
2375
2376		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ,
2377		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1,
2378		    &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2379			aprint_error_dev(sc->bnx_dev,
2380			    "Could not allocate TX desc %d DMA memory!\n",
2381			    i);
2382			rc = ENOMEM;
2383			goto bnx_dma_alloc_exit;
2384		}
2385
2386		if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
2387		    sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ,
2388		    (void **)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) {
2389			aprint_error_dev(sc->bnx_dev,
2390			    "Could not map TX desc %d DMA memory!\n", i);
2391			rc = ENOMEM;
2392			goto bnx_dma_alloc_exit;
2393		}
2394
2395		if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i],
2396		    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL,
2397		    BUS_DMA_NOWAIT)) {
2398			aprint_error_dev(sc->bnx_dev,
2399			    "Could not load TX desc %d DMA memory!\n", i);
2400			rc = ENOMEM;
2401			goto bnx_dma_alloc_exit;
2402		}
2403
2404		sc->tx_bd_chain_paddr[i] =
2405		    sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr;
2406
2407		/* DRC - Fix for 64 bit systems. */
2408		DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n",
2409		    i, (u_int32_t) sc->tx_bd_chain_paddr[i]);
2410	}
2411
2412	/*
2413	 * Create lists to hold TX mbufs.
2414	 */
2415	TAILQ_INIT(&sc->tx_free_pkts);
2416	TAILQ_INIT(&sc->tx_used_pkts);
2417	sc->tx_pkt_count = 0;
2418	mutex_init(&sc->tx_pkt_mtx, MUTEX_DEFAULT, IPL_NET);
2419
2420	/*
2421	 * Allocate DMA memory for the Rx buffer descriptor chain,
2422	 * and fetch the physical address of the block.
2423	 */
2424	for (i = 0; i < RX_PAGES; i++) {
2425		if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1,
2426		    BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2427		    &sc->rx_bd_chain_map[i])) {
2428			aprint_error_dev(sc->bnx_dev,
2429			    "Could not create Rx desc %d DMA map!\n", i);
2430			rc = ENOMEM;
2431			goto bnx_dma_alloc_exit;
2432		}
2433
2434		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ,
2435		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1,
2436		    &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2437			aprint_error_dev(sc->bnx_dev,
2438			    "Could not allocate Rx desc %d DMA memory!\n", i);
2439			rc = ENOMEM;
2440			goto bnx_dma_alloc_exit;
2441		}
2442
2443		if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
2444		    sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ,
2445		    (void **)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) {
2446			aprint_error_dev(sc->bnx_dev,
2447			    "Could not map Rx desc %d DMA memory!\n", i);
2448			rc = ENOMEM;
2449			goto bnx_dma_alloc_exit;
2450		}
2451
2452		if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2453		    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL,
2454		    BUS_DMA_NOWAIT)) {
2455			aprint_error_dev(sc->bnx_dev,
2456			    "Could not load Rx desc %d DMA memory!\n", i);
2457			rc = ENOMEM;
2458			goto bnx_dma_alloc_exit;
2459		}
2460
2461		memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
2462		sc->rx_bd_chain_paddr[i] =
2463		    sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr;
2464
2465		/* DRC - Fix for 64 bit systems. */
2466		DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
2467		    i, (u_int32_t) sc->rx_bd_chain_paddr[i]);
2468		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2469		    0, BNX_RX_CHAIN_PAGE_SZ,
2470		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2471	}
2472
2473	/*
2474	 * Create DMA maps for the Rx buffer mbufs.
2475	 */
2476	for (i = 0; i < TOTAL_RX_BD; i++) {
2477		if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_JUMBO_MRU,
2478		    BNX_MAX_SEGMENTS, BNX_MAX_JUMBO_MRU, 0, BUS_DMA_NOWAIT,
2479		    &sc->rx_mbuf_map[i])) {
2480			aprint_error_dev(sc->bnx_dev,
2481			    "Could not create Rx mbuf %d DMA map!\n", i);
2482			rc = ENOMEM;
2483			goto bnx_dma_alloc_exit;
2484		}
2485	}
2486
2487 bnx_dma_alloc_exit:
2488	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2489
2490	return(rc);
2491}
2492
2493/****************************************************************************/
2494/* Release all resources used by the driver.                                */
2495/*                                                                          */
2496/* Releases all resources acquired by the driver including interrupts,      */
2497/* interrupt handler, interfaces, mutexes, and DMA memory.                  */
2498/*                                                                          */
2499/* Returns:                                                                 */
2500/*   Nothing.                                                               */
2501/****************************************************************************/
2502void
2503bnx_release_resources(struct bnx_softc *sc)
2504{
2505	struct pci_attach_args	*pa = &(sc->bnx_pa);
2506
2507	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2508
2509	bnx_dma_free(sc);
2510
2511	if (sc->bnx_intrhand != NULL)
2512		pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand);
2513
2514	if (sc->bnx_size)
2515		bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size);
2516
2517	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2518}
2519
2520/****************************************************************************/
2521/* Firmware synchronization.                                                */
2522/*                                                                          */
2523/* Before performing certain events such as a chip reset, synchronize with  */
2524/* the firmware first.                                                      */
2525/*                                                                          */
2526/* Returns:                                                                 */
2527/*   0 for success, positive value for failure.                             */
2528/****************************************************************************/
2529int
2530bnx_fw_sync(struct bnx_softc *sc, u_int32_t msg_data)
2531{
2532	int			i, rc = 0;
2533	u_int32_t		val;
2534
2535	/* Don't waste any time if we've timed out before. */
2536	if (sc->bnx_fw_timed_out) {
2537		rc = EBUSY;
2538		goto bnx_fw_sync_exit;
2539	}
2540
2541	/* Increment the message sequence number. */
2542	sc->bnx_fw_wr_seq++;
2543	msg_data |= sc->bnx_fw_wr_seq;
2544
2545 	DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n",
2546	    msg_data);
2547
2548	/* Send the message to the bootcode driver mailbox. */
2549	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2550
2551	/* Wait for the bootcode to acknowledge the message. */
2552	for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
2553		/* Check for a response in the bootcode firmware mailbox. */
2554		val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB);
2555		if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ))
2556			break;
2557		DELAY(1000);
2558	}
2559
2560	/* If we've timed out, tell the bootcode that we've stopped waiting. */
2561	if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) &&
2562		((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) {
2563		BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! "
2564		    "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
2565
2566		msg_data &= ~BNX_DRV_MSG_CODE;
2567		msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT;
2568
2569		REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2570
2571		sc->bnx_fw_timed_out = 1;
2572		rc = EBUSY;
2573	}
2574
2575bnx_fw_sync_exit:
2576	return (rc);
2577}
2578
2579/****************************************************************************/
2580/* Load Receive Virtual 2 Physical (RV2P) processor firmware.               */
2581/*                                                                          */
2582/* Returns:                                                                 */
2583/*   Nothing.                                                               */
2584/****************************************************************************/
2585void
2586bnx_load_rv2p_fw(struct bnx_softc *sc, u_int32_t *rv2p_code,
2587    u_int32_t rv2p_code_len, u_int32_t rv2p_proc)
2588{
2589	int			i;
2590	u_int32_t		val;
2591
2592	/* Set the page size used by RV2P. */
2593	if (rv2p_proc == RV2P_PROC2) {
2594		BNX_RV2P_PROC2_CHG_MAX_BD_PAGE(rv2p_code,
2595		    USABLE_RX_BD_PER_PAGE);
2596	}
2597
2598	for (i = 0; i < rv2p_code_len; i += 8) {
2599		REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code);
2600		rv2p_code++;
2601		REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code);
2602		rv2p_code++;
2603
2604		if (rv2p_proc == RV2P_PROC1) {
2605			val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR;
2606			REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val);
2607		} else {
2608			val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR;
2609			REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val);
2610		}
2611	}
2612
2613	/* Reset the processor, un-stall is done later. */
2614	if (rv2p_proc == RV2P_PROC1)
2615		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET);
2616	else
2617		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET);
2618}
2619
2620/****************************************************************************/
2621/* Load RISC processor firmware.                                            */
2622/*                                                                          */
2623/* Loads firmware from the file if_bnxfw.h into the scratchpad memory       */
2624/* associated with a particular processor.                                  */
2625/*                                                                          */
2626/* Returns:                                                                 */
2627/*   Nothing.                                                               */
2628/****************************************************************************/
2629void
2630bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg,
2631    struct fw_info *fw)
2632{
2633	u_int32_t		offset;
2634	u_int32_t		val;
2635
2636	/* Halt the CPU. */
2637	val = REG_RD_IND(sc, cpu_reg->mode);
2638	val |= cpu_reg->mode_value_halt;
2639	REG_WR_IND(sc, cpu_reg->mode, val);
2640	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2641
2642	/* Load the Text area. */
2643	offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
2644	if (fw->text) {
2645		int j;
2646
2647		for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
2648			REG_WR_IND(sc, offset, fw->text[j]);
2649	}
2650
2651	/* Load the Data area. */
2652	offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
2653	if (fw->data) {
2654		int j;
2655
2656		for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
2657			REG_WR_IND(sc, offset, fw->data[j]);
2658	}
2659
2660	/* Load the SBSS area. */
2661	offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
2662	if (fw->sbss) {
2663		int j;
2664
2665		for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
2666			REG_WR_IND(sc, offset, fw->sbss[j]);
2667	}
2668
2669	/* Load the BSS area. */
2670	offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
2671	if (fw->bss) {
2672		int j;
2673
2674		for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
2675			REG_WR_IND(sc, offset, fw->bss[j]);
2676	}
2677
2678	/* Load the Read-Only area. */
2679	offset = cpu_reg->spad_base +
2680	    (fw->rodata_addr - cpu_reg->mips_view_base);
2681	if (fw->rodata) {
2682		int j;
2683
2684		for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
2685			REG_WR_IND(sc, offset, fw->rodata[j]);
2686	}
2687
2688	/* Clear the pre-fetch instruction. */
2689	REG_WR_IND(sc, cpu_reg->inst, 0);
2690	REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
2691
2692	/* Start the CPU. */
2693	val = REG_RD_IND(sc, cpu_reg->mode);
2694	val &= ~cpu_reg->mode_value_halt;
2695	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2696	REG_WR_IND(sc, cpu_reg->mode, val);
2697}
2698
2699/****************************************************************************/
2700/* Initialize the RV2P, RX, TX, TPAT, and COM CPUs.                         */
2701/*                                                                          */
2702/* Loads the firmware for each CPU and starts the CPU.                      */
2703/*                                                                          */
2704/* Returns:                                                                 */
2705/*   Nothing.                                                               */
2706/****************************************************************************/
2707void
2708bnx_init_cpus(struct bnx_softc *sc)
2709{
2710	struct cpu_reg cpu_reg;
2711	struct fw_info fw;
2712
2713	switch(BNX_CHIP_NUM(sc)) {
2714	case BNX_CHIP_NUM_5709:
2715		/* Initialize the RV2P processor. */
2716		if (BNX_CHIP_REV(sc) == BNX_CHIP_REV_Ax) {
2717			bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc1,
2718			    sizeof(bnx_xi90_rv2p_proc1), RV2P_PROC1);
2719			bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc2,
2720			    sizeof(bnx_xi90_rv2p_proc2), RV2P_PROC2);
2721		} else {
2722			bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc1,
2723			    sizeof(bnx_xi_rv2p_proc1), RV2P_PROC1);
2724			bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc2,
2725			    sizeof(bnx_xi_rv2p_proc2), RV2P_PROC2);
2726		}
2727
2728		/* Initialize the RX Processor. */
2729		cpu_reg.mode = BNX_RXP_CPU_MODE;
2730		cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
2731		cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
2732		cpu_reg.state = BNX_RXP_CPU_STATE;
2733		cpu_reg.state_value_clear = 0xffffff;
2734		cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
2735		cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
2736		cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
2737		cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
2738		cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
2739		cpu_reg.spad_base = BNX_RXP_SCRATCH;
2740		cpu_reg.mips_view_base = 0x8000000;
2741
2742		fw.ver_major = bnx_RXP_b09FwReleaseMajor;
2743		fw.ver_minor = bnx_RXP_b09FwReleaseMinor;
2744		fw.ver_fix = bnx_RXP_b09FwReleaseFix;
2745		fw.start_addr = bnx_RXP_b09FwStartAddr;
2746
2747		fw.text_addr = bnx_RXP_b09FwTextAddr;
2748		fw.text_len = bnx_RXP_b09FwTextLen;
2749		fw.text_index = 0;
2750		fw.text = bnx_RXP_b09FwText;
2751
2752		fw.data_addr = bnx_RXP_b09FwDataAddr;
2753		fw.data_len = bnx_RXP_b09FwDataLen;
2754		fw.data_index = 0;
2755		fw.data = bnx_RXP_b09FwData;
2756
2757		fw.sbss_addr = bnx_RXP_b09FwSbssAddr;
2758		fw.sbss_len = bnx_RXP_b09FwSbssLen;
2759		fw.sbss_index = 0;
2760		fw.sbss = bnx_RXP_b09FwSbss;
2761
2762		fw.bss_addr = bnx_RXP_b09FwBssAddr;
2763		fw.bss_len = bnx_RXP_b09FwBssLen;
2764		fw.bss_index = 0;
2765		fw.bss = bnx_RXP_b09FwBss;
2766
2767		fw.rodata_addr = bnx_RXP_b09FwRodataAddr;
2768		fw.rodata_len = bnx_RXP_b09FwRodataLen;
2769		fw.rodata_index = 0;
2770		fw.rodata = bnx_RXP_b09FwRodata;
2771
2772		DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
2773		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2774
2775		/* Initialize the TX Processor. */
2776		cpu_reg.mode = BNX_TXP_CPU_MODE;
2777		cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
2778		cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
2779		cpu_reg.state = BNX_TXP_CPU_STATE;
2780		cpu_reg.state_value_clear = 0xffffff;
2781		cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
2782		cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
2783		cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
2784		cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
2785		cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
2786		cpu_reg.spad_base = BNX_TXP_SCRATCH;
2787		cpu_reg.mips_view_base = 0x8000000;
2788
2789		fw.ver_major = bnx_TXP_b09FwReleaseMajor;
2790		fw.ver_minor = bnx_TXP_b09FwReleaseMinor;
2791		fw.ver_fix = bnx_TXP_b09FwReleaseFix;
2792		fw.start_addr = bnx_TXP_b09FwStartAddr;
2793
2794		fw.text_addr = bnx_TXP_b09FwTextAddr;
2795		fw.text_len = bnx_TXP_b09FwTextLen;
2796		fw.text_index = 0;
2797		fw.text = bnx_TXP_b09FwText;
2798
2799		fw.data_addr = bnx_TXP_b09FwDataAddr;
2800		fw.data_len = bnx_TXP_b09FwDataLen;
2801		fw.data_index = 0;
2802		fw.data = bnx_TXP_b09FwData;
2803
2804		fw.sbss_addr = bnx_TXP_b09FwSbssAddr;
2805		fw.sbss_len = bnx_TXP_b09FwSbssLen;
2806		fw.sbss_index = 0;
2807		fw.sbss = bnx_TXP_b09FwSbss;
2808
2809		fw.bss_addr = bnx_TXP_b09FwBssAddr;
2810		fw.bss_len = bnx_TXP_b09FwBssLen;
2811		fw.bss_index = 0;
2812		fw.bss = bnx_TXP_b09FwBss;
2813
2814		fw.rodata_addr = bnx_TXP_b09FwRodataAddr;
2815		fw.rodata_len = bnx_TXP_b09FwRodataLen;
2816		fw.rodata_index = 0;
2817		fw.rodata = bnx_TXP_b09FwRodata;
2818
2819		DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
2820		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2821
2822		/* Initialize the TX Patch-up Processor. */
2823		cpu_reg.mode = BNX_TPAT_CPU_MODE;
2824		cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
2825		cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
2826		cpu_reg.state = BNX_TPAT_CPU_STATE;
2827		cpu_reg.state_value_clear = 0xffffff;
2828		cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
2829		cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
2830		cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
2831		cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
2832		cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
2833		cpu_reg.spad_base = BNX_TPAT_SCRATCH;
2834		cpu_reg.mips_view_base = 0x8000000;
2835
2836		fw.ver_major = bnx_TPAT_b09FwReleaseMajor;
2837		fw.ver_minor = bnx_TPAT_b09FwReleaseMinor;
2838		fw.ver_fix = bnx_TPAT_b09FwReleaseFix;
2839		fw.start_addr = bnx_TPAT_b09FwStartAddr;
2840
2841		fw.text_addr = bnx_TPAT_b09FwTextAddr;
2842		fw.text_len = bnx_TPAT_b09FwTextLen;
2843		fw.text_index = 0;
2844		fw.text = bnx_TPAT_b09FwText;
2845
2846		fw.data_addr = bnx_TPAT_b09FwDataAddr;
2847		fw.data_len = bnx_TPAT_b09FwDataLen;
2848		fw.data_index = 0;
2849		fw.data = bnx_TPAT_b09FwData;
2850
2851		fw.sbss_addr = bnx_TPAT_b09FwSbssAddr;
2852		fw.sbss_len = bnx_TPAT_b09FwSbssLen;
2853		fw.sbss_index = 0;
2854		fw.sbss = bnx_TPAT_b09FwSbss;
2855
2856		fw.bss_addr = bnx_TPAT_b09FwBssAddr;
2857		fw.bss_len = bnx_TPAT_b09FwBssLen;
2858		fw.bss_index = 0;
2859		fw.bss = bnx_TPAT_b09FwBss;
2860
2861		fw.rodata_addr = bnx_TPAT_b09FwRodataAddr;
2862		fw.rodata_len = bnx_TPAT_b09FwRodataLen;
2863		fw.rodata_index = 0;
2864		fw.rodata = bnx_TPAT_b09FwRodata;
2865
2866		DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
2867		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2868
2869		/* Initialize the Completion Processor. */
2870		cpu_reg.mode = BNX_COM_CPU_MODE;
2871		cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
2872		cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
2873		cpu_reg.state = BNX_COM_CPU_STATE;
2874		cpu_reg.state_value_clear = 0xffffff;
2875		cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
2876		cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
2877		cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
2878		cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
2879		cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
2880		cpu_reg.spad_base = BNX_COM_SCRATCH;
2881		cpu_reg.mips_view_base = 0x8000000;
2882
2883		fw.ver_major = bnx_COM_b09FwReleaseMajor;
2884		fw.ver_minor = bnx_COM_b09FwReleaseMinor;
2885		fw.ver_fix = bnx_COM_b09FwReleaseFix;
2886		fw.start_addr = bnx_COM_b09FwStartAddr;
2887
2888		fw.text_addr = bnx_COM_b09FwTextAddr;
2889		fw.text_len = bnx_COM_b09FwTextLen;
2890		fw.text_index = 0;
2891		fw.text = bnx_COM_b09FwText;
2892
2893		fw.data_addr = bnx_COM_b09FwDataAddr;
2894		fw.data_len = bnx_COM_b09FwDataLen;
2895		fw.data_index = 0;
2896		fw.data = bnx_COM_b09FwData;
2897
2898		fw.sbss_addr = bnx_COM_b09FwSbssAddr;
2899		fw.sbss_len = bnx_COM_b09FwSbssLen;
2900		fw.sbss_index = 0;
2901		fw.sbss = bnx_COM_b09FwSbss;
2902
2903		fw.bss_addr = bnx_COM_b09FwBssAddr;
2904		fw.bss_len = bnx_COM_b09FwBssLen;
2905		fw.bss_index = 0;
2906		fw.bss = bnx_COM_b09FwBss;
2907
2908		fw.rodata_addr = bnx_COM_b09FwRodataAddr;
2909		fw.rodata_len = bnx_COM_b09FwRodataLen;
2910		fw.rodata_index = 0;
2911		fw.rodata = bnx_COM_b09FwRodata;
2912		DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
2913		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2914		break;
2915	default:
2916		/* Initialize the RV2P processor. */
2917		bnx_load_rv2p_fw(sc, bnx_rv2p_proc1, sizeof(bnx_rv2p_proc1),
2918		    RV2P_PROC1);
2919		bnx_load_rv2p_fw(sc, bnx_rv2p_proc2, sizeof(bnx_rv2p_proc2),
2920		    RV2P_PROC2);
2921
2922		/* Initialize the RX Processor. */
2923		cpu_reg.mode = BNX_RXP_CPU_MODE;
2924		cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
2925		cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
2926		cpu_reg.state = BNX_RXP_CPU_STATE;
2927		cpu_reg.state_value_clear = 0xffffff;
2928		cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
2929		cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
2930		cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
2931		cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
2932		cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
2933		cpu_reg.spad_base = BNX_RXP_SCRATCH;
2934		cpu_reg.mips_view_base = 0x8000000;
2935
2936		fw.ver_major = bnx_RXP_b06FwReleaseMajor;
2937		fw.ver_minor = bnx_RXP_b06FwReleaseMinor;
2938		fw.ver_fix = bnx_RXP_b06FwReleaseFix;
2939		fw.start_addr = bnx_RXP_b06FwStartAddr;
2940
2941		fw.text_addr = bnx_RXP_b06FwTextAddr;
2942		fw.text_len = bnx_RXP_b06FwTextLen;
2943		fw.text_index = 0;
2944		fw.text = bnx_RXP_b06FwText;
2945
2946		fw.data_addr = bnx_RXP_b06FwDataAddr;
2947		fw.data_len = bnx_RXP_b06FwDataLen;
2948		fw.data_index = 0;
2949		fw.data = bnx_RXP_b06FwData;
2950
2951		fw.sbss_addr = bnx_RXP_b06FwSbssAddr;
2952		fw.sbss_len = bnx_RXP_b06FwSbssLen;
2953		fw.sbss_index = 0;
2954		fw.sbss = bnx_RXP_b06FwSbss;
2955
2956		fw.bss_addr = bnx_RXP_b06FwBssAddr;
2957		fw.bss_len = bnx_RXP_b06FwBssLen;
2958		fw.bss_index = 0;
2959		fw.bss = bnx_RXP_b06FwBss;
2960
2961		fw.rodata_addr = bnx_RXP_b06FwRodataAddr;
2962		fw.rodata_len = bnx_RXP_b06FwRodataLen;
2963		fw.rodata_index = 0;
2964		fw.rodata = bnx_RXP_b06FwRodata;
2965
2966		DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
2967		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2968
2969		/* Initialize the TX Processor. */
2970		cpu_reg.mode = BNX_TXP_CPU_MODE;
2971		cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
2972		cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
2973		cpu_reg.state = BNX_TXP_CPU_STATE;
2974		cpu_reg.state_value_clear = 0xffffff;
2975		cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
2976		cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
2977		cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
2978		cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
2979		cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
2980		cpu_reg.spad_base = BNX_TXP_SCRATCH;
2981		cpu_reg.mips_view_base = 0x8000000;
2982
2983		fw.ver_major = bnx_TXP_b06FwReleaseMajor;
2984		fw.ver_minor = bnx_TXP_b06FwReleaseMinor;
2985		fw.ver_fix = bnx_TXP_b06FwReleaseFix;
2986		fw.start_addr = bnx_TXP_b06FwStartAddr;
2987
2988		fw.text_addr = bnx_TXP_b06FwTextAddr;
2989		fw.text_len = bnx_TXP_b06FwTextLen;
2990		fw.text_index = 0;
2991		fw.text = bnx_TXP_b06FwText;
2992
2993		fw.data_addr = bnx_TXP_b06FwDataAddr;
2994		fw.data_len = bnx_TXP_b06FwDataLen;
2995		fw.data_index = 0;
2996		fw.data = bnx_TXP_b06FwData;
2997
2998		fw.sbss_addr = bnx_TXP_b06FwSbssAddr;
2999		fw.sbss_len = bnx_TXP_b06FwSbssLen;
3000		fw.sbss_index = 0;
3001		fw.sbss = bnx_TXP_b06FwSbss;
3002
3003		fw.bss_addr = bnx_TXP_b06FwBssAddr;
3004		fw.bss_len = bnx_TXP_b06FwBssLen;
3005		fw.bss_index = 0;
3006		fw.bss = bnx_TXP_b06FwBss;
3007
3008		fw.rodata_addr = bnx_TXP_b06FwRodataAddr;
3009		fw.rodata_len = bnx_TXP_b06FwRodataLen;
3010		fw.rodata_index = 0;
3011		fw.rodata = bnx_TXP_b06FwRodata;
3012
3013		DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
3014		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3015
3016		/* Initialize the TX Patch-up Processor. */
3017		cpu_reg.mode = BNX_TPAT_CPU_MODE;
3018		cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
3019		cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
3020		cpu_reg.state = BNX_TPAT_CPU_STATE;
3021		cpu_reg.state_value_clear = 0xffffff;
3022		cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
3023		cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
3024		cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
3025		cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
3026		cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
3027		cpu_reg.spad_base = BNX_TPAT_SCRATCH;
3028		cpu_reg.mips_view_base = 0x8000000;
3029
3030		fw.ver_major = bnx_TPAT_b06FwReleaseMajor;
3031		fw.ver_minor = bnx_TPAT_b06FwReleaseMinor;
3032		fw.ver_fix = bnx_TPAT_b06FwReleaseFix;
3033		fw.start_addr = bnx_TPAT_b06FwStartAddr;
3034
3035		fw.text_addr = bnx_TPAT_b06FwTextAddr;
3036		fw.text_len = bnx_TPAT_b06FwTextLen;
3037		fw.text_index = 0;
3038		fw.text = bnx_TPAT_b06FwText;
3039
3040		fw.data_addr = bnx_TPAT_b06FwDataAddr;
3041		fw.data_len = bnx_TPAT_b06FwDataLen;
3042		fw.data_index = 0;
3043		fw.data = bnx_TPAT_b06FwData;
3044
3045		fw.sbss_addr = bnx_TPAT_b06FwSbssAddr;
3046		fw.sbss_len = bnx_TPAT_b06FwSbssLen;
3047		fw.sbss_index = 0;
3048		fw.sbss = bnx_TPAT_b06FwSbss;
3049
3050		fw.bss_addr = bnx_TPAT_b06FwBssAddr;
3051		fw.bss_len = bnx_TPAT_b06FwBssLen;
3052		fw.bss_index = 0;
3053		fw.bss = bnx_TPAT_b06FwBss;
3054
3055		fw.rodata_addr = bnx_TPAT_b06FwRodataAddr;
3056		fw.rodata_len = bnx_TPAT_b06FwRodataLen;
3057		fw.rodata_index = 0;
3058		fw.rodata = bnx_TPAT_b06FwRodata;
3059
3060		DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
3061		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3062
3063		/* Initialize the Completion Processor. */
3064		cpu_reg.mode = BNX_COM_CPU_MODE;
3065		cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
3066		cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
3067		cpu_reg.state = BNX_COM_CPU_STATE;
3068		cpu_reg.state_value_clear = 0xffffff;
3069		cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
3070		cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
3071		cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
3072		cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
3073		cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
3074		cpu_reg.spad_base = BNX_COM_SCRATCH;
3075		cpu_reg.mips_view_base = 0x8000000;
3076
3077		fw.ver_major = bnx_COM_b06FwReleaseMajor;
3078		fw.ver_minor = bnx_COM_b06FwReleaseMinor;
3079		fw.ver_fix = bnx_COM_b06FwReleaseFix;
3080		fw.start_addr = bnx_COM_b06FwStartAddr;
3081
3082		fw.text_addr = bnx_COM_b06FwTextAddr;
3083		fw.text_len = bnx_COM_b06FwTextLen;
3084		fw.text_index = 0;
3085		fw.text = bnx_COM_b06FwText;
3086
3087		fw.data_addr = bnx_COM_b06FwDataAddr;
3088		fw.data_len = bnx_COM_b06FwDataLen;
3089		fw.data_index = 0;
3090		fw.data = bnx_COM_b06FwData;
3091
3092		fw.sbss_addr = bnx_COM_b06FwSbssAddr;
3093		fw.sbss_len = bnx_COM_b06FwSbssLen;
3094		fw.sbss_index = 0;
3095		fw.sbss = bnx_COM_b06FwSbss;
3096
3097		fw.bss_addr = bnx_COM_b06FwBssAddr;
3098		fw.bss_len = bnx_COM_b06FwBssLen;
3099		fw.bss_index = 0;
3100		fw.bss = bnx_COM_b06FwBss;
3101
3102		fw.rodata_addr = bnx_COM_b06FwRodataAddr;
3103		fw.rodata_len = bnx_COM_b06FwRodataLen;
3104		fw.rodata_index = 0;
3105		fw.rodata = bnx_COM_b06FwRodata;
3106		DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
3107		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3108		break;
3109	}
3110}
3111
3112/****************************************************************************/
3113/* Initialize context memory.                                               */
3114/*                                                                          */
3115/* Clears the memory associated with each Context ID (CID).                 */
3116/*                                                                          */
3117/* Returns:                                                                 */
3118/*   Nothing.                                                               */
3119/****************************************************************************/
3120void
3121bnx_init_context(struct bnx_softc *sc)
3122{
3123	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3124		/* DRC: Replace this constant value with a #define. */
3125		int i, retry_cnt = 10;
3126		u_int32_t val;
3127
3128		/*
3129		 * BCM5709 context memory may be cached
3130		 * in host memory so prepare the host memory
3131		 * for access.
3132		 */
3133		val = BNX_CTX_COMMAND_ENABLED | BNX_CTX_COMMAND_MEM_INIT
3134		    | (1 << 12);
3135		val |= (BCM_PAGE_BITS - 8) << 16;
3136		REG_WR(sc, BNX_CTX_COMMAND, val);
3137
3138		/* Wait for mem init command to complete. */
3139		for (i = 0; i < retry_cnt; i++) {
3140			val = REG_RD(sc, BNX_CTX_COMMAND);
3141			if (!(val & BNX_CTX_COMMAND_MEM_INIT))
3142				break;
3143			DELAY(2);
3144		}
3145
3146
3147		/* ToDo: Consider returning an error here. */
3148
3149		for (i = 0; i < sc->ctx_pages; i++) {
3150			int j;
3151
3152
3153			/* Set the physaddr of the context memory cache. */
3154			val = (u_int32_t)(sc->ctx_segs[i].ds_addr);
3155			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA0, val |
3156				BNX_CTX_HOST_PAGE_TBL_DATA0_VALID);
3157			val = (u_int32_t)
3158			    ((u_int64_t)sc->ctx_segs[i].ds_addr >> 32);
3159			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA1, val);
3160			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_CTRL, i |
3161				BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
3162
3163
3164			/* Verify that the context memory write was successful. */
3165			for (j = 0; j < retry_cnt; j++) {
3166				val = REG_RD(sc, BNX_CTX_HOST_PAGE_TBL_CTRL);
3167				if ((val & BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
3168					break;
3169				DELAY(5);
3170			}
3171
3172			/* ToDo: Consider returning an error here. */
3173		}
3174	} else {
3175		u_int32_t vcid_addr, offset;
3176
3177		/*
3178		 * For the 5706/5708, context memory is local to
3179		 * the controller, so initialize the controller
3180		 * context memory.
3181		 */
3182
3183		vcid_addr = GET_CID_ADDR(96);
3184		while (vcid_addr) {
3185
3186			vcid_addr -= BNX_PHY_CTX_SIZE;
3187
3188			REG_WR(sc, BNX_CTX_VIRT_ADDR, 0);
3189			REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
3190
3191			for(offset = 0; offset < BNX_PHY_CTX_SIZE; offset += 4) {
3192				CTX_WR(sc, 0x00, offset, 0);
3193			}
3194
3195			REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr);
3196			REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
3197		}
3198	}
3199}
3200
3201/****************************************************************************/
3202/* Fetch the permanent MAC address of the controller.                       */
3203/*                                                                          */
3204/* Returns:                                                                 */
3205/*   Nothing.                                                               */
3206/****************************************************************************/
3207void
3208bnx_get_mac_addr(struct bnx_softc *sc)
3209{
3210	u_int32_t		mac_lo = 0, mac_hi = 0;
3211
3212	/*
3213	 * The NetXtreme II bootcode populates various NIC
3214	 * power-on and runtime configuration items in a
3215	 * shared memory area.  The factory configured MAC
3216	 * address is available from both NVRAM and the
3217	 * shared memory area so we'll read the value from
3218	 * shared memory for speed.
3219	 */
3220
3221	mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER);
3222	mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER);
3223
3224	if ((mac_lo == 0) && (mac_hi == 0)) {
3225		BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n",
3226		    __FILE__, __LINE__);
3227	} else {
3228		sc->eaddr[0] = (u_char)(mac_hi >> 8);
3229		sc->eaddr[1] = (u_char)(mac_hi >> 0);
3230		sc->eaddr[2] = (u_char)(mac_lo >> 24);
3231		sc->eaddr[3] = (u_char)(mac_lo >> 16);
3232		sc->eaddr[4] = (u_char)(mac_lo >> 8);
3233		sc->eaddr[5] = (u_char)(mac_lo >> 0);
3234	}
3235
3236	DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = "
3237	    "%s\n", ether_sprintf(sc->eaddr));
3238}
3239
3240/****************************************************************************/
3241/* Program the MAC address.                                                 */
3242/*                                                                          */
3243/* Returns:                                                                 */
3244/*   Nothing.                                                               */
3245/****************************************************************************/
3246void
3247bnx_set_mac_addr(struct bnx_softc *sc)
3248{
3249	u_int32_t		val;
3250	const u_int8_t		*mac_addr = CLLADDR(sc->bnx_ec.ec_if.if_sadl);
3251
3252	DBPRINT(sc, BNX_INFO, "Setting Ethernet address = "
3253	    "%s\n", ether_sprintf(sc->eaddr));
3254
3255	val = (mac_addr[0] << 8) | mac_addr[1];
3256
3257	REG_WR(sc, BNX_EMAC_MAC_MATCH0, val);
3258
3259	val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
3260		(mac_addr[4] << 8) | mac_addr[5];
3261
3262	REG_WR(sc, BNX_EMAC_MAC_MATCH1, val);
3263}
3264
3265/****************************************************************************/
3266/* Stop the controller.                                                     */
3267/*                                                                          */
3268/* Returns:                                                                 */
3269/*   Nothing.                                                               */
3270/****************************************************************************/
3271void
3272bnx_stop(struct ifnet *ifp, int disable)
3273{
3274	struct bnx_softc *sc = ifp->if_softc;
3275
3276	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3277
3278	if ((ifp->if_flags & IFF_RUNNING) == 0)
3279		return;
3280
3281	callout_stop(&sc->bnx_timeout);
3282
3283	mii_down(&sc->bnx_mii);
3284
3285	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3286
3287	/* Disable the transmit/receive blocks. */
3288	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
3289	REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
3290	DELAY(20);
3291
3292	bnx_disable_intr(sc);
3293
3294	/* Tell firmware that the driver is going away. */
3295	if (disable)
3296		bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
3297	else
3298		bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL);
3299
3300	/* Free RX buffers. */
3301	bnx_free_rx_chain(sc);
3302
3303	/* Free TX buffers. */
3304	bnx_free_tx_chain(sc);
3305
3306	ifp->if_timer = 0;
3307
3308	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3309
3310}
3311
3312int
3313bnx_reset(struct bnx_softc *sc, u_int32_t reset_code)
3314{
3315	struct pci_attach_args	*pa = &(sc->bnx_pa);
3316	u_int32_t		val;
3317	int			i, rc = 0;
3318
3319	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3320
3321	/* Wait for pending PCI transactions to complete. */
3322	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS,
3323	    BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
3324	    BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
3325	    BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
3326	    BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
3327	val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
3328	DELAY(5);
3329
3330	/* Disable DMA */
3331	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3332		val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
3333		val &= ~BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
3334		REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
3335	}
3336
3337	/* Assume bootcode is running. */
3338	sc->bnx_fw_timed_out = 0;
3339
3340	/* Give the firmware a chance to prepare for the reset. */
3341	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code);
3342	if (rc)
3343		goto bnx_reset_exit;
3344
3345	/* Set a firmware reminder that this is a soft reset. */
3346	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE,
3347	    BNX_DRV_RESET_SIGNATURE_MAGIC);
3348
3349	/* Dummy read to force the chip to complete all current transactions. */
3350	val = REG_RD(sc, BNX_MISC_ID);
3351
3352	/* Chip reset. */
3353	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3354		REG_WR(sc, BNX_MISC_COMMAND, BNX_MISC_COMMAND_SW_RESET);
3355		REG_RD(sc, BNX_MISC_COMMAND);
3356		DELAY(5);
3357
3358		val = BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3359		      BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3360
3361		pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
3362		    val);
3363	} else {
3364		val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3365			BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3366			BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3367		REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val);
3368
3369		/* Allow up to 30us for reset to complete. */
3370		for (i = 0; i < 10; i++) {
3371			val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG);
3372			if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3373				BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
3374				break;
3375			}
3376			DELAY(10);
3377		}
3378
3379		/* Check that reset completed successfully. */
3380		if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3381		    BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
3382			BNX_PRINTF(sc, "%s(%d): Reset failed!\n",
3383			    __FILE__, __LINE__);
3384			rc = EBUSY;
3385			goto bnx_reset_exit;
3386		}
3387	}
3388
3389	/* Make sure byte swapping is properly configured. */
3390	val = REG_RD(sc, BNX_PCI_SWAP_DIAG0);
3391	if (val != 0x01020304) {
3392		BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n",
3393		    __FILE__, __LINE__);
3394		rc = ENODEV;
3395		goto bnx_reset_exit;
3396	}
3397
3398	/* Just completed a reset, assume that firmware is running again. */
3399	sc->bnx_fw_timed_out = 0;
3400
3401	/* Wait for the firmware to finish its initialization. */
3402	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code);
3403	if (rc)
3404		BNX_PRINTF(sc, "%s(%d): Firmware did not complete "
3405		    "initialization!\n", __FILE__, __LINE__);
3406
3407bnx_reset_exit:
3408	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3409
3410	return (rc);
3411}
3412
3413int
3414bnx_chipinit(struct bnx_softc *sc)
3415{
3416	struct pci_attach_args	*pa = &(sc->bnx_pa);
3417	u_int32_t		val;
3418	int			rc = 0;
3419
3420	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3421
3422	/* Make sure the interrupt is not active. */
3423	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
3424
3425	/* Initialize DMA byte/word swapping, configure the number of DMA  */
3426	/* channels and PCI clock compensation delay.                      */
3427	val = BNX_DMA_CONFIG_DATA_BYTE_SWAP |
3428	    BNX_DMA_CONFIG_DATA_WORD_SWAP |
3429#if BYTE_ORDER == BIG_ENDIAN
3430	    BNX_DMA_CONFIG_CNTL_BYTE_SWAP |
3431#endif
3432	    BNX_DMA_CONFIG_CNTL_WORD_SWAP |
3433	    DMA_READ_CHANS << 12 |
3434	    DMA_WRITE_CHANS << 16;
3435
3436	val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY;
3437
3438	if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
3439		val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP;
3440
3441	/*
3442	 * This setting resolves a problem observed on certain Intel PCI
3443	 * chipsets that cannot handle multiple outstanding DMA operations.
3444	 * See errata E9_5706A1_65.
3445	 */
3446	if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
3447	    (BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) &&
3448	    !(sc->bnx_flags & BNX_PCIX_FLAG))
3449		val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA;
3450
3451	REG_WR(sc, BNX_DMA_CONFIG, val);
3452
3453	/* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */
3454	if (sc->bnx_flags & BNX_PCIX_FLAG) {
3455		val = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD);
3456		pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD,
3457		    val & ~0x20000);
3458	}
3459
3460	/* Enable the RX_V2P and Context state machines before access. */
3461	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
3462	    BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
3463	    BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
3464	    BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
3465
3466	/* Initialize context mapping and zero out the quick contexts. */
3467	bnx_init_context(sc);
3468
3469	/* Initialize the on-boards CPUs */
3470	bnx_init_cpus(sc);
3471
3472	/* Prepare NVRAM for access. */
3473	if (bnx_init_nvram(sc)) {
3474		rc = ENODEV;
3475		goto bnx_chipinit_exit;
3476	}
3477
3478	/* Set the kernel bypass block size */
3479	val = REG_RD(sc, BNX_MQ_CONFIG);
3480	val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE;
3481	val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
3482
3483	/* Enable bins used on the 5709. */
3484	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3485		val |= BNX_MQ_CONFIG_BIN_MQ_MODE;
3486		if (BNX_CHIP_ID(sc) == BNX_CHIP_ID_5709_A1)
3487			val |= BNX_MQ_CONFIG_HALT_DIS;
3488	}
3489
3490	REG_WR(sc, BNX_MQ_CONFIG, val);
3491
3492	val = 0x10000 + (MAX_CID_CNT * BNX_MB_KERNEL_CTX_SIZE);
3493	REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val);
3494	REG_WR(sc, BNX_MQ_KNL_WIND_END, val);
3495
3496	val = (BCM_PAGE_BITS - 8) << 24;
3497	REG_WR(sc, BNX_RV2P_CONFIG, val);
3498
3499	/* Configure page size. */
3500	val = REG_RD(sc, BNX_TBDR_CONFIG);
3501	val &= ~BNX_TBDR_CONFIG_PAGE_SIZE;
3502	val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
3503	REG_WR(sc, BNX_TBDR_CONFIG, val);
3504
3505#if 0
3506	/* Set the perfect match control register to default. */
3507	REG_WR_IND(sc, BNX_RXP_PM_CTRL, 0);
3508#endif
3509
3510bnx_chipinit_exit:
3511	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3512
3513	return(rc);
3514}
3515
3516/****************************************************************************/
3517/* Initialize the controller in preparation to send/receive traffic.        */
3518/*                                                                          */
3519/* Returns:                                                                 */
3520/*   0 for success, positive value for failure.                             */
3521/****************************************************************************/
3522int
3523bnx_blockinit(struct bnx_softc *sc)
3524{
3525	u_int32_t		reg, val;
3526	int 			rc = 0;
3527
3528	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3529
3530	/* Load the hardware default MAC address. */
3531	bnx_set_mac_addr(sc);
3532
3533	/* Set the Ethernet backoff seed value */
3534	val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
3535	    (sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
3536	REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val);
3537
3538	sc->last_status_idx = 0;
3539	sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE;
3540
3541	/* Set up link change interrupt generation. */
3542	REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK);
3543	REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
3544
3545	/* Program the physical address of the status block. */
3546	REG_WR(sc, BNX_HC_STATUS_ADDR_L, (u_int32_t)(sc->status_block_paddr));
3547	REG_WR(sc, BNX_HC_STATUS_ADDR_H,
3548	    (u_int32_t)((u_int64_t)sc->status_block_paddr >> 32));
3549
3550	/* Program the physical address of the statistics block. */
3551	REG_WR(sc, BNX_HC_STATISTICS_ADDR_L,
3552	    (u_int32_t)(sc->stats_block_paddr));
3553	REG_WR(sc, BNX_HC_STATISTICS_ADDR_H,
3554	    (u_int32_t)((u_int64_t)sc->stats_block_paddr >> 32));
3555
3556	/* Program various host coalescing parameters. */
3557	REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int
3558	    << 16) | sc->bnx_tx_quick_cons_trip);
3559	REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int
3560	    << 16) | sc->bnx_rx_quick_cons_trip);
3561	REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) |
3562	    sc->bnx_comp_prod_trip);
3563	REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) |
3564	    sc->bnx_tx_ticks);
3565	REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) |
3566	    sc->bnx_rx_ticks);
3567	REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) |
3568	    sc->bnx_com_ticks);
3569	REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) |
3570	    sc->bnx_cmd_ticks);
3571	REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00));
3572	REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8);  /* 3ms */
3573	REG_WR(sc, BNX_HC_CONFIG,
3574	    (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE |
3575	    BNX_HC_CONFIG_COLLECT_STATS));
3576
3577	/* Clear the internal statistics counters. */
3578	REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW);
3579
3580	/* Verify that bootcode is running. */
3581	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE);
3582
3583	DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure),
3584	    BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n",
3585	    __FILE__, __LINE__); reg = 0);
3586
3587	if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
3588	    BNX_DEV_INFO_SIGNATURE_MAGIC) {
3589		BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, "
3590		    "Expected: 08%08X\n", __FILE__, __LINE__,
3591		    (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK),
3592		    BNX_DEV_INFO_SIGNATURE_MAGIC);
3593		rc = ENODEV;
3594		goto bnx_blockinit_exit;
3595	}
3596
3597	/* Check if any management firmware is running. */
3598	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE);
3599	if (reg & (BNX_PORT_FEATURE_ASF_ENABLED |
3600	    BNX_PORT_FEATURE_IMD_ENABLED)) {
3601		DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n");
3602		sc->bnx_flags |= BNX_MFW_ENABLE_FLAG;
3603	}
3604
3605	sc->bnx_fw_ver = REG_RD_IND(sc, sc->bnx_shmem_base +
3606	    BNX_DEV_INFO_BC_REV);
3607
3608	DBPRINT(sc, BNX_INFO, "bootcode rev = 0x%08X\n", sc->bnx_fw_ver);
3609
3610	/* Enable DMA */
3611	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3612		val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
3613		val |= BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
3614		REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
3615	}
3616
3617	/* Allow bootcode to apply any additional fixes before enabling MAC. */
3618	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET);
3619
3620	/* Enable link state change interrupt generation. */
3621	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3622		REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
3623		    BNX_MISC_ENABLE_DEFAULT_XI);
3624	} else
3625		REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, BNX_MISC_ENABLE_DEFAULT);
3626
3627	/* Enable all remaining blocks in the MAC. */
3628	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, 0x5ffffff);
3629	REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
3630	DELAY(20);
3631
3632bnx_blockinit_exit:
3633	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3634
3635	return (rc);
3636}
3637
3638static int
3639bnx_add_buf(struct bnx_softc *sc, struct mbuf *m_new, u_int16_t *prod,
3640    u_int16_t *chain_prod, u_int32_t *prod_bseq)
3641{
3642	bus_dmamap_t		map;
3643	struct rx_bd		*rxbd;
3644	u_int32_t		addr;
3645	int i;
3646#ifdef BNX_DEBUG
3647	u_int16_t debug_chain_prod =	*chain_prod;
3648#endif
3649	u_int16_t first_chain_prod;
3650
3651	m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
3652
3653	/* Map the mbuf cluster into device memory. */
3654	map = sc->rx_mbuf_map[*chain_prod];
3655	first_chain_prod = *chain_prod;
3656	if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_new, BUS_DMA_NOWAIT)) {
3657		BNX_PRINTF(sc, "%s(%d): Error mapping mbuf into RX chain!\n",
3658		    __FILE__, __LINE__);
3659
3660		m_freem(m_new);
3661
3662		DBRUNIF(1, sc->rx_mbuf_alloc--);
3663
3664		return ENOBUFS;
3665	}
3666	/* Make sure there is room in the receive chain. */
3667	if (map->dm_nsegs > sc->free_rx_bd) {
3668		bus_dmamap_unload(sc->bnx_dmatag, map);
3669		m_freem(m_new);
3670		return EFBIG;
3671	}
3672#ifdef BNX_DEBUG
3673	/* Track the distribution of buffer segments. */
3674	sc->rx_mbuf_segs[map->dm_nsegs]++;
3675#endif
3676
3677	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
3678	    BUS_DMASYNC_PREREAD);
3679
3680	/* Update some debug statistics counters */
3681	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
3682	    sc->rx_low_watermark = sc->free_rx_bd);
3683	DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), sc->rx_empty_count++);
3684
3685	/*
3686	 * Setup the rx_bd for the first segment
3687	 */
3688	rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3689
3690	addr = (u_int32_t)map->dm_segs[0].ds_addr;
3691	rxbd->rx_bd_haddr_lo = addr;
3692	addr = (u_int32_t)((u_int64_t)map->dm_segs[0].ds_addr >> 32);
3693	rxbd->rx_bd_haddr_hi = addr;
3694	rxbd->rx_bd_len = map->dm_segs[0].ds_len;
3695	rxbd->rx_bd_flags = RX_BD_FLAGS_START;
3696	*prod_bseq += map->dm_segs[0].ds_len;
3697	bus_dmamap_sync(sc->bnx_dmatag,
3698	    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3699	    sizeof(struct rx_bd) * RX_IDX(*chain_prod), sizeof(struct rx_bd),
3700	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3701
3702	for (i = 1; i < map->dm_nsegs; i++) {
3703		*prod = NEXT_RX_BD(*prod);
3704		*chain_prod = RX_CHAIN_IDX(*prod);
3705
3706		rxbd =
3707		    &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3708
3709		addr = (u_int32_t)map->dm_segs[i].ds_addr;
3710		rxbd->rx_bd_haddr_lo = addr;
3711		addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
3712		rxbd->rx_bd_haddr_hi = addr;
3713		rxbd->rx_bd_len = map->dm_segs[i].ds_len;
3714		rxbd->rx_bd_flags = 0;
3715		*prod_bseq += map->dm_segs[i].ds_len;
3716		bus_dmamap_sync(sc->bnx_dmatag,
3717		    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3718		    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3719		    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3720	}
3721
3722	rxbd->rx_bd_flags |= RX_BD_FLAGS_END;
3723	bus_dmamap_sync(sc->bnx_dmatag,
3724	    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3725	    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3726	    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3727
3728	/*
3729	 * Save the mbuf, ajust the map pointer (swap map for first and
3730	 * last rx_bd entry to that rx_mbuf_ptr and rx_mbuf_map matches)
3731	 * and update counter.
3732	 */
3733	sc->rx_mbuf_ptr[*chain_prod] = m_new;
3734	sc->rx_mbuf_map[first_chain_prod] = sc->rx_mbuf_map[*chain_prod];
3735	sc->rx_mbuf_map[*chain_prod] = map;
3736	sc->free_rx_bd -= map->dm_nsegs;
3737
3738	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod,
3739	    map->dm_nsegs));
3740	*prod = NEXT_RX_BD(*prod);
3741	*chain_prod = RX_CHAIN_IDX(*prod);
3742
3743	return 0;
3744}
3745
3746/****************************************************************************/
3747/* Encapsulate an mbuf cluster into the rx_bd chain.                        */
3748/*                                                                          */
3749/* The NetXtreme II can support Jumbo frames by using multiple rx_bd's.     */
3750/* This routine will map an mbuf cluster into 1 or more rx_bd's as          */
3751/* necessary.                                                               */
3752/*                                                                          */
3753/* Returns:                                                                 */
3754/*   0 for success, positive value for failure.                             */
3755/****************************************************************************/
3756int
3757bnx_get_buf(struct bnx_softc *sc, u_int16_t *prod,
3758    u_int16_t *chain_prod, u_int32_t *prod_bseq)
3759{
3760	struct mbuf 		*m_new = NULL;
3761	int			rc = 0;
3762	u_int16_t min_free_bd;
3763
3764	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n",
3765	    __func__);
3766
3767	/* Make sure the inputs are valid. */
3768	DBRUNIF((*chain_prod > MAX_RX_BD),
3769	    aprint_error_dev(sc->bnx_dev,
3770	        "RX producer out of range: 0x%04X > 0x%04X\n",
3771		*chain_prod, (u_int16_t)MAX_RX_BD));
3772
3773	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = "
3774	    "0x%04X, prod_bseq = 0x%08X\n", __func__, *prod, *chain_prod,
3775	    *prod_bseq);
3776
3777	/* try to get in as many mbufs as possible */
3778	if (sc->mbuf_alloc_size == MCLBYTES)
3779		min_free_bd = (MCLBYTES + PAGE_SIZE - 1) / PAGE_SIZE;
3780	else
3781		min_free_bd = (BNX_MAX_JUMBO_MRU + PAGE_SIZE - 1) / PAGE_SIZE;
3782	while (sc->free_rx_bd >= min_free_bd) {
3783		/* Simulate an mbuf allocation failure. */
3784		DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
3785		    aprint_error_dev(sc->bnx_dev,
3786		    "Simulating mbuf allocation failure.\n");
3787			sc->mbuf_sim_alloc_failed++;
3788			rc = ENOBUFS;
3789			goto bnx_get_buf_exit);
3790
3791		/* This is a new mbuf allocation. */
3792		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
3793		if (m_new == NULL) {
3794			DBPRINT(sc, BNX_WARN,
3795			    "%s(%d): RX mbuf header allocation failed!\n",
3796			    __FILE__, __LINE__);
3797
3798			sc->mbuf_alloc_failed++;
3799
3800			rc = ENOBUFS;
3801			goto bnx_get_buf_exit;
3802		}
3803
3804		DBRUNIF(1, sc->rx_mbuf_alloc++);
3805
3806		/* Simulate an mbuf cluster allocation failure. */
3807		DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
3808			m_freem(m_new);
3809			sc->rx_mbuf_alloc--;
3810			sc->mbuf_alloc_failed++;
3811			sc->mbuf_sim_alloc_failed++;
3812			rc = ENOBUFS;
3813			goto bnx_get_buf_exit);
3814
3815		if (sc->mbuf_alloc_size == MCLBYTES)
3816			MCLGET(m_new, M_DONTWAIT);
3817		else
3818			MEXTMALLOC(m_new, sc->mbuf_alloc_size,
3819			    M_DONTWAIT);
3820		if (!(m_new->m_flags & M_EXT)) {
3821			DBPRINT(sc, BNX_WARN,
3822			    "%s(%d): RX mbuf chain allocation failed!\n",
3823			    __FILE__, __LINE__);
3824
3825			m_freem(m_new);
3826
3827			DBRUNIF(1, sc->rx_mbuf_alloc--);
3828			sc->mbuf_alloc_failed++;
3829
3830			rc = ENOBUFS;
3831			goto bnx_get_buf_exit;
3832		}
3833
3834		rc = bnx_add_buf(sc, m_new, prod, chain_prod, prod_bseq);
3835		if (rc != 0)
3836			goto bnx_get_buf_exit;
3837	}
3838
3839bnx_get_buf_exit:
3840	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod "
3841	    "= 0x%04X, prod_bseq = 0x%08X\n", __func__, *prod,
3842	    *chain_prod, *prod_bseq);
3843
3844	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Exiting %s()\n",
3845	    __func__);
3846
3847	return(rc);
3848}
3849
3850void
3851bnx_alloc_pkts(struct work * unused, void * arg)
3852{
3853	struct bnx_softc *sc = arg;
3854	struct ifnet *ifp = &sc->bnx_ec.ec_if;
3855	struct bnx_pkt *pkt;
3856	int i, s;
3857
3858	for (i = 0; i < 4; i++) { /* magic! */
3859		pkt = pool_get(bnx_tx_pool, PR_WAITOK);
3860		if (pkt == NULL)
3861			break;
3862
3863		if (bus_dmamap_create(sc->bnx_dmatag,
3864		    MCLBYTES * BNX_MAX_SEGMENTS, USABLE_TX_BD,
3865		    MCLBYTES, 0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
3866		    &pkt->pkt_dmamap) != 0)
3867			goto put;
3868
3869		if (!ISSET(ifp->if_flags, IFF_UP))
3870			goto stopping;
3871
3872		mutex_enter(&sc->tx_pkt_mtx);
3873		TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
3874		sc->tx_pkt_count++;
3875		mutex_exit(&sc->tx_pkt_mtx);
3876	}
3877
3878	mutex_enter(&sc->tx_pkt_mtx);
3879	CLR(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
3880	mutex_exit(&sc->tx_pkt_mtx);
3881
3882	/* fire-up TX now that allocations have been done */
3883	s = splnet();
3884	if (!IFQ_IS_EMPTY(&ifp->if_snd))
3885		bnx_start(ifp);
3886	splx(s);
3887
3888	return;
3889
3890stopping:
3891	bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
3892put:
3893	pool_put(bnx_tx_pool, pkt);
3894	return;
3895}
3896
3897/****************************************************************************/
3898/* Initialize the TX context memory.                                        */
3899/*                                                                          */
3900/* Returns:                                                                 */
3901/*   Nothing                                                                */
3902/****************************************************************************/
3903void
3904bnx_init_tx_context(struct bnx_softc *sc)
3905{
3906	u_int32_t val;
3907
3908	/* Initialize the context ID for an L2 TX chain. */
3909	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3910		/* Set the CID type to support an L2 connection. */
3911		val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
3912		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE_XI, val);
3913		val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
3914		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE_XI, val);
3915
3916		/* Point the hardware to the first page in the chain. */
3917		val = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[0] >> 32);
3918		CTX_WR(sc, GET_CID_ADDR(TX_CID),
3919		    BNX_L2CTX_TBDR_BHADDR_HI_XI, val);
3920		val = (u_int32_t)(sc->tx_bd_chain_paddr[0]);
3921		CTX_WR(sc, GET_CID_ADDR(TX_CID),
3922		    BNX_L2CTX_TBDR_BHADDR_LO_XI, val);
3923	} else {
3924		/* Set the CID type to support an L2 connection. */
3925		val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
3926		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val);
3927		val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
3928		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val);
3929
3930		/* Point the hardware to the first page in the chain. */
3931		val = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[0] >> 32);
3932		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val);
3933		val = (u_int32_t)(sc->tx_bd_chain_paddr[0]);
3934		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val);
3935	}
3936}
3937
3938
3939/****************************************************************************/
3940/* Allocate memory and initialize the TX data structures.                   */
3941/*                                                                          */
3942/* Returns:                                                                 */
3943/*   0 for success, positive value for failure.                             */
3944/****************************************************************************/
3945int
3946bnx_init_tx_chain(struct bnx_softc *sc)
3947{
3948	struct tx_bd		*txbd;
3949	u_int32_t		addr;
3950	int			i, rc = 0;
3951
3952	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3953
3954	/* Force an allocation of some dmamaps for tx up front */
3955	bnx_alloc_pkts(NULL, sc);
3956
3957	/* Set the initial TX producer/consumer indices. */
3958	sc->tx_prod = 0;
3959	sc->tx_cons = 0;
3960	sc->tx_prod_bseq = 0;
3961	sc->used_tx_bd = 0;
3962	sc->max_tx_bd = USABLE_TX_BD;
3963	DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD);
3964	DBRUNIF(1, sc->tx_full_count = 0);
3965
3966	/*
3967	 * The NetXtreme II supports a linked-list structure called
3968	 * a Buffer Descriptor Chain (or BD chain).  A BD chain
3969	 * consists of a series of 1 or more chain pages, each of which
3970	 * consists of a fixed number of BD entries.
3971	 * The last BD entry on each page is a pointer to the next page
3972	 * in the chain, and the last pointer in the BD chain
3973	 * points back to the beginning of the chain.
3974	 */
3975
3976	/* Set the TX next pointer chain entries. */
3977	for (i = 0; i < TX_PAGES; i++) {
3978		int j;
3979
3980		txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
3981
3982		/* Check if we've reached the last page. */
3983		if (i == (TX_PAGES - 1))
3984			j = 0;
3985		else
3986			j = i + 1;
3987
3988		addr = (u_int32_t)sc->tx_bd_chain_paddr[j];
3989		txbd->tx_bd_haddr_lo = addr;
3990		addr = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[j] >> 32);
3991		txbd->tx_bd_haddr_hi = addr;
3992		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
3993		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
3994	}
3995
3996	/*
3997	 * Initialize the context ID for an L2 TX chain.
3998	 */
3999	bnx_init_tx_context(sc);
4000
4001	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4002
4003	return(rc);
4004}
4005
4006/****************************************************************************/
4007/* Free memory and clear the TX data structures.                            */
4008/*                                                                          */
4009/* Returns:                                                                 */
4010/*   Nothing.                                                               */
4011/****************************************************************************/
4012void
4013bnx_free_tx_chain(struct bnx_softc *sc)
4014{
4015	struct bnx_pkt		*pkt;
4016	int			i;
4017
4018	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4019
4020	/* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
4021	mutex_enter(&sc->tx_pkt_mtx);
4022	while ((pkt = TAILQ_FIRST(&sc->tx_used_pkts)) != NULL) {
4023		TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
4024		mutex_exit(&sc->tx_pkt_mtx);
4025
4026		bus_dmamap_sync(sc->bnx_dmatag, pkt->pkt_dmamap, 0,
4027		    pkt->pkt_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4028		bus_dmamap_unload(sc->bnx_dmatag, pkt->pkt_dmamap);
4029
4030		m_freem(pkt->pkt_mbuf);
4031		DBRUNIF(1, sc->tx_mbuf_alloc--);
4032
4033		mutex_enter(&sc->tx_pkt_mtx);
4034		TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4035        }
4036
4037	/* Destroy all the dmamaps we allocated for TX */
4038	while ((pkt = TAILQ_FIRST(&sc->tx_free_pkts)) != NULL) {
4039		TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
4040		sc->tx_pkt_count--;
4041		mutex_exit(&sc->tx_pkt_mtx);
4042
4043		bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
4044		pool_put(bnx_tx_pool, pkt);
4045
4046		mutex_enter(&sc->tx_pkt_mtx);
4047	}
4048	mutex_exit(&sc->tx_pkt_mtx);
4049
4050
4051
4052	/* Clear each TX chain page. */
4053	for (i = 0; i < TX_PAGES; i++) {
4054		memset((char *)sc->tx_bd_chain[i], 0, BNX_TX_CHAIN_PAGE_SZ);
4055		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
4056		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
4057	}
4058
4059	sc->used_tx_bd = 0;
4060
4061	/* Check if we lost any mbufs in the process. */
4062	DBRUNIF((sc->tx_mbuf_alloc),
4063	    aprint_error_dev(sc->bnx_dev,
4064	        "Memory leak! Lost %d mbufs from tx chain!\n",
4065		sc->tx_mbuf_alloc));
4066
4067	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4068}
4069
4070/****************************************************************************/
4071/* Initialize the RX context memory.                                        */
4072/*                                                                          */
4073/* Returns:                                                                 */
4074/*   Nothing                                                                */
4075/****************************************************************************/
4076void
4077bnx_init_rx_context(struct bnx_softc *sc)
4078{
4079	u_int32_t val;
4080
4081	/* Initialize the context ID for an L2 RX chain. */
4082	val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
4083		BNX_L2CTX_CTX_TYPE_SIZE_L2 | (0x02 << 8);
4084
4085	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
4086		u_int32_t lo_water, hi_water;
4087
4088		lo_water = BNX_L2CTX_RX_LO_WATER_MARK_DEFAULT;
4089		hi_water = USABLE_RX_BD / 4;
4090
4091		lo_water /= BNX_L2CTX_RX_LO_WATER_MARK_SCALE;
4092		hi_water /= BNX_L2CTX_RX_HI_WATER_MARK_SCALE;
4093
4094		if (hi_water > 0xf)
4095			hi_water = 0xf;
4096		else if (hi_water == 0)
4097			lo_water = 0;
4098		val |= lo_water |
4099		    (hi_water << BNX_L2CTX_RX_HI_WATER_MARK_SHIFT);
4100	}
4101
4102 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val);
4103
4104	/* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
4105	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
4106		val = REG_RD(sc, BNX_MQ_MAP_L2_5);
4107		REG_WR(sc, BNX_MQ_MAP_L2_5, val | BNX_MQ_MAP_L2_5_ARM);
4108	}
4109
4110	/* Point the hardware to the first page in the chain. */
4111	val = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[0] >> 32);
4112	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val);
4113	val = (u_int32_t)(sc->rx_bd_chain_paddr[0]);
4114	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val);
4115}
4116
4117/****************************************************************************/
4118/* Allocate memory and initialize the RX data structures.                   */
4119/*                                                                          */
4120/* Returns:                                                                 */
4121/*   0 for success, positive value for failure.                             */
4122/****************************************************************************/
4123int
4124bnx_init_rx_chain(struct bnx_softc *sc)
4125{
4126	struct rx_bd		*rxbd;
4127	int			i, rc = 0;
4128	u_int16_t		prod, chain_prod;
4129	u_int32_t		prod_bseq, addr;
4130
4131	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4132
4133	/* Initialize the RX producer and consumer indices. */
4134	sc->rx_prod = 0;
4135	sc->rx_cons = 0;
4136	sc->rx_prod_bseq = 0;
4137	sc->free_rx_bd = USABLE_RX_BD;
4138	sc->max_rx_bd = USABLE_RX_BD;
4139	DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD);
4140	DBRUNIF(1, sc->rx_empty_count = 0);
4141
4142	/* Initialize the RX next pointer chain entries. */
4143	for (i = 0; i < RX_PAGES; i++) {
4144		int j;
4145
4146		rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
4147
4148		/* Check if we've reached the last page. */
4149		if (i == (RX_PAGES - 1))
4150			j = 0;
4151		else
4152			j = i + 1;
4153
4154		/* Setup the chain page pointers. */
4155		addr = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[j] >> 32);
4156		rxbd->rx_bd_haddr_hi = addr;
4157		addr = (u_int32_t)sc->rx_bd_chain_paddr[j];
4158		rxbd->rx_bd_haddr_lo = addr;
4159		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
4160		    0, BNX_RX_CHAIN_PAGE_SZ,
4161		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4162	}
4163
4164	/* Allocate mbuf clusters for the rx_bd chain. */
4165	prod = prod_bseq = 0;
4166	chain_prod = RX_CHAIN_IDX(prod);
4167	if (bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq)) {
4168		BNX_PRINTF(sc,
4169		    "Error filling RX chain: rx_bd[0x%04X]!\n", chain_prod);
4170	}
4171
4172	/* Save the RX chain producer index. */
4173	sc->rx_prod = prod;
4174	sc->rx_prod_bseq = prod_bseq;
4175
4176	for (i = 0; i < RX_PAGES; i++)
4177		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0,
4178		    sc->rx_bd_chain_map[i]->dm_mapsize,
4179		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4180
4181	/* Tell the chip about the waiting rx_bd's. */
4182	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
4183	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
4184
4185	bnx_init_rx_context(sc);
4186
4187	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD));
4188
4189	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4190
4191	return(rc);
4192}
4193
4194/****************************************************************************/
4195/* Free memory and clear the RX data structures.                            */
4196/*                                                                          */
4197/* Returns:                                                                 */
4198/*   Nothing.                                                               */
4199/****************************************************************************/
4200void
4201bnx_free_rx_chain(struct bnx_softc *sc)
4202{
4203	int			i;
4204
4205	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4206
4207	/* Free any mbufs still in the RX mbuf chain. */
4208	for (i = 0; i < TOTAL_RX_BD; i++) {
4209		if (sc->rx_mbuf_ptr[i] != NULL) {
4210			if (sc->rx_mbuf_map[i] != NULL) {
4211				bus_dmamap_sync(sc->bnx_dmatag,
4212				    sc->rx_mbuf_map[i],	0,
4213				    sc->rx_mbuf_map[i]->dm_mapsize,
4214				    BUS_DMASYNC_POSTREAD);
4215				bus_dmamap_unload(sc->bnx_dmatag,
4216				    sc->rx_mbuf_map[i]);
4217			}
4218			m_freem(sc->rx_mbuf_ptr[i]);
4219			sc->rx_mbuf_ptr[i] = NULL;
4220			DBRUNIF(1, sc->rx_mbuf_alloc--);
4221		}
4222	}
4223
4224	/* Clear each RX chain page. */
4225	for (i = 0; i < RX_PAGES; i++)
4226		memset((char *)sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
4227
4228	sc->free_rx_bd = sc->max_rx_bd;
4229
4230	/* Check if we lost any mbufs in the process. */
4231	DBRUNIF((sc->rx_mbuf_alloc),
4232	    aprint_error_dev(sc->bnx_dev,
4233	        "Memory leak! Lost %d mbufs from rx chain!\n",
4234		sc->rx_mbuf_alloc));
4235
4236	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4237}
4238
4239/****************************************************************************/
4240/* Handles PHY generated interrupt events.                                  */
4241/*                                                                          */
4242/* Returns:                                                                 */
4243/*   Nothing.                                                               */
4244/****************************************************************************/
4245void
4246bnx_phy_intr(struct bnx_softc *sc)
4247{
4248	u_int32_t		new_link_state, old_link_state;
4249
4250	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4251	    BUS_DMASYNC_POSTREAD);
4252	new_link_state = sc->status_block->status_attn_bits &
4253	    STATUS_ATTN_BITS_LINK_STATE;
4254	old_link_state = sc->status_block->status_attn_bits_ack &
4255	    STATUS_ATTN_BITS_LINK_STATE;
4256
4257	/* Handle any changes if the link state has changed. */
4258	if (new_link_state != old_link_state) {
4259		DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc));
4260
4261		callout_stop(&sc->bnx_timeout);
4262		bnx_tick(sc);
4263
4264		/* Update the status_attn_bits_ack field in the status block. */
4265		if (new_link_state) {
4266			REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD,
4267			    STATUS_ATTN_BITS_LINK_STATE);
4268			DBPRINT(sc, BNX_INFO, "Link is now UP.\n");
4269		} else {
4270			REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD,
4271			    STATUS_ATTN_BITS_LINK_STATE);
4272			DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n");
4273		}
4274	}
4275
4276	/* Acknowledge the link change interrupt. */
4277	REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE);
4278}
4279
4280/****************************************************************************/
4281/* Handles received frame interrupt events.                                 */
4282/*                                                                          */
4283/* Returns:                                                                 */
4284/*   Nothing.                                                               */
4285/****************************************************************************/
4286void
4287bnx_rx_intr(struct bnx_softc *sc)
4288{
4289	struct status_block	*sblk = sc->status_block;
4290	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
4291	u_int16_t		hw_cons, sw_cons, sw_chain_cons;
4292	u_int16_t		sw_prod, sw_chain_prod;
4293	u_int32_t		sw_prod_bseq;
4294	struct l2_fhdr		*l2fhdr;
4295	int			i;
4296
4297	DBRUNIF(1, sc->rx_interrupts++);
4298	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4299	    BUS_DMASYNC_POSTREAD);
4300
4301	/* Prepare the RX chain pages to be accessed by the host CPU. */
4302	for (i = 0; i < RX_PAGES; i++)
4303		bus_dmamap_sync(sc->bnx_dmatag,
4304		    sc->rx_bd_chain_map[i], 0,
4305		    sc->rx_bd_chain_map[i]->dm_mapsize,
4306		    BUS_DMASYNC_POSTWRITE);
4307
4308	/* Get the hardware's view of the RX consumer index. */
4309	hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
4310	if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
4311		hw_cons++;
4312
4313	/* Get working copies of the driver's view of the RX indices. */
4314	sw_cons = sc->rx_cons;
4315	sw_prod = sc->rx_prod;
4316	sw_prod_bseq = sc->rx_prod_bseq;
4317
4318	DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, "
4319	    "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n",
4320	    __func__, sw_prod, sw_cons, sw_prod_bseq);
4321
4322	/* Prevent speculative reads from getting ahead of the status block. */
4323	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4324	    BUS_SPACE_BARRIER_READ);
4325
4326	/* Update some debug statistics counters */
4327	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
4328	    sc->rx_low_watermark = sc->free_rx_bd);
4329	DBRUNIF((sc->free_rx_bd == USABLE_RX_BD), sc->rx_empty_count++);
4330
4331	/*
4332	 * Scan through the receive chain as long
4333	 * as there is work to do.
4334	 */
4335	while (sw_cons != hw_cons) {
4336		struct mbuf *m;
4337		struct rx_bd *rxbd;
4338		unsigned int len;
4339		u_int32_t status;
4340
4341		/* Convert the producer/consumer indices to an actual
4342		 * rx_bd index.
4343		 */
4344		sw_chain_cons = RX_CHAIN_IDX(sw_cons);
4345		sw_chain_prod = RX_CHAIN_IDX(sw_prod);
4346
4347		/* Get the used rx_bd. */
4348		rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)];
4349		sc->free_rx_bd++;
4350
4351		DBRUN(BNX_VERBOSE_RECV, aprint_error("%s(): ", __func__);
4352		bnx_dump_rxbd(sc, sw_chain_cons, rxbd));
4353
4354		/* The mbuf is stored with the last rx_bd entry of a packet. */
4355		if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
4356#ifdef DIAGNOSTIC
4357			/* Validate that this is the last rx_bd. */
4358			if ((rxbd->rx_bd_flags & RX_BD_FLAGS_END) == 0) {
4359			    printf("%s: Unexpected mbuf found in "
4360			        "rx_bd[0x%04X]!\n", device_xname(sc->bnx_dev),
4361			        sw_chain_cons);
4362			}
4363#endif
4364
4365			/* DRC - ToDo: If the received packet is small, say less
4366			 *             than 128 bytes, allocate a new mbuf here,
4367			 *             copy the data to that mbuf, and recycle
4368			 *             the mapped jumbo frame.
4369			 */
4370
4371			/* Unmap the mbuf from DMA space. */
4372#ifdef DIAGNOSTIC
4373			if (sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize == 0) {
4374				printf("invalid map sw_cons 0x%x "
4375				"sw_prod 0x%x "
4376				"sw_chain_cons 0x%x "
4377				"sw_chain_prod 0x%x "
4378				"hw_cons 0x%x "
4379				"TOTAL_RX_BD_PER_PAGE 0x%x "
4380				"TOTAL_RX_BD 0x%x\n",
4381				sw_cons, sw_prod, sw_chain_cons, sw_chain_prod,
4382				hw_cons,
4383				(int)TOTAL_RX_BD_PER_PAGE, (int)TOTAL_RX_BD);
4384			}
4385#endif
4386			bus_dmamap_sync(sc->bnx_dmatag,
4387			    sc->rx_mbuf_map[sw_chain_cons], 0,
4388			    sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize,
4389			    BUS_DMASYNC_POSTREAD);
4390			bus_dmamap_unload(sc->bnx_dmatag,
4391			    sc->rx_mbuf_map[sw_chain_cons]);
4392
4393			/* Remove the mbuf from the driver's chain. */
4394			m = sc->rx_mbuf_ptr[sw_chain_cons];
4395			sc->rx_mbuf_ptr[sw_chain_cons] = NULL;
4396
4397			/*
4398			 * Frames received on the NetXteme II are prepended
4399			 * with the l2_fhdr structure which provides status
4400			 * information about the received frame (including
4401			 * VLAN tags and checksum info) and are also
4402			 * automatically adjusted to align the IP header
4403			 * (i.e. two null bytes are inserted before the
4404			 * Ethernet header).
4405			 */
4406			l2fhdr = mtod(m, struct l2_fhdr *);
4407
4408			len    = l2fhdr->l2_fhdr_pkt_len;
4409			status = l2fhdr->l2_fhdr_status;
4410
4411			DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check),
4412			    aprint_error("Simulating l2_fhdr status error.\n");
4413			    status = status | L2_FHDR_ERRORS_PHY_DECODE);
4414
4415			/* Watch for unusual sized frames. */
4416			DBRUNIF(((len < BNX_MIN_MTU) ||
4417			    (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)),
4418			    aprint_error_dev(sc->bnx_dev,
4419			        "Unusual frame size found. "
4420				"Min(%d), Actual(%d), Max(%d)\n",
4421				(int)BNX_MIN_MTU, len,
4422				(int)BNX_MAX_JUMBO_ETHER_MTU_VLAN);
4423
4424			bnx_dump_mbuf(sc, m);
4425			bnx_breakpoint(sc));
4426
4427			len -= ETHER_CRC_LEN;
4428
4429			/* Check the received frame for errors. */
4430			if ((status &  (L2_FHDR_ERRORS_BAD_CRC |
4431			    L2_FHDR_ERRORS_PHY_DECODE |
4432			    L2_FHDR_ERRORS_ALIGNMENT |
4433			    L2_FHDR_ERRORS_TOO_SHORT |
4434			    L2_FHDR_ERRORS_GIANT_FRAME)) ||
4435			    len < (BNX_MIN_MTU - ETHER_CRC_LEN) ||
4436			    len >
4437			    (BNX_MAX_JUMBO_ETHER_MTU_VLAN - ETHER_CRC_LEN)) {
4438				ifp->if_ierrors++;
4439				DBRUNIF(1, sc->l2fhdr_status_errors++);
4440
4441				/* Reuse the mbuf for a new frame. */
4442				if (bnx_add_buf(sc, m, &sw_prod,
4443				    &sw_chain_prod, &sw_prod_bseq)) {
4444					DBRUNIF(1, bnx_breakpoint(sc));
4445					panic("%s: Can't reuse RX mbuf!\n",
4446					    device_xname(sc->bnx_dev));
4447				}
4448				continue;
4449			}
4450
4451			/*
4452			 * Get a new mbuf for the rx_bd.   If no new
4453			 * mbufs are available then reuse the current mbuf,
4454			 * log an ierror on the interface, and generate
4455			 * an error in the system log.
4456			 */
4457			if (bnx_get_buf(sc, &sw_prod, &sw_chain_prod,
4458			    &sw_prod_bseq)) {
4459				DBRUN(BNX_WARN, aprint_debug_dev(sc->bnx_dev,
4460				    "Failed to allocate "
4461				    "new mbuf, incoming frame dropped!\n"));
4462
4463				ifp->if_ierrors++;
4464
4465				/* Try and reuse the exisitng mbuf. */
4466				if (bnx_add_buf(sc, m, &sw_prod,
4467				    &sw_chain_prod, &sw_prod_bseq)) {
4468					DBRUNIF(1, bnx_breakpoint(sc));
4469					panic("%s: Double mbuf allocation "
4470					    "failure!",
4471					    device_xname(sc->bnx_dev));
4472				}
4473				continue;
4474			}
4475
4476			/* Skip over the l2_fhdr when passing the data up
4477			 * the stack.
4478			 */
4479			m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
4480
4481			/* Adjust the pckt length to match the received data. */
4482			m->m_pkthdr.len = m->m_len = len;
4483
4484			/* Send the packet to the appropriate interface. */
4485			m->m_pkthdr.rcvif = ifp;
4486
4487			DBRUN(BNX_VERBOSE_RECV,
4488			    struct ether_header *eh;
4489			    eh = mtod(m, struct ether_header *);
4490			    aprint_error("%s: to: %s, from: %s, type: 0x%04X\n",
4491			    __func__, ether_sprintf(eh->ether_dhost),
4492			    ether_sprintf(eh->ether_shost),
4493			    htons(eh->ether_type)));
4494
4495			/* Validate the checksum. */
4496
4497			/* Check for an IP datagram. */
4498			if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
4499				/* Check if the IP checksum is valid. */
4500				if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff)
4501				    == 0)
4502					m->m_pkthdr.csum_flags |=
4503					    M_CSUM_IPv4;
4504#ifdef BNX_DEBUG
4505				else
4506					DBPRINT(sc, BNX_WARN_SEND,
4507					    "%s(): Invalid IP checksum "
4508					        "= 0x%04X!\n",
4509						__func__,
4510						l2fhdr->l2_fhdr_ip_xsum
4511						);
4512#endif
4513			}
4514
4515			/* Check for a valid TCP/UDP frame. */
4516			if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
4517			    L2_FHDR_STATUS_UDP_DATAGRAM)) {
4518				/* Check for a good TCP/UDP checksum. */
4519				if ((status &
4520				    (L2_FHDR_ERRORS_TCP_XSUM |
4521				    L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
4522					m->m_pkthdr.csum_flags |=
4523					    M_CSUM_TCPv4 |
4524					    M_CSUM_UDPv4;
4525				} else {
4526					DBPRINT(sc, BNX_WARN_SEND,
4527					    "%s(): Invalid TCP/UDP "
4528					    "checksum = 0x%04X!\n",
4529					    __func__,
4530					    l2fhdr->l2_fhdr_tcp_udp_xsum);
4531				}
4532			}
4533
4534			/*
4535			 * If we received a packet with a vlan tag,
4536			 * attach that information to the packet.
4537			 */
4538			if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
4539			    !(sc->rx_mode & BNX_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
4540				VLAN_INPUT_TAG(ifp, m,
4541				    l2fhdr->l2_fhdr_vlan_tag,
4542				    continue);
4543			}
4544
4545			/*
4546			 * Handle BPF listeners. Let the BPF
4547			 * user see the packet.
4548			 */
4549			bpf_mtap(ifp, m);
4550
4551			/* Pass the mbuf off to the upper layers. */
4552			ifp->if_ipackets++;
4553			DBPRINT(sc, BNX_VERBOSE_RECV,
4554			    "%s(): Passing received frame up.\n", __func__);
4555			(*ifp->if_input)(ifp, m);
4556			DBRUNIF(1, sc->rx_mbuf_alloc--);
4557
4558		}
4559
4560		sw_cons = NEXT_RX_BD(sw_cons);
4561
4562		/* Refresh hw_cons to see if there's new work */
4563		if (sw_cons == hw_cons) {
4564			hw_cons = sc->hw_rx_cons =
4565			    sblk->status_rx_quick_consumer_index0;
4566			if ((hw_cons & USABLE_RX_BD_PER_PAGE) ==
4567			    USABLE_RX_BD_PER_PAGE)
4568				hw_cons++;
4569		}
4570
4571		/* Prevent speculative reads from getting ahead of
4572		 * the status block.
4573		 */
4574		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4575		    BUS_SPACE_BARRIER_READ);
4576	}
4577
4578	for (i = 0; i < RX_PAGES; i++)
4579		bus_dmamap_sync(sc->bnx_dmatag,
4580		    sc->rx_bd_chain_map[i], 0,
4581		    sc->rx_bd_chain_map[i]->dm_mapsize,
4582		    BUS_DMASYNC_PREWRITE);
4583
4584	sc->rx_cons = sw_cons;
4585	sc->rx_prod = sw_prod;
4586	sc->rx_prod_bseq = sw_prod_bseq;
4587
4588	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
4589	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
4590
4591	DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, "
4592	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
4593	    __func__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
4594}
4595
4596/****************************************************************************/
4597/* Handles transmit completion interrupt events.                            */
4598/*                                                                          */
4599/* Returns:                                                                 */
4600/*   Nothing.                                                               */
4601/****************************************************************************/
4602void
4603bnx_tx_intr(struct bnx_softc *sc)
4604{
4605	struct status_block	*sblk = sc->status_block;
4606	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
4607	struct bnx_pkt		*pkt;
4608	bus_dmamap_t		map;
4609	u_int16_t		hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
4610
4611	DBRUNIF(1, sc->tx_interrupts++);
4612	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4613	    BUS_DMASYNC_POSTREAD);
4614
4615	/* Get the hardware's view of the TX consumer index. */
4616	hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
4617
4618	/* Skip to the next entry if this is a chain page pointer. */
4619	if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
4620		hw_tx_cons++;
4621
4622	sw_tx_cons = sc->tx_cons;
4623
4624	/* Prevent speculative reads from getting ahead of the status block. */
4625	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4626	    BUS_SPACE_BARRIER_READ);
4627
4628	/* Cycle through any completed TX chain page entries. */
4629	while (sw_tx_cons != hw_tx_cons) {
4630#ifdef BNX_DEBUG
4631		struct tx_bd *txbd = NULL;
4632#endif
4633		sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
4634
4635		DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, "
4636		    "sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n",
4637		    __func__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
4638
4639		DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
4640		    aprint_error_dev(sc->bnx_dev,
4641		        "TX chain consumer out of range! 0x%04X > 0x%04X\n",
4642			sw_tx_chain_cons, (int)MAX_TX_BD); bnx_breakpoint(sc));
4643
4644		DBRUNIF(1, txbd = &sc->tx_bd_chain
4645		    [TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]);
4646
4647		DBRUNIF((txbd == NULL),
4648		    aprint_error_dev(sc->bnx_dev,
4649		        "Unexpected NULL tx_bd[0x%04X]!\n", sw_tx_chain_cons);
4650		    bnx_breakpoint(sc));
4651
4652		DBRUN(BNX_INFO_SEND, aprint_debug("%s: ", __func__);
4653		    bnx_dump_txbd(sc, sw_tx_chain_cons, txbd));
4654
4655
4656		mutex_enter(&sc->tx_pkt_mtx);
4657		pkt = TAILQ_FIRST(&sc->tx_used_pkts);
4658		if (pkt != NULL && pkt->pkt_end_desc == sw_tx_chain_cons) {
4659			TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
4660			mutex_exit(&sc->tx_pkt_mtx);
4661			/*
4662			 * Free the associated mbuf. Remember
4663			 * that only the last tx_bd of a packet
4664			 * has an mbuf pointer and DMA map.
4665			 */
4666			map = pkt->pkt_dmamap;
4667			bus_dmamap_sync(sc->bnx_dmatag, map, 0,
4668			    map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4669			bus_dmamap_unload(sc->bnx_dmatag, map);
4670
4671			m_freem(pkt->pkt_mbuf);
4672			DBRUNIF(1, sc->tx_mbuf_alloc--);
4673
4674			ifp->if_opackets++;
4675
4676			mutex_enter(&sc->tx_pkt_mtx);
4677			TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4678		}
4679		mutex_exit(&sc->tx_pkt_mtx);
4680
4681		sc->used_tx_bd--;
4682		DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
4683			__FILE__, __LINE__, sc->used_tx_bd);
4684
4685		sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
4686
4687		/* Refresh hw_cons to see if there's new work. */
4688		hw_tx_cons = sc->hw_tx_cons =
4689		    sblk->status_tx_quick_consumer_index0;
4690		if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) ==
4691		    USABLE_TX_BD_PER_PAGE)
4692			hw_tx_cons++;
4693
4694		/* Prevent speculative reads from getting ahead of
4695		 * the status block.
4696		 */
4697		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4698		    BUS_SPACE_BARRIER_READ);
4699	}
4700
4701	/* Clear the TX timeout timer. */
4702	ifp->if_timer = 0;
4703
4704	/* Clear the tx hardware queue full flag. */
4705	if (sc->used_tx_bd < sc->max_tx_bd) {
4706		DBRUNIF((ifp->if_flags & IFF_OACTIVE),
4707		    aprint_debug_dev(sc->bnx_dev,
4708		        "Open TX chain! %d/%d (used/total)\n",
4709			sc->used_tx_bd, sc->max_tx_bd));
4710		ifp->if_flags &= ~IFF_OACTIVE;
4711	}
4712
4713	sc->tx_cons = sw_tx_cons;
4714}
4715
4716/****************************************************************************/
4717/* Disables interrupt generation.                                           */
4718/*                                                                          */
4719/* Returns:                                                                 */
4720/*   Nothing.                                                               */
4721/****************************************************************************/
4722void
4723bnx_disable_intr(struct bnx_softc *sc)
4724{
4725	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
4726	REG_RD(sc, BNX_PCICFG_INT_ACK_CMD);
4727}
4728
4729/****************************************************************************/
4730/* Enables interrupt generation.                                            */
4731/*                                                                          */
4732/* Returns:                                                                 */
4733/*   Nothing.                                                               */
4734/****************************************************************************/
4735void
4736bnx_enable_intr(struct bnx_softc *sc)
4737{
4738	u_int32_t		val;
4739
4740	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4741	    BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
4742
4743	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4744	    sc->last_status_idx);
4745
4746	val = REG_RD(sc, BNX_HC_COMMAND);
4747	REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW);
4748}
4749
4750/****************************************************************************/
4751/* Handles controller initialization.                                       */
4752/*                                                                          */
4753/****************************************************************************/
4754int
4755bnx_init(struct ifnet *ifp)
4756{
4757	struct bnx_softc	*sc = ifp->if_softc;
4758	u_int32_t		ether_mtu;
4759	int			s, error = 0;
4760
4761	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4762
4763	s = splnet();
4764
4765	bnx_stop(ifp, 0);
4766
4767	if ((error = bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) != 0) {
4768		aprint_error_dev(sc->bnx_dev,
4769		    "Controller reset failed!\n");
4770		goto bnx_init_exit;
4771	}
4772
4773	if ((error = bnx_chipinit(sc)) != 0) {
4774		aprint_error_dev(sc->bnx_dev,
4775		    "Controller initialization failed!\n");
4776		goto bnx_init_exit;
4777	}
4778
4779	if ((error = bnx_blockinit(sc)) != 0) {
4780		aprint_error_dev(sc->bnx_dev,
4781		    "Block initialization failed!\n");
4782		goto bnx_init_exit;
4783	}
4784
4785	/* Calculate and program the Ethernet MRU size. */
4786	if (ifp->if_mtu <= ETHERMTU) {
4787		ether_mtu = BNX_MAX_STD_ETHER_MTU_VLAN;
4788		sc->mbuf_alloc_size = MCLBYTES;
4789	} else {
4790		ether_mtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN;
4791		sc->mbuf_alloc_size = BNX_MAX_JUMBO_MRU;
4792	}
4793
4794
4795	DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n",
4796	    __func__, ether_mtu);
4797
4798	/*
4799	 * Program the MRU and enable Jumbo frame
4800	 * support.
4801	 */
4802	REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu |
4803		BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA);
4804
4805	/* Calculate the RX Ethernet frame size for rx_bd's. */
4806	sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
4807
4808	DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, "
4809	    "max_frame_size = %d\n", __func__, (int)MCLBYTES,
4810	    sc->mbuf_alloc_size, sc->max_frame_size);
4811
4812	/* Program appropriate promiscuous/multicast filtering. */
4813	bnx_iff(sc);
4814
4815	/* Init RX buffer descriptor chain. */
4816	bnx_init_rx_chain(sc);
4817
4818	/* Init TX buffer descriptor chain. */
4819	bnx_init_tx_chain(sc);
4820
4821	/* Enable host interrupts. */
4822	bnx_enable_intr(sc);
4823
4824	if ((error = ether_mediachange(ifp)) != 0)
4825		goto bnx_init_exit;
4826
4827	SET(ifp->if_flags, IFF_RUNNING);
4828	CLR(ifp->if_flags, IFF_OACTIVE);
4829
4830	callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
4831
4832bnx_init_exit:
4833	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4834
4835	splx(s);
4836
4837	return(error);
4838}
4839
4840/****************************************************************************/
4841/* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
4842/* memory visible to the controller.                                        */
4843/*                                                                          */
4844/* Returns:                                                                 */
4845/*   0 for success, positive value for failure.                             */
4846/****************************************************************************/
4847int
4848bnx_tx_encap(struct bnx_softc *sc, struct mbuf *m)
4849{
4850	struct bnx_pkt		*pkt;
4851	bus_dmamap_t		map;
4852	struct tx_bd		*txbd = NULL;
4853	u_int16_t		vlan_tag = 0, flags = 0;
4854	u_int16_t		chain_prod, prod;
4855#ifdef BNX_DEBUG
4856	u_int16_t		debug_prod;
4857#endif
4858	u_int32_t		addr, prod_bseq;
4859	int			i, error;
4860	struct m_tag		*mtag;
4861	static struct work	bnx_wk; /* Dummy work. Statically allocated. */
4862
4863	mutex_enter(&sc->tx_pkt_mtx);
4864	pkt = TAILQ_FIRST(&sc->tx_free_pkts);
4865	if (pkt == NULL) {
4866		if (!ISSET(sc->bnx_ec.ec_if.if_flags, IFF_UP)) {
4867			mutex_exit(&sc->tx_pkt_mtx);
4868			return ENETDOWN;
4869		}
4870
4871		if (sc->tx_pkt_count <= TOTAL_TX_BD &&
4872		    !ISSET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG)) {
4873			workqueue_enqueue(sc->bnx_wq, &bnx_wk, NULL);
4874			SET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
4875		}
4876
4877		mutex_exit(&sc->tx_pkt_mtx);
4878		return ENOMEM;
4879	}
4880	TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
4881	mutex_exit(&sc->tx_pkt_mtx);
4882
4883	/* Transfer any checksum offload flags to the bd. */
4884	if (m->m_pkthdr.csum_flags) {
4885		if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
4886			flags |= TX_BD_FLAGS_IP_CKSUM;
4887		if (m->m_pkthdr.csum_flags &
4888		    (M_CSUM_TCPv4 | M_CSUM_UDPv4))
4889			flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
4890	}
4891
4892	/* Transfer any VLAN tags to the bd. */
4893	mtag = VLAN_OUTPUT_TAG(&sc->bnx_ec, m);
4894	if (mtag != NULL) {
4895		flags |= TX_BD_FLAGS_VLAN_TAG;
4896		vlan_tag = VLAN_TAG_VALUE(mtag);
4897	}
4898
4899	/* Map the mbuf into DMAable memory. */
4900	prod = sc->tx_prod;
4901	chain_prod = TX_CHAIN_IDX(prod);
4902	map = pkt->pkt_dmamap;
4903
4904	/* Map the mbuf into our DMA address space. */
4905	error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m, BUS_DMA_NOWAIT);
4906	if (error != 0) {
4907		aprint_error_dev(sc->bnx_dev,
4908		    "Error mapping mbuf into TX chain!\n");
4909		sc->tx_dma_map_failures++;
4910		goto maperr;
4911	}
4912	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
4913	    BUS_DMASYNC_PREWRITE);
4914        /* Make sure there's room in the chain */
4915	if (map->dm_nsegs > (sc->max_tx_bd - sc->used_tx_bd))
4916                goto nospace;
4917
4918	/* prod points to an empty tx_bd at this point. */
4919	prod_bseq = sc->tx_prod_bseq;
4920#ifdef BNX_DEBUG
4921	debug_prod = chain_prod;
4922#endif
4923	DBPRINT(sc, BNX_INFO_SEND,
4924		"%s(): Start: prod = 0x%04X, chain_prod = %04X, "
4925		"prod_bseq = 0x%08X\n",
4926		__func__, prod, chain_prod, prod_bseq);
4927
4928	/*
4929	 * Cycle through each mbuf segment that makes up
4930	 * the outgoing frame, gathering the mapping info
4931	 * for that segment and creating a tx_bd for the
4932	 * mbuf.
4933	 */
4934	for (i = 0; i < map->dm_nsegs ; i++) {
4935		chain_prod = TX_CHAIN_IDX(prod);
4936		txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
4937
4938		addr = (u_int32_t)map->dm_segs[i].ds_addr;
4939		txbd->tx_bd_haddr_lo = addr;
4940		addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
4941		txbd->tx_bd_haddr_hi = addr;
4942		txbd->tx_bd_mss_nbytes = map->dm_segs[i].ds_len;
4943		txbd->tx_bd_vlan_tag = vlan_tag;
4944		txbd->tx_bd_flags = flags;
4945		prod_bseq += map->dm_segs[i].ds_len;
4946		if (i == 0)
4947			txbd->tx_bd_flags |= TX_BD_FLAGS_START;
4948		prod = NEXT_TX_BD(prod);
4949	}
4950	/* Set the END flag on the last TX buffer descriptor. */
4951	txbd->tx_bd_flags |= TX_BD_FLAGS_END;
4952
4953	DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, map->dm_nsegs));
4954
4955	DBPRINT(sc, BNX_INFO_SEND,
4956		"%s(): End: prod = 0x%04X, chain_prod = %04X, "
4957		"prod_bseq = 0x%08X\n",
4958		__func__, prod, chain_prod, prod_bseq);
4959
4960	pkt->pkt_mbuf = m;
4961	pkt->pkt_end_desc = chain_prod;
4962
4963	mutex_enter(&sc->tx_pkt_mtx);
4964	TAILQ_INSERT_TAIL(&sc->tx_used_pkts, pkt, pkt_entry);
4965	mutex_exit(&sc->tx_pkt_mtx);
4966
4967	sc->used_tx_bd += map->dm_nsegs;
4968	DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
4969		__FILE__, __LINE__, sc->used_tx_bd);
4970
4971	/* Update some debug statistics counters */
4972	DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
4973	    sc->tx_hi_watermark = sc->used_tx_bd);
4974	DBRUNIF(sc->used_tx_bd == sc->max_tx_bd, sc->tx_full_count++);
4975	DBRUNIF(1, sc->tx_mbuf_alloc++);
4976
4977	DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, chain_prod,
4978	    map->dm_nsegs));
4979
4980	/* prod points to the next free tx_bd at this point. */
4981	sc->tx_prod = prod;
4982	sc->tx_prod_bseq = prod_bseq;
4983
4984	return (0);
4985
4986
4987nospace:
4988	bus_dmamap_unload(sc->bnx_dmatag, map);
4989maperr:
4990	mutex_enter(&sc->tx_pkt_mtx);
4991	TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4992	mutex_exit(&sc->tx_pkt_mtx);
4993
4994	return (ENOMEM);
4995}
4996
4997/****************************************************************************/
4998/* Main transmit routine.                                                   */
4999/*                                                                          */
5000/* Returns:                                                                 */
5001/*   Nothing.                                                               */
5002/****************************************************************************/
5003void
5004bnx_start(struct ifnet *ifp)
5005{
5006	struct bnx_softc	*sc = ifp->if_softc;
5007	struct mbuf		*m_head = NULL;
5008	int			count = 0;
5009	u_int16_t		tx_prod, tx_chain_prod;
5010
5011	/* If there's no link or the transmit queue is empty then just exit. */
5012	if ((ifp->if_flags & (IFF_OACTIVE|IFF_RUNNING)) != IFF_RUNNING) {
5013		DBPRINT(sc, BNX_INFO_SEND,
5014		    "%s(): output active or device not running.\n", __func__);
5015		goto bnx_start_exit;
5016	}
5017
5018	/* prod points to the next free tx_bd. */
5019	tx_prod = sc->tx_prod;
5020	tx_chain_prod = TX_CHAIN_IDX(tx_prod);
5021
5022	DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, "
5023	    "tx_chain_prod = %04X, tx_prod_bseq = 0x%08X, "
5024	    "used_tx %d max_tx %d\n",
5025	    __func__, tx_prod, tx_chain_prod, sc->tx_prod_bseq,
5026	    sc->used_tx_bd, sc->max_tx_bd);
5027
5028	/*
5029	 * Keep adding entries while there is space in the ring.
5030	 */
5031	while (sc->used_tx_bd < sc->max_tx_bd) {
5032		/* Check for any frames to send. */
5033		IFQ_POLL(&ifp->if_snd, m_head);
5034		if (m_head == NULL)
5035			break;
5036
5037		/*
5038		 * Pack the data into the transmit ring. If we
5039		 * don't have room, set the OACTIVE flag to wait
5040		 * for the NIC to drain the chain.
5041		 */
5042		if (bnx_tx_encap(sc, m_head)) {
5043			ifp->if_flags |= IFF_OACTIVE;
5044			DBPRINT(sc, BNX_INFO_SEND, "TX chain is closed for "
5045			    "business! Total tx_bd used = %d\n",
5046			    sc->used_tx_bd);
5047			break;
5048		}
5049
5050		IFQ_DEQUEUE(&ifp->if_snd, m_head);
5051		count++;
5052
5053		/* Send a copy of the frame to any BPF listeners. */
5054		bpf_mtap(ifp, m_head);
5055	}
5056
5057	if (count == 0) {
5058		/* no packets were dequeued */
5059		DBPRINT(sc, BNX_VERBOSE_SEND,
5060		    "%s(): No packets were dequeued\n", __func__);
5061		goto bnx_start_exit;
5062	}
5063
5064	/* Update the driver's counters. */
5065	tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
5066
5067	DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, tx_chain_prod "
5068	    "= 0x%04X, tx_prod_bseq = 0x%08X\n", __func__, tx_prod,
5069	    tx_chain_prod, sc->tx_prod_bseq);
5070
5071	/* Start the transmit. */
5072	REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod);
5073	REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq);
5074
5075	/* Set the tx timeout. */
5076	ifp->if_timer = BNX_TX_TIMEOUT;
5077
5078bnx_start_exit:
5079	return;
5080}
5081
5082/****************************************************************************/
5083/* Handles any IOCTL calls from the operating system.                       */
5084/*                                                                          */
5085/* Returns:                                                                 */
5086/*   0 for success, positive value for failure.                             */
5087/****************************************************************************/
5088int
5089bnx_ioctl(struct ifnet *ifp, u_long command, void *data)
5090{
5091	struct bnx_softc	*sc = ifp->if_softc;
5092	struct ifreq		*ifr = (struct ifreq *) data;
5093	struct mii_data		*mii = &sc->bnx_mii;
5094	int			s, error = 0;
5095
5096	s = splnet();
5097
5098	switch (command) {
5099	case SIOCSIFFLAGS:
5100		if ((error = ifioctl_common(ifp, command, data)) != 0)
5101			break;
5102		/* XXX set an ifflags callback and let ether_ioctl
5103		 * handle all of this.
5104		 */
5105		if (ISSET(ifp->if_flags, IFF_UP)) {
5106			if (ifp->if_flags & IFF_RUNNING)
5107				error = ENETRESET;
5108			else
5109				bnx_init(ifp);
5110		} else if (ifp->if_flags & IFF_RUNNING)
5111			bnx_stop(ifp, 1);
5112		break;
5113
5114	case SIOCSIFMEDIA:
5115	case SIOCGIFMEDIA:
5116		DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n",
5117		    sc->bnx_phy_flags);
5118
5119		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
5120		break;
5121
5122	default:
5123		error = ether_ioctl(ifp, command, data);
5124	}
5125
5126	if (error == ENETRESET) {
5127		if (ifp->if_flags & IFF_RUNNING)
5128			bnx_iff(sc);
5129		error = 0;
5130	}
5131
5132	splx(s);
5133	return (error);
5134}
5135
5136/****************************************************************************/
5137/* Transmit timeout handler.                                                */
5138/*                                                                          */
5139/* Returns:                                                                 */
5140/*   Nothing.                                                               */
5141/****************************************************************************/
5142void
5143bnx_watchdog(struct ifnet *ifp)
5144{
5145	struct bnx_softc	*sc = ifp->if_softc;
5146
5147	DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc);
5148	    bnx_dump_status_block(sc));
5149	/*
5150	 * If we are in this routine because of pause frames, then
5151	 * don't reset the hardware.
5152	 */
5153	if (REG_RD(sc, BNX_EMAC_TX_STATUS) & BNX_EMAC_TX_STATUS_XOFFED)
5154		return;
5155
5156	aprint_error_dev(sc->bnx_dev, "Watchdog timeout -- resetting!\n");
5157
5158	/* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */
5159
5160	bnx_init(ifp);
5161
5162	ifp->if_oerrors++;
5163}
5164
5165/*
5166 * Interrupt handler.
5167 */
5168/****************************************************************************/
5169/* Main interrupt entry point.  Verifies that the controller generated the  */
5170/* interrupt and then calls a separate routine for handle the various       */
5171/* interrupt causes (PHY, TX, RX).                                          */
5172/*                                                                          */
5173/* Returns:                                                                 */
5174/*   0 for success, positive value for failure.                             */
5175/****************************************************************************/
5176int
5177bnx_intr(void *xsc)
5178{
5179	struct bnx_softc	*sc;
5180	struct ifnet		*ifp;
5181	u_int32_t		status_attn_bits;
5182	const struct status_block *sblk;
5183
5184	sc = xsc;
5185
5186	ifp = &sc->bnx_ec.ec_if;
5187
5188	if (!device_is_active(sc->bnx_dev) ||
5189	    (ifp->if_flags & IFF_RUNNING) == 0)
5190		return 0;
5191
5192	DBRUNIF(1, sc->interrupts_generated++);
5193
5194	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
5195	    sc->status_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
5196
5197	/*
5198	 * If the hardware status block index
5199	 * matches the last value read by the
5200	 * driver and we haven't asserted our
5201	 * interrupt then there's nothing to do.
5202	 */
5203	if ((sc->status_block->status_idx == sc->last_status_idx) &&
5204	    (REG_RD(sc, BNX_PCICFG_MISC_STATUS) &
5205	    BNX_PCICFG_MISC_STATUS_INTA_VALUE))
5206		return (0);
5207
5208	/* Ack the interrupt and stop others from occuring. */
5209	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
5210	    BNX_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
5211	    BNX_PCICFG_INT_ACK_CMD_MASK_INT);
5212
5213	/* Keep processing data as long as there is work to do. */
5214	for (;;) {
5215		sblk = sc->status_block;
5216		status_attn_bits = sblk->status_attn_bits;
5217
5218		DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention),
5219		    aprint_debug("Simulating unexpected status attention bit set.");
5220		    status_attn_bits = status_attn_bits |
5221		    STATUS_ATTN_BITS_PARITY_ERROR);
5222
5223		/* Was it a link change interrupt? */
5224		if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
5225		    (sblk->status_attn_bits_ack &
5226		    STATUS_ATTN_BITS_LINK_STATE))
5227			bnx_phy_intr(sc);
5228
5229		/* If any other attention is asserted then the chip is toast. */
5230		if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
5231		    (sblk->status_attn_bits_ack &
5232		    ~STATUS_ATTN_BITS_LINK_STATE))) {
5233			DBRUN(1, sc->unexpected_attentions++);
5234
5235			BNX_PRINTF(sc,
5236			    "Fatal attention detected: 0x%08X\n",
5237			    sblk->status_attn_bits);
5238
5239			DBRUN(BNX_FATAL,
5240			    if (bnx_debug_unexpected_attention == 0)
5241			    bnx_breakpoint(sc));
5242
5243			bnx_init(ifp);
5244			return (1);
5245		}
5246
5247		/* Check for any completed RX frames. */
5248		if (sblk->status_rx_quick_consumer_index0 !=
5249		    sc->hw_rx_cons)
5250			bnx_rx_intr(sc);
5251
5252		/* Check for any completed TX frames. */
5253		if (sblk->status_tx_quick_consumer_index0 !=
5254		    sc->hw_tx_cons)
5255			bnx_tx_intr(sc);
5256
5257		/* Save the status block index value for use during the
5258		 * next interrupt.
5259		 */
5260		sc->last_status_idx = sblk->status_idx;
5261
5262		/* Prevent speculative reads from getting ahead of the
5263		 * status block.
5264		 */
5265		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
5266		    BUS_SPACE_BARRIER_READ);
5267
5268		/* If there's no work left then exit the isr. */
5269		if ((sblk->status_rx_quick_consumer_index0 ==
5270		    sc->hw_rx_cons) &&
5271		    (sblk->status_tx_quick_consumer_index0 ==
5272		    sc->hw_tx_cons))
5273			break;
5274	}
5275
5276	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
5277	    sc->status_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
5278
5279	/* Re-enable interrupts. */
5280	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
5281	    BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx |
5282	    BNX_PCICFG_INT_ACK_CMD_MASK_INT);
5283	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
5284	    BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
5285
5286	/* Handle any frames that arrived while handling the interrupt. */
5287	if (!IFQ_IS_EMPTY(&ifp->if_snd))
5288		bnx_start(ifp);
5289
5290	return (1);
5291}
5292
5293/****************************************************************************/
5294/* Programs the various packet receive modes (broadcast and multicast).     */
5295/*                                                                          */
5296/* Returns:                                                                 */
5297/*   Nothing.                                                               */
5298/****************************************************************************/
5299void
5300bnx_iff(struct bnx_softc *sc)
5301{
5302	struct ethercom		*ec = &sc->bnx_ec;
5303	struct ifnet		*ifp = &ec->ec_if;
5304	struct ether_multi	*enm;
5305	struct ether_multistep	step;
5306	u_int32_t		hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
5307	u_int32_t		rx_mode, sort_mode;
5308	int			h, i;
5309
5310	/* Initialize receive mode default settings. */
5311	rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS |
5312	    BNX_EMAC_RX_MODE_KEEP_VLAN_TAG);
5313	sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN;
5314	ifp->if_flags &= ~IFF_ALLMULTI;
5315
5316	/*
5317	 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
5318	 * be enbled.
5319	 */
5320	if (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG))
5321		rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG;
5322
5323	/*
5324	 * Check for promiscuous, all multicast, or selected
5325	 * multicast address filtering.
5326	 */
5327	if (ifp->if_flags & IFF_PROMISC) {
5328		DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n");
5329
5330		ifp->if_flags |= IFF_ALLMULTI;
5331		/* Enable promiscuous mode. */
5332		rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS;
5333		sort_mode |= BNX_RPM_SORT_USER0_PROM_EN;
5334	} else if (ifp->if_flags & IFF_ALLMULTI) {
5335allmulti:
5336		DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n");
5337
5338		ifp->if_flags |= IFF_ALLMULTI;
5339		/* Enable all multicast addresses. */
5340		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
5341			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
5342			    0xffffffff);
5343		sort_mode |= BNX_RPM_SORT_USER0_MC_EN;
5344	} else {
5345		/* Accept one or more multicast(s). */
5346		DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n");
5347
5348		ETHER_FIRST_MULTI(step, ec, enm);
5349		while (enm != NULL) {
5350			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
5351			    ETHER_ADDR_LEN)) {
5352				goto allmulti;
5353			}
5354			h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) &
5355			    0xFF;
5356			hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
5357			ETHER_NEXT_MULTI(step, enm);
5358		}
5359
5360		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
5361			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
5362			    hashes[i]);
5363
5364		sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN;
5365	}
5366
5367	/* Only make changes if the recive mode has actually changed. */
5368	if (rx_mode != sc->rx_mode) {
5369		DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
5370		    rx_mode);
5371
5372		sc->rx_mode = rx_mode;
5373		REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
5374	}
5375
5376	/* Disable and clear the exisitng sort before enabling a new sort. */
5377	REG_WR(sc, BNX_RPM_SORT_USER0, 0x0);
5378	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode);
5379	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA);
5380}
5381
5382/****************************************************************************/
5383/* Called periodically to updates statistics from the controllers           */
5384/* statistics block.                                                        */
5385/*                                                                          */
5386/* Returns:                                                                 */
5387/*   Nothing.                                                               */
5388/****************************************************************************/
5389void
5390bnx_stats_update(struct bnx_softc *sc)
5391{
5392	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
5393	struct statistics_block	*stats;
5394
5395	DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __func__);
5396	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5397	    BUS_DMASYNC_POSTREAD);
5398
5399	stats = (struct statistics_block *)sc->stats_block;
5400
5401	/*
5402	 * Update the interface statistics from the
5403	 * hardware statistics.
5404	 */
5405	ifp->if_collisions = (u_long)stats->stat_EtherStatsCollisions;
5406
5407	ifp->if_ierrors = (u_long)stats->stat_EtherStatsUndersizePkts +
5408	    (u_long)stats->stat_EtherStatsOverrsizePkts +
5409	    (u_long)stats->stat_IfInMBUFDiscards +
5410	    (u_long)stats->stat_Dot3StatsAlignmentErrors +
5411	    (u_long)stats->stat_Dot3StatsFCSErrors;
5412
5413	ifp->if_oerrors = (u_long)
5414	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
5415	    (u_long)stats->stat_Dot3StatsExcessiveCollisions +
5416	    (u_long)stats->stat_Dot3StatsLateCollisions;
5417
5418	/*
5419	 * Certain controllers don't report
5420	 * carrier sense errors correctly.
5421	 * See errata E11_5708CA0_1165.
5422	 */
5423	if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
5424	    !(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0))
5425		ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
5426
5427	/*
5428	 * Update the sysctl statistics from the
5429	 * hardware statistics.
5430	 */
5431	sc->stat_IfHCInOctets = ((u_int64_t)stats->stat_IfHCInOctets_hi << 32) +
5432	    (u_int64_t) stats->stat_IfHCInOctets_lo;
5433
5434	sc->stat_IfHCInBadOctets =
5435	    ((u_int64_t) stats->stat_IfHCInBadOctets_hi << 32) +
5436	    (u_int64_t) stats->stat_IfHCInBadOctets_lo;
5437
5438	sc->stat_IfHCOutOctets =
5439	    ((u_int64_t) stats->stat_IfHCOutOctets_hi << 32) +
5440	    (u_int64_t) stats->stat_IfHCOutOctets_lo;
5441
5442	sc->stat_IfHCOutBadOctets =
5443	    ((u_int64_t) stats->stat_IfHCOutBadOctets_hi << 32) +
5444	    (u_int64_t) stats->stat_IfHCOutBadOctets_lo;
5445
5446	sc->stat_IfHCInUcastPkts =
5447	    ((u_int64_t) stats->stat_IfHCInUcastPkts_hi << 32) +
5448	    (u_int64_t) stats->stat_IfHCInUcastPkts_lo;
5449
5450	sc->stat_IfHCInMulticastPkts =
5451	    ((u_int64_t) stats->stat_IfHCInMulticastPkts_hi << 32) +
5452	    (u_int64_t) stats->stat_IfHCInMulticastPkts_lo;
5453
5454	sc->stat_IfHCInBroadcastPkts =
5455	    ((u_int64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) +
5456	    (u_int64_t) stats->stat_IfHCInBroadcastPkts_lo;
5457
5458	sc->stat_IfHCOutUcastPkts =
5459	   ((u_int64_t) stats->stat_IfHCOutUcastPkts_hi << 32) +
5460	    (u_int64_t) stats->stat_IfHCOutUcastPkts_lo;
5461
5462	sc->stat_IfHCOutMulticastPkts =
5463	    ((u_int64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) +
5464	    (u_int64_t) stats->stat_IfHCOutMulticastPkts_lo;
5465
5466	sc->stat_IfHCOutBroadcastPkts =
5467	    ((u_int64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
5468	    (u_int64_t) stats->stat_IfHCOutBroadcastPkts_lo;
5469
5470	sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
5471	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
5472
5473	sc->stat_Dot3StatsCarrierSenseErrors =
5474	    stats->stat_Dot3StatsCarrierSenseErrors;
5475
5476	sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors;
5477
5478	sc->stat_Dot3StatsAlignmentErrors =
5479	    stats->stat_Dot3StatsAlignmentErrors;
5480
5481	sc->stat_Dot3StatsSingleCollisionFrames =
5482	    stats->stat_Dot3StatsSingleCollisionFrames;
5483
5484	sc->stat_Dot3StatsMultipleCollisionFrames =
5485	    stats->stat_Dot3StatsMultipleCollisionFrames;
5486
5487	sc->stat_Dot3StatsDeferredTransmissions =
5488	    stats->stat_Dot3StatsDeferredTransmissions;
5489
5490	sc->stat_Dot3StatsExcessiveCollisions =
5491	    stats->stat_Dot3StatsExcessiveCollisions;
5492
5493	sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions;
5494
5495	sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions;
5496
5497	sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments;
5498
5499	sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers;
5500
5501	sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts;
5502
5503	sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts;
5504
5505	sc->stat_EtherStatsPktsRx64Octets =
5506	    stats->stat_EtherStatsPktsRx64Octets;
5507
5508	sc->stat_EtherStatsPktsRx65Octetsto127Octets =
5509	    stats->stat_EtherStatsPktsRx65Octetsto127Octets;
5510
5511	sc->stat_EtherStatsPktsRx128Octetsto255Octets =
5512	    stats->stat_EtherStatsPktsRx128Octetsto255Octets;
5513
5514	sc->stat_EtherStatsPktsRx256Octetsto511Octets =
5515	    stats->stat_EtherStatsPktsRx256Octetsto511Octets;
5516
5517	sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
5518	    stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
5519
5520	sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
5521	    stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
5522
5523	sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
5524	    stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
5525
5526	sc->stat_EtherStatsPktsTx64Octets =
5527	    stats->stat_EtherStatsPktsTx64Octets;
5528
5529	sc->stat_EtherStatsPktsTx65Octetsto127Octets =
5530	    stats->stat_EtherStatsPktsTx65Octetsto127Octets;
5531
5532	sc->stat_EtherStatsPktsTx128Octetsto255Octets =
5533	    stats->stat_EtherStatsPktsTx128Octetsto255Octets;
5534
5535	sc->stat_EtherStatsPktsTx256Octetsto511Octets =
5536	    stats->stat_EtherStatsPktsTx256Octetsto511Octets;
5537
5538	sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
5539	    stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
5540
5541	sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
5542	    stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
5543
5544	sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
5545	    stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
5546
5547	sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived;
5548
5549	sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived;
5550
5551	sc->stat_OutXonSent = stats->stat_OutXonSent;
5552
5553	sc->stat_OutXoffSent = stats->stat_OutXoffSent;
5554
5555	sc->stat_FlowControlDone = stats->stat_FlowControlDone;
5556
5557	sc->stat_MacControlFramesReceived =
5558	    stats->stat_MacControlFramesReceived;
5559
5560	sc->stat_XoffStateEntered = stats->stat_XoffStateEntered;
5561
5562	sc->stat_IfInFramesL2FilterDiscards =
5563	    stats->stat_IfInFramesL2FilterDiscards;
5564
5565	sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards;
5566
5567	sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards;
5568
5569	sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards;
5570
5571	sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit;
5572
5573	sc->stat_CatchupInRuleCheckerDiscards =
5574	    stats->stat_CatchupInRuleCheckerDiscards;
5575
5576	sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards;
5577
5578	sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards;
5579
5580	sc->stat_CatchupInRuleCheckerP4Hit =
5581	    stats->stat_CatchupInRuleCheckerP4Hit;
5582
5583	DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __func__);
5584}
5585
5586void
5587bnx_tick(void *xsc)
5588{
5589	struct bnx_softc	*sc = xsc;
5590	struct mii_data		*mii;
5591	u_int32_t		msg;
5592	u_int16_t		prod, chain_prod;
5593	u_int32_t		prod_bseq;
5594	int s = splnet();
5595
5596	/* Tell the firmware that the driver is still running. */
5597#ifdef BNX_DEBUG
5598	msg = (u_int32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE;
5599#else
5600	msg = (u_int32_t)++sc->bnx_fw_drv_pulse_wr_seq;
5601#endif
5602	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg);
5603
5604	/* Update the statistics from the hardware statistics block. */
5605	bnx_stats_update(sc);
5606
5607	/* Schedule the next tick. */
5608	callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
5609
5610	mii = &sc->bnx_mii;
5611	mii_tick(mii);
5612
5613	/* try to get more RX buffers, just in case */
5614	prod = sc->rx_prod;
5615	prod_bseq = sc->rx_prod_bseq;
5616	chain_prod = RX_CHAIN_IDX(prod);
5617	bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq);
5618	sc->rx_prod = prod;
5619	sc->rx_prod_bseq = prod_bseq;
5620	splx(s);
5621	return;
5622}
5623
5624/****************************************************************************/
5625/* BNX Debug Routines                                                       */
5626/****************************************************************************/
5627#ifdef BNX_DEBUG
5628
5629/****************************************************************************/
5630/* Prints out information about an mbuf.                                    */
5631/*                                                                          */
5632/* Returns:                                                                 */
5633/*   Nothing.                                                               */
5634/****************************************************************************/
5635void
5636bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m)
5637{
5638	struct mbuf		*mp = m;
5639
5640	if (m == NULL) {
5641		/* Index out of range. */
5642		aprint_error("mbuf ptr is null!\n");
5643		return;
5644	}
5645
5646	while (mp) {
5647		aprint_debug("mbuf: vaddr = %p, m_len = %d, m_flags = ",
5648		    mp, mp->m_len);
5649
5650		if (mp->m_flags & M_EXT)
5651			aprint_debug("M_EXT ");
5652		if (mp->m_flags & M_PKTHDR)
5653			aprint_debug("M_PKTHDR ");
5654		aprint_debug("\n");
5655
5656		if (mp->m_flags & M_EXT)
5657			aprint_debug("- m_ext: vaddr = %p, ext_size = 0x%04zX\n",
5658			    mp, mp->m_ext.ext_size);
5659
5660		mp = mp->m_next;
5661	}
5662}
5663
5664/****************************************************************************/
5665/* Prints out the mbufs in the TX mbuf chain.                               */
5666/*                                                                          */
5667/* Returns:                                                                 */
5668/*   Nothing.                                                               */
5669/****************************************************************************/
5670void
5671bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
5672{
5673#if 0
5674	struct mbuf		*m;
5675	int			i;
5676
5677	aprint_debug_dev(sc->bnx_dev,
5678	    "----------------------------"
5679	    "  tx mbuf data  "
5680	    "----------------------------\n");
5681
5682	for (i = 0; i < count; i++) {
5683	 	m = sc->tx_mbuf_ptr[chain_prod];
5684		BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod);
5685		bnx_dump_mbuf(sc, m);
5686		chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
5687	}
5688
5689	aprint_debug_dev(sc->bnx_dev,
5690	    "--------------------------------------------"
5691	    "----------------------------\n");
5692#endif
5693}
5694
5695/*
5696 * This routine prints the RX mbuf chain.
5697 */
5698void
5699bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
5700{
5701	struct mbuf		*m;
5702	int			i;
5703
5704	aprint_debug_dev(sc->bnx_dev,
5705	    "----------------------------"
5706	    "  rx mbuf data  "
5707	    "----------------------------\n");
5708
5709	for (i = 0; i < count; i++) {
5710	 	m = sc->rx_mbuf_ptr[chain_prod];
5711		BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod);
5712		bnx_dump_mbuf(sc, m);
5713		chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
5714	}
5715
5716
5717	aprint_debug_dev(sc->bnx_dev,
5718	    "--------------------------------------------"
5719	    "----------------------------\n");
5720}
5721
5722void
5723bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd)
5724{
5725	if (idx > MAX_TX_BD)
5726		/* Index out of range. */
5727		BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
5728	else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
5729		/* TX Chain page pointer. */
5730		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain "
5731		    "page pointer\n", idx, txbd->tx_bd_haddr_hi,
5732		    txbd->tx_bd_haddr_lo);
5733	else
5734		/* Normal tx_bd entry. */
5735		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
5736		    "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", idx,
5737		    txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
5738		    txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag,
5739		    txbd->tx_bd_flags);
5740}
5741
5742void
5743bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd)
5744{
5745	if (idx > MAX_RX_BD)
5746		/* Index out of range. */
5747		BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
5748	else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
5749		/* TX Chain page pointer. */
5750		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
5751		    "pointer\n", idx, rxbd->rx_bd_haddr_hi,
5752		    rxbd->rx_bd_haddr_lo);
5753	else
5754		/* Normal tx_bd entry. */
5755		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
5756		    "0x%08X, flags = 0x%08X\n", idx,
5757			rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
5758			rxbd->rx_bd_len, rxbd->rx_bd_flags);
5759}
5760
5761void
5762bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr)
5763{
5764	BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, "
5765	    "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, "
5766	    "tcp_udp_xsum = 0x%04X\n", idx,
5767	    l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len,
5768	    l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum,
5769	    l2fhdr->l2_fhdr_tcp_udp_xsum);
5770}
5771
5772/*
5773 * This routine prints the TX chain.
5774 */
5775void
5776bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count)
5777{
5778	struct tx_bd		*txbd;
5779	int			i;
5780
5781	/* First some info about the tx_bd chain structure. */
5782	aprint_debug_dev(sc->bnx_dev,
5783	    "----------------------------"
5784	    "  tx_bd  chain  "
5785	    "----------------------------\n");
5786
5787	BNX_PRINTF(sc,
5788	    "page size      = 0x%08X, tx chain pages        = 0x%08X\n",
5789	    (u_int32_t)BCM_PAGE_SIZE, (u_int32_t) TX_PAGES);
5790
5791	BNX_PRINTF(sc,
5792	    "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
5793	    (u_int32_t)TOTAL_TX_BD_PER_PAGE, (u_int32_t)USABLE_TX_BD_PER_PAGE);
5794
5795	BNX_PRINTF(sc, "total tx_bd    = 0x%08X\n", TOTAL_TX_BD);
5796
5797	aprint_error_dev(sc->bnx_dev, ""
5798	    "-----------------------------"
5799	    "   tx_bd data   "
5800	    "-----------------------------\n");
5801
5802	/* Now print out the tx_bd's themselves. */
5803	for (i = 0; i < count; i++) {
5804	 	txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
5805		bnx_dump_txbd(sc, tx_prod, txbd);
5806		tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod));
5807	}
5808
5809	aprint_debug_dev(sc->bnx_dev,
5810	    "-----------------------------"
5811	    "--------------"
5812	    "-----------------------------\n");
5813}
5814
5815/*
5816 * This routine prints the RX chain.
5817 */
5818void
5819bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count)
5820{
5821	struct rx_bd		*rxbd;
5822	int			i;
5823
5824	/* First some info about the tx_bd chain structure. */
5825	aprint_debug_dev(sc->bnx_dev,
5826	    "----------------------------"
5827	    "  rx_bd  chain  "
5828	    "----------------------------\n");
5829
5830	aprint_debug_dev(sc->bnx_dev, "----- RX_BD Chain -----\n");
5831
5832	BNX_PRINTF(sc,
5833	    "page size      = 0x%08X, rx chain pages        = 0x%08X\n",
5834	    (u_int32_t)BCM_PAGE_SIZE, (u_int32_t)RX_PAGES);
5835
5836	BNX_PRINTF(sc,
5837	    "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
5838	    (u_int32_t)TOTAL_RX_BD_PER_PAGE, (u_int32_t)USABLE_RX_BD_PER_PAGE);
5839
5840	BNX_PRINTF(sc, "total rx_bd    = 0x%08X\n", TOTAL_RX_BD);
5841
5842	aprint_error_dev(sc->bnx_dev,
5843	    "----------------------------"
5844	    "   rx_bd data   "
5845	    "----------------------------\n");
5846
5847	/* Now print out the rx_bd's themselves. */
5848	for (i = 0; i < count; i++) {
5849		rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
5850		bnx_dump_rxbd(sc, rx_prod, rxbd);
5851		rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod));
5852	}
5853
5854	aprint_debug_dev(sc->bnx_dev,
5855	    "----------------------------"
5856	    "--------------"
5857	    "----------------------------\n");
5858}
5859
5860/*
5861 * This routine prints the status block.
5862 */
5863void
5864bnx_dump_status_block(struct bnx_softc *sc)
5865{
5866	struct status_block	*sblk;
5867	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5868	    BUS_DMASYNC_POSTREAD);
5869
5870	sblk = sc->status_block;
5871
5872   	aprint_debug_dev(sc->bnx_dev, "----------------------------- Status Block "
5873	    "-----------------------------\n");
5874
5875	BNX_PRINTF(sc,
5876	    "attn_bits  = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n",
5877	    sblk->status_attn_bits, sblk->status_attn_bits_ack,
5878	    sblk->status_idx);
5879
5880	BNX_PRINTF(sc, "rx_cons0   = 0x%08X, tx_cons0      = 0x%08X\n",
5881	    sblk->status_rx_quick_consumer_index0,
5882	    sblk->status_tx_quick_consumer_index0);
5883
5884	BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx);
5885
5886	/* Theses indices are not used for normal L2 drivers. */
5887	if (sblk->status_rx_quick_consumer_index1 ||
5888		sblk->status_tx_quick_consumer_index1)
5889		BNX_PRINTF(sc, "rx_cons1  = 0x%08X, tx_cons1      = 0x%08X\n",
5890		    sblk->status_rx_quick_consumer_index1,
5891		    sblk->status_tx_quick_consumer_index1);
5892
5893	if (sblk->status_rx_quick_consumer_index2 ||
5894		sblk->status_tx_quick_consumer_index2)
5895		BNX_PRINTF(sc, "rx_cons2  = 0x%08X, tx_cons2      = 0x%08X\n",
5896		    sblk->status_rx_quick_consumer_index2,
5897		    sblk->status_tx_quick_consumer_index2);
5898
5899	if (sblk->status_rx_quick_consumer_index3 ||
5900		sblk->status_tx_quick_consumer_index3)
5901		BNX_PRINTF(sc, "rx_cons3  = 0x%08X, tx_cons3      = 0x%08X\n",
5902		    sblk->status_rx_quick_consumer_index3,
5903		    sblk->status_tx_quick_consumer_index3);
5904
5905	if (sblk->status_rx_quick_consumer_index4 ||
5906		sblk->status_rx_quick_consumer_index5)
5907		BNX_PRINTF(sc, "rx_cons4  = 0x%08X, rx_cons5      = 0x%08X\n",
5908		    sblk->status_rx_quick_consumer_index4,
5909		    sblk->status_rx_quick_consumer_index5);
5910
5911	if (sblk->status_rx_quick_consumer_index6 ||
5912		sblk->status_rx_quick_consumer_index7)
5913		BNX_PRINTF(sc, "rx_cons6  = 0x%08X, rx_cons7      = 0x%08X\n",
5914		    sblk->status_rx_quick_consumer_index6,
5915		    sblk->status_rx_quick_consumer_index7);
5916
5917	if (sblk->status_rx_quick_consumer_index8 ||
5918		sblk->status_rx_quick_consumer_index9)
5919		BNX_PRINTF(sc, "rx_cons8  = 0x%08X, rx_cons9      = 0x%08X\n",
5920		    sblk->status_rx_quick_consumer_index8,
5921		    sblk->status_rx_quick_consumer_index9);
5922
5923	if (sblk->status_rx_quick_consumer_index10 ||
5924		sblk->status_rx_quick_consumer_index11)
5925		BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11     = 0x%08X\n",
5926		    sblk->status_rx_quick_consumer_index10,
5927		    sblk->status_rx_quick_consumer_index11);
5928
5929	if (sblk->status_rx_quick_consumer_index12 ||
5930		sblk->status_rx_quick_consumer_index13)
5931		BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13     = 0x%08X\n",
5932		    sblk->status_rx_quick_consumer_index12,
5933		    sblk->status_rx_quick_consumer_index13);
5934
5935	if (sblk->status_rx_quick_consumer_index14 ||
5936		sblk->status_rx_quick_consumer_index15)
5937		BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15     = 0x%08X\n",
5938		    sblk->status_rx_quick_consumer_index14,
5939		    sblk->status_rx_quick_consumer_index15);
5940
5941	if (sblk->status_completion_producer_index ||
5942		sblk->status_cmd_consumer_index)
5943		BNX_PRINTF(sc, "com_prod  = 0x%08X, cmd_cons      = 0x%08X\n",
5944		    sblk->status_completion_producer_index,
5945		    sblk->status_cmd_consumer_index);
5946
5947	aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
5948	    "-----------------------------\n");
5949}
5950
5951/*
5952 * This routine prints the statistics block.
5953 */
5954void
5955bnx_dump_stats_block(struct bnx_softc *sc)
5956{
5957	struct statistics_block	*sblk;
5958	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5959	    BUS_DMASYNC_POSTREAD);
5960
5961	sblk = sc->stats_block;
5962
5963	aprint_debug_dev(sc->bnx_dev, ""
5964	    "-----------------------------"
5965	    " Stats  Block "
5966	    "-----------------------------\n");
5967
5968	BNX_PRINTF(sc, "IfHcInOctets         = 0x%08X:%08X, "
5969	    "IfHcInBadOctets      = 0x%08X:%08X\n",
5970	    sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo,
5971	    sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo);
5972
5973	BNX_PRINTF(sc, "IfHcOutOctets        = 0x%08X:%08X, "
5974	    "IfHcOutBadOctets     = 0x%08X:%08X\n",
5975	    sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo,
5976	    sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo);
5977
5978	BNX_PRINTF(sc, "IfHcInUcastPkts      = 0x%08X:%08X, "
5979	    "IfHcInMulticastPkts  = 0x%08X:%08X\n",
5980	    sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo,
5981	    sblk->stat_IfHCInMulticastPkts_hi,
5982	    sblk->stat_IfHCInMulticastPkts_lo);
5983
5984	BNX_PRINTF(sc, "IfHcInBroadcastPkts  = 0x%08X:%08X, "
5985	    "IfHcOutUcastPkts     = 0x%08X:%08X\n",
5986	    sblk->stat_IfHCInBroadcastPkts_hi,
5987	    sblk->stat_IfHCInBroadcastPkts_lo,
5988	    sblk->stat_IfHCOutUcastPkts_hi,
5989	    sblk->stat_IfHCOutUcastPkts_lo);
5990
5991	BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, "
5992	    "IfHcOutBroadcastPkts = 0x%08X:%08X\n",
5993	    sblk->stat_IfHCOutMulticastPkts_hi,
5994	    sblk->stat_IfHCOutMulticastPkts_lo,
5995	    sblk->stat_IfHCOutBroadcastPkts_hi,
5996	    sblk->stat_IfHCOutBroadcastPkts_lo);
5997
5998	if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)
5999		BNX_PRINTF(sc, "0x%08X : "
6000		    "emac_tx_stat_dot3statsinternalmactransmiterrors\n",
6001		    sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
6002
6003	if (sblk->stat_Dot3StatsCarrierSenseErrors)
6004		BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n",
6005		    sblk->stat_Dot3StatsCarrierSenseErrors);
6006
6007	if (sblk->stat_Dot3StatsFCSErrors)
6008		BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n",
6009		    sblk->stat_Dot3StatsFCSErrors);
6010
6011	if (sblk->stat_Dot3StatsAlignmentErrors)
6012		BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n",
6013		    sblk->stat_Dot3StatsAlignmentErrors);
6014
6015	if (sblk->stat_Dot3StatsSingleCollisionFrames)
6016		BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n",
6017		    sblk->stat_Dot3StatsSingleCollisionFrames);
6018
6019	if (sblk->stat_Dot3StatsMultipleCollisionFrames)
6020		BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n",
6021		    sblk->stat_Dot3StatsMultipleCollisionFrames);
6022
6023	if (sblk->stat_Dot3StatsDeferredTransmissions)
6024		BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n",
6025		    sblk->stat_Dot3StatsDeferredTransmissions);
6026
6027	if (sblk->stat_Dot3StatsExcessiveCollisions)
6028		BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n",
6029		    sblk->stat_Dot3StatsExcessiveCollisions);
6030
6031	if (sblk->stat_Dot3StatsLateCollisions)
6032		BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n",
6033		    sblk->stat_Dot3StatsLateCollisions);
6034
6035	if (sblk->stat_EtherStatsCollisions)
6036		BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n",
6037		    sblk->stat_EtherStatsCollisions);
6038
6039	if (sblk->stat_EtherStatsFragments)
6040		BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n",
6041		    sblk->stat_EtherStatsFragments);
6042
6043	if (sblk->stat_EtherStatsJabbers)
6044		BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n",
6045		    sblk->stat_EtherStatsJabbers);
6046
6047	if (sblk->stat_EtherStatsUndersizePkts)
6048		BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n",
6049		    sblk->stat_EtherStatsUndersizePkts);
6050
6051	if (sblk->stat_EtherStatsOverrsizePkts)
6052		BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n",
6053		    sblk->stat_EtherStatsOverrsizePkts);
6054
6055	if (sblk->stat_EtherStatsPktsRx64Octets)
6056		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n",
6057		    sblk->stat_EtherStatsPktsRx64Octets);
6058
6059	if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets)
6060		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",
6061		    sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
6062
6063	if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets)
6064		BNX_PRINTF(sc, "0x%08X : "
6065		    "EtherStatsPktsRx128Octetsto255Octets\n",
6066		    sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
6067
6068	if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets)
6069		BNX_PRINTF(sc, "0x%08X : "
6070		    "EtherStatsPktsRx256Octetsto511Octets\n",
6071		    sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
6072
6073	if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)
6074		BNX_PRINTF(sc, "0x%08X : "
6075		    "EtherStatsPktsRx512Octetsto1023Octets\n",
6076		    sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
6077
6078	if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)
6079		BNX_PRINTF(sc, "0x%08X : "
6080		    "EtherStatsPktsRx1024Octetsto1522Octets\n",
6081		sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
6082
6083	if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)
6084		BNX_PRINTF(sc, "0x%08X : "
6085		    "EtherStatsPktsRx1523Octetsto9022Octets\n",
6086		    sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
6087
6088	if (sblk->stat_EtherStatsPktsTx64Octets)
6089		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n",
6090		    sblk->stat_EtherStatsPktsTx64Octets);
6091
6092	if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets)
6093		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",
6094		    sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
6095
6096	if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets)
6097		BNX_PRINTF(sc, "0x%08X : "
6098		    "EtherStatsPktsTx128Octetsto255Octets\n",
6099		    sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
6100
6101	if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets)
6102		BNX_PRINTF(sc, "0x%08X : "
6103		    "EtherStatsPktsTx256Octetsto511Octets\n",
6104		    sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
6105
6106	if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)
6107		BNX_PRINTF(sc, "0x%08X : "
6108		    "EtherStatsPktsTx512Octetsto1023Octets\n",
6109		    sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
6110
6111	if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)
6112		BNX_PRINTF(sc, "0x%08X : "
6113		    "EtherStatsPktsTx1024Octetsto1522Octets\n",
6114		    sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
6115
6116	if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)
6117		BNX_PRINTF(sc, "0x%08X : "
6118		    "EtherStatsPktsTx1523Octetsto9022Octets\n",
6119		    sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
6120
6121	if (sblk->stat_XonPauseFramesReceived)
6122		BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n",
6123		    sblk->stat_XonPauseFramesReceived);
6124
6125	if (sblk->stat_XoffPauseFramesReceived)
6126		BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n",
6127		    sblk->stat_XoffPauseFramesReceived);
6128
6129	if (sblk->stat_OutXonSent)
6130		BNX_PRINTF(sc, "0x%08X : OutXonSent\n",
6131		    sblk->stat_OutXonSent);
6132
6133	if (sblk->stat_OutXoffSent)
6134		BNX_PRINTF(sc, "0x%08X : OutXoffSent\n",
6135		    sblk->stat_OutXoffSent);
6136
6137	if (sblk->stat_FlowControlDone)
6138		BNX_PRINTF(sc, "0x%08X : FlowControlDone\n",
6139		    sblk->stat_FlowControlDone);
6140
6141	if (sblk->stat_MacControlFramesReceived)
6142		BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n",
6143		    sblk->stat_MacControlFramesReceived);
6144
6145	if (sblk->stat_XoffStateEntered)
6146		BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n",
6147		    sblk->stat_XoffStateEntered);
6148
6149	if (sblk->stat_IfInFramesL2FilterDiscards)
6150		BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n",
6151		    sblk->stat_IfInFramesL2FilterDiscards);
6152
6153	if (sblk->stat_IfInRuleCheckerDiscards)
6154		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n",
6155		    sblk->stat_IfInRuleCheckerDiscards);
6156
6157	if (sblk->stat_IfInFTQDiscards)
6158		BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n",
6159		    sblk->stat_IfInFTQDiscards);
6160
6161	if (sblk->stat_IfInMBUFDiscards)
6162		BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n",
6163		    sblk->stat_IfInMBUFDiscards);
6164
6165	if (sblk->stat_IfInRuleCheckerP4Hit)
6166		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n",
6167		    sblk->stat_IfInRuleCheckerP4Hit);
6168
6169	if (sblk->stat_CatchupInRuleCheckerDiscards)
6170		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n",
6171		    sblk->stat_CatchupInRuleCheckerDiscards);
6172
6173	if (sblk->stat_CatchupInFTQDiscards)
6174		BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n",
6175		    sblk->stat_CatchupInFTQDiscards);
6176
6177	if (sblk->stat_CatchupInMBUFDiscards)
6178		BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n",
6179		    sblk->stat_CatchupInMBUFDiscards);
6180
6181	if (sblk->stat_CatchupInRuleCheckerP4Hit)
6182		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n",
6183		    sblk->stat_CatchupInRuleCheckerP4Hit);
6184
6185	aprint_debug_dev(sc->bnx_dev,
6186	    "-----------------------------"
6187	    "--------------"
6188	    "-----------------------------\n");
6189}
6190
6191void
6192bnx_dump_driver_state(struct bnx_softc *sc)
6193{
6194	aprint_debug_dev(sc->bnx_dev,
6195	    "-----------------------------"
6196	    " Driver State "
6197	    "-----------------------------\n");
6198
6199	BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual "
6200	    "address\n", sc);
6201
6202	BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n",
6203	    sc->status_block);
6204
6205	BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual "
6206	    "address\n", sc->stats_block);
6207
6208	BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual "
6209	    "adddress\n", sc->tx_bd_chain);
6210
6211#if 0
6212	BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n",
6213	    sc->rx_bd_chain);
6214
6215	BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",
6216	    sc->tx_mbuf_ptr);
6217#endif
6218
6219	BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",
6220	    sc->rx_mbuf_ptr);
6221
6222	BNX_PRINTF(sc,
6223	    "         0x%08X - (sc->interrupts_generated) h/w intrs\n",
6224	    sc->interrupts_generated);
6225
6226	BNX_PRINTF(sc,
6227	    "         0x%08X - (sc->rx_interrupts) rx interrupts handled\n",
6228	    sc->rx_interrupts);
6229
6230	BNX_PRINTF(sc,
6231	    "         0x%08X - (sc->tx_interrupts) tx interrupts handled\n",
6232	    sc->tx_interrupts);
6233
6234	BNX_PRINTF(sc,
6235	    "         0x%08X - (sc->last_status_idx) status block index\n",
6236	    sc->last_status_idx);
6237
6238	BNX_PRINTF(sc, "         0x%08X - (sc->tx_prod) tx producer index\n",
6239	    sc->tx_prod);
6240
6241	BNX_PRINTF(sc, "         0x%08X - (sc->tx_cons) tx consumer index\n",
6242	    sc->tx_cons);
6243
6244	BNX_PRINTF(sc,
6245	    "         0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",
6246	    sc->tx_prod_bseq);
6247	BNX_PRINTF(sc,
6248	    "	 0x%08X - (sc->tx_mbuf_alloc) tx mbufs allocated\n",
6249	    sc->tx_mbuf_alloc);
6250
6251	BNX_PRINTF(sc,
6252	    "	 0x%08X - (sc->used_tx_bd) used tx_bd's\n",
6253	    sc->used_tx_bd);
6254
6255	BNX_PRINTF(sc,
6256	    "	 0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
6257	    sc->tx_hi_watermark, sc->max_tx_bd);
6258
6259
6260	BNX_PRINTF(sc, "         0x%08X - (sc->rx_prod) rx producer index\n",
6261	    sc->rx_prod);
6262
6263	BNX_PRINTF(sc, "         0x%08X - (sc->rx_cons) rx consumer index\n",
6264	    sc->rx_cons);
6265
6266	BNX_PRINTF(sc,
6267	    "         0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",
6268	    sc->rx_prod_bseq);
6269
6270	BNX_PRINTF(sc,
6271	    "         0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
6272	    sc->rx_mbuf_alloc);
6273
6274	BNX_PRINTF(sc, "         0x%08X - (sc->free_rx_bd) free rx_bd's\n",
6275	    sc->free_rx_bd);
6276
6277	BNX_PRINTF(sc,
6278	    "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n",
6279	    sc->rx_low_watermark, sc->max_rx_bd);
6280
6281	BNX_PRINTF(sc,
6282	    "         0x%08X - (sc->mbuf_alloc_failed) "
6283	    "mbuf alloc failures\n",
6284	    sc->mbuf_alloc_failed);
6285
6286	BNX_PRINTF(sc,
6287	    "         0x%0X - (sc->mbuf_sim_allocated_failed) "
6288	    "simulated mbuf alloc failures\n",
6289	    sc->mbuf_sim_alloc_failed);
6290
6291	aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
6292	    "-----------------------------\n");
6293}
6294
6295void
6296bnx_dump_hw_state(struct bnx_softc *sc)
6297{
6298	u_int32_t		val1;
6299	int			i;
6300
6301	aprint_debug_dev(sc->bnx_dev,
6302	    "----------------------------"
6303	    " Hardware State "
6304	    "----------------------------\n");
6305
6306	BNX_PRINTF(sc, "0x%08X : bootcode version\n", sc->bnx_fw_ver);
6307
6308	val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS);
6309	BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n",
6310	    val1, BNX_MISC_ENABLE_STATUS_BITS);
6311
6312	val1 = REG_RD(sc, BNX_DMA_STATUS);
6313	BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS);
6314
6315	val1 = REG_RD(sc, BNX_CTX_STATUS);
6316	BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS);
6317
6318	val1 = REG_RD(sc, BNX_EMAC_STATUS);
6319	BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1,
6320	    BNX_EMAC_STATUS);
6321
6322	val1 = REG_RD(sc, BNX_RPM_STATUS);
6323	BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS);
6324
6325	val1 = REG_RD(sc, BNX_TBDR_STATUS);
6326	BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1,
6327	    BNX_TBDR_STATUS);
6328
6329	val1 = REG_RD(sc, BNX_TDMA_STATUS);
6330	BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1,
6331	    BNX_TDMA_STATUS);
6332
6333	val1 = REG_RD(sc, BNX_HC_STATUS);
6334	BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS);
6335
6336	aprint_debug_dev(sc->bnx_dev,
6337	    "----------------------------"
6338	    "----------------"
6339	    "----------------------------\n");
6340
6341	aprint_debug_dev(sc->bnx_dev,
6342	    "----------------------------"
6343	    " Register  Dump "
6344	    "----------------------------\n");
6345
6346	for (i = 0x400; i < 0x8000; i += 0x10)
6347		BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
6348		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
6349		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
6350
6351	aprint_debug_dev(sc->bnx_dev,
6352	    "----------------------------"
6353	    "----------------"
6354	    "----------------------------\n");
6355}
6356
6357void
6358bnx_breakpoint(struct bnx_softc *sc)
6359{
6360	/* Unreachable code to shut the compiler up about unused functions. */
6361	if (0) {
6362   		bnx_dump_txbd(sc, 0, NULL);
6363		bnx_dump_rxbd(sc, 0, NULL);
6364		bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
6365		bnx_dump_rx_mbuf_chain(sc, 0, sc->max_rx_bd);
6366		bnx_dump_l2fhdr(sc, 0, NULL);
6367		bnx_dump_tx_chain(sc, 0, USABLE_TX_BD);
6368		bnx_dump_rx_chain(sc, 0, sc->max_rx_bd);
6369		bnx_dump_status_block(sc);
6370		bnx_dump_stats_block(sc);
6371		bnx_dump_driver_state(sc);
6372		bnx_dump_hw_state(sc);
6373	}
6374
6375	bnx_dump_driver_state(sc);
6376	/* Print the important status block fields. */
6377	bnx_dump_status_block(sc);
6378
6379#if 0
6380	/* Call the debugger. */
6381	breakpoint();
6382#endif
6383
6384	return;
6385}
6386#endif
6387