1/*	$NetBSD: cs89x0.c,v 1.32 2010/11/13 13:52:00 uebayasi Exp $	*/
2
3/*
4 * Copyright (c) 2004 Christopher Gilbert
5 * All rights reserved.
6 *
7 * 1. Redistributions of source code must retain the above copyright
8 *    notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 *    notice, this list of conditions and the following disclaimer in the
11 *    documentation and/or other materials provided with the distribution.
12 * 3. The name of the company nor the name of the author may be used to
13 *    endorse or promote products derived from this software without specific
14 *    prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
17 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
18 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
20 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29/*
30 * Copyright 1997
31 * Digital Equipment Corporation. All rights reserved.
32 *
33 * This software is furnished under license and may be used and
34 * copied only in accordance with the following terms and conditions.
35 * Subject to these conditions, you may download, copy, install,
36 * use, modify and distribute this software in source and/or binary
37 * form. No title or ownership is transferred hereby.
38 *
39 * 1) Any source code used, modified or distributed must reproduce
40 *    and retain this copyright notice and list of conditions as
41 *    they appear in the source file.
42 *
43 * 2) No right is granted to use any trade name, trademark, or logo of
44 *    Digital Equipment Corporation. Neither the "Digital Equipment
45 *    Corporation" name nor any trademark or logo of Digital Equipment
46 *    Corporation may be used to endorse or promote products derived
47 *    from this software without the prior written permission of
48 *    Digital Equipment Corporation.
49 *
50 * 3) This software is provided "AS-IS" and any express or implied
51 *    warranties, including but not limited to, any implied warranties
52 *    of merchantability, fitness for a particular purpose, or
53 *    non-infringement are disclaimed. In no event shall DIGITAL be
54 *    liable for any damages whatsoever, and in particular, DIGITAL
55 *    shall not be liable for special, indirect, consequential, or
56 *    incidental damages or damages for lost profits, loss of
57 *    revenue or loss of use, whether such damages arise in contract,
58 *    negligence, tort, under statute, in equity, at law or otherwise,
59 *    even if advised of the possibility of such damage.
60 */
61
62/*
63**++
64**  FACILITY
65**
66**     Device Driver for the Crystal CS8900 ISA Ethernet Controller.
67**
68**  ABSTRACT
69**
70**     This module provides standard ethernet access for INET protocols
71**     only.
72**
73**  AUTHORS
74**
75**     Peter Dettori     SEA - Software Engineering.
76**
77**  CREATION DATE:
78**
79**     13-Feb-1997.
80**
81**  MODIFICATION HISTORY (Digital):
82**
83**     Revision 1.27  1998/01/20  17:59:40  cgd
84**     update for moved headers
85**
86**     Revision 1.26  1998/01/12  19:29:36  cgd
87**     use arm32/isa versions of isadma code.
88**
89**     Revision 1.25  1997/12/12  01:35:27  cgd
90**     convert to use new arp code (from Brini)
91**
92**     Revision 1.24  1997/12/10  22:31:56  cgd
93**     trim some fat (get rid of ability to explicitly supply enet addr, since
94**     it was never used and added a bunch of code which really doesn't belong in
95**     an enet driver), and clean up slightly.
96**
97**     Revision 1.23  1997/10/06  16:42:12  cgd
98**     copyright notices
99**
100**     Revision 1.22  1997/06/20  19:38:01  chaiken
101**     fixes some smartcard problems
102**
103**     Revision 1.21  1997/06/10 02:56:20  grohn
104**     Added call to ledNetActive
105**
106**     Revision 1.20  1997/06/05 00:47:06  dettori
107**     Changed cs_process_rx_dma to reset and re-initialise the
108**     ethernet chip when DMA gets out of sync, or mbufs
109**     can't be allocated.
110**
111**     Revision 1.19  1997/06/03 03:09:58  dettori
112**     Turn off sc_txbusy flag when a transmit underrun
113**     occurs.
114**
115**     Revision 1.18  1997/06/02 00:04:35  dettori
116**     redefined the transmit table to get around the nfs_timer bug while we are
117**     looking into it further.
118**
119**     Also changed interrupts from EDGE to LEVEL.
120**
121**     Revision 1.17  1997/05/27 23:31:01  dettori
122**     Pulled out changes to DMAMODE defines.
123**
124**     Revision 1.16  1997/05/23 04:25:16  cgd
125**     reformat log so it fits in 80cols
126**
127**     Revision 1.15  1997/05/23  04:22:18  cgd
128**     remove the existing copyright notice (which Peter Dettori indicated
129**     was incorrect, copied from an existing NetBSD file only so that the
130**     file would have a copyright notice on it, and which he'd intended to
131**     replace).  Replace it with a Digital copyright notice, cloned from
132**     ess.c.  It's not really correct either (it indicates that the source
133**     is Digital confidential!), but is better than nothing and more
134**     correct than what was there before.
135**
136**     Revision 1.14  1997/05/23  04:12:50  cgd
137**     use an adaptive transmit start algorithm: start by telling the chip
138**     to start transmitting after 381 bytes have been fed to it.  if that
139**     gets transmit underruns, ramp down to 1021 bytes then "whole
140**     packet."  If successful at a given level for a while, try the next
141**     more agressive level.  This code doesn't ever try to start
142**     transmitting after 5 bytes have been sent to the NIC, because
143**     that underruns rather regularly.  The back-off and ramp-up mechanism
144**     could probably be tuned a little bit, but this works well enough to
145**     support > 1MB/s transmit rates on a clear ethernet (which is about
146**     20-25% better than the driver had previously been getting).
147**
148**     Revision 1.13  1997/05/22  21:06:54  cgd
149**     redo cs_copy_tx_frame() from scratch.  It had a fatal flaw: it was blindly
150**     casting from u_int8_t * to u_int16_t * without worrying about alignment
151**     issues.  This would cause bogus data to be spit out for mbufs with
152**     misaligned data.  For instance, it caused the following bits to appear
153**     on the wire:
154**     	... etBND 1S2C .SHA(K) R ...
155**     	    11112222333344445555
156**     which should have appeared as:
157**     	... NetBSD 1.2C (SHARK) ...
158**     	    11112222333344445555
159**     Note the apparent 'rotate' of the bytes in the word, which was due to
160**     incorrect unaligned accesses.  This data corruption was the cause of
161**     incoming telnet/rlogin hangs.
162**
163**     Revision 1.12  1997/05/22  01:55:32  cgd
164**     reformat log so it fits in 80cols
165**
166**     Revision 1.11  1997/05/22  01:50:27  cgd
167**     * enable input packet address checking in the BPF+IFF_PROMISCUOUS case,
168**       so packets aimed at other hosts don't get sent to ether_input().
169**     * Add a static const char *rcsid initialized with an RCS Id tag, so that
170**       you can easily tell (`strings`) what version of the driver is in your
171**       kernel binary.
172**     * get rid of ether_cmp().  It was inconsistently used, not necessarily
173**       safe, and not really a performance win anyway.  (It was only used when
174**       setting up the multicast logical address filter, which is an
175**       infrequent event.  It could have been used in the IFF_PROMISCUOUS
176**       address check above, but the benefit of it vs. memcmp would be
177**       inconsequential, there.)  Use memcmp() instead.
178**     * restructure csStartOuput to avoid the following bugs in the case where
179**       txWait was being set:
180**         * it would accidentally drop the outgoing packet if told to wait
181**           but the outgoing packet queue was empty.
182**         * it would bpf_mtap() the outgoing packet multiple times (once for
183**           each time it was told to wait), and would also recalculate
184**           the length of the outgoing packet each time it was told to
185**           wait.
186**       While there, rename txWait to txLoop, since with the new structure of
187**       the code, the latter name makes more sense.
188**
189**     Revision 1.10  1997/05/19  02:03:20  cgd
190**     Set RX_CTL in cs_set_ladr_filt(), rather than cs_initChip().  cs_initChip()
191**     is the only caller of cs_set_ladr_filt(), and always calls it, so this
192**     ends up being logically the same.  In cs_set_ladr_filt(), if IFF_PROMISC
193**     is set, enable promiscuous mode (and set IFF_ALLMULTI), otherwise behave
194**     as before.
195**
196**     Revision 1.9  1997/05/19  01:45:37  cgd
197**     create a new function, cs_ether_input(), which does received-packet
198**     BPF and ether_input processing.  This code used to be in three places,
199**     and centralizing it will make adding IFF_PROMISC support much easier.
200**     Also, in cs_copy_tx_frame(), put it some (currently disabled) code to
201**     do copies with bus_space_write_region_2().  It's more correct, and
202**     potentially more efficient.  That function needs to be gutted (to
203**     deal properly with alignment issues, which it currently does wrong),
204**     however, and the change doesn't gain much, so there's no point in
205**     enabling it now.
206**
207**     Revision 1.8  1997/05/19  01:17:10  cgd
208**     fix a comment re: the setting of the TxConfig register.  Clean up
209**     interface counter maintenance (make it use standard idiom).
210**
211**--
212*/
213
214#include <sys/cdefs.h>
215__KERNEL_RCSID(0, "$NetBSD: cs89x0.c,v 1.32 2010/11/13 13:52:00 uebayasi Exp $");
216
217#include "opt_inet.h"
218
219#include <sys/param.h>
220#include <sys/systm.h>
221#include <sys/mbuf.h>
222#include <sys/syslog.h>
223#include <sys/socket.h>
224#include <sys/device.h>
225#include <sys/malloc.h>
226#include <sys/ioctl.h>
227#include <sys/errno.h>
228
229#include <sys/rnd.h>
230
231#include <net/if.h>
232#include <net/if_ether.h>
233#include <net/if_media.h>
234#ifdef INET
235#include <netinet/in.h>
236#include <netinet/if_inarp.h>
237#endif
238
239#include <net/bpf.h>
240#include <net/bpfdesc.h>
241
242#include <sys/bus.h>
243#include <sys/intr.h>
244
245#include <dev/ic/cs89x0reg.h>
246#include <dev/ic/cs89x0var.h>
247
248#ifdef SHARK
249#include <shark/shark/sequoia.h>
250#endif
251
252/*
253 * MACRO DEFINITIONS
254 */
255#define CS_OUTPUT_LOOP_MAX 100	/* max times round notorious tx loop */
256
257/*
258 * FUNCTION PROTOTYPES
259 */
260static void	cs_get_default_media(struct cs_softc *);
261static int	cs_get_params(struct cs_softc *);
262static int	cs_get_enaddr(struct cs_softc *);
263static int	cs_reset_chip(struct cs_softc *);
264static void	cs_reset(struct cs_softc *);
265static int	cs_ioctl(struct ifnet *, u_long, void *);
266static void	cs_initChip(struct cs_softc *);
267static void	cs_buffer_event(struct cs_softc *, u_int16_t);
268static void	cs_transmit_event(struct cs_softc *, u_int16_t);
269static void	cs_receive_event(struct cs_softc *, u_int16_t);
270static void	cs_process_receive(struct cs_softc *);
271static void	cs_process_rx_early(struct cs_softc *);
272static void	cs_start_output(struct ifnet *);
273static void	cs_copy_tx_frame(struct cs_softc *, struct mbuf *);
274static void	cs_set_ladr_filt(struct cs_softc *, struct ethercom *);
275static u_int16_t cs_hash_index(char *);
276static void	cs_counter_event(struct cs_softc *, u_int16_t);
277
278static int	cs_mediachange(struct ifnet *);
279static void	cs_mediastatus(struct ifnet *, struct ifmediareq *);
280
281static bool cs_shutdown(device_t, int);
282static int cs_enable(struct cs_softc *);
283static void cs_disable(struct cs_softc *);
284static void cs_stop(struct ifnet *, int);
285static int cs_scan_eeprom(struct cs_softc *);
286static int cs_read_pktpg_from_eeprom(struct cs_softc *, int, u_int16_t *);
287
288
289/*
290 * GLOBAL DECLARATIONS
291 */
292
293/*
294 * Xmit-early table.
295 *
296 * To get better performance, we tell the chip to start packet
297 * transmission before the whole packet is copied to the chip.
298 * However, this can fail under load.  When it fails, we back off
299 * to a safer setting for a little while.
300 *
301 * txcmd is the value of txcmd used to indicate when to start transmission.
302 * better is the next 'better' state in the table.
303 * better_count is the number of output packets before transition to the
304 *   better state.
305 * worse is the next 'worse' state in the table.
306 *
307 * Transition to the next worse state happens automatically when a
308 * transmittion underrun occurs.
309 */
310struct cs_xmit_early {
311	u_int16_t       txcmd;
312	int             better;
313	int             better_count;
314	int             worse;
315} cs_xmit_early_table[3] = {
316	{ TX_CMD_START_381,	0,	INT_MAX,	1, },
317	{ TX_CMD_START_1021,	0,	50000,		2, },
318	{ TX_CMD_START_ALL,	1,	5000,		2, },
319};
320
321int cs_default_media[] = {
322	IFM_ETHER|IFM_10_2,
323	IFM_ETHER|IFM_10_5,
324	IFM_ETHER|IFM_10_T,
325	IFM_ETHER|IFM_10_T|IFM_FDX,
326};
327int cs_default_nmedia = sizeof(cs_default_media) / sizeof(cs_default_media[0]);
328
329int
330cs_attach(struct cs_softc *sc, u_int8_t *enaddr, int *media,
331	  int nmedia, int defmedia)
332{
333	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
334	const char *chipname, *medname;
335	u_int16_t reg;
336	int i;
337
338	/* Start out in IO mode */
339	sc->sc_memorymode = FALSE;
340
341	/* make sure we're right */
342	for (i = 0; i < 10000; i++) {
343		reg = CS_READ_PACKET_PAGE(sc, PKTPG_EISA_NUM);
344		if (reg == EISA_NUM_CRYSTAL) {
345			break;
346		}
347	}
348	if (i == 10000) {
349		aprint_error_dev(sc->sc_dev, "wrong id(0x%x)\n", reg);
350		return 1; /* XXX should panic? */
351	}
352
353	reg = CS_READ_PACKET_PAGE(sc, PKTPG_PRODUCT_ID);
354	sc->sc_prodid = reg & PROD_ID_MASK;
355	sc->sc_prodrev = (reg & PROD_REV_MASK) >> 8;
356
357	switch (sc->sc_prodid) {
358	case PROD_ID_CS8900:
359		chipname = "CS8900";
360		break;
361	case PROD_ID_CS8920:
362		chipname = "CS8920";
363		break;
364	case PROD_ID_CS8920M:
365		chipname = "CS8920M";
366		break;
367	default:
368		panic("cs_attach: impossible");
369	}
370
371	/*
372	 * the first thing to do is check that the mbuf cluster size is
373	 * greater than the MTU for an ethernet frame. The code depends on
374	 * this and to port this to a OS where this was not the case would
375	 * not be straightforward.
376	 *
377	 * we need 1 byte spare because our
378	 * packet read loop can overrun.
379	 * and we may need pad bytes to align ip header.
380	 */
381	if (MCLBYTES < ETHER_MAX_LEN + 1 +
382		ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header)) {
383		printf("%s: MCLBYTES too small for Ethernet frame\n",
384		    device_xname(sc->sc_dev));
385		return 1;
386	}
387
388	/* Start out not transmitting */
389	sc->sc_txbusy = FALSE;
390
391	/* Set up early transmit threshhold */
392	sc->sc_xe_ent = 0;
393	sc->sc_xe_togo = cs_xmit_early_table[sc->sc_xe_ent].better_count;
394
395	/* Initialize ifnet structure. */
396	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
397	ifp->if_softc = sc;
398	ifp->if_start = cs_start_output;
399	ifp->if_init = cs_init;
400	ifp->if_ioctl = cs_ioctl;
401	ifp->if_stop = cs_stop;
402	ifp->if_watchdog = NULL;	/* no watchdog at this stage */
403	ifp->if_flags = IFF_SIMPLEX | IFF_NOTRAILERS |
404	    IFF_BROADCAST | IFF_MULTICAST;
405	IFQ_SET_READY(&ifp->if_snd);
406
407	/* Initialize ifmedia structures. */
408	ifmedia_init(&sc->sc_media, 0, cs_mediachange, cs_mediastatus);
409
410	if (media != NULL) {
411		for (i = 0; i < nmedia; i++)
412			ifmedia_add(&sc->sc_media, media[i], 0, NULL);
413		ifmedia_set(&sc->sc_media, defmedia);
414	} else {
415		for (i = 0; i < cs_default_nmedia; i++)
416			ifmedia_add(&sc->sc_media, cs_default_media[i],
417			    0, NULL);
418		cs_get_default_media(sc);
419	}
420
421	if (sc->sc_cfgflags & CFGFLG_PARSE_EEPROM) {
422		if (cs_scan_eeprom(sc) == CS_ERROR) {
423			/* failed to scan the eeprom, pretend there isn't an eeprom */
424			aprint_error_dev(sc->sc_dev, "unable to scan EEPROM\n");
425			sc->sc_cfgflags |= CFGFLG_NOT_EEPROM;
426		}
427	}
428
429	if ((sc->sc_cfgflags & CFGFLG_NOT_EEPROM) == 0) {
430		/* Get parameters from the EEPROM */
431		if (cs_get_params(sc) == CS_ERROR) {
432			aprint_error_dev(sc->sc_dev,
433			    "unable to get settings from EEPROM\n");
434			return 1;
435		}
436	}
437
438	if (enaddr != NULL)
439		memcpy(sc->sc_enaddr, enaddr, sizeof(sc->sc_enaddr));
440	else if ((sc->sc_cfgflags & CFGFLG_NOT_EEPROM) == 0) {
441		/* Get and store the Ethernet address */
442		if (cs_get_enaddr(sc) == CS_ERROR) {
443			aprint_error_dev(sc->sc_dev,
444			    "unable to read Ethernet address\n");
445			return 1;
446		}
447	} else {
448#if 1
449		int j;
450		uint v;
451
452		for (j = 0; j < 6; j += 2) {
453			v = CS_READ_PACKET_PAGE(sc, PKTPG_IND_ADDR + j);
454			sc->sc_enaddr[j + 0] = v;
455			sc->sc_enaddr[j + 1] = v >> 8;
456		}
457#else
458		printf("%s: no Ethernet address!\n", device_xname(sc->sc_dev));
459		return 1;
460#endif
461	}
462
463	switch (IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media)) {
464	case IFM_10_2:
465		medname = "BNC";
466		break;
467	case IFM_10_5:
468		medname = "AUI";
469		break;
470	case IFM_10_T:
471		if (sc->sc_media.ifm_cur->ifm_media & IFM_FDX)
472			medname = "UTP <full-duplex>";
473		else
474			medname = "UTP";
475		break;
476	default:
477		panic("cs_attach: impossible");
478	}
479	printf("%s: %s rev. %c, address %s, media %s\n",
480	    device_xname(sc->sc_dev),
481	    chipname, sc->sc_prodrev + 'A', ether_sprintf(sc->sc_enaddr),
482	    medname);
483
484	if (sc->sc_dma_attach)
485		(*sc->sc_dma_attach)(sc);
486
487	/* Attach the interface. */
488	if_attach(ifp);
489	ether_ifattach(ifp, sc->sc_enaddr);
490
491	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
492			  RND_TYPE_NET, 0);
493	sc->sc_cfgflags |= CFGFLG_ATTACHED;
494
495	if (pmf_device_register1(sc->sc_dev, NULL, NULL, cs_shutdown))
496		pmf_class_network_register(sc->sc_dev, ifp);
497	else
498		aprint_error_dev(sc->sc_dev,
499		    "couldn't establish power handler\n");
500
501	/* Reset the chip */
502	if (cs_reset_chip(sc) == CS_ERROR) {
503		aprint_error_dev(sc->sc_dev, "reset failed\n");
504		cs_detach(sc);
505		return 1;
506	}
507
508	return 0;
509}
510
511int
512cs_detach(struct cs_softc *sc)
513{
514	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
515
516	if (sc->sc_cfgflags & CFGFLG_ATTACHED) {
517		rnd_detach_source(&sc->rnd_source);
518		ether_ifdetach(ifp);
519		if_detach(ifp);
520		sc->sc_cfgflags &= ~CFGFLG_ATTACHED;
521	}
522
523#if 0
524	/*
525	 * XXX not necessary
526	 */
527	if (sc->sc_cfgflags & CFGFLG_DMA_MODE) {
528		isa_dmamem_unmap(sc->sc_ic, sc->sc_drq, sc->sc_dmabase, sc->sc_dmasize);
529		isa_dmamem_free(sc->sc_ic, sc->sc_drq, sc->sc_dmaaddr, sc->sc_dmasize);
530		isa_dmamap_destroy(sc->sc_ic, sc->sc_drq);
531		sc->sc_cfgflags &= ~CFGFLG_DMA_MODE;
532	}
533#endif
534
535	pmf_device_deregister(sc->sc_dev);
536
537	return 0;
538}
539
540bool
541cs_shutdown(device_t self, int howto)
542{
543	struct cs_softc *sc;
544
545	sc = device_private(self);
546	cs_reset(sc);
547
548	return true;
549}
550
551void
552cs_get_default_media(struct cs_softc *sc)
553{
554	u_int16_t adp_cfg, xmit_ctl;
555
556	if (cs_verify_eeprom(sc) == CS_ERROR) {
557		aprint_error_dev(sc->sc_dev,
558		    "cs_get_default_media: EEPROM missing or bad\n");
559		goto fakeit;
560	}
561
562	if (cs_read_eeprom(sc, EEPROM_ADPTR_CFG, &adp_cfg) == CS_ERROR) {
563		aprint_error_dev(sc->sc_dev,
564		    "unable to read adapter config from EEPROM\n");
565		goto fakeit;
566	}
567
568	if (cs_read_eeprom(sc, EEPROM_XMIT_CTL, &xmit_ctl) == CS_ERROR) {
569		aprint_error_dev(sc->sc_dev,
570		    "unable to read transmit control from EEPROM\n");
571		goto fakeit;
572	}
573
574	switch (adp_cfg & ADPTR_CFG_MEDIA) {
575	case ADPTR_CFG_AUI:
576		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_5);
577		break;
578	case ADPTR_CFG_10BASE2:
579		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_2);
580		break;
581	case ADPTR_CFG_10BASET:
582	default:
583		if (xmit_ctl & XMIT_CTL_FDX)
584			ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T|IFM_FDX);
585		else
586			ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T);
587		break;
588	}
589	return;
590
591 fakeit:
592	aprint_error_dev(sc->sc_dev,
593	    "WARNING: default media setting may be inaccurate\n");
594	/* XXX Arbitrary... */
595	ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T);
596}
597
598/*
599 * cs_scan_eeprom
600 *
601 * Attempt to take a complete copy of the eeprom into main memory.
602 * this will allow faster parsing of the eeprom data.
603 *
604 * Only tested against a 8920M's eeprom, but the data sheet for the
605 * 8920A indicates that is uses the same layout.
606 */
607int
608cs_scan_eeprom(struct cs_softc *sc)
609{
610	u_int16_t result;
611	int	i;
612	int	eeprom_size;
613	u_int8_t checksum = 0;
614
615	if (cs_verify_eeprom(sc) == CS_ERROR) {
616		aprint_error_dev(sc->sc_dev,
617		    "cs_scan_params: EEPROM missing or bad\n");
618		return (CS_ERROR);
619	}
620
621	/*
622	 * read the 0th word from the eeprom, it will tell us the length
623	 * and if the eeprom is valid
624	 */
625	cs_read_eeprom(sc, 0, &result);
626
627	/* check the eeprom signature */
628	if ((result & 0xE000) != 0xA000) {
629		/* empty eeprom */
630		return (CS_ERROR);
631	}
632
633	/*
634	 * take the eeprom size (note the read value doesn't include the header
635	 * word)
636	 */
637	eeprom_size = (result & 0xff) + 2;
638
639	sc->eeprom_data = malloc(eeprom_size, M_DEVBUF, M_WAITOK);
640	if (sc->eeprom_data == NULL) {
641		/* no memory, treat this as if there's no eeprom */
642		return (CS_ERROR);
643	}
644
645	sc->eeprom_size = eeprom_size;
646
647	/* read the eeprom into the buffer, also calculate the checksum  */
648	for (i = 0; i < (eeprom_size >> 1); i++) {
649		cs_read_eeprom(sc, i, &(sc->eeprom_data[i]));
650		checksum += (sc->eeprom_data[i] & 0xff00) >> 8;
651		checksum += (sc->eeprom_data[i] & 0x00ff);
652	}
653
654	/*
655	 * validate checksum calculation, the sum of all the bytes should be 0,
656	 * as the high byte of the last word is the 2's complement of the
657	 * sum to that point.
658	 */
659	if (checksum != 0) {
660		aprint_error_dev(sc->sc_dev, "eeprom checksum failure\n");
661		return (CS_ERROR);
662	}
663
664	return (CS_OK);
665}
666
667static int
668cs_read_pktpg_from_eeprom(struct cs_softc *sc, int pktpg, u_int16_t *pValue)
669{
670	int x, maxword;
671
672	/* Check that we have eeprom data */
673	if ((sc->eeprom_data == NULL) || (sc->eeprom_size < 2))
674		return (CS_ERROR);
675
676	/*
677	 * We only want to read the data words, the last word contains the
678	 * checksum
679	 */
680	maxword = (sc->eeprom_size - 2) >> 1;
681
682	/* start 1 word in, as the first word is the length and signature */
683	x = 1;
684
685	while ( x < (maxword)) {
686		u_int16_t header;
687		int group_size;
688		int offset;
689		int offset_max;
690
691		/* read in the group header word */
692		header = sc->eeprom_data[x];
693		x++;	/* skip group header */
694
695		/*
696		 * size of group in words is in the top 4 bits, note that it
697		 * is one less than the number of words
698		 */
699		group_size = header & 0xF000;
700
701		/*
702		 * CS8900 Data sheet says this should be 0x01ff,
703		 * but my cs8920 eeprom has higher offsets,
704		 * perhaps the 8920 allows higher offsets, otherwise
705		 * it's writing to places that it shouldn't
706		 */
707		/* work out the offsets this group covers */
708		offset = header & 0x0FFF;
709		offset_max = offset + (group_size << 1);
710
711		/* check if the pkgpg we're after is in this group */
712		if ((offset <= pktpg) && (pktpg <= offset_max)) {
713			/* the pkgpg value we want is in here */
714			int eeprom_location;
715
716			eeprom_location = ((pktpg - offset) >> 1) ;
717
718			*pValue = sc->eeprom_data[x + eeprom_location];
719			return (CS_OK);
720		} else {
721			/* skip this group (+ 1 for first entry) */
722			x += group_size + 1;
723		}
724	}
725
726	/*
727	 * if we've fallen out here then we don't have a value in the EEPROM
728	 * for this pktpg so return an error
729	 */
730	return (CS_ERROR);
731}
732
733int
734cs_get_params(struct cs_softc *sc)
735{
736	u_int16_t isaConfig;
737	u_int16_t adapterConfig;
738
739	if (cs_verify_eeprom(sc) == CS_ERROR) {
740		aprint_error_dev(sc->sc_dev,
741		    "cs_get_params: EEPROM missing or bad\n");
742		return (CS_ERROR);
743	}
744
745	if (sc->sc_cfgflags & CFGFLG_PARSE_EEPROM) {
746		/* Get ISA configuration from the EEPROM */
747		if (cs_read_pktpg_from_eeprom(sc, PKTPG_BUS_CTL, &isaConfig)
748			       	== CS_ERROR) {
749			/* eeprom doesn't have this value, use data sheet default */
750			isaConfig = 0x0017;
751		}
752
753		/* Get adapter configuration from the EEPROM */
754		if (cs_read_pktpg_from_eeprom(sc, PKTPG_SELF_CTL, &adapterConfig)
755				== CS_ERROR) {
756			/* eeprom doesn't have this value, use data sheet default */
757			adapterConfig = 0x0015;
758		}
759
760		/* Copy the USE_SA flag */
761		if (isaConfig & BUS_CTL_USE_SA)
762			sc->sc_cfgflags |= CFGFLG_USE_SA;
763
764		/* Copy the IO Channel Ready flag */
765		if (isaConfig & BUS_CTL_IOCHRDY)
766			sc->sc_cfgflags |= CFGFLG_IOCHRDY;
767
768		/* Copy the DC/DC Polarity flag */
769		if (adapterConfig & SELF_CTL_HCB1)
770			sc->sc_cfgflags |= CFGFLG_DCDC_POL;
771	} else {
772		/* Get ISA configuration from the EEPROM */
773		if (cs_read_eeprom(sc, EEPROM_ISA_CFG, &isaConfig) == CS_ERROR)
774			goto eeprom_bad;
775
776		/* Get adapter configuration from the EEPROM */
777		if (cs_read_eeprom(sc, EEPROM_ADPTR_CFG, &adapterConfig) == CS_ERROR)
778			goto eeprom_bad;
779
780		/* Copy the USE_SA flag */
781		if (isaConfig & ISA_CFG_USE_SA)
782			sc->sc_cfgflags |= CFGFLG_USE_SA;
783
784		/* Copy the IO Channel Ready flag */
785		if (isaConfig & ISA_CFG_IOCHRDY)
786			sc->sc_cfgflags |= CFGFLG_IOCHRDY;
787
788		/* Copy the DC/DC Polarity flag */
789		if (adapterConfig & ADPTR_CFG_DCDC_POL)
790			sc->sc_cfgflags |= CFGFLG_DCDC_POL;
791	}
792
793	return (CS_OK);
794eeprom_bad:
795	aprint_error_dev(sc->sc_dev,
796	    "cs_get_params: unable to read from EEPROM\n");
797	return (CS_ERROR);
798}
799
800int
801cs_get_enaddr(struct cs_softc *sc)
802{
803	uint16_t myea[ETHER_ADDR_LEN / sizeof(uint16_t)];
804	int i;
805
806	if (cs_verify_eeprom(sc) == CS_ERROR) {
807		aprint_error_dev(sc->sc_dev,
808		    "cs_get_enaddr: EEPROM missing or bad\n");
809		return (CS_ERROR);
810	}
811
812	/* Get Ethernet address from the EEPROM */
813	if (sc->sc_cfgflags & CFGFLG_PARSE_EEPROM) {
814		if (cs_read_pktpg_from_eeprom(sc, PKTPG_IND_ADDR, &myea[0])
815				== CS_ERROR)
816			goto eeprom_bad;
817		if (cs_read_pktpg_from_eeprom(sc, PKTPG_IND_ADDR + 2, &myea[1])
818				== CS_ERROR)
819			goto eeprom_bad;
820		if (cs_read_pktpg_from_eeprom(sc, PKTPG_IND_ADDR + 4, &myea[2])
821				== CS_ERROR)
822			goto eeprom_bad;
823	} else {
824		if (cs_read_eeprom(sc, EEPROM_IND_ADDR_H, &myea[0]) == CS_ERROR)
825			goto eeprom_bad;
826		if (cs_read_eeprom(sc, EEPROM_IND_ADDR_M, &myea[1]) == CS_ERROR)
827			goto eeprom_bad;
828		if (cs_read_eeprom(sc, EEPROM_IND_ADDR_L, &myea[2]) == CS_ERROR)
829			goto eeprom_bad;
830	}
831
832	for (i = 0; i < __arraycount(myea); i++) {
833		sc->sc_enaddr[i * 2 + 0] = myea[i];
834		sc->sc_enaddr[i * 2 + 1] = myea[i] >> 8;
835	}
836
837	return (CS_OK);
838
839 eeprom_bad:
840	aprint_error_dev(sc->sc_dev,
841	    "cs_get_enaddr: unable to read from EEPROM\n");
842	return (CS_ERROR);
843}
844
845int
846cs_reset_chip(struct cs_softc *sc)
847{
848	int intState;
849	int x;
850
851	/* Disable interrupts at the CPU so reset command is atomic */
852	intState = splnet();
853
854	/*
855	 * We are now resetting the chip
856	 *
857	 * A spurious interrupt is generated by the chip when it is reset. This
858	 * variable informs the interrupt handler to ignore this interrupt.
859	 */
860	sc->sc_resetting = TRUE;
861
862	/* Issue a reset command to the chip */
863	CS_WRITE_PACKET_PAGE(sc, PKTPG_SELF_CTL, SELF_CTL_RESET);
864
865	/* Re-enable interrupts at the CPU */
866	splx(intState);
867
868	/* The chip is always in IO mode after a reset */
869	sc->sc_memorymode = FALSE;
870
871	/* If transmission was in progress, it is not now */
872	sc->sc_txbusy = FALSE;
873
874	/*
875	 * there was a delay(125); here, but it seems uneccesary 125 usec is
876	 * 1/8000 of a second, not 1/8 of a second. the data sheet advises
877	 * 1/10 of a second here, but the SI_BUSY and INIT_DONE loops below
878	 * should be sufficient.
879	 */
880
881	/* Transition SBHE to switch chip from 8-bit to 16-bit */
882	IO_READ_1(sc, PORT_PKTPG_PTR + 0);
883	IO_READ_1(sc, PORT_PKTPG_PTR + 1);
884	IO_READ_1(sc, PORT_PKTPG_PTR + 0);
885	IO_READ_1(sc, PORT_PKTPG_PTR + 1);
886
887	/* Wait until the EEPROM is not busy */
888	for (x = 0; x < MAXLOOP; x++) {
889		if (!(CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_SI_BUSY))
890			break;
891	}
892
893	if (x == MAXLOOP)
894		return CS_ERROR;
895
896	/* Wait until initialization is done */
897	for (x = 0; x < MAXLOOP; x++) {
898		if (CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_INIT_DONE)
899			break;
900	}
901
902	if (x == MAXLOOP)
903		return CS_ERROR;
904
905	/* Reset is no longer in progress */
906	sc->sc_resetting = FALSE;
907
908	return CS_OK;
909}
910
911int
912cs_verify_eeprom(struct cs_softc *sc)
913{
914	u_int16_t self_status;
915
916	/* Verify that the EEPROM is present and OK */
917	self_status = CS_READ_PACKET_PAGE_IO(sc, PKTPG_SELF_ST);
918	if (((self_status & SELF_ST_EEP_PRES) &&
919	     (self_status & SELF_ST_EEP_OK)) == 0)
920		return (CS_ERROR);
921
922	return (CS_OK);
923}
924
925int
926cs_read_eeprom(struct cs_softc *sc, int offset, u_int16_t *pValue)
927{
928	int x;
929
930	/* Ensure that the EEPROM is not busy */
931	for (x = 0; x < MAXLOOP; x++) {
932		if (!(CS_READ_PACKET_PAGE_IO(sc, PKTPG_SELF_ST) &
933		      SELF_ST_SI_BUSY))
934			break;
935	}
936
937	if (x == MAXLOOP)
938		return (CS_ERROR);
939
940	/* Issue the command to read the offset within the EEPROM */
941	CS_WRITE_PACKET_PAGE_IO(sc, PKTPG_EEPROM_CMD,
942	    offset | EEPROM_CMD_READ);
943
944	/* Wait until the command is completed */
945	for (x = 0; x < MAXLOOP; x++) {
946		if (!(CS_READ_PACKET_PAGE_IO(sc, PKTPG_SELF_ST) &
947		      SELF_ST_SI_BUSY))
948			break;
949	}
950
951	if (x == MAXLOOP)
952		return (CS_ERROR);
953
954	/* Get the EEPROM data from the EEPROM Data register */
955	*pValue = CS_READ_PACKET_PAGE_IO(sc, PKTPG_EEPROM_DATA);
956
957	return (CS_OK);
958}
959
960void
961cs_initChip(struct cs_softc *sc)
962{
963	u_int16_t busCtl;
964	u_int16_t selfCtl;
965	u_int16_t v;
966	u_int16_t isaId;
967	int i;
968	int media = IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media);
969
970	/* Disable reception and transmission of frames */
971	CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL,
972	    CS_READ_PACKET_PAGE(sc, PKTPG_LINE_CTL) &
973	    ~LINE_CTL_RX_ON & ~LINE_CTL_TX_ON);
974
975	/* Disable interrupt at the chip */
976	CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
977	    CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) & ~BUS_CTL_INT_ENBL);
978
979	/* If IOCHRDY is enabled then clear the bit in the busCtl register */
980	busCtl = CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL);
981	if (sc->sc_cfgflags & CFGFLG_IOCHRDY) {
982		CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
983		    busCtl & ~BUS_CTL_IOCHRDY);
984	} else {
985		CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
986		    busCtl | BUS_CTL_IOCHRDY);
987	}
988
989	/* Set the Line Control register to match the media type */
990	if (media == IFM_10_T)
991		CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL, LINE_CTL_10BASET);
992	else
993		CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL, LINE_CTL_AUI_ONLY);
994
995	/*
996	 * Set the BSTATUS/HC1 pin to be used as HC1.  HC1 is used to
997	 * enable the DC/DC converter
998	 */
999	selfCtl = SELF_CTL_HC1E;
1000
1001	/* If the media type is 10Base2 */
1002	if (media == IFM_10_2) {
1003		/*
1004		 * Enable the DC/DC converter if it has a low enable.
1005		 */
1006		if ((sc->sc_cfgflags & CFGFLG_DCDC_POL) == 0)
1007			/*
1008			 * Set the HCB1 bit, which causes the HC1 pin to go
1009			 * low.
1010			 */
1011			selfCtl |= SELF_CTL_HCB1;
1012	} else { /* Media type is 10BaseT or AUI */
1013		/*
1014		 * Disable the DC/DC converter if it has a high enable.
1015		 */
1016		if ((sc->sc_cfgflags & CFGFLG_DCDC_POL) != 0) {
1017			/*
1018			 * Set the HCB1 bit, which causes the HC1 pin to go
1019			 * low.
1020			 */
1021			selfCtl |= SELF_CTL_HCB1;
1022		}
1023	}
1024	CS_WRITE_PACKET_PAGE(sc, PKTPG_SELF_CTL, selfCtl);
1025
1026	/* enable normal link pulse */
1027	if (sc->sc_prodid == PROD_ID_CS8920 || sc->sc_prodid == PROD_ID_CS8920M)
1028		CS_WRITE_PACKET_PAGE(sc, PKTPG_AUTONEG_CTL, AUTOCTL_NLP_ENABLE);
1029
1030	/* Enable full-duplex, if appropriate */
1031	if (sc->sc_media.ifm_cur->ifm_media & IFM_FDX)
1032		CS_WRITE_PACKET_PAGE(sc, PKTPG_TEST_CTL, TEST_CTL_FDX);
1033
1034	/* RX_CTL set in cs_set_ladr_filt(), below */
1035
1036	/* enable all transmission interrupts */
1037	CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CFG, TX_CFG_ALL_IE);
1038
1039	/* Accept all receive interrupts */
1040	CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG, RX_CFG_ALL_IE);
1041
1042	/*
1043	 * Configure Operational Modes
1044	 *
1045	 * I have turned off the BUF_CFG_RX_MISS_IE, to speed things up, this is
1046	 * a better way to do it because the card has a counter which can be
1047	 * read to update the RX_MISS counter. This saves many interrupts.
1048	 *
1049	 * I have turned on the tx and rx overflow interrupts to counter using
1050	 * the receive miss interrupt. This is a better estimate of errors
1051	 * and requires lower system overhead.
1052	 */
1053	CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG, BUF_CFG_TX_UNDR_IE |
1054			  BUF_CFG_RX_DMA_IE);
1055
1056	if (sc->sc_dma_chipinit)
1057		(*sc->sc_dma_chipinit)(sc);
1058
1059	/* If memory mode is enabled */
1060	if (sc->sc_cfgflags & CFGFLG_MEM_MODE) {
1061		/* If external logic is present for address decoding */
1062		if (CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_EL_PRES) {
1063			/*
1064			 * Program the external logic to decode address bits
1065			 * SA20-SA23
1066			 */
1067			CS_WRITE_PACKET_PAGE(sc, PKTPG_EEPROM_CMD,
1068			    ((sc->sc_pktpgaddr & 0xffffff) >> 20) |
1069			    EEPROM_CMD_ELSEL);
1070		}
1071
1072		/*
1073		 * Write the packet page base physical address to the memory
1074		 * base register.
1075		 */
1076		CS_WRITE_PACKET_PAGE(sc, PKTPG_MEM_BASE + 0,
1077		    sc->sc_pktpgaddr & 0xFFFF);
1078		CS_WRITE_PACKET_PAGE(sc, PKTPG_MEM_BASE + 2,
1079		    sc->sc_pktpgaddr >> 16);
1080		busCtl = BUS_CTL_MEM_MODE;
1081
1082		/* tell the chip to read the addresses off the SA pins */
1083		if (sc->sc_cfgflags & CFGFLG_USE_SA) {
1084			busCtl |= BUS_CTL_USE_SA;
1085		}
1086		CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
1087		    CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) | busCtl);
1088
1089		/* We are in memory mode now! */
1090		sc->sc_memorymode = TRUE;
1091
1092		/*
1093		 * wait here (10ms) for the chip to swap over. this is the
1094		 * maximum time that this could take.
1095		 */
1096		delay(10000);
1097
1098		/* Verify that we can read from the chip */
1099		isaId = CS_READ_PACKET_PAGE(sc, PKTPG_EISA_NUM);
1100
1101		/*
1102		 * As a last minute sanity check before actually using mapped
1103		 * memory we verify that we can read the isa number from the
1104		 * chip in memory mode.
1105		 */
1106		if (isaId != EISA_NUM_CRYSTAL) {
1107			aprint_error_dev(sc->sc_dev,
1108			    "failed to enable memory mode\n");
1109			sc->sc_memorymode = FALSE;
1110		} else {
1111			/*
1112			 * we are in memory mode so if we aren't using DMA,
1113			 * then program the chip to interrupt early.
1114			 */
1115			if ((sc->sc_cfgflags & CFGFLG_DMA_MODE) == 0) {
1116				CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG,
1117				    BUF_CFG_RX_DEST_IE |
1118				    BUF_CFG_RX_MISS_OVER_IE |
1119				    BUF_CFG_TX_COL_OVER_IE);
1120			}
1121		}
1122
1123	}
1124
1125	/* Put Ethernet address into the Individual Address register */
1126	for (i = 0; i < 6; i += 2) {
1127		v = sc->sc_enaddr[i + 0] | (sc->sc_enaddr[i + 1]) << 8;
1128		CS_WRITE_PACKET_PAGE(sc, PKTPG_IND_ADDR + i, v);
1129	}
1130
1131	if (sc->sc_irq != -1) {
1132		/* Set the interrupt level in the chip */
1133		if (sc->sc_prodid == PROD_ID_CS8900) {
1134			if (sc->sc_irq == 5) {
1135				CS_WRITE_PACKET_PAGE(sc, PKTPG_INT_NUM, 3);
1136			} else {
1137				CS_WRITE_PACKET_PAGE(sc, PKTPG_INT_NUM, (sc->sc_irq) - 10);
1138			}
1139		}
1140		else { /* CS8920 */
1141			CS_WRITE_PACKET_PAGE(sc, PKTPG_8920_INT_NUM, sc->sc_irq);
1142		}
1143	}
1144
1145	/* write the multicast mask to the address filter register */
1146	cs_set_ladr_filt(sc, &sc->sc_ethercom);
1147
1148	/* Enable reception and transmission of frames */
1149	CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL,
1150	    CS_READ_PACKET_PAGE(sc, PKTPG_LINE_CTL) |
1151	    LINE_CTL_RX_ON | LINE_CTL_TX_ON);
1152
1153	/* Enable interrupt at the chip */
1154	CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
1155	    CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) | BUS_CTL_INT_ENBL);
1156}
1157
1158int
1159cs_init(struct ifnet *ifp)
1160{
1161	int intState;
1162	int error = CS_OK;
1163	struct cs_softc *sc = ifp->if_softc;
1164
1165	if (cs_enable(sc))
1166		goto out;
1167
1168	cs_stop(ifp, 0);
1169
1170	intState = splnet();
1171
1172#if 0
1173	/* Mark the interface as down */
1174	sc->sc_ethercom.ec_if.if_flags &= ~(IFF_UP | IFF_RUNNING);
1175#endif
1176
1177#ifdef CS_DEBUG
1178	/* Enable debugging */
1179	sc->sc_ethercom.ec_if.if_flags |= IFF_DEBUG;
1180#endif
1181
1182	/* Reset the chip */
1183	if ((error = cs_reset_chip(sc)) == CS_OK) {
1184		/* Initialize the chip */
1185		cs_initChip(sc);
1186
1187		/* Mark the interface as running */
1188		sc->sc_ethercom.ec_if.if_flags |= IFF_RUNNING;
1189		sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
1190		sc->sc_ethercom.ec_if.if_timer = 0;
1191
1192		/* Assume we have carrier until we are told otherwise. */
1193		sc->sc_carrier = 1;
1194	} else {
1195		aprint_error_dev(sc->sc_dev, "unable to reset chip\n");
1196	}
1197
1198	splx(intState);
1199out:
1200	if (error == CS_OK)
1201		return 0;
1202	return EIO;
1203}
1204
1205void
1206cs_set_ladr_filt(struct cs_softc *sc, struct ethercom *ec)
1207{
1208	struct ifnet *ifp = &ec->ec_if;
1209	struct ether_multi *enm;
1210	struct ether_multistep step;
1211	u_int16_t af[4];
1212	u_int16_t port, mask, index;
1213
1214	/*
1215         * Set up multicast address filter by passing all multicast addresses
1216         * through a crc generator, and then using the high order 6 bits as an
1217         * index into the 64 bit logical address filter.  The high order bit
1218         * selects the word, while the rest of the bits select the bit within
1219         * the word.
1220         */
1221	if (ifp->if_flags & IFF_PROMISC) {
1222		/* accept all valid frames. */
1223		CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CTL,
1224		    RX_CTL_PROMISC_A | RX_CTL_RX_OK_A |
1225		    RX_CTL_IND_A | RX_CTL_BCAST_A | RX_CTL_MCAST_A);
1226		ifp->if_flags |= IFF_ALLMULTI;
1227		return;
1228	}
1229
1230	/*
1231	 * accept frames if a. crc valid, b. individual address match c.
1232	 * broadcast address,and d. multicast addresses matched in the hash
1233	 * filter
1234	 */
1235	CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CTL,
1236	    RX_CTL_RX_OK_A | RX_CTL_IND_A | RX_CTL_BCAST_A | RX_CTL_MCAST_A);
1237
1238
1239	/*
1240	 * start off with all multicast flag clear, set it if we need to
1241	 * later, otherwise we will leave it.
1242	 */
1243	ifp->if_flags &= ~IFF_ALLMULTI;
1244	af[0] = af[1] = af[2] = af[3] = 0x0000;
1245
1246	/*
1247	 * Loop through all the multicast addresses unless we get a range of
1248	 * addresses, in which case we will just accept all packets.
1249	 * Justification for this is given in the next comment.
1250	 */
1251	ETHER_FIRST_MULTI(step, ec, enm);
1252	while (enm != NULL) {
1253		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1254		    sizeof enm->enm_addrlo)) {
1255			/*
1256	                 * We must listen to a range of multicast addresses.
1257	                 * For now, just accept all multicasts, rather than
1258	                 * trying to set only those filter bits needed to match
1259	                 * the range.  (At this time, the only use of address
1260	                 * ranges is for IP multicast routing, for which the
1261	                 * range is big enough to require all bits set.)
1262	                 */
1263			ifp->if_flags |= IFF_ALLMULTI;
1264			af[0] = af[1] = af[2] = af[3] = 0xffff;
1265			break;
1266		} else {
1267			/*
1268	                 * we have got an individual address so just set that
1269	                 * bit.
1270	                 */
1271			index = cs_hash_index(enm->enm_addrlo);
1272
1273			/* Set the bit the Logical address filter. */
1274			port = (u_int16_t) (index >> 4);
1275			mask = (u_int16_t) (1 << (index & 0xf));
1276			af[port] |= mask;
1277
1278			ETHER_NEXT_MULTI(step, enm);
1279		}
1280	}
1281
1282	/* now program the chip with the addresses */
1283	CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 0, af[0]);
1284	CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 2, af[1]);
1285	CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 4, af[2]);
1286	CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 6, af[3]);
1287	return;
1288}
1289
1290u_int16_t
1291cs_hash_index(char *addr)
1292{
1293	uint32_t crc;
1294	uint16_t hash_code;
1295
1296	crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
1297
1298	hash_code = crc >> 26;
1299	return (hash_code);
1300}
1301
1302void
1303cs_reset(struct cs_softc *sc)
1304{
1305
1306	/* Mark the interface as down */
1307	sc->sc_ethercom.ec_if.if_flags &= ~IFF_RUNNING;
1308
1309	/* Reset the chip */
1310	cs_reset_chip(sc);
1311}
1312
1313int
1314cs_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1315{
1316	struct cs_softc *sc = ifp->if_softc;
1317	struct ifreq *ifr = data;
1318	int state;
1319	int result;
1320
1321	state = splnet();
1322
1323	result = 0;		/* only set if something goes wrong */
1324
1325	switch (cmd) {
1326	case SIOCGIFMEDIA:
1327	case SIOCSIFMEDIA:
1328		result = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1329		break;
1330
1331	default:
1332		result = ether_ioctl(ifp, cmd, data);
1333		if (result == ENETRESET) {
1334			if (ifp->if_flags & IFF_RUNNING) {
1335				/*
1336				 * Multicast list has changed.  Set the
1337				 * hardware filter accordingly.
1338				 */
1339				cs_set_ladr_filt(sc, &sc->sc_ethercom);
1340			}
1341			result = 0;
1342		}
1343		break;
1344	}
1345
1346	splx(state);
1347
1348	return result;
1349}
1350
1351int
1352cs_mediachange(struct ifnet *ifp)
1353{
1354
1355	/*
1356	 * Current media is already set up.  Just reset the interface
1357	 * to let the new value take hold.
1358	 */
1359	cs_init(ifp);
1360	return (0);
1361}
1362
1363void
1364cs_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1365{
1366	struct cs_softc *sc = ifp->if_softc;
1367
1368	/*
1369	 * The currently selected media is always the active media.
1370	 */
1371	ifmr->ifm_active = sc->sc_media.ifm_cur->ifm_media;
1372
1373	if (ifp->if_flags & IFF_UP) {
1374		/* Interface up, status is valid. */
1375		ifmr->ifm_status = IFM_AVALID |
1376		    (sc->sc_carrier ? IFM_ACTIVE : 0);
1377	}
1378		else ifmr->ifm_status = 0;
1379}
1380
1381int
1382cs_intr(void *arg)
1383{
1384	struct cs_softc *sc = arg;
1385	u_int16_t Event;
1386	u_int16_t rndEvent;
1387
1388/*printf("cs_intr %p\n", sc);*/
1389	/* Ignore any interrupts that happen while the chip is being reset */
1390	if (sc->sc_resetting) {
1391		printf("%s: cs_intr: reset in progress\n",
1392		    device_xname(sc->sc_dev));
1393		return 1;
1394	}
1395
1396	/* Read an event from the Interrupt Status Queue */
1397	if (sc->sc_memorymode)
1398		Event = CS_READ_PACKET_PAGE(sc, PKTPG_ISQ);
1399	else
1400		Event = CS_READ_PORT(sc, PORT_ISQ);
1401
1402	if ((Event & REG_NUM_MASK) == 0 || Event == 0xffff)
1403		return 0;	/* not ours */
1404
1405	rndEvent = Event;
1406
1407	/* Process all the events in the Interrupt Status Queue */
1408	while ((Event & REG_NUM_MASK) != 0 && Event != 0xffff) {
1409		/* Dispatch to an event handler based on the register number */
1410		switch (Event & REG_NUM_MASK) {
1411		case REG_NUM_RX_EVENT:
1412			cs_receive_event(sc, Event);
1413			break;
1414		case REG_NUM_TX_EVENT:
1415			cs_transmit_event(sc, Event);
1416			break;
1417		case REG_NUM_BUF_EVENT:
1418			cs_buffer_event(sc, Event);
1419			break;
1420		case REG_NUM_TX_COL:
1421		case REG_NUM_RX_MISS:
1422			cs_counter_event(sc, Event);
1423			break;
1424		default:
1425			printf("%s: unknown interrupt event 0x%x\n",
1426			    device_xname(sc->sc_dev), Event);
1427			break;
1428		}
1429
1430		/* Read another event from the Interrupt Status Queue */
1431		if (sc->sc_memorymode)
1432			Event = CS_READ_PACKET_PAGE(sc, PKTPG_ISQ);
1433		else
1434			Event = CS_READ_PORT(sc, PORT_ISQ);
1435	}
1436
1437	/* have handled the interrupt */
1438	rnd_add_uint32(&sc->rnd_source, rndEvent);
1439	return 1;
1440}
1441
1442void
1443cs_counter_event(struct cs_softc *sc, u_int16_t cntEvent)
1444{
1445	struct ifnet *ifp;
1446	u_int16_t errorCount;
1447
1448	ifp = &sc->sc_ethercom.ec_if;
1449
1450	switch (cntEvent & REG_NUM_MASK) {
1451	case REG_NUM_TX_COL:
1452		/*
1453		 * the count should be read before an overflow occurs.
1454		 */
1455		errorCount = CS_READ_PACKET_PAGE(sc, PKTPG_TX_COL);
1456		/*
1457		 * the tramsit event routine always checks the number of
1458		 * collisions for any packet so we don't increment any
1459		 * counters here, as they should already have been
1460		 * considered.
1461		 */
1462		break;
1463	case REG_NUM_RX_MISS:
1464		/*
1465		 * the count should be read before an overflow occurs.
1466		 */
1467		errorCount = CS_READ_PACKET_PAGE(sc, PKTPG_RX_MISS);
1468		/*
1469		 * Increment the input error count, the first 6bits are the
1470		 * register id.
1471		 */
1472		ifp->if_ierrors += ((errorCount & 0xffC0) >> 6);
1473		break;
1474	default:
1475		/* do nothing */
1476		break;
1477	}
1478}
1479
1480void
1481cs_buffer_event(struct cs_softc *sc, u_int16_t bufEvent)
1482{
1483
1484	/*
1485	 * multiple events can be in the buffer event register at one time so
1486	 * a standard switch statement will not suffice, here every event
1487	 * must be checked.
1488	 */
1489
1490	/*
1491	 * if 128 bits have been rxed by the time we get here, the dest event
1492	 * will be cleared and 128 event will be set.
1493	 */
1494	if ((bufEvent & (BUF_EVENT_RX_DEST | BUF_EVENT_RX_128)) != 0) {
1495		cs_process_rx_early(sc);
1496	}
1497
1498	if (bufEvent & BUF_EVENT_RX_DMA) {
1499		/* process the receive data */
1500		if (sc->sc_dma_process_rx)
1501			(*sc->sc_dma_process_rx)(sc);
1502		else
1503			/* should panic? */
1504			aprint_error_dev(sc->sc_dev, "unexpected DMA event\n");
1505	}
1506
1507	if (bufEvent & BUF_EVENT_TX_UNDR) {
1508#if 0
1509		/*
1510		 * This can happen occasionally, and it's not worth worrying
1511		 * about.
1512		 */
1513		printf("%s: transmit underrun (%d -> %d)\n",
1514		    device_xname(sc->sc_dev), sc->sc_xe_ent,
1515		    cs_xmit_early_table[sc->sc_xe_ent].worse);
1516#endif
1517		sc->sc_xe_ent = cs_xmit_early_table[sc->sc_xe_ent].worse;
1518		sc->sc_xe_togo =
1519		    cs_xmit_early_table[sc->sc_xe_ent].better_count;
1520
1521		/* had an underrun, transmit is finished */
1522		sc->sc_txbusy = FALSE;
1523	}
1524
1525	if (bufEvent & BUF_EVENT_SW_INT) {
1526		printf("%s: software initiated interrupt\n",
1527		    device_xname(sc->sc_dev));
1528	}
1529}
1530
1531void
1532cs_transmit_event(struct cs_softc *sc, u_int16_t txEvent)
1533{
1534	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1535
1536	/* If there were any errors transmitting this frame */
1537	if (txEvent & (TX_EVENT_LOSS_CRS | TX_EVENT_SQE_ERR | TX_EVENT_OUT_WIN |
1538		       TX_EVENT_JABBER | TX_EVENT_16_COLL)) {
1539		/* Increment the output error count */
1540		ifp->if_oerrors++;
1541
1542		/* Note carrier loss. */
1543		if (txEvent & TX_EVENT_LOSS_CRS)
1544			sc->sc_carrier = 0;
1545
1546		/* If debugging is enabled then log error messages */
1547		if (ifp->if_flags & IFF_DEBUG) {
1548			if (txEvent & TX_EVENT_LOSS_CRS) {
1549				aprint_error_dev(sc->sc_dev, "lost carrier\n");
1550			}
1551			if (txEvent & TX_EVENT_SQE_ERR) {
1552				aprint_error_dev(sc->sc_dev, "SQE error\n");
1553			}
1554			if (txEvent & TX_EVENT_OUT_WIN) {
1555				aprint_error_dev(sc->sc_dev,
1556				    "out-of-window collision\n");
1557			}
1558			if (txEvent & TX_EVENT_JABBER) {
1559				aprint_error_dev(sc->sc_dev, "jabber\n");
1560			}
1561			if (txEvent & TX_EVENT_16_COLL) {
1562				aprint_error_dev(sc->sc_dev, "16 collisions\n");
1563			}
1564		}
1565	}
1566	else {
1567		/* Transmission successful, carrier is up. */
1568		sc->sc_carrier = 1;
1569#ifdef SHARK
1570		ledNetActive();
1571#endif
1572	}
1573
1574	/* Add the number of collisions for this frame */
1575	if (txEvent & TX_EVENT_16_COLL) {
1576		ifp->if_collisions += 16;
1577	} else {
1578		ifp->if_collisions += ((txEvent & TX_EVENT_COLL_MASK) >> 11);
1579	}
1580
1581	ifp->if_opackets++;
1582
1583	/* Transmission is no longer in progress */
1584	sc->sc_txbusy = FALSE;
1585
1586	/* If there is more to transmit */
1587	if (IFQ_IS_EMPTY(&ifp->if_snd) == 0) {
1588		/* Start the next transmission */
1589		cs_start_output(ifp);
1590	}
1591}
1592
1593void
1594cs_print_rx_errors(struct cs_softc *sc, u_int16_t rxEvent)
1595{
1596
1597	if (rxEvent & RX_EVENT_RUNT)
1598		aprint_error_dev(sc->sc_dev, "runt\n");
1599
1600	if (rxEvent & RX_EVENT_X_DATA)
1601		aprint_error_dev(sc->sc_dev, "extra data\n");
1602
1603	if (rxEvent & RX_EVENT_CRC_ERR) {
1604		if (rxEvent & RX_EVENT_DRIBBLE)
1605			aprint_error_dev(sc->sc_dev, "alignment error\n");
1606		else
1607			aprint_error_dev(sc->sc_dev, "CRC error\n");
1608	} else {
1609		if (rxEvent & RX_EVENT_DRIBBLE)
1610			aprint_error_dev(sc->sc_dev, "dribble bits\n");
1611	}
1612}
1613
1614void
1615cs_receive_event(struct cs_softc *sc, u_int16_t rxEvent)
1616{
1617	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1618
1619	/* If the frame was not received OK */
1620	if (!(rxEvent & RX_EVENT_RX_OK)) {
1621		/* Increment the input error count */
1622		ifp->if_ierrors++;
1623
1624		/*
1625		 * If debugging is enabled then log error messages.
1626		 */
1627		if (ifp->if_flags & IFF_DEBUG) {
1628			if (rxEvent != REG_NUM_RX_EVENT) {
1629				cs_print_rx_errors(sc, rxEvent);
1630
1631				/*
1632				 * Must read the length of all received
1633				 * frames
1634				 */
1635				CS_READ_PACKET_PAGE(sc, PKTPG_RX_LENGTH);
1636
1637				/* Skip the received frame */
1638				CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1639					CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) |
1640						  RX_CFG_SKIP);
1641			} else {
1642				aprint_error_dev(sc->sc_dev, "implied skip\n");
1643			}
1644		}
1645	} else {
1646		/*
1647		 * process the received frame and pass it up to the upper
1648		 * layers.
1649		 */
1650		cs_process_receive(sc);
1651	}
1652}
1653
1654void
1655cs_ether_input(struct cs_softc *sc, struct mbuf *m)
1656{
1657	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1658
1659	ifp->if_ipackets++;
1660
1661	/*
1662	 * Check if there's a BPF listener on this interface.
1663	 * If so, hand off the raw packet to BPF.
1664	 */
1665	bpf_mtap(ifp, m);
1666
1667	/* Pass the packet up. */
1668	(*ifp->if_input)(ifp, m);
1669}
1670
1671void
1672cs_process_receive(struct cs_softc *sc)
1673{
1674	struct ifnet *ifp;
1675	struct mbuf *m;
1676	int totlen;
1677	u_int16_t *pBuff, *pBuffLimit;
1678	int pad;
1679	unsigned int frameOffset = 0;	/* XXX: gcc */
1680
1681#ifdef SHARK
1682	ledNetActive();
1683#endif
1684
1685	ifp = &sc->sc_ethercom.ec_if;
1686
1687	/* Received a packet; carrier is up. */
1688	sc->sc_carrier = 1;
1689
1690	if (sc->sc_memorymode) {
1691		/* Initialize the frame offset */
1692		frameOffset = PKTPG_RX_LENGTH;
1693
1694		/* Get the length of the received frame */
1695		totlen = CS_READ_PACKET_PAGE(sc, frameOffset);
1696		frameOffset += 2;
1697	}
1698	else {
1699		/* drop status */
1700		CS_READ_PORT(sc, PORT_RXTX_DATA);
1701
1702		/* Get the length of the received frame */
1703		totlen = CS_READ_PORT(sc, PORT_RXTX_DATA);
1704	}
1705
1706	if (totlen > ETHER_MAX_LEN) {
1707		aprint_error_dev(sc->sc_dev, "invalid packet length %d\n",
1708		    totlen);
1709
1710		/* skip the received frame */
1711		CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1712			CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1713		return;
1714	}
1715
1716	MGETHDR(m, M_DONTWAIT, MT_DATA);
1717	if (m == 0) {
1718		aprint_error_dev(sc->sc_dev,
1719		    "cs_process_receive: unable to allocate mbuf\n");
1720		ifp->if_ierrors++;
1721		/*
1722		 * couldn't allocate an mbuf so things are not good, may as
1723		 * well drop the packet I think.
1724		 *
1725		 * have already read the length so we should be right to skip
1726		 * the packet.
1727		 */
1728		CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1729		    CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1730		return;
1731	}
1732	m->m_pkthdr.rcvif = ifp;
1733	m->m_pkthdr.len = totlen;
1734
1735	/* number of bytes to align ip header on word boundary for ipintr */
1736	pad = ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header);
1737
1738	/*
1739	 * alloc mbuf cluster if we need.
1740	 * we need 1 byte spare because following
1741	 * packet read loop can overrun.
1742	 */
1743	if (totlen + pad + 1 > MHLEN) {
1744		MCLGET(m, M_DONTWAIT);
1745		if ((m->m_flags & M_EXT) == 0) {
1746			/* couldn't allocate an mbuf cluster */
1747			aprint_error_dev(sc->sc_dev,
1748			    "cs_process_receive: "
1749			    "unable to allocate a cluster\n");
1750			m_freem(m);
1751
1752			/* skip the received frame */
1753			CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1754				CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1755			return;
1756		}
1757	}
1758
1759	/* align ip header on word boundary for ipintr */
1760	m->m_data += pad;
1761
1762	m->m_len = totlen;
1763	pBuff = mtod(m, u_int16_t *);
1764
1765	/* now read the data from the chip */
1766	if (sc->sc_memorymode) {
1767		pBuffLimit = pBuff + (totlen + 1) / 2;	/* don't want to go over */
1768		while (pBuff < pBuffLimit) {
1769			*pBuff++ = CS_READ_PACKET_PAGE(sc, frameOffset);
1770			frameOffset += 2;
1771		}
1772	}
1773	else {
1774		IO_READ_MULTI_2(sc, PORT_RXTX_DATA, pBuff, (totlen + 1)>>1);
1775	}
1776
1777	cs_ether_input(sc, m);
1778}
1779
1780void
1781cs_process_rx_early(struct cs_softc *sc)
1782{
1783	struct ifnet *ifp;
1784	struct mbuf *m;
1785	u_int16_t frameCount, oldFrameCount;
1786	u_int16_t rxEvent;
1787	u_int16_t *pBuff;
1788	int pad;
1789	unsigned int frameOffset;
1790
1791
1792	ifp = &sc->sc_ethercom.ec_if;
1793
1794	/* Initialize the frame offset */
1795	frameOffset = PKTPG_RX_FRAME;
1796	frameCount = 0;
1797
1798	MGETHDR(m, M_DONTWAIT, MT_DATA);
1799	if (m == 0) {
1800		aprint_error_dev(sc->sc_dev,
1801		    "cs_process_rx_early: unable to allocate mbuf\n");
1802		ifp->if_ierrors++;
1803		/*
1804		 * couldn't allocate an mbuf so things are not good, may as
1805		 * well drop the packet I think.
1806		 *
1807		 * have already read the length so we should be right to skip
1808		 * the packet.
1809		 */
1810		CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1811		    CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1812		return;
1813	}
1814	m->m_pkthdr.rcvif = ifp;
1815	/*
1816	 * save processing by always using a mbuf cluster, guaranteed to fit
1817	 * packet
1818	 */
1819	MCLGET(m, M_DONTWAIT);
1820	if ((m->m_flags & M_EXT) == 0) {
1821		/* couldn't allocate an mbuf cluster */
1822		aprint_error_dev(sc->sc_dev,
1823		    "cs_process_rx_early: unable to allocate a cluster\n");
1824		m_freem(m);
1825		/* skip the frame */
1826		CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1827		    CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1828		return;
1829	}
1830
1831	/* align ip header on word boundary for ipintr */
1832	pad = ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header);
1833	m->m_data += pad;
1834
1835	/* set up the buffer pointer to point to the data area */
1836	pBuff = mtod(m, u_int16_t *);
1837
1838	/*
1839	 * now read the frame byte counter until we have finished reading the
1840	 * frame
1841	 */
1842	oldFrameCount = 0;
1843	frameCount = CS_READ_PACKET_PAGE(sc, PKTPG_FRAME_BYTE_COUNT);
1844	while ((frameCount != 0) && (frameCount < MCLBYTES)) {
1845		for (; oldFrameCount < frameCount; oldFrameCount += 2) {
1846			*pBuff++ = CS_READ_PACKET_PAGE(sc, frameOffset);
1847			frameOffset += 2;
1848		}
1849
1850		/* read the new count from the chip */
1851		frameCount = CS_READ_PACKET_PAGE(sc, PKTPG_FRAME_BYTE_COUNT);
1852	}
1853
1854	/* update the mbuf counts */
1855	m->m_len = oldFrameCount;
1856	m->m_pkthdr.len = oldFrameCount;
1857
1858	/* now check the Rx Event register */
1859	rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_EVENT);
1860
1861	if ((rxEvent & RX_EVENT_RX_OK) != 0) {
1862		/*
1863		 * do an implied skip, it seems to be more reliable than a
1864		 * forced skip.
1865		 */
1866		rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_STATUS);
1867		rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_LENGTH);
1868
1869		/*
1870		 * now read the RX_EVENT register to perform an implied skip.
1871		 */
1872		rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_EVENT);
1873
1874		cs_ether_input(sc, m);
1875	} else {
1876		m_freem(m);
1877		ifp->if_ierrors++;
1878	}
1879}
1880
1881void
1882cs_start_output(struct ifnet *ifp)
1883{
1884	struct cs_softc *sc;
1885	struct mbuf *pMbuf;
1886	struct mbuf *pMbufChain;
1887	u_int16_t BusStatus;
1888	u_int16_t Length;
1889	int txLoop = 0;
1890	int dropout = 0;
1891
1892	sc = ifp->if_softc;
1893
1894	/* check that the interface is up and running */
1895	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) {
1896		return;
1897	}
1898
1899	/* Don't interrupt a transmission in progress */
1900	if (sc->sc_txbusy) {
1901		return;
1902	}
1903
1904	/* this loop will only run through once if transmission is successful */
1905	/*
1906	 * While there are packets to transmit and a transmit is not in
1907	 * progress
1908	 */
1909	while (sc->sc_txbusy == 0 && dropout == 0) {
1910		IFQ_DEQUEUE(&ifp->if_snd, pMbufChain);
1911		if (pMbufChain == NULL)
1912			break;
1913
1914		/*
1915	         * If BPF is listening on this interface, let it see the packet
1916	         * before we commit it to the wire.
1917	         */
1918		bpf_mtap(ifp, pMbufChain);
1919
1920		/* Find the total length of the data to transmit */
1921		Length = 0;
1922		for (pMbuf = pMbufChain; pMbuf != NULL; pMbuf = pMbuf->m_next)
1923			Length += pMbuf->m_len;
1924
1925		do {
1926			/*
1927			 * Request that the transmit be started after all
1928			 * data has been copied
1929			 *
1930			 * In IO mode must write to the IO port not the packet
1931			 * page address
1932			 *
1933			 * If this is changed to start transmission after a
1934			 * small amount of data has been copied you tend to
1935			 * get packet missed errors i think because the ISA
1936			 * bus is too slow. Or possibly the copy routine is
1937			 * not streamlined enough.
1938			 */
1939			if (sc->sc_memorymode) {
1940				CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CMD,
1941					cs_xmit_early_table[sc->sc_xe_ent].txcmd);
1942				CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_LENGTH, Length);
1943			}
1944			else {
1945				CS_WRITE_PORT(sc, PORT_TX_CMD,
1946					cs_xmit_early_table[sc->sc_xe_ent].txcmd);
1947				CS_WRITE_PORT(sc, PORT_TX_LENGTH, Length);
1948			}
1949
1950			/*
1951			 * Adjust early-transmit machinery.
1952			 */
1953			if (--sc->sc_xe_togo == 0) {
1954				sc->sc_xe_ent =
1955				    cs_xmit_early_table[sc->sc_xe_ent].better;
1956				sc->sc_xe_togo =
1957			    cs_xmit_early_table[sc->sc_xe_ent].better_count;
1958			}
1959			/*
1960			 * Read the BusStatus register which indicates
1961			 * success of the request
1962			 */
1963			BusStatus = CS_READ_PACKET_PAGE(sc, PKTPG_BUS_ST);
1964
1965			/*
1966			 * If there was an error in the transmit bid free the
1967			 * mbuf and go on. This is presuming that mbuf is
1968			 * corrupt.
1969			 */
1970			if (BusStatus & BUS_ST_TX_BID_ERR) {
1971				aprint_error_dev(sc->sc_dev,
1972				    "transmit bid error (too big)");
1973
1974				/* Discard the bad mbuf chain */
1975				m_freem(pMbufChain);
1976				sc->sc_ethercom.ec_if.if_oerrors++;
1977
1978				/* Loop up to transmit the next chain */
1979				txLoop = 0;
1980			} else {
1981				if (BusStatus & BUS_ST_RDY4TXNOW) {
1982					/*
1983					 * The chip is ready for transmission
1984					 * now
1985					 */
1986					/*
1987					 * Copy the frame to the chip to
1988					 * start transmission
1989					 */
1990					cs_copy_tx_frame(sc, pMbufChain);
1991
1992					/* Free the mbuf chain */
1993					m_freem(pMbufChain);
1994
1995					/* Transmission is now in progress */
1996					sc->sc_txbusy = TRUE;
1997					txLoop = 0;
1998				} else {
1999					/*
2000					 * if we get here we want to try
2001					 * again with the same mbuf, until
2002					 * the chip lets us transmit.
2003					 */
2004					txLoop++;
2005					if (txLoop > CS_OUTPUT_LOOP_MAX) {
2006						/* Free the mbuf chain */
2007						m_freem(pMbufChain);
2008						/*
2009						 * Transmission is not in
2010						 * progress
2011						 */
2012						sc->sc_txbusy = FALSE;
2013						/*
2014						 * Increment the output error
2015						 * count
2016						 */
2017						ifp->if_oerrors++;
2018						/*
2019						 * exit the routine and drop
2020						 * the packet.
2021						 */
2022						txLoop = 0;
2023						dropout = 1;
2024					}
2025				}
2026			}
2027		} while (txLoop);
2028	}
2029}
2030
2031void
2032cs_copy_tx_frame(struct cs_softc *sc, struct mbuf *m0)
2033{
2034	struct mbuf *m;
2035	int len, leftover, frameoff;
2036	u_int16_t dbuf;
2037	u_int8_t *p;
2038#ifdef DIAGNOSTIC
2039	u_int8_t *lim;
2040#endif
2041
2042	/* Initialize frame pointer and data port address */
2043	frameoff = PKTPG_TX_FRAME;
2044
2045	/* start out with no leftover data */
2046	leftover = 0;
2047	dbuf = 0;
2048
2049	/* Process the chain of mbufs */
2050	for (m = m0; m != NULL; m = m->m_next) {
2051		/*
2052		 * Process all of the data in a single mbuf.
2053		 */
2054		p = mtod(m, u_int8_t *);
2055		len = m->m_len;
2056#ifdef DIAGNOSTIC
2057		lim = p + len;
2058#endif
2059
2060		while (len > 0) {
2061			if (leftover) {
2062				/*
2063				 * Data left over (from mbuf or realignment).
2064				 * Buffer the next byte, and write it and
2065				 * the leftover data out.
2066				 */
2067				dbuf |= *p++ << 8;
2068				len--;
2069				if (sc->sc_memorymode) {
2070					CS_WRITE_PACKET_PAGE(sc, frameoff, dbuf);
2071					frameoff += 2;
2072				}
2073				else {
2074					CS_WRITE_PORT(sc, PORT_RXTX_DATA, dbuf);
2075				}
2076				leftover = 0;
2077			} else if ((long) p & 1) {
2078				/*
2079				 * Misaligned data.  Buffer the next byte.
2080				 */
2081				dbuf = *p++;
2082				len--;
2083				leftover = 1;
2084			} else {
2085				/*
2086				 * Aligned data.  This is the case we like.
2087				 *
2088				 * Write-region out as much as we can, then
2089				 * buffer the remaining byte (if any).
2090				 */
2091				leftover = len & 1;
2092				len &= ~1;
2093				if (sc->sc_memorymode) {
2094					MEM_WRITE_REGION_2(sc, frameoff,
2095						(u_int16_t *) p, len >> 1);
2096					frameoff += len;
2097				}
2098				else {
2099					IO_WRITE_MULTI_2(sc,
2100						PORT_RXTX_DATA, (u_int16_t *)p, len >> 1);
2101				}
2102				p += len;
2103
2104				if (leftover)
2105					dbuf = *p++;
2106				len = 0;
2107			}
2108		}
2109		if (len < 0)
2110			panic("cs_copy_tx_frame: negative len");
2111#ifdef DIAGNOSTIC
2112		if (p != lim)
2113			panic("cs_copy_tx_frame: p != lim");
2114#endif
2115	}
2116	if (leftover) {
2117		if (sc->sc_memorymode) {
2118			CS_WRITE_PACKET_PAGE(sc, frameoff, dbuf);
2119		}
2120		else {
2121			CS_WRITE_PORT(sc, PORT_RXTX_DATA, dbuf);
2122		}
2123	}
2124}
2125
2126static int
2127cs_enable(struct cs_softc *sc)
2128{
2129
2130	if (CS_IS_ENABLED(sc) == 0) {
2131		if (sc->sc_enable != NULL) {
2132			int error;
2133
2134			error = (*sc->sc_enable)(sc);
2135			if (error)
2136				return (error);
2137		}
2138		sc->sc_cfgflags |= CFGFLG_ENABLED;
2139	}
2140
2141	return (0);
2142}
2143
2144static void
2145cs_disable(struct cs_softc *sc)
2146{
2147
2148	if (CS_IS_ENABLED(sc)) {
2149		if (sc->sc_disable != NULL)
2150			(*sc->sc_disable)(sc);
2151
2152		sc->sc_cfgflags &= ~CFGFLG_ENABLED;
2153	}
2154}
2155
2156static void
2157cs_stop(struct ifnet *ifp, int disable)
2158{
2159	struct cs_softc *sc = ifp->if_softc;
2160
2161	CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG, 0);
2162	CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CFG, 0);
2163	CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG, 0);
2164	CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL, 0);
2165
2166	if (disable) {
2167		cs_disable(sc);
2168	}
2169
2170	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2171}
2172
2173int
2174cs_activate(device_t self, enum devact act)
2175{
2176	struct cs_softc *sc = device_private(self);
2177
2178	switch (act) {
2179	case DVACT_DEACTIVATE:
2180		if_deactivate(&sc->sc_ethercom.ec_if);
2181		return 0;
2182	default:
2183		return EOPNOTSUPP;
2184	}
2185}
2186