1/*	$NetBSD: atw.c,v 1.152 2010/11/13 08:54:23 uebayasi Exp $  */
2
3/*-
4 * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32/*
33 * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
34 */
35
36#include <sys/cdefs.h>
37__KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.152 2010/11/13 08:54:23 uebayasi Exp $");
38
39
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/callout.h>
43#include <sys/mbuf.h>
44#include <sys/malloc.h>
45#include <sys/kernel.h>
46#include <sys/socket.h>
47#include <sys/ioctl.h>
48#include <sys/errno.h>
49#include <sys/device.h>
50#include <sys/kauth.h>
51#include <sys/time.h>
52#include <sys/proc.h>
53#include <lib/libkern/libkern.h>
54
55#include <machine/endian.h>
56
57#include <net/if.h>
58#include <net/if_dl.h>
59#include <net/if_media.h>
60#include <net/if_ether.h>
61
62#include <net80211/ieee80211_netbsd.h>
63#include <net80211/ieee80211_var.h>
64#include <net80211/ieee80211_radiotap.h>
65
66#include <net/bpf.h>
67
68#include <sys/bus.h>
69#include <sys/intr.h>
70
71#include <dev/ic/atwreg.h>
72#include <dev/ic/rf3000reg.h>
73#include <dev/ic/si4136reg.h>
74#include <dev/ic/atwvar.h>
75#include <dev/ic/smc93cx6var.h>
76
77/* XXX TBD open questions
78 *
79 *
80 * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
81 * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
82 * handle this for me?
83 *
84 */
85/* device attachment
86 *
87 *    print TOFS[012]
88 *
89 * device initialization
90 *
91 *    clear ATW_FRCTL_MAXPSP to disable max power saving
92 *    set ATW_TXBR_ALCUPDATE to enable ALC
93 *    set TOFS[012]? (hope not)
94 *    disable rx/tx
95 *    set ATW_PAR_SWR (software reset)
96 *    wait for ATW_PAR_SWR clear
97 *    disable interrupts
98 *    ack status register
99 *    enable interrupts
100 *
101 * rx/tx initialization
102 *
103 *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
104 *    allocate and init descriptor rings
105 *    write ATW_PAR_DSL (descriptor skip length)
106 *    write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
107 *    write ATW_NAR_SQ for one/both transmit descriptor rings
108 *    write ATW_NAR_SQ for one/both transmit descriptor rings
109 *    enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
110 *
111 * rx/tx end
112 *
113 *    stop DMA
114 *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
115 *    flush tx w/ ATW_NAR_HF
116 *
117 * scan
118 *
119 *    initialize rx/tx
120 *
121 * BSS join: (re)association response
122 *
123 *    set ATW_FRCTL_AID
124 *
125 * optimizations ???
126 *
127 */
128
129#define ATW_REFSLAVE	/* slavishly do what the reference driver does */
130
131int atw_pseudo_milli = 1;
132int atw_magic_delay1 = 100 * 1000;
133int atw_magic_delay2 = 100 * 1000;
134/* more magic multi-millisecond delays (units: microseconds) */
135int atw_nar_delay = 20 * 1000;
136int atw_magic_delay4 = 10 * 1000;
137int atw_rf_delay1 = 10 * 1000;
138int atw_rf_delay2 = 5 * 1000;
139int atw_plcphd_delay = 2 * 1000;
140int atw_bbp_io_enable_delay = 20 * 1000;
141int atw_bbp_io_disable_delay = 2 * 1000;
142int atw_writewep_delay = 1000;
143int atw_beacon_len_adjust = 4;
144int atw_dwelltime = 200;
145int atw_xindiv2 = 0;
146
147#ifdef ATW_DEBUG
148int atw_debug = 0;
149
150#define ATW_DPRINTF(x)	if (atw_debug > 0) printf x
151#define ATW_DPRINTF2(x)	if (atw_debug > 1) printf x
152#define ATW_DPRINTF3(x)	if (atw_debug > 2) printf x
153#define	DPRINTF(sc, x)	if ((sc)->sc_if.if_flags & IFF_DEBUG) printf x
154#define	DPRINTF2(sc, x)	if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
155#define	DPRINTF3(sc, x)	if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
156
157static void	atw_dump_pkt(struct ifnet *, struct mbuf *);
158static void	atw_print_regs(struct atw_softc *, const char *);
159
160/* Note well: I never got atw_rf3000_read or atw_si4126_read to work. */
161#	ifdef ATW_BBPDEBUG
162static void	atw_rf3000_print(struct atw_softc *);
163static int	atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
164#	endif /* ATW_BBPDEBUG */
165
166#	ifdef ATW_SYNDEBUG
167static void	atw_si4126_print(struct atw_softc *);
168static int	atw_si4126_read(struct atw_softc *, u_int, u_int *);
169#	endif /* ATW_SYNDEBUG */
170
171#else
172#define ATW_DPRINTF(x)
173#define ATW_DPRINTF2(x)
174#define ATW_DPRINTF3(x)
175#define	DPRINTF(sc, x)	/* nothing */
176#define	DPRINTF2(sc, x)	/* nothing */
177#define	DPRINTF3(sc, x)	/* nothing */
178#endif
179
180/* ifnet methods */
181int	atw_init(struct ifnet *);
182int	atw_ioctl(struct ifnet *, u_long, void *);
183void	atw_start(struct ifnet *);
184void	atw_stop(struct ifnet *, int);
185void	atw_watchdog(struct ifnet *);
186
187/* Device attachment */
188void	atw_attach(struct atw_softc *);
189int	atw_detach(struct atw_softc *);
190static void atw_evcnt_attach(struct atw_softc *);
191static void atw_evcnt_detach(struct atw_softc *);
192
193/* Rx/Tx process */
194int	atw_add_rxbuf(struct atw_softc *, int);
195void	atw_idle(struct atw_softc *, u_int32_t);
196void	atw_rxdrain(struct atw_softc *);
197void	atw_txdrain(struct atw_softc *);
198
199/* Device (de)activation and power state */
200void	atw_reset(struct atw_softc *);
201
202/* Interrupt handlers */
203void	atw_linkintr(struct atw_softc *, u_int32_t);
204void	atw_rxintr(struct atw_softc *);
205void	atw_txintr(struct atw_softc *, uint32_t);
206
207/* 802.11 state machine */
208static int	atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
209static void	atw_next_scan(void *);
210static void	atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
211		              struct ieee80211_node *, int, int, u_int32_t);
212static int	atw_tune(struct atw_softc *);
213
214/* Device initialization */
215static void	atw_bbp_io_init(struct atw_softc *);
216static void	atw_cfp_init(struct atw_softc *);
217static void	atw_cmdr_init(struct atw_softc *);
218static void	atw_ifs_init(struct atw_softc *);
219static void	atw_nar_init(struct atw_softc *);
220static void	atw_response_times_init(struct atw_softc *);
221static void	atw_rf_reset(struct atw_softc *);
222static void	atw_test1_init(struct atw_softc *);
223static void	atw_tofs0_init(struct atw_softc *);
224static void	atw_tofs2_init(struct atw_softc *);
225static void	atw_txlmt_init(struct atw_softc *);
226static void	atw_wcsr_init(struct atw_softc *);
227
228/* Key management */
229static int atw_key_delete(struct ieee80211com *, const struct ieee80211_key *);
230static int atw_key_set(struct ieee80211com *, const struct ieee80211_key *,
231	const u_int8_t[IEEE80211_ADDR_LEN]);
232static void atw_key_update_begin(struct ieee80211com *);
233static void atw_key_update_end(struct ieee80211com *);
234
235/* RAM/ROM utilities */
236static void	atw_clear_sram(struct atw_softc *);
237static void	atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int);
238static int	atw_read_srom(struct atw_softc *);
239
240/* BSS setup */
241static void	atw_predict_beacon(struct atw_softc *);
242static void	atw_start_beacon(struct atw_softc *, int);
243static void	atw_write_bssid(struct atw_softc *);
244static void	atw_write_ssid(struct atw_softc *);
245static void	atw_write_sup_rates(struct atw_softc *);
246static void	atw_write_wep(struct atw_softc *);
247
248/* Media */
249static int	atw_media_change(struct ifnet *);
250
251static void	atw_filter_setup(struct atw_softc *);
252
253/* 802.11 utilities */
254static uint64_t			atw_get_tsft(struct atw_softc *);
255static inline uint32_t	atw_last_even_tsft(uint32_t, uint32_t,
256				                   uint32_t);
257static struct ieee80211_node	*atw_node_alloc(struct ieee80211_node_table *);
258static void			atw_node_free(struct ieee80211_node *);
259
260/*
261 * Tuner/transceiver/modem
262 */
263static void	atw_bbp_io_enable(struct atw_softc *, int);
264
265/* RFMD RF3000 Baseband Processor */
266static int	atw_rf3000_init(struct atw_softc *);
267static int	atw_rf3000_tune(struct atw_softc *, u_int);
268static int	atw_rf3000_write(struct atw_softc *, u_int, u_int);
269
270/* Silicon Laboratories Si4126 RF/IF Synthesizer */
271static void	atw_si4126_tune(struct atw_softc *, u_int);
272static void	atw_si4126_write(struct atw_softc *, u_int, u_int);
273
274const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
275const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
276
277const char *atw_tx_state[] = {
278	"STOPPED",
279	"RUNNING - read descriptor",
280	"RUNNING - transmitting",
281	"RUNNING - filling fifo",	/* XXX */
282	"SUSPENDED",
283	"RUNNING -- write descriptor",
284	"RUNNING -- write last descriptor",
285	"RUNNING - fifo full"
286};
287
288const char *atw_rx_state[] = {
289	"STOPPED",
290	"RUNNING - read descriptor",
291	"RUNNING - check this packet, pre-fetch next",
292	"RUNNING - wait for reception",
293	"SUSPENDED",
294	"RUNNING - write descriptor",
295	"RUNNING - flush fifo",
296	"RUNNING - fifo drain"
297};
298
299static inline int
300is_running(struct ifnet *ifp)
301{
302	return (ifp->if_flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP);
303}
304
305int
306atw_activate(device_t self, enum devact act)
307{
308	struct atw_softc *sc = device_private(self);
309
310	switch (act) {
311	case DVACT_DEACTIVATE:
312		if_deactivate(&sc->sc_if);
313		return 0;
314	default:
315		return EOPNOTSUPP;
316	}
317}
318
319bool
320atw_suspend(device_t self, const pmf_qual_t *qual)
321{
322	struct atw_softc *sc = device_private(self);
323
324	atw_rxdrain(sc);
325	sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
326
327	return true;
328}
329
330/* Returns -1 on failure. */
331static int
332atw_read_srom(struct atw_softc *sc)
333{
334	struct seeprom_descriptor sd;
335	uint32_t test0, fail_bits;
336
337	(void)memset(&sd, 0, sizeof(sd));
338
339	test0 = ATW_READ(sc, ATW_TEST0);
340
341	switch (sc->sc_rev) {
342	case ATW_REVISION_BA:
343	case ATW_REVISION_CA:
344		fail_bits = ATW_TEST0_EPNE;
345		break;
346	default:
347		fail_bits = ATW_TEST0_EPNE|ATW_TEST0_EPSNM;
348		break;
349	}
350	if ((test0 & fail_bits) != 0) {
351		aprint_error_dev(sc->sc_dev, "bad or missing/bad SROM\n");
352		return -1;
353	}
354
355	switch (test0 & ATW_TEST0_EPTYP_MASK) {
356	case ATW_TEST0_EPTYP_93c66:
357		ATW_DPRINTF(("%s: 93c66 SROM\n", device_xname(sc->sc_dev)));
358		sc->sc_sromsz = 512;
359		sd.sd_chip = C56_66;
360		break;
361	case ATW_TEST0_EPTYP_93c46:
362		ATW_DPRINTF(("%s: 93c46 SROM\n", device_xname(sc->sc_dev)));
363		sc->sc_sromsz = 128;
364		sd.sd_chip = C46;
365		break;
366	default:
367		printf("%s: unknown SROM type %" __PRIuBITS "\n",
368		    device_xname(sc->sc_dev),
369		    __SHIFTOUT(test0, ATW_TEST0_EPTYP_MASK));
370		return -1;
371	}
372
373	sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
374
375	if (sc->sc_srom == NULL) {
376		aprint_error_dev(sc->sc_dev, "unable to allocate SROM buffer\n");
377		return -1;
378	}
379
380	(void)memset(sc->sc_srom, 0, sc->sc_sromsz);
381
382	/* ADM8211 has a single 32-bit register for controlling the
383	 * 93cx6 SROM.  Bit SRS enables the serial port. There is no
384	 * "ready" bit. The ADM8211 input/output sense is the reverse
385	 * of read_seeprom's.
386	 */
387	sd.sd_tag = sc->sc_st;
388	sd.sd_bsh = sc->sc_sh;
389	sd.sd_regsize = 4;
390	sd.sd_control_offset = ATW_SPR;
391	sd.sd_status_offset = ATW_SPR;
392	sd.sd_dataout_offset = ATW_SPR;
393	sd.sd_CK = ATW_SPR_SCLK;
394	sd.sd_CS = ATW_SPR_SCS;
395	sd.sd_DI = ATW_SPR_SDO;
396	sd.sd_DO = ATW_SPR_SDI;
397	sd.sd_MS = ATW_SPR_SRS;
398	sd.sd_RDY = 0;
399
400	if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
401		aprint_error_dev(sc->sc_dev, "could not read SROM\n");
402		free(sc->sc_srom, M_DEVBUF);
403		return -1;
404	}
405#ifdef ATW_DEBUG
406	{
407		int i;
408		ATW_DPRINTF(("\nSerial EEPROM:\n\t"));
409		for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
410			if (((i % 8) == 0) && (i != 0)) {
411				ATW_DPRINTF(("\n\t"));
412			}
413			ATW_DPRINTF((" 0x%x", sc->sc_srom[i]));
414		}
415		ATW_DPRINTF(("\n"));
416	}
417#endif /* ATW_DEBUG */
418	return 0;
419}
420
421#ifdef ATW_DEBUG
422static void
423atw_print_regs(struct atw_softc *sc, const char *where)
424{
425#define PRINTREG(sc, reg) \
426	ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
427	    device_xname(sc->sc_dev), reg, ATW_READ(sc, reg)))
428
429	ATW_DPRINTF2(("%s: %s\n", device_xname(sc->sc_dev), where));
430
431	PRINTREG(sc, ATW_PAR);
432	PRINTREG(sc, ATW_FRCTL);
433	PRINTREG(sc, ATW_TDR);
434	PRINTREG(sc, ATW_WTDP);
435	PRINTREG(sc, ATW_RDR);
436	PRINTREG(sc, ATW_WRDP);
437	PRINTREG(sc, ATW_RDB);
438	PRINTREG(sc, ATW_CSR3A);
439	PRINTREG(sc, ATW_TDBD);
440	PRINTREG(sc, ATW_TDBP);
441	PRINTREG(sc, ATW_STSR);
442	PRINTREG(sc, ATW_CSR5A);
443	PRINTREG(sc, ATW_NAR);
444	PRINTREG(sc, ATW_CSR6A);
445	PRINTREG(sc, ATW_IER);
446	PRINTREG(sc, ATW_CSR7A);
447	PRINTREG(sc, ATW_LPC);
448	PRINTREG(sc, ATW_TEST1);
449	PRINTREG(sc, ATW_SPR);
450	PRINTREG(sc, ATW_TEST0);
451	PRINTREG(sc, ATW_WCSR);
452	PRINTREG(sc, ATW_WPDR);
453	PRINTREG(sc, ATW_GPTMR);
454	PRINTREG(sc, ATW_GPIO);
455	PRINTREG(sc, ATW_BBPCTL);
456	PRINTREG(sc, ATW_SYNCTL);
457	PRINTREG(sc, ATW_PLCPHD);
458	PRINTREG(sc, ATW_MMIWADDR);
459	PRINTREG(sc, ATW_MMIRADDR1);
460	PRINTREG(sc, ATW_MMIRADDR2);
461	PRINTREG(sc, ATW_TXBR);
462	PRINTREG(sc, ATW_CSR15A);
463	PRINTREG(sc, ATW_ALCSTAT);
464	PRINTREG(sc, ATW_TOFS2);
465	PRINTREG(sc, ATW_CMDR);
466	PRINTREG(sc, ATW_PCIC);
467	PRINTREG(sc, ATW_PMCSR);
468	PRINTREG(sc, ATW_PAR0);
469	PRINTREG(sc, ATW_PAR1);
470	PRINTREG(sc, ATW_MAR0);
471	PRINTREG(sc, ATW_MAR1);
472	PRINTREG(sc, ATW_ATIMDA0);
473	PRINTREG(sc, ATW_ABDA1);
474	PRINTREG(sc, ATW_BSSID0);
475	PRINTREG(sc, ATW_TXLMT);
476	PRINTREG(sc, ATW_MIBCNT);
477	PRINTREG(sc, ATW_BCNT);
478	PRINTREG(sc, ATW_TSFTH);
479	PRINTREG(sc, ATW_TSC);
480	PRINTREG(sc, ATW_SYNRF);
481	PRINTREG(sc, ATW_BPLI);
482	PRINTREG(sc, ATW_CAP0);
483	PRINTREG(sc, ATW_CAP1);
484	PRINTREG(sc, ATW_RMD);
485	PRINTREG(sc, ATW_CFPP);
486	PRINTREG(sc, ATW_TOFS0);
487	PRINTREG(sc, ATW_TOFS1);
488	PRINTREG(sc, ATW_IFST);
489	PRINTREG(sc, ATW_RSPT);
490	PRINTREG(sc, ATW_TSFTL);
491	PRINTREG(sc, ATW_WEPCTL);
492	PRINTREG(sc, ATW_WESK);
493	PRINTREG(sc, ATW_WEPCNT);
494	PRINTREG(sc, ATW_MACTEST);
495	PRINTREG(sc, ATW_FER);
496	PRINTREG(sc, ATW_FEMR);
497	PRINTREG(sc, ATW_FPSR);
498	PRINTREG(sc, ATW_FFER);
499#undef PRINTREG
500}
501#endif /* ATW_DEBUG */
502
503/*
504 * Finish attaching an ADMtek ADM8211 MAC.  Called by bus-specific front-end.
505 */
506void
507atw_attach(struct atw_softc *sc)
508{
509	static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
510		0x00, 0x00, 0x00, 0x00, 0x00, 0x00
511	};
512	struct ieee80211com *ic = &sc->sc_ic;
513	struct ifnet *ifp = &sc->sc_if;
514	int country_code, error, i, nrate, srom_major;
515	u_int32_t reg;
516	static const char *type_strings[] = {"Intersil (not supported)",
517	    "RFMD", "Marvel (not supported)"};
518
519	pmf_self_suspensor_init(sc->sc_dev, &sc->sc_suspensor, &sc->sc_qual);
520
521	sc->sc_txth = atw_txthresh_tab_lo;
522
523	SIMPLEQ_INIT(&sc->sc_txfreeq);
524	SIMPLEQ_INIT(&sc->sc_txdirtyq);
525
526#ifdef ATW_DEBUG
527	atw_print_regs(sc, "atw_attach");
528#endif /* ATW_DEBUG */
529
530	/*
531	 * Allocate the control data structures, and create and load the
532	 * DMA map for it.
533	 */
534	if ((error = bus_dmamem_alloc(sc->sc_dmat,
535	    sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
536	    1, &sc->sc_cdnseg, 0)) != 0) {
537		aprint_error_dev(sc->sc_dev,
538		    "unable to allocate control data, error = %d\n",
539		    error);
540		goto fail_0;
541	}
542
543	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
544	    sizeof(struct atw_control_data), (void **)&sc->sc_control_data,
545	    BUS_DMA_COHERENT)) != 0) {
546		aprint_error_dev(sc->sc_dev,
547		    "unable to map control data, error = %d\n",
548		    error);
549		goto fail_1;
550	}
551
552	if ((error = bus_dmamap_create(sc->sc_dmat,
553	    sizeof(struct atw_control_data), 1,
554	    sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
555		aprint_error_dev(sc->sc_dev,
556		    "unable to create control data DMA map, error = %d\n",
557		    error);
558		goto fail_2;
559	}
560
561	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
562	    sc->sc_control_data, sizeof(struct atw_control_data), NULL,
563	    0)) != 0) {
564		aprint_error_dev(sc->sc_dev,
565		    "unable to load control data DMA map, error = %d\n", error);
566		goto fail_3;
567	}
568
569	/*
570	 * Create the transmit buffer DMA maps.
571	 */
572	sc->sc_ntxsegs = ATW_NTXSEGS;
573	for (i = 0; i < ATW_TXQUEUELEN; i++) {
574		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
575		    sc->sc_ntxsegs, MCLBYTES, 0, 0,
576		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
577			aprint_error_dev(sc->sc_dev,
578			    "unable to create tx DMA map %d, error = %d\n", i,
579			    error);
580			goto fail_4;
581		}
582	}
583
584	/*
585	 * Create the receive buffer DMA maps.
586	 */
587	for (i = 0; i < ATW_NRXDESC; i++) {
588		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
589		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
590			aprint_error_dev(sc->sc_dev,
591			    "unable to create rx DMA map %d, error = %d\n", i,
592			    error);
593			goto fail_5;
594		}
595	}
596	for (i = 0; i < ATW_NRXDESC; i++) {
597		sc->sc_rxsoft[i].rxs_mbuf = NULL;
598	}
599
600	switch (sc->sc_rev) {
601	case ATW_REVISION_AB:
602	case ATW_REVISION_AF:
603		sc->sc_sramlen = ATW_SRAM_A_SIZE;
604		break;
605	case ATW_REVISION_BA:
606	case ATW_REVISION_CA:
607		sc->sc_sramlen = ATW_SRAM_B_SIZE;
608		break;
609	}
610
611	/* Reset the chip to a known state. */
612	atw_reset(sc);
613
614	if (atw_read_srom(sc) == -1)
615		return;
616
617	sc->sc_rftype = __SHIFTOUT(sc->sc_srom[ATW_SR_CSR20],
618	    ATW_SR_RFTYPE_MASK);
619
620	sc->sc_bbptype = __SHIFTOUT(sc->sc_srom[ATW_SR_CSR20],
621	    ATW_SR_BBPTYPE_MASK);
622
623	if (sc->sc_rftype >= __arraycount(type_strings)) {
624		aprint_error_dev(sc->sc_dev, "unknown RF\n");
625		return;
626	}
627	if (sc->sc_bbptype >= __arraycount(type_strings)) {
628		aprint_error_dev(sc->sc_dev, "unknown BBP\n");
629		return;
630	}
631
632	printf("%s: %s RF, %s BBP", device_xname(sc->sc_dev),
633	    type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
634
635	/* XXX There exists a Linux driver which seems to use RFType = 0 for
636	 * MARVEL. My bug, or theirs?
637	 */
638
639	reg = __SHIFTIN(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
640
641	switch (sc->sc_rftype) {
642	case ATW_RFTYPE_INTERSIL:
643		reg |= ATW_SYNCTL_CS1;
644		break;
645	case ATW_RFTYPE_RFMD:
646		reg |= ATW_SYNCTL_CS0;
647		break;
648	case ATW_RFTYPE_MARVEL:
649		break;
650	}
651
652	sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
653	sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
654
655	reg = __SHIFTIN(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
656
657	switch (sc->sc_bbptype) {
658	case ATW_BBPTYPE_INTERSIL:
659		reg |= ATW_BBPCTL_TWI;
660		break;
661	case ATW_BBPTYPE_RFMD:
662		reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
663		    ATW_BBPCTL_CCA_ACTLO;
664		break;
665	case ATW_BBPTYPE_MARVEL:
666		break;
667	case ATW_C_BBPTYPE_RFMD:
668		printf("%s: ADM8211C MAC/RFMD BBP not supported yet.\n",
669		    device_xname(sc->sc_dev));
670		break;
671	}
672
673	sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
674	sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
675
676	/*
677	 * From this point forward, the attachment cannot fail.  A failure
678	 * before this point releases all resources that may have been
679	 * allocated.
680	 */
681	sc->sc_flags |= ATWF_ATTACHED;
682
683	ATW_DPRINTF((" SROM MAC %04x%04x%04x",
684	    htole16(sc->sc_srom[ATW_SR_MAC00]),
685	    htole16(sc->sc_srom[ATW_SR_MAC01]),
686	    htole16(sc->sc_srom[ATW_SR_MAC10])));
687
688	srom_major = __SHIFTOUT(sc->sc_srom[ATW_SR_FORMAT_VERSION],
689	    ATW_SR_MAJOR_MASK);
690
691	if (srom_major < 2)
692		sc->sc_rf3000_options1 = 0;
693	else if (sc->sc_rev == ATW_REVISION_BA) {
694		sc->sc_rf3000_options1 =
695		    __SHIFTOUT(sc->sc_srom[ATW_SR_CR28_CR03],
696		    ATW_SR_CR28_MASK);
697	} else
698		sc->sc_rf3000_options1 = 0;
699
700	sc->sc_rf3000_options2 = __SHIFTOUT(sc->sc_srom[ATW_SR_CTRY_CR29],
701	    ATW_SR_CR29_MASK);
702
703	country_code = __SHIFTOUT(sc->sc_srom[ATW_SR_CTRY_CR29],
704	    ATW_SR_CTRY_MASK);
705
706#define ADD_CHANNEL(_ic, _chan) do {					\
707	_ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B;		\
708	_ic->ic_channels[_chan].ic_freq =				\
709	    ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
710} while (0)
711
712	/* Find available channels */
713	switch (country_code) {
714	case COUNTRY_MMK2:	/* 1-14 */
715		ADD_CHANNEL(ic, 14);
716		/*FALLTHROUGH*/
717	case COUNTRY_ETSI:	/* 1-13 */
718		for (i = 1; i <= 13; i++)
719			ADD_CHANNEL(ic, i);
720		break;
721	case COUNTRY_FCC:	/* 1-11 */
722	case COUNTRY_IC:	/* 1-11 */
723		for (i = 1; i <= 11; i++)
724			ADD_CHANNEL(ic, i);
725		break;
726	case COUNTRY_MMK:	/* 14 */
727		ADD_CHANNEL(ic, 14);
728		break;
729	case COUNTRY_FRANCE:	/* 10-13 */
730		for (i = 10; i <= 13; i++)
731			ADD_CHANNEL(ic, i);
732		break;
733	default:	/* assume channels 10-11 */
734	case COUNTRY_SPAIN:	/* 10-11 */
735		for (i = 10; i <= 11; i++)
736			ADD_CHANNEL(ic, i);
737		break;
738	}
739
740	/* Read the MAC address. */
741	reg = ATW_READ(sc, ATW_PAR0);
742	ic->ic_myaddr[0] = __SHIFTOUT(reg, ATW_PAR0_PAB0_MASK);
743	ic->ic_myaddr[1] = __SHIFTOUT(reg, ATW_PAR0_PAB1_MASK);
744	ic->ic_myaddr[2] = __SHIFTOUT(reg, ATW_PAR0_PAB2_MASK);
745	ic->ic_myaddr[3] = __SHIFTOUT(reg, ATW_PAR0_PAB3_MASK);
746	reg = ATW_READ(sc, ATW_PAR1);
747	ic->ic_myaddr[4] = __SHIFTOUT(reg, ATW_PAR1_PAB4_MASK);
748	ic->ic_myaddr[5] = __SHIFTOUT(reg, ATW_PAR1_PAB5_MASK);
749
750	if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
751		printf(" could not get mac address, attach failed\n");
752		return;
753	}
754
755	printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
756
757	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
758	ifp->if_softc = sc;
759	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
760	    IFF_NOTRAILERS;
761	ifp->if_ioctl = atw_ioctl;
762	ifp->if_start = atw_start;
763	ifp->if_watchdog = atw_watchdog;
764	ifp->if_init = atw_init;
765	ifp->if_stop = atw_stop;
766	IFQ_SET_READY(&ifp->if_snd);
767
768	ic->ic_ifp = ifp;
769	ic->ic_phytype = IEEE80211_T_DS;
770	ic->ic_opmode = IEEE80211_M_STA;
771	ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
772	    IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR;
773
774	nrate = 0;
775	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
776	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
777	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
778	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
779	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
780
781	/*
782	 * Call MI attach routines.
783	 */
784
785	if_attach(ifp);
786	ieee80211_ifattach(ic);
787
788	atw_evcnt_attach(sc);
789
790	sc->sc_newstate = ic->ic_newstate;
791	ic->ic_newstate = atw_newstate;
792
793	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
794	ic->ic_recv_mgmt = atw_recv_mgmt;
795
796	sc->sc_node_free = ic->ic_node_free;
797	ic->ic_node_free = atw_node_free;
798
799	sc->sc_node_alloc = ic->ic_node_alloc;
800	ic->ic_node_alloc = atw_node_alloc;
801
802	ic->ic_crypto.cs_key_delete = atw_key_delete;
803	ic->ic_crypto.cs_key_set = atw_key_set;
804	ic->ic_crypto.cs_key_update_begin = atw_key_update_begin;
805	ic->ic_crypto.cs_key_update_end = atw_key_update_end;
806
807	/* possibly we should fill in our own sc_send_prresp, since
808	 * the ADM8211 is probably sending probe responses in ad hoc
809	 * mode.
810	 */
811
812	/* complete initialization */
813	ieee80211_media_init(ic, atw_media_change, ieee80211_media_status);
814	callout_init(&sc->sc_scan_ch, 0);
815
816	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
817	    sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
818
819	memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
820	sc->sc_rxtap.ar_ihdr.it_len = htole16(sizeof(sc->sc_rxtapu));
821	sc->sc_rxtap.ar_ihdr.it_present = htole32(ATW_RX_RADIOTAP_PRESENT);
822
823	memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
824	sc->sc_txtap.at_ihdr.it_len = htole16(sizeof(sc->sc_txtapu));
825	sc->sc_txtap.at_ihdr.it_present = htole32(ATW_TX_RADIOTAP_PRESENT);
826
827	ieee80211_announce(ic);
828	return;
829
830	/*
831	 * Free any resources we've allocated during the failed attach
832	 * attempt.  Do this in reverse order and fall through.
833	 */
834 fail_5:
835	for (i = 0; i < ATW_NRXDESC; i++) {
836		if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
837			continue;
838		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
839	}
840 fail_4:
841	for (i = 0; i < ATW_TXQUEUELEN; i++) {
842		if (sc->sc_txsoft[i].txs_dmamap == NULL)
843			continue;
844		bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
845	}
846	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
847 fail_3:
848	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
849 fail_2:
850	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
851	    sizeof(struct atw_control_data));
852 fail_1:
853	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
854 fail_0:
855	return;
856}
857
858static struct ieee80211_node *
859atw_node_alloc(struct ieee80211_node_table *nt)
860{
861	struct atw_softc *sc = (struct atw_softc *)nt->nt_ic->ic_ifp->if_softc;
862	struct ieee80211_node *ni = (*sc->sc_node_alloc)(nt);
863
864	DPRINTF(sc, ("%s: alloc node %p\n", device_xname(sc->sc_dev), ni));
865	return ni;
866}
867
868static void
869atw_node_free(struct ieee80211_node *ni)
870{
871	struct atw_softc *sc = (struct atw_softc *)ni->ni_ic->ic_ifp->if_softc;
872
873	DPRINTF(sc, ("%s: freeing node %p %s\n", device_xname(sc->sc_dev), ni,
874	    ether_sprintf(ni->ni_bssid)));
875	(*sc->sc_node_free)(ni);
876}
877
878
879static void
880atw_test1_reset(struct atw_softc *sc)
881{
882	switch (sc->sc_rev) {
883	case ATW_REVISION_BA:
884		if (1 /* XXX condition on transceiver type */) {
885			ATW_SET(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MONITOR);
886		}
887		break;
888	case ATW_REVISION_CA:
889		ATW_CLR(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MASK);
890		break;
891	default:
892		break;
893	}
894}
895
896/*
897 * atw_reset:
898 *
899 *	Perform a soft reset on the ADM8211.
900 */
901void
902atw_reset(struct atw_softc *sc)
903{
904	int i;
905	uint32_t lpc;
906
907	ATW_WRITE(sc, ATW_NAR, 0x0);
908	DELAY(atw_nar_delay);
909
910	/* Reference driver has a cryptic remark indicating that this might
911	 * power-on the chip.  I know that it turns off power-saving....
912	 */
913	ATW_WRITE(sc, ATW_FRCTL, 0x0);
914
915	ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
916
917	for (i = 0; i < 50000 / atw_pseudo_milli; i++) {
918		if ((ATW_READ(sc, ATW_PAR) & ATW_PAR_SWR) == 0)
919			break;
920		DELAY(atw_pseudo_milli);
921	}
922
923	/* ... and then pause 100ms longer for good measure. */
924	DELAY(atw_magic_delay1);
925
926	DPRINTF2(sc, ("%s: atw_reset %d iterations\n", device_xname(sc->sc_dev), i));
927
928	if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
929		aprint_error_dev(sc->sc_dev, "reset failed to complete\n");
930
931	/*
932	 * Initialize the PCI Access Register.
933	 */
934	sc->sc_busmode = ATW_PAR_PBL_8DW;
935
936	ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
937	DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", device_xname(sc->sc_dev),
938	    ATW_READ(sc, ATW_PAR), sc->sc_busmode));
939
940	atw_test1_reset(sc);
941
942	/* Turn off maximum power saving, etc. */
943	ATW_WRITE(sc, ATW_FRCTL, 0x0);
944
945	DELAY(atw_magic_delay2);
946
947	/* Recall EEPROM. */
948	ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
949
950	DELAY(atw_magic_delay4);
951
952	lpc = ATW_READ(sc, ATW_LPC);
953
954	DPRINTF(sc, ("%s: ATW_LPC %#08x\n", __func__, lpc));
955
956	/* A reset seems to affect the SRAM contents, so put them into
957	 * a known state.
958	 */
959	atw_clear_sram(sc);
960
961	memset(sc->sc_bssid, 0xff, sizeof(sc->sc_bssid));
962}
963
964static void
965atw_clear_sram(struct atw_softc *sc)
966{
967	memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
968	sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
969	/* XXX not for revision 0x20. */
970	atw_write_sram(sc, 0, sc->sc_sram, sc->sc_sramlen);
971}
972
973/* TBD atw_init
974 *
975 * set MAC based on ic->ic_bss->myaddr
976 * write WEP keys
977 * set TX rate
978 */
979
980/* Tell the ADM8211 to raise ATW_INTR_LINKOFF if 7 beacon intervals pass
981 * without receiving a beacon with the preferred BSSID & SSID.
982 * atw_write_bssid & atw_write_ssid set the BSSID & SSID.
983 */
984static void
985atw_wcsr_init(struct atw_softc *sc)
986{
987	uint32_t wcsr;
988
989	wcsr = ATW_READ(sc, ATW_WCSR);
990	wcsr &= ~(ATW_WCSR_BLN_MASK|ATW_WCSR_LSOE|ATW_WCSR_MPRE|ATW_WCSR_LSOE);
991	wcsr |= __SHIFTIN(7, ATW_WCSR_BLN_MASK);
992	ATW_WRITE(sc, ATW_WCSR, wcsr);	/* XXX resets wake-up status bits */
993
994	DPRINTF(sc, ("%s: %s reg[WCSR] = %08x\n",
995	    device_xname(sc->sc_dev), __func__, ATW_READ(sc, ATW_WCSR)));
996}
997
998/* Turn off power management.  Set Rx store-and-forward mode. */
999static void
1000atw_cmdr_init(struct atw_softc *sc)
1001{
1002	uint32_t cmdr;
1003	cmdr = ATW_READ(sc, ATW_CMDR);
1004	cmdr &= ~ATW_CMDR_APM;
1005	cmdr |= ATW_CMDR_RTE;
1006	cmdr &= ~ATW_CMDR_DRT_MASK;
1007	cmdr |= ATW_CMDR_DRT_SF;
1008
1009	ATW_WRITE(sc, ATW_CMDR, cmdr);
1010}
1011
1012static void
1013atw_tofs2_init(struct atw_softc *sc)
1014{
1015	uint32_t tofs2;
1016	/* XXX this magic can probably be figured out from the RFMD docs */
1017#ifndef ATW_REFSLAVE
1018	tofs2 = __SHIFTIN(4, ATW_TOFS2_PWR1UP_MASK)    | /* 8 ms = 4 * 2 ms */
1019	      __SHIFTIN(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
1020	      __SHIFTIN(8, ATW_TOFS2_PWR1PAPE_MASK)  | /* 8 us */
1021	      __SHIFTIN(5, ATW_TOFS2_PWR0TRSW_MASK)  | /* 5 us */
1022	      __SHIFTIN(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1023	      __SHIFTIN(13, ATW_TOFS2_PWR0PE2_MASK)  | /* 13 us */
1024	      __SHIFTIN(4, ATW_TOFS2_PWR1PE2_MASK)   | /* 4 us */
1025	      __SHIFTIN(5, ATW_TOFS2_PWR0TXPE_MASK);  /* 5 us */
1026#else
1027	/* XXX new magic from reference driver source */
1028	tofs2 = __SHIFTIN(8, ATW_TOFS2_PWR1UP_MASK)    | /* 8 ms = 4 * 2 ms */
1029	      __SHIFTIN(8, ATW_TOFS2_PWR0PAPE_MASK) | /* 8 us */
1030	      __SHIFTIN(1, ATW_TOFS2_PWR1PAPE_MASK)  | /* 1 us */
1031	      __SHIFTIN(5, ATW_TOFS2_PWR0TRSW_MASK)  | /* 5 us */
1032	      __SHIFTIN(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1033	      __SHIFTIN(13, ATW_TOFS2_PWR0PE2_MASK)  | /* 13 us */
1034	      __SHIFTIN(1, ATW_TOFS2_PWR1PE2_MASK)   | /* 1 us */
1035	      __SHIFTIN(8, ATW_TOFS2_PWR0TXPE_MASK);  /* 8 us */
1036#endif
1037	ATW_WRITE(sc, ATW_TOFS2, tofs2);
1038}
1039
1040static void
1041atw_nar_init(struct atw_softc *sc)
1042{
1043	ATW_WRITE(sc, ATW_NAR, ATW_NAR_SF|ATW_NAR_PB);
1044}
1045
1046static void
1047atw_txlmt_init(struct atw_softc *sc)
1048{
1049	ATW_WRITE(sc, ATW_TXLMT, __SHIFTIN(512, ATW_TXLMT_MTMLT_MASK) |
1050	                         __SHIFTIN(1, ATW_TXLMT_SRTYLIM_MASK));
1051}
1052
1053static void
1054atw_test1_init(struct atw_softc *sc)
1055{
1056	uint32_t test1;
1057
1058	test1 = ATW_READ(sc, ATW_TEST1);
1059	test1 &= ~(ATW_TEST1_DBGREAD_MASK|ATW_TEST1_CONTROL);
1060	/* XXX magic 0x1 */
1061	test1 |= __SHIFTIN(0x1, ATW_TEST1_DBGREAD_MASK) | ATW_TEST1_CONTROL;
1062	ATW_WRITE(sc, ATW_TEST1, test1);
1063}
1064
1065static void
1066atw_rf_reset(struct atw_softc *sc)
1067{
1068	/* XXX this resets an Intersil RF front-end? */
1069	/* TBD condition on Intersil RFType? */
1070	ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
1071	DELAY(atw_rf_delay1);
1072	ATW_WRITE(sc, ATW_SYNRF, 0);
1073	DELAY(atw_rf_delay2);
1074}
1075
1076/* Set 16 TU max duration for the contention-free period (CFP). */
1077static void
1078atw_cfp_init(struct atw_softc *sc)
1079{
1080	uint32_t cfpp;
1081
1082	cfpp = ATW_READ(sc, ATW_CFPP);
1083	cfpp &= ~ATW_CFPP_CFPMD;
1084	cfpp |= __SHIFTIN(16, ATW_CFPP_CFPMD);
1085	ATW_WRITE(sc, ATW_CFPP, cfpp);
1086}
1087
1088static void
1089atw_tofs0_init(struct atw_softc *sc)
1090{
1091	/* XXX I guess that the Cardbus clock is 22 MHz?
1092	 * I am assuming that the role of ATW_TOFS0_USCNT is
1093	 * to divide the bus clock to get a 1 MHz clock---the datasheet is not
1094	 * very clear on this point. It says in the datasheet that it is
1095	 * possible for the ADM8211 to accommodate bus speeds between 22 MHz
1096	 * and 33 MHz; maybe this is the way? I see a binary-only driver write
1097	 * these values. These values are also the power-on default.
1098	 */
1099	ATW_WRITE(sc, ATW_TOFS0,
1100	    __SHIFTIN(22, ATW_TOFS0_USCNT_MASK) |
1101	    ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
1102}
1103
1104/* Initialize interframe spacing: 802.11b slot time, SIFS, DIFS, EIFS. */
1105static void
1106atw_ifs_init(struct atw_softc *sc)
1107{
1108	uint32_t ifst;
1109	/* XXX EIFS=0x64, SIFS=110 are used by the reference driver.
1110	 * Go figure.
1111	 */
1112	ifst = __SHIFTIN(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
1113	      __SHIFTIN(22 * 10 /* IEEE80211_DUR_DS_SIFS */ /* # of 22 MHz cycles */,
1114	             ATW_IFST_SIFS_MASK) |
1115	      __SHIFTIN(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
1116	      __SHIFTIN(IEEE80211_DUR_DS_EIFS, ATW_IFST_EIFS_MASK);
1117
1118	ATW_WRITE(sc, ATW_IFST, ifst);
1119}
1120
1121static void
1122atw_response_times_init(struct atw_softc *sc)
1123{
1124	/* XXX More magic. Relates to ACK timing?  The datasheet seems to
1125	 * indicate that the MAC expects at least SIFS + MIRT microseconds
1126	 * to pass after it transmits a frame that requires a response;
1127	 * it waits at most SIFS + MART microseconds for the response.
1128	 * Surely this is not the ACK timeout?
1129	 */
1130	ATW_WRITE(sc, ATW_RSPT, __SHIFTIN(0xffff, ATW_RSPT_MART_MASK) |
1131	    __SHIFTIN(0xff, ATW_RSPT_MIRT_MASK));
1132}
1133
1134/* Set up the MMI read/write addresses for the baseband. The Tx/Rx
1135 * engines read and write baseband registers after Rx and before
1136 * Tx, respectively.
1137 */
1138static void
1139atw_bbp_io_init(struct atw_softc *sc)
1140{
1141	uint32_t mmiraddr2;
1142
1143	/* XXX The reference driver does this, but is it *really*
1144	 * necessary?
1145	 */
1146	switch (sc->sc_rev) {
1147	case ATW_REVISION_AB:
1148	case ATW_REVISION_AF:
1149		mmiraddr2 = 0x0;
1150		break;
1151	default:
1152		mmiraddr2 = ATW_READ(sc, ATW_MMIRADDR2);
1153		mmiraddr2 &=
1154		    ~(ATW_MMIRADDR2_PROREXT|ATW_MMIRADDR2_PRORLEN_MASK);
1155		break;
1156	}
1157
1158	switch (sc->sc_bbptype) {
1159	case ATW_BBPTYPE_INTERSIL:
1160		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
1161		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
1162		mmiraddr2 |= ATW_MMIRADDR2_INTERSIL;
1163		break;
1164	case ATW_BBPTYPE_MARVEL:
1165		/* TBD find out the Marvel settings. */
1166		break;
1167	case ATW_BBPTYPE_RFMD:
1168	default:
1169		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
1170		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
1171		mmiraddr2 |= ATW_MMIRADDR2_RFMD;
1172		break;
1173	}
1174	ATW_WRITE(sc, ATW_MMIRADDR2, mmiraddr2);
1175	ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
1176}
1177
1178/*
1179 * atw_init:		[ ifnet interface function ]
1180 *
1181 *	Initialize the interface.  Must be called at splnet().
1182 */
1183int
1184atw_init(struct ifnet *ifp)
1185{
1186	struct atw_softc *sc = ifp->if_softc;
1187	struct ieee80211com *ic = &sc->sc_ic;
1188	struct atw_txsoft *txs;
1189	struct atw_rxsoft *rxs;
1190	int i, error = 0;
1191
1192	if (device_is_active(sc->sc_dev)) {
1193		/*
1194		 * Cancel any pending I/O.
1195		 */
1196		atw_stop(ifp, 0);
1197	} else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) ||
1198	           !device_is_active(sc->sc_dev))
1199		return 0;
1200
1201	/*
1202	 * Reset the chip to a known state.
1203	 */
1204	atw_reset(sc);
1205
1206	DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
1207	    __func__, ieee80211_chan2ieee(ic, ic->ic_curchan),
1208	    ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags));
1209
1210	atw_wcsr_init(sc);
1211
1212	atw_cmdr_init(sc);
1213
1214	/* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
1215	 *
1216	 * XXX Set transmit power for ATIM, RTS, Beacon.
1217	 */
1218	ATW_WRITE(sc, ATW_PLCPHD, __SHIFTIN(10, ATW_PLCPHD_SIGNAL_MASK) |
1219	    __SHIFTIN(0xb0, ATW_PLCPHD_SERVICE_MASK));
1220
1221	atw_tofs2_init(sc);
1222
1223	atw_nar_init(sc);
1224
1225	atw_txlmt_init(sc);
1226
1227	atw_test1_init(sc);
1228
1229	atw_rf_reset(sc);
1230
1231	atw_cfp_init(sc);
1232
1233	atw_tofs0_init(sc);
1234
1235	atw_ifs_init(sc);
1236
1237	/* XXX Fall asleep after one second of inactivity.
1238	 * XXX A frame may only dribble in for 65536us.
1239	 */
1240	ATW_WRITE(sc, ATW_RMD,
1241	    __SHIFTIN(1, ATW_RMD_PCNT) | __SHIFTIN(0xffff, ATW_RMD_RMRD_MASK));
1242
1243	atw_response_times_init(sc);
1244
1245	atw_bbp_io_init(sc);
1246
1247	ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1248
1249	if ((error = atw_rf3000_init(sc)) != 0)
1250		goto out;
1251
1252	ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
1253	DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", device_xname(sc->sc_dev),
1254	    ATW_READ(sc, ATW_PAR), sc->sc_busmode));
1255
1256	/*
1257	 * Initialize the transmit descriptor ring.
1258	 */
1259	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1260	for (i = 0; i < ATW_NTXDESC; i++) {
1261		sc->sc_txdescs[i].at_ctl = 0;
1262		/* no transmit chaining */
1263		sc->sc_txdescs[i].at_flags = 0 /* ATW_TXFLAG_TCH */;
1264		sc->sc_txdescs[i].at_buf2 =
1265		    htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
1266	}
1267	/* use ring mode */
1268	sc->sc_txdescs[ATW_NTXDESC - 1].at_flags |= htole32(ATW_TXFLAG_TER);
1269	ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
1270	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1271	sc->sc_txfree = ATW_NTXDESC;
1272	sc->sc_txnext = 0;
1273
1274	/*
1275	 * Initialize the transmit job descriptors.
1276	 */
1277	SIMPLEQ_INIT(&sc->sc_txfreeq);
1278	SIMPLEQ_INIT(&sc->sc_txdirtyq);
1279	for (i = 0; i < ATW_TXQUEUELEN; i++) {
1280		txs = &sc->sc_txsoft[i];
1281		txs->txs_mbuf = NULL;
1282		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1283	}
1284
1285	/*
1286	 * Initialize the receive descriptor and receive job
1287	 * descriptor rings.
1288	 */
1289	for (i = 0; i < ATW_NRXDESC; i++) {
1290		rxs = &sc->sc_rxsoft[i];
1291		if (rxs->rxs_mbuf == NULL) {
1292			if ((error = atw_add_rxbuf(sc, i)) != 0) {
1293				aprint_error_dev(sc->sc_dev,
1294				    "unable to allocate or map rx buffer %d, "
1295				    "error = %d\n", i, error);
1296				/*
1297				 * XXX Should attempt to run with fewer receive
1298				 * XXX buffers instead of just failing.
1299				 */
1300				atw_rxdrain(sc);
1301				goto out;
1302			}
1303		} else
1304			atw_init_rxdesc(sc, i);
1305	}
1306	sc->sc_rxptr = 0;
1307
1308	/*
1309	 * Initialize the interrupt mask and enable interrupts.
1310	 */
1311	/* normal interrupts */
1312	sc->sc_inten =  ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
1313	    ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
1314
1315	/* abnormal interrupts */
1316	sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
1317	    ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
1318	    ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1319
1320	sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
1321	    ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1322	sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
1323	sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
1324	    ATW_INTR_TRT;
1325
1326	sc->sc_linkint_mask &= sc->sc_inten;
1327	sc->sc_rxint_mask &= sc->sc_inten;
1328	sc->sc_txint_mask &= sc->sc_inten;
1329
1330	ATW_WRITE(sc, ATW_IER, sc->sc_inten);
1331	ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1332
1333	DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
1334	    device_xname(sc->sc_dev), ATW_READ(sc, ATW_IER), sc->sc_inten));
1335
1336	/*
1337	 * Give the transmit and receive rings to the ADM8211.
1338	 */
1339	ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
1340	ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
1341
1342	sc->sc_txthresh = 0;
1343	sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
1344	    sc->sc_txth[sc->sc_txthresh].txth_opmode;
1345
1346	/* common 802.11 configuration */
1347	ic->ic_flags &= ~IEEE80211_F_IBSSON;
1348	switch (ic->ic_opmode) {
1349	case IEEE80211_M_STA:
1350		break;
1351	case IEEE80211_M_AHDEMO: /* XXX */
1352	case IEEE80211_M_IBSS:
1353		ic->ic_flags |= IEEE80211_F_IBSSON;
1354		/*FALLTHROUGH*/
1355	case IEEE80211_M_HOSTAP: /* XXX */
1356		break;
1357	case IEEE80211_M_MONITOR: /* XXX */
1358		break;
1359	}
1360
1361	switch (ic->ic_opmode) {
1362	case IEEE80211_M_AHDEMO:
1363	case IEEE80211_M_HOSTAP:
1364#ifndef IEEE80211_NO_HOSTAP
1365		ic->ic_bss->ni_intval = ic->ic_lintval;
1366		ic->ic_bss->ni_rssi = 0;
1367		ic->ic_bss->ni_rstamp = 0;
1368#endif /* !IEEE80211_NO_HOSTAP */
1369		break;
1370	default:					/* XXX */
1371		break;
1372	}
1373
1374	sc->sc_wepctl = 0;
1375
1376	atw_write_ssid(sc);
1377	atw_write_sup_rates(sc);
1378	atw_write_wep(sc);
1379
1380	ic->ic_state = IEEE80211_S_INIT;
1381
1382	/*
1383	 * Set the receive filter.  This will start the transmit and
1384	 * receive processes.
1385	 */
1386	atw_filter_setup(sc);
1387
1388	/*
1389	 * Start the receive process.
1390	 */
1391	ATW_WRITE(sc, ATW_RDR, 0x1);
1392
1393	/*
1394	 * Note that the interface is now running.
1395	 */
1396	ifp->if_flags |= IFF_RUNNING;
1397
1398	/* send no beacons, yet. */
1399	atw_start_beacon(sc, 0);
1400
1401	if (ic->ic_opmode == IEEE80211_M_MONITOR)
1402		error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1403	else
1404		error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1405 out:
1406	if (error) {
1407		ifp->if_flags &= ~IFF_RUNNING;
1408		sc->sc_tx_timer = 0;
1409		ifp->if_timer = 0;
1410		printf("%s: interface not running\n", device_xname(sc->sc_dev));
1411	}
1412#ifdef ATW_DEBUG
1413	atw_print_regs(sc, "end of init");
1414#endif /* ATW_DEBUG */
1415
1416	return (error);
1417}
1418
1419/* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
1420 *           0: MAC control of RF3000/Si4126.
1421 *
1422 * Applies power, or selects RF front-end? Sets reset condition.
1423 *
1424 * TBD support non-RFMD BBP, non-SiLabs synth.
1425 */
1426static void
1427atw_bbp_io_enable(struct atw_softc *sc, int enable)
1428{
1429	if (enable) {
1430		ATW_WRITE(sc, ATW_SYNRF,
1431		    ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST);
1432		DELAY(atw_bbp_io_enable_delay);
1433	} else {
1434		ATW_WRITE(sc, ATW_SYNRF, 0);
1435		DELAY(atw_bbp_io_disable_delay); /* shorter for some reason */
1436	}
1437}
1438
1439static int
1440atw_tune(struct atw_softc *sc)
1441{
1442	int rc;
1443	u_int chan;
1444	struct ieee80211com *ic = &sc->sc_ic;
1445
1446	chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
1447	if (chan == IEEE80211_CHAN_ANY)
1448		panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
1449
1450	if (chan == sc->sc_cur_chan)
1451		return 0;
1452
1453	DPRINTF(sc, ("%s: chan %d -> %d\n", device_xname(sc->sc_dev),
1454	    sc->sc_cur_chan, chan));
1455
1456	atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1457
1458	atw_si4126_tune(sc, chan);
1459	if ((rc = atw_rf3000_tune(sc, chan)) != 0)
1460		printf("%s: failed to tune channel %d\n", device_xname(sc->sc_dev),
1461		    chan);
1462
1463	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1464	DELAY(atw_nar_delay);
1465	ATW_WRITE(sc, ATW_RDR, 0x1);
1466
1467	if (rc == 0) {
1468		sc->sc_cur_chan = chan;
1469		sc->sc_rxtap.ar_chan_freq = sc->sc_txtap.at_chan_freq =
1470		    htole16(ic->ic_curchan->ic_freq);
1471		sc->sc_rxtap.ar_chan_flags = sc->sc_txtap.at_chan_flags =
1472		    htole16(ic->ic_curchan->ic_flags);
1473	}
1474
1475	return rc;
1476}
1477
1478#ifdef ATW_SYNDEBUG
1479static void
1480atw_si4126_print(struct atw_softc *sc)
1481{
1482	struct ifnet *ifp = &sc->sc_if;
1483	u_int addr, val;
1484
1485	val = 0;
1486
1487	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1488		return;
1489
1490	for (addr = 0; addr <= 8; addr++) {
1491		printf("%s: synth[%d] = ", device_xname(sc->sc_dev), addr);
1492		if (atw_si4126_read(sc, addr, &val) == 0) {
1493			printf("<unknown> (quitting print-out)\n");
1494			break;
1495		}
1496		printf("%05x\n", val);
1497	}
1498}
1499#endif /* ATW_SYNDEBUG */
1500
1501/* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
1502 *
1503 * The RF/IF synthesizer produces two reference frequencies for
1504 * the RF2948B transceiver.  The first frequency the RF2948B requires
1505 * is two times the so-called "intermediate frequency" (IF). Since
1506 * a SAW filter on the radio fixes the IF at 374 MHz, I program the
1507 * Si4126 to generate IF LO = 374 MHz x 2 = 748 MHz.  The second
1508 * frequency required by the transceiver is the radio frequency
1509 * (RF). This is a superheterodyne transceiver; for f(chan) the
1510 * center frequency of the channel we are tuning, RF = f(chan) -
1511 * IF.
1512 *
1513 * XXX I am told by SiLabs that the Si4126 will accept a broader range
1514 * of XIN than the 2-25 MHz mentioned by the datasheet, even *without*
1515 * XINDIV2 = 1.  I've tried this (it is necessary to double R) and it
1516 * works, but I have still programmed for XINDIV2 = 1 to be safe.
1517 */
1518static void
1519atw_si4126_tune(struct atw_softc *sc, u_int chan)
1520{
1521	u_int mhz;
1522	u_int R;
1523	u_int32_t gpio;
1524	u_int16_t gain;
1525
1526#ifdef ATW_SYNDEBUG
1527	atw_si4126_print(sc);
1528#endif /* ATW_SYNDEBUG */
1529
1530	if (chan == 14)
1531		mhz = 2484;
1532	else
1533		mhz = 2412 + 5 * (chan - 1);
1534
1535	/* Tune IF to 748 MHz to suit the IF LO input of the
1536	 * RF2494B, which is 2 x IF. No need to set an IF divider
1537         * because an IF in 526 MHz - 952 MHz is allowed.
1538	 *
1539	 * XIN is 44.000 MHz, so divide it by two to get allowable
1540	 * range of 2-25 MHz. SiLabs tells me that this is not
1541	 * strictly necessary.
1542	 */
1543
1544	if (atw_xindiv2)
1545		R = 44;
1546	else
1547		R = 88;
1548
1549	/* Power-up RF, IF synthesizers. */
1550	atw_si4126_write(sc, SI4126_POWER,
1551	    SI4126_POWER_PDIB|SI4126_POWER_PDRB);
1552
1553	/* set LPWR, too? */
1554	atw_si4126_write(sc, SI4126_MAIN,
1555	    (atw_xindiv2) ? SI4126_MAIN_XINDIV2 : 0);
1556
1557	/* Set the phase-locked loop gain.  If RF2 N > 2047, then
1558	 * set KP2 to 1.
1559	 *
1560	 * REFDIF This is different from the reference driver, which
1561	 * always sets SI4126_GAIN to 0.
1562	 */
1563	gain = __SHIFTIN(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
1564
1565	atw_si4126_write(sc, SI4126_GAIN, gain);
1566
1567	/* XIN = 44 MHz.
1568	 *
1569	 * If XINDIV2 = 1, IF = N/(2 * R) * XIN.  I choose N = 1496,
1570	 * R = 44 so that 1496/(2 * 44) * 44 MHz = 748 MHz.
1571	 *
1572	 * If XINDIV2 = 0, IF = N/R * XIN.  I choose N = 1496, R = 88
1573	 * so that 1496/88 * 44 MHz = 748 MHz.
1574	 */
1575	atw_si4126_write(sc, SI4126_IFN, 1496);
1576
1577	atw_si4126_write(sc, SI4126_IFR, R);
1578
1579#ifndef ATW_REFSLAVE
1580	/* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
1581	 * then RF1 becomes the active RF synthesizer, even on the Si4126,
1582	 * which has no RF1!
1583	 */
1584	atw_si4126_write(sc, SI4126_RF1R, R);
1585
1586	atw_si4126_write(sc, SI4126_RF1N, mhz - 374);
1587#endif
1588
1589	/* N/R * XIN = RF. XIN = 44 MHz. We desire RF = mhz - IF,
1590	 * where IF = 374 MHz.  Let's divide XIN to 1 MHz. So R = 44.
1591	 * Now let's multiply it to mhz. So mhz - IF = N.
1592	 */
1593	atw_si4126_write(sc, SI4126_RF2R, R);
1594
1595	atw_si4126_write(sc, SI4126_RF2N, mhz - 374);
1596
1597	/* wait 100us from power-up for RF, IF to settle */
1598	DELAY(100);
1599
1600	gpio = ATW_READ(sc, ATW_GPIO);
1601	gpio &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK);
1602	gpio |= __SHIFTIN(1, ATW_GPIO_EN_MASK);
1603
1604	if ((sc->sc_if.if_flags & IFF_LINK1) != 0 && chan != 14) {
1605		/* Set a Prism RF front-end to a special mode for channel 14?
1606		 *
1607		 * Apparently the SMC2635W needs this, although I don't think
1608		 * it has a Prism RF.
1609		 */
1610		gpio |= __SHIFTIN(1, ATW_GPIO_O_MASK);
1611	}
1612	ATW_WRITE(sc, ATW_GPIO, gpio);
1613
1614#ifdef ATW_SYNDEBUG
1615	atw_si4126_print(sc);
1616#endif /* ATW_SYNDEBUG */
1617}
1618
1619/* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna
1620 * diversity.
1621 *
1622 * !!!
1623 * !!! Call this w/ Tx/Rx suspended, atw_idle(, ATW_NAR_ST|ATW_NAR_SR).
1624 * !!!
1625 */
1626static int
1627atw_rf3000_init(struct atw_softc *sc)
1628{
1629	int rc = 0;
1630
1631	atw_bbp_io_enable(sc, 1);
1632
1633	/* CCA is acquisition sensitive */
1634	rc = atw_rf3000_write(sc, RF3000_CCACTL,
1635	    __SHIFTIN(RF3000_CCACTL_MODE_BOTH, RF3000_CCACTL_MODE_MASK));
1636
1637	if (rc != 0)
1638		goto out;
1639
1640	/* enable diversity */
1641	rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
1642
1643	if (rc != 0)
1644		goto out;
1645
1646	/* sensible setting from a binary-only driver */
1647	rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1648	    __SHIFTIN(0x1d, RF3000_GAINCTL_TXVGC_MASK));
1649
1650	if (rc != 0)
1651		goto out;
1652
1653	/* magic from a binary-only driver */
1654	rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
1655	    __SHIFTIN(0x38, RF3000_LOGAINCAL_CAL_MASK));
1656
1657	if (rc != 0)
1658		goto out;
1659
1660	rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
1661
1662	if (rc != 0)
1663		goto out;
1664
1665	/* XXX Reference driver remarks that Abocom sets this to 50.
1666	 * Meaning 0x50, I think....  50 = 0x32, which would set a bit
1667	 * in the "reserved" area of register RF3000_OPTIONS1.
1668	 */
1669	rc = atw_rf3000_write(sc, RF3000_OPTIONS1, sc->sc_rf3000_options1);
1670
1671	if (rc != 0)
1672		goto out;
1673
1674	rc = atw_rf3000_write(sc, RF3000_OPTIONS2, sc->sc_rf3000_options2);
1675
1676	if (rc != 0)
1677		goto out;
1678
1679out:
1680	atw_bbp_io_enable(sc, 0);
1681	return rc;
1682}
1683
1684#ifdef ATW_BBPDEBUG
1685static void
1686atw_rf3000_print(struct atw_softc *sc)
1687{
1688	struct ifnet *ifp = &sc->sc_if;
1689	u_int addr, val;
1690
1691	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1692		return;
1693
1694	for (addr = 0x01; addr <= 0x15; addr++) {
1695		printf("%s: bbp[%d] = \n", device_xname(sc->sc_dev), addr);
1696		if (atw_rf3000_read(sc, addr, &val) != 0) {
1697			printf("<unknown> (quitting print-out)\n");
1698			break;
1699		}
1700		printf("%08x\n", val);
1701	}
1702}
1703#endif /* ATW_BBPDEBUG */
1704
1705/* Set the power settings on the BBP for channel `chan'. */
1706static int
1707atw_rf3000_tune(struct atw_softc *sc, u_int chan)
1708{
1709	int rc = 0;
1710	u_int32_t reg;
1711	u_int16_t txpower, lpf_cutoff, lna_gs_thresh;
1712
1713	txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
1714	lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
1715	lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
1716
1717	/* odd channels: LSB, even channels: MSB */
1718	if (chan % 2 == 1) {
1719		txpower &= 0xFF;
1720		lpf_cutoff &= 0xFF;
1721		lna_gs_thresh &= 0xFF;
1722	} else {
1723		txpower >>= 8;
1724		lpf_cutoff >>= 8;
1725		lna_gs_thresh >>= 8;
1726	}
1727
1728#ifdef ATW_BBPDEBUG
1729	atw_rf3000_print(sc);
1730#endif /* ATW_BBPDEBUG */
1731
1732	DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
1733	    "lna_gs_thresh %02x\n",
1734	    device_xname(sc->sc_dev), chan, txpower, lpf_cutoff, lna_gs_thresh));
1735
1736	atw_bbp_io_enable(sc, 1);
1737
1738	if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1739	    __SHIFTIN(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
1740		goto out;
1741
1742	if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
1743		goto out;
1744
1745	if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
1746		goto out;
1747
1748	rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
1749
1750	if (rc != 0)
1751		goto out;
1752
1753	rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
1754
1755	if (rc != 0)
1756		goto out;
1757
1758#ifdef ATW_BBPDEBUG
1759	atw_rf3000_print(sc);
1760#endif /* ATW_BBPDEBUG */
1761
1762out:
1763	atw_bbp_io_enable(sc, 0);
1764
1765	/* set beacon, rts, atim transmit power */
1766	reg = ATW_READ(sc, ATW_PLCPHD);
1767	reg &= ~ATW_PLCPHD_SERVICE_MASK;
1768	reg |= __SHIFTIN(__SHIFTIN(txpower, RF3000_GAINCTL_TXVGC_MASK),
1769	    ATW_PLCPHD_SERVICE_MASK);
1770	ATW_WRITE(sc, ATW_PLCPHD, reg);
1771	DELAY(atw_plcphd_delay);
1772
1773	return rc;
1774}
1775
1776/* Write a register on the RF3000 baseband processor using the
1777 * registers provided by the ADM8211 for this purpose.
1778 *
1779 * Return 0 on success.
1780 */
1781static int
1782atw_rf3000_write(struct atw_softc *sc, u_int addr, u_int val)
1783{
1784	u_int32_t reg;
1785	int i;
1786
1787	reg = sc->sc_bbpctl_wr |
1788	     __SHIFTIN(val & 0xff, ATW_BBPCTL_DATA_MASK) |
1789	     __SHIFTIN(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1790
1791	for (i = 20000 / atw_pseudo_milli; --i >= 0; ) {
1792		ATW_WRITE(sc, ATW_BBPCTL, reg);
1793		DELAY(2 * atw_pseudo_milli);
1794		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
1795			break;
1796	}
1797
1798	if (i < 0) {
1799		printf("%s: BBPCTL still busy\n", device_xname(sc->sc_dev));
1800		return ETIMEDOUT;
1801	}
1802	return 0;
1803}
1804
1805/* Read a register on the RF3000 baseband processor using the registers
1806 * the ADM8211 provides for this purpose.
1807 *
1808 * The 7-bit register address is addr.  Record the 8-bit data in the register
1809 * in *val.
1810 *
1811 * Return 0 on success.
1812 *
1813 * XXX This does not seem to work. The ADM8211 must require more or
1814 * different magic to read the chip than to write it. Possibly some
1815 * of the magic I have derived from a binary-only driver concerns
1816 * the "chip address" (see the RF3000 manual).
1817 */
1818#ifdef ATW_BBPDEBUG
1819static int
1820atw_rf3000_read(struct atw_softc *sc, u_int addr, u_int *val)
1821{
1822	u_int32_t reg;
1823	int i;
1824
1825	for (i = 1000; --i >= 0; ) {
1826		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1827			break;
1828		DELAY(100);
1829	}
1830
1831	if (i < 0) {
1832		printf("%s: start atw_rf3000_read, BBPCTL busy\n",
1833		    device_xname(sc->sc_dev));
1834		return ETIMEDOUT;
1835	}
1836
1837	reg = sc->sc_bbpctl_rd | __SHIFTIN(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1838
1839	ATW_WRITE(sc, ATW_BBPCTL, reg);
1840
1841	for (i = 1000; --i >= 0; ) {
1842		DELAY(100);
1843		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
1844			break;
1845	}
1846
1847	ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
1848
1849	if (i < 0) {
1850		printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
1851		    device_xname(sc->sc_dev), reg);
1852		return ETIMEDOUT;
1853	}
1854	if (val != NULL)
1855		*val = __SHIFTOUT(reg, ATW_BBPCTL_DATA_MASK);
1856	return 0;
1857}
1858#endif /* ATW_BBPDEBUG */
1859
1860/* Write a register on the Si4126 RF/IF synthesizer using the registers
1861 * provided by the ADM8211 for that purpose.
1862 *
1863 * val is 18 bits of data, and val is the 4-bit address of the register.
1864 *
1865 * Return 0 on success.
1866 */
1867static void
1868atw_si4126_write(struct atw_softc *sc, u_int addr, u_int val)
1869{
1870	uint32_t bits, mask, reg;
1871	const int nbits = 22;
1872
1873	KASSERT((addr & ~__SHIFTOUT_MASK(SI4126_TWI_ADDR_MASK)) == 0);
1874	KASSERT((val & ~__SHIFTOUT_MASK(SI4126_TWI_DATA_MASK)) == 0);
1875
1876	bits = __SHIFTIN(val, SI4126_TWI_DATA_MASK) |
1877	       __SHIFTIN(addr, SI4126_TWI_ADDR_MASK);
1878
1879	reg = ATW_SYNRF_SELSYN;
1880	/* reference driver: reset Si4126 serial bus to initial
1881	 * conditions?
1882	 */
1883	ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1884	ATW_WRITE(sc, ATW_SYNRF, reg);
1885
1886	for (mask = __BIT(nbits - 1); mask != 0; mask >>= 1) {
1887		if ((bits & mask) != 0)
1888			reg |= ATW_SYNRF_SYNDATA;
1889		else
1890			reg &= ~ATW_SYNRF_SYNDATA;
1891		ATW_WRITE(sc, ATW_SYNRF, reg);
1892		ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_SYNCLK);
1893		ATW_WRITE(sc, ATW_SYNRF, reg);
1894	}
1895	ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1896	ATW_WRITE(sc, ATW_SYNRF, 0x0);
1897}
1898
1899/* Read 18-bit data from the 4-bit address addr in Si4126
1900 * RF synthesizer and write the data to *val. Return 0 on success.
1901 *
1902 * XXX This does not seem to work. The ADM8211 must require more or
1903 * different magic to read the chip than to write it.
1904 */
1905#ifdef ATW_SYNDEBUG
1906static int
1907atw_si4126_read(struct atw_softc *sc, u_int addr, u_int *val)
1908{
1909	u_int32_t reg;
1910	int i;
1911
1912	KASSERT((addr & ~__SHIFTOUT_MASK(SI4126_TWI_ADDR_MASK)) == 0);
1913
1914	for (i = 1000; --i >= 0; ) {
1915		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1916			break;
1917		DELAY(100);
1918	}
1919
1920	if (i < 0) {
1921		printf("%s: start atw_si4126_read, SYNCTL busy\n",
1922		    device_xname(sc->sc_dev));
1923		return ETIMEDOUT;
1924	}
1925
1926	reg = sc->sc_synctl_rd | __SHIFTIN(addr, ATW_SYNCTL_DATA_MASK);
1927
1928	ATW_WRITE(sc, ATW_SYNCTL, reg);
1929
1930	for (i = 1000; --i >= 0; ) {
1931		DELAY(100);
1932		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
1933			break;
1934	}
1935
1936	ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
1937
1938	if (i < 0) {
1939		printf("%s: atw_si4126_read wrote %#08x, SYNCTL still busy\n",
1940		    device_xname(sc->sc_dev), reg);
1941		return ETIMEDOUT;
1942	}
1943	if (val != NULL)
1944		*val = __SHIFTOUT(ATW_READ(sc, ATW_SYNCTL),
1945		                       ATW_SYNCTL_DATA_MASK);
1946	return 0;
1947}
1948#endif /* ATW_SYNDEBUG */
1949
1950/* XXX is the endianness correct? test. */
1951#define	atw_calchash(addr) \
1952	(ether_crc32_le((addr), IEEE80211_ADDR_LEN) & __BITS(5, 0))
1953
1954/*
1955 * atw_filter_setup:
1956 *
1957 *	Set the ADM8211's receive filter.
1958 */
1959static void
1960atw_filter_setup(struct atw_softc *sc)
1961{
1962	struct ieee80211com *ic = &sc->sc_ic;
1963	struct ethercom *ec = &sc->sc_ec;
1964	struct ifnet *ifp = &sc->sc_if;
1965	int hash;
1966	u_int32_t hashes[2];
1967	struct ether_multi *enm;
1968	struct ether_multistep step;
1969
1970	/* According to comments in tlp_al981_filter_setup
1971	 * (dev/ic/tulip.c) the ADMtek AL981 does not like for its
1972	 * multicast filter to be set while it is running.  Hopefully
1973	 * the ADM8211 is not the same!
1974	 */
1975	if ((ifp->if_flags & IFF_RUNNING) != 0)
1976		atw_idle(sc, ATW_NAR_SR);
1977
1978	sc->sc_opmode &= ~(ATW_NAR_PB|ATW_NAR_PR|ATW_NAR_MM);
1979	ifp->if_flags &= ~IFF_ALLMULTI;
1980
1981	/* XXX in scan mode, do not filter packets.  Maybe this is
1982	 * unnecessary.
1983	 */
1984	if (ic->ic_state == IEEE80211_S_SCAN ||
1985	    (ifp->if_flags & IFF_PROMISC) != 0) {
1986		sc->sc_opmode |= ATW_NAR_PR | ATW_NAR_PB;
1987		goto allmulti;
1988	}
1989
1990	hashes[0] = hashes[1] = 0x0;
1991
1992	/*
1993	 * Program the 64-bit multicast hash filter.
1994	 */
1995	ETHER_FIRST_MULTI(step, ec, enm);
1996	while (enm != NULL) {
1997		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1998		    ETHER_ADDR_LEN) != 0)
1999			goto allmulti;
2000
2001		hash = atw_calchash(enm->enm_addrlo);
2002		hashes[hash >> 5] |= 1 << (hash & 0x1f);
2003		ETHER_NEXT_MULTI(step, enm);
2004		sc->sc_opmode |= ATW_NAR_MM;
2005	}
2006	ifp->if_flags &= ~IFF_ALLMULTI;
2007	goto setit;
2008
2009allmulti:
2010	sc->sc_opmode |= ATW_NAR_MM;
2011	ifp->if_flags |= IFF_ALLMULTI;
2012	hashes[0] = hashes[1] = 0xffffffff;
2013
2014setit:
2015	ATW_WRITE(sc, ATW_MAR0, hashes[0]);
2016	ATW_WRITE(sc, ATW_MAR1, hashes[1]);
2017	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2018	DELAY(atw_nar_delay);
2019	ATW_WRITE(sc, ATW_RDR, 0x1);
2020
2021	DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", device_xname(sc->sc_dev),
2022	    ATW_READ(sc, ATW_NAR), sc->sc_opmode));
2023}
2024
2025/* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
2026 * a beacon's BSSID and SSID against the preferred BSSID and SSID
2027 * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
2028 * no beacon with the preferred BSSID and SSID in the number of
2029 * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
2030 */
2031static void
2032atw_write_bssid(struct atw_softc *sc)
2033{
2034	struct ieee80211com *ic = &sc->sc_ic;
2035	u_int8_t *bssid;
2036
2037	bssid = ic->ic_bss->ni_bssid;
2038
2039	ATW_WRITE(sc, ATW_BSSID0,
2040	    __SHIFTIN(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
2041	    __SHIFTIN(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
2042	    __SHIFTIN(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
2043	    __SHIFTIN(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
2044
2045	ATW_WRITE(sc, ATW_ABDA1,
2046	    (ATW_READ(sc, ATW_ABDA1) &
2047	    ~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) |
2048	    __SHIFTIN(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
2049	    __SHIFTIN(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
2050
2051	DPRINTF(sc, ("%s: BSSID %s -> ", device_xname(sc->sc_dev),
2052	    ether_sprintf(sc->sc_bssid)));
2053	DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
2054
2055	memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
2056}
2057
2058/* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
2059 * 16-bit word.
2060 */
2061static void
2062atw_write_sram(struct atw_softc *sc, u_int ofs, u_int8_t *buf, u_int buflen)
2063{
2064	u_int i;
2065	u_int8_t *ptr;
2066
2067	memcpy(&sc->sc_sram[ofs], buf, buflen);
2068
2069	KASSERT(ofs % 2 == 0 && buflen % 2 == 0);
2070
2071	KASSERT(buflen + ofs <= sc->sc_sramlen);
2072
2073	ptr = &sc->sc_sram[ofs];
2074
2075	for (i = 0; i < buflen; i += 2) {
2076		ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
2077		    __SHIFTIN((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
2078		DELAY(atw_writewep_delay);
2079
2080		ATW_WRITE(sc, ATW_WESK,
2081		    __SHIFTIN((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
2082		DELAY(atw_writewep_delay);
2083	}
2084	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
2085
2086	if (sc->sc_if.if_flags & IFF_DEBUG) {
2087		int n_octets = 0;
2088		printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
2089		    device_xname(sc->sc_dev), buflen, ofs, sc->sc_wepctl);
2090		for (i = 0; i < buflen; i++) {
2091			printf(" %02x", ptr[i]);
2092			if (++n_octets % 24 == 0)
2093				printf("\n");
2094		}
2095		if (n_octets % 24 != 0)
2096			printf("\n");
2097	}
2098}
2099
2100static int
2101atw_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
2102{
2103	struct atw_softc *sc = ic->ic_ifp->if_softc;
2104	u_int keyix = k->wk_keyix;
2105
2106	DPRINTF(sc, ("%s: delete key %u\n", __func__, keyix));
2107
2108	if (keyix >= IEEE80211_WEP_NKID)
2109		return 0;
2110	if (k->wk_keylen != 0)
2111		sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2112
2113	return 1;
2114}
2115
2116static int
2117atw_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
2118	const u_int8_t mac[IEEE80211_ADDR_LEN])
2119{
2120	struct atw_softc *sc = ic->ic_ifp->if_softc;
2121
2122	DPRINTF(sc, ("%s: set key %u\n", __func__, k->wk_keyix));
2123
2124	if (k->wk_keyix >= IEEE80211_WEP_NKID)
2125		return 0;
2126
2127	sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2128
2129	return 1;
2130}
2131
2132static void
2133atw_key_update_begin(struct ieee80211com *ic)
2134{
2135#ifdef ATW_DEBUG
2136	struct ifnet *ifp = ic->ic_ifp;
2137	struct atw_softc *sc = ifp->if_softc;
2138#endif
2139
2140	DPRINTF(sc, ("%s:\n", __func__));
2141}
2142
2143static void
2144atw_key_update_end(struct ieee80211com *ic)
2145{
2146	struct ifnet *ifp = ic->ic_ifp;
2147	struct atw_softc *sc = ifp->if_softc;
2148
2149	DPRINTF(sc, ("%s:\n", __func__));
2150
2151	if ((sc->sc_flags & ATWF_WEP_SRAM_VALID) != 0)
2152		return;
2153	if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
2154		return;
2155	atw_idle(sc, ATW_NAR_SR | ATW_NAR_ST);
2156	atw_write_wep(sc);
2157	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2158	DELAY(atw_nar_delay);
2159	ATW_WRITE(sc, ATW_RDR, 0x1);
2160}
2161
2162/* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
2163static void
2164atw_write_wep(struct atw_softc *sc)
2165{
2166#if 0
2167	struct ieee80211com *ic = &sc->sc_ic;
2168	u_int32_t reg;
2169	int i;
2170#endif
2171	/* SRAM shared-key record format: key0 flags key1 ... key12 */
2172	u_int8_t buf[IEEE80211_WEP_NKID]
2173	            [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
2174
2175	sc->sc_wepctl = 0;
2176	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
2177
2178	memset(&buf[0][0], 0, sizeof(buf));
2179
2180#if 0
2181	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2182		if (ic->ic_nw_keys[i].wk_keylen > 5) {
2183			buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
2184		} else if (ic->ic_nw_keys[i].wk_keylen != 0) {
2185			buf[i][1] = ATW_WEP_ENABLED;
2186		} else {
2187			buf[i][1] = 0;
2188			continue;
2189		}
2190		buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
2191		memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
2192		    ic->ic_nw_keys[i].wk_keylen - 1);
2193	}
2194
2195	reg = ATW_READ(sc, ATW_MACTEST);
2196	reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
2197	reg &= ~ATW_MACTEST_KEYID_MASK;
2198	reg |= __SHIFTIN(ic->ic_def_txkey, ATW_MACTEST_KEYID_MASK);
2199	ATW_WRITE(sc, ATW_MACTEST, reg);
2200
2201	if ((ic->ic_flags & IEEE80211_F_PRIVACY) != 0)
2202		sc->sc_wepctl |= ATW_WEPCTL_WEPENABLE;
2203
2204	switch (sc->sc_rev) {
2205	case ATW_REVISION_AB:
2206	case ATW_REVISION_AF:
2207		/* Bypass WEP on Rx. */
2208		sc->sc_wepctl |= ATW_WEPCTL_WEPRXBYP;
2209		break;
2210	default:
2211		break;
2212	}
2213#endif
2214
2215	atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0],
2216	    sizeof(buf));
2217
2218	sc->sc_flags |= ATWF_WEP_SRAM_VALID;
2219}
2220
2221static void
2222atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2223    struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2224{
2225	struct atw_softc *sc = (struct atw_softc *)ic->ic_ifp->if_softc;
2226
2227	/* The ADM8211A answers probe requests. TBD ADM8211B/C. */
2228	if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_REQ)
2229		return;
2230
2231	(*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
2232
2233	switch (subtype) {
2234	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2235	case IEEE80211_FC0_SUBTYPE_BEACON:
2236		if (ic->ic_opmode == IEEE80211_M_IBSS &&
2237		    ic->ic_state == IEEE80211_S_RUN) {
2238			if (le64toh(ni->ni_tstamp.tsf) >= atw_get_tsft(sc))
2239				(void)ieee80211_ibss_merge(ni);
2240		}
2241		break;
2242	default:
2243		break;
2244	}
2245	return;
2246}
2247
2248/* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
2249 * In ad hoc mode, the SSID is written to the beacons sent by the
2250 * ADM8211. In both ad hoc and infrastructure mode, beacons received
2251 * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
2252 * indications.
2253 */
2254static void
2255atw_write_ssid(struct atw_softc *sc)
2256{
2257	struct ieee80211com *ic = &sc->sc_ic;
2258	/* 34 bytes are reserved in ADM8211 SRAM for the SSID, but
2259	 * it only expects the element length, not its ID.
2260	 */
2261	u_int8_t buf[roundup(1 /* length */ + IEEE80211_NWID_LEN, 2)];
2262
2263	memset(buf, 0, sizeof(buf));
2264	buf[0] = ic->ic_bss->ni_esslen;
2265	memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
2266
2267	atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf,
2268	    roundup(1 + ic->ic_bss->ni_esslen, 2));
2269}
2270
2271/* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
2272 * In ad hoc mode, the supported rates are written to beacons sent by the
2273 * ADM8211.
2274 */
2275static void
2276atw_write_sup_rates(struct atw_softc *sc)
2277{
2278	struct ieee80211com *ic = &sc->sc_ic;
2279	/* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
2280	 * supported rates
2281	 */
2282	u_int8_t buf[roundup(1 /* length */ + IEEE80211_RATE_SIZE, 2)];
2283
2284	memset(buf, 0, sizeof(buf));
2285
2286	buf[0] = ic->ic_bss->ni_rates.rs_nrates;
2287
2288	memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
2289	    ic->ic_bss->ni_rates.rs_nrates);
2290
2291	atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
2292}
2293
2294/* Start/stop sending beacons. */
2295void
2296atw_start_beacon(struct atw_softc *sc, int start)
2297{
2298	struct ieee80211com *ic = &sc->sc_ic;
2299	uint16_t chan;
2300	uint32_t bcnt, bpli, cap0, cap1, capinfo;
2301	size_t len;
2302
2303	if (!device_is_active(sc->sc_dev))
2304		return;
2305
2306	/* start beacons */
2307	len = sizeof(struct ieee80211_frame) +
2308	    8 /* timestamp */ + 2 /* beacon interval */ +
2309	    2 /* capability info */ +
2310	    2 + ic->ic_bss->ni_esslen /* SSID element */ +
2311	    2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
2312	    3 /* DS parameters */ +
2313	    IEEE80211_CRC_LEN;
2314
2315	bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
2316	cap0 = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
2317	cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
2318
2319	ATW_WRITE(sc, ATW_BCNT, bcnt);
2320	ATW_WRITE(sc, ATW_CAP1, cap1);
2321
2322	if (!start)
2323		return;
2324
2325	/* TBD use ni_capinfo */
2326
2327	capinfo = 0;
2328	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2329		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2330	if (ic->ic_flags & IEEE80211_F_PRIVACY)
2331		capinfo |= IEEE80211_CAPINFO_PRIVACY;
2332
2333	switch (ic->ic_opmode) {
2334	case IEEE80211_M_IBSS:
2335		len += 4; /* IBSS parameters */
2336		capinfo |= IEEE80211_CAPINFO_IBSS;
2337		break;
2338	case IEEE80211_M_HOSTAP:
2339		/* XXX 6-byte minimum TIM */
2340		len += atw_beacon_len_adjust;
2341		capinfo |= IEEE80211_CAPINFO_ESS;
2342		break;
2343	default:
2344		return;
2345	}
2346
2347	/* set listen interval
2348	 * XXX do software units agree w/ hardware?
2349	 */
2350	bpli = __SHIFTIN(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2351	    __SHIFTIN(ic->ic_lintval / ic->ic_bss->ni_intval, ATW_BPLI_LI_MASK);
2352
2353	chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
2354
2355	bcnt |= __SHIFTIN(len, ATW_BCNT_BCNT_MASK);
2356	cap0 |= __SHIFTIN(chan, ATW_CAP0_CHN_MASK);
2357	cap1 |= __SHIFTIN(capinfo, ATW_CAP1_CAPI_MASK);
2358
2359	ATW_WRITE(sc, ATW_BCNT, bcnt);
2360	ATW_WRITE(sc, ATW_BPLI, bpli);
2361	ATW_WRITE(sc, ATW_CAP0, cap0);
2362	ATW_WRITE(sc, ATW_CAP1, cap1);
2363
2364	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
2365	    device_xname(sc->sc_dev), bcnt));
2366
2367	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
2368	    device_xname(sc->sc_dev), cap1));
2369}
2370
2371/* Return the 32 lsb of the last TSFT divisible by ival. */
2372static inline uint32_t
2373atw_last_even_tsft(uint32_t tsfth, uint32_t tsftl, uint32_t ival)
2374{
2375	/* Following the reference driver's lead, I compute
2376	 *
2377	 *   (uint32_t)((((uint64_t)tsfth << 32) | tsftl) % ival)
2378	 *
2379	 * without using 64-bit arithmetic, using the following
2380	 * relationship:
2381	 *
2382	 *     (0x100000000 * H + L) % m
2383	 *   = ((0x100000000 % m) * H + L) % m
2384	 *   = (((0xffffffff + 1) % m) * H + L) % m
2385	 *   = ((0xffffffff % m + 1 % m) * H + L) % m
2386	 *   = ((0xffffffff % m + 1) * H + L) % m
2387	 */
2388	return ((0xFFFFFFFF % ival + 1) * tsfth + tsftl) % ival;
2389}
2390
2391static uint64_t
2392atw_get_tsft(struct atw_softc *sc)
2393{
2394	int i;
2395	uint32_t tsfth, tsftl;
2396	for (i = 0; i < 2; i++) {
2397		tsfth = ATW_READ(sc, ATW_TSFTH);
2398		tsftl = ATW_READ(sc, ATW_TSFTL);
2399		if (ATW_READ(sc, ATW_TSFTH) == tsfth)
2400			break;
2401	}
2402	return ((uint64_t)tsfth << 32) | tsftl;
2403}
2404
2405/* If we've created an IBSS, write the TSF time in the ADM8211 to
2406 * the ieee80211com.
2407 *
2408 * Predict the next target beacon transmission time (TBTT) and
2409 * write it to the ADM8211.
2410 */
2411static void
2412atw_predict_beacon(struct atw_softc *sc)
2413{
2414#define TBTTOFS 20 /* TU */
2415
2416	struct ieee80211com *ic = &sc->sc_ic;
2417	uint64_t tsft;
2418	uint32_t ival, past_even, tbtt, tsfth, tsftl;
2419	union {
2420		uint64_t	word;
2421		uint8_t		tstamp[8];
2422	} u;
2423
2424	if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
2425	    ((ic->ic_opmode == IEEE80211_M_IBSS) &&
2426	     (ic->ic_flags & IEEE80211_F_SIBSS))) {
2427		tsft = atw_get_tsft(sc);
2428		u.word = htole64(tsft);
2429		(void)memcpy(&ic->ic_bss->ni_tstamp, &u.tstamp[0],
2430		    sizeof(ic->ic_bss->ni_tstamp));
2431	} else
2432		tsft = le64toh(ic->ic_bss->ni_tstamp.tsf);
2433
2434	ival = ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
2435
2436	tsftl = tsft & 0xFFFFFFFF;
2437	tsfth = tsft >> 32;
2438
2439	/* We sent/received the last beacon `past' microseconds
2440	 * after the interval divided the TSF timer.
2441	 */
2442	past_even = tsftl - atw_last_even_tsft(tsfth, tsftl, ival);
2443
2444	/* Skip ten beacons so that the TBTT cannot pass before
2445	 * we've programmed it.  Ten is an arbitrary number.
2446	 */
2447	tbtt = past_even + ival * 10;
2448
2449	ATW_WRITE(sc, ATW_TOFS1,
2450	    __SHIFTIN(1, ATW_TOFS1_TSFTOFSR_MASK) |
2451	    __SHIFTIN(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
2452	    __SHIFTIN(__SHIFTOUT(tbtt - TBTTOFS * IEEE80211_DUR_TU,
2453	        ATW_TBTTPRE_MASK), ATW_TOFS1_TBTTPRE_MASK));
2454#undef TBTTOFS
2455}
2456
2457static void
2458atw_next_scan(void *arg)
2459{
2460	struct atw_softc *sc = arg;
2461	struct ieee80211com *ic = &sc->sc_ic;
2462	int s;
2463
2464	/* don't call atw_start w/o network interrupts blocked */
2465	s = splnet();
2466	if (ic->ic_state == IEEE80211_S_SCAN)
2467		ieee80211_next_scan(ic);
2468	splx(s);
2469}
2470
2471/* Synchronize the hardware state with the software state. */
2472static int
2473atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2474{
2475	struct ifnet *ifp = ic->ic_ifp;
2476	struct atw_softc *sc = ifp->if_softc;
2477	enum ieee80211_state ostate;
2478	int error = 0;
2479
2480	ostate = ic->ic_state;
2481	callout_stop(&sc->sc_scan_ch);
2482
2483	switch (nstate) {
2484	case IEEE80211_S_AUTH:
2485	case IEEE80211_S_ASSOC:
2486		atw_write_bssid(sc);
2487		error = atw_tune(sc);
2488		break;
2489	case IEEE80211_S_INIT:
2490		callout_stop(&sc->sc_scan_ch);
2491		sc->sc_cur_chan = IEEE80211_CHAN_ANY;
2492		atw_start_beacon(sc, 0);
2493		break;
2494	case IEEE80211_S_SCAN:
2495		error = atw_tune(sc);
2496		callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
2497		    atw_next_scan, sc);
2498		break;
2499	case IEEE80211_S_RUN:
2500		error = atw_tune(sc);
2501		atw_write_bssid(sc);
2502		atw_write_ssid(sc);
2503		atw_write_sup_rates(sc);
2504
2505		if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
2506		    ic->ic_opmode == IEEE80211_M_MONITOR)
2507			break;
2508
2509		/* set listen interval
2510		 * XXX do software units agree w/ hardware?
2511		 */
2512		ATW_WRITE(sc, ATW_BPLI,
2513		    __SHIFTIN(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2514		    __SHIFTIN(ic->ic_lintval / ic->ic_bss->ni_intval,
2515			   ATW_BPLI_LI_MASK));
2516
2517		DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n", device_xname(sc->sc_dev),
2518		    ATW_READ(sc, ATW_BPLI)));
2519
2520		atw_predict_beacon(sc);
2521
2522		switch (ic->ic_opmode) {
2523		case IEEE80211_M_AHDEMO:
2524		case IEEE80211_M_HOSTAP:
2525		case IEEE80211_M_IBSS:
2526			atw_start_beacon(sc, 1);
2527			break;
2528		case IEEE80211_M_MONITOR:
2529		case IEEE80211_M_STA:
2530			break;
2531		}
2532
2533		break;
2534	}
2535	return (error != 0) ? error : (*sc->sc_newstate)(ic, nstate, arg);
2536}
2537
2538/*
2539 * atw_add_rxbuf:
2540 *
2541 *	Add a receive buffer to the indicated descriptor.
2542 */
2543int
2544atw_add_rxbuf(struct atw_softc *sc, int idx)
2545{
2546	struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
2547	struct mbuf *m;
2548	int error;
2549
2550	MGETHDR(m, M_DONTWAIT, MT_DATA);
2551	if (m == NULL)
2552		return (ENOBUFS);
2553
2554	MCLGET(m, M_DONTWAIT);
2555	if ((m->m_flags & M_EXT) == 0) {
2556		m_freem(m);
2557		return (ENOBUFS);
2558	}
2559
2560	if (rxs->rxs_mbuf != NULL)
2561		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2562
2563	rxs->rxs_mbuf = m;
2564
2565	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2566	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2567	    BUS_DMA_READ|BUS_DMA_NOWAIT);
2568	if (error) {
2569		aprint_error_dev(sc->sc_dev, "can't load rx DMA map %d, error = %d\n",
2570		    idx, error);
2571		panic("atw_add_rxbuf");	/* XXX */
2572	}
2573
2574	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2575	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2576
2577	atw_init_rxdesc(sc, idx);
2578
2579	return (0);
2580}
2581
2582/*
2583 * Release any queued transmit buffers.
2584 */
2585void
2586atw_txdrain(struct atw_softc *sc)
2587{
2588	struct atw_txsoft *txs;
2589
2590	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2591		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2592		if (txs->txs_mbuf != NULL) {
2593			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2594			m_freem(txs->txs_mbuf);
2595			txs->txs_mbuf = NULL;
2596		}
2597		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2598		sc->sc_txfree += txs->txs_ndescs;
2599	}
2600
2601	KASSERT((sc->sc_if.if_flags & IFF_RUNNING) == 0 ||
2602	        !(SIMPLEQ_EMPTY(&sc->sc_txfreeq) ||
2603		  sc->sc_txfree != ATW_NTXDESC));
2604	sc->sc_if.if_flags &= ~IFF_OACTIVE;
2605	sc->sc_tx_timer = 0;
2606}
2607
2608/*
2609 * atw_stop:		[ ifnet interface function ]
2610 *
2611 *	Stop transmission on the interface.
2612 */
2613void
2614atw_stop(struct ifnet *ifp, int disable)
2615{
2616	struct atw_softc *sc = ifp->if_softc;
2617	struct ieee80211com *ic = &sc->sc_ic;
2618
2619	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2620
2621	if (device_is_active(sc->sc_dev)) {
2622		/* Disable interrupts. */
2623		ATW_WRITE(sc, ATW_IER, 0);
2624
2625		/* Stop the transmit and receive processes. */
2626		ATW_WRITE(sc, ATW_NAR, 0);
2627		DELAY(atw_nar_delay);
2628		ATW_WRITE(sc, ATW_TDBD, 0);
2629		ATW_WRITE(sc, ATW_TDBP, 0);
2630		ATW_WRITE(sc, ATW_RDB, 0);
2631	}
2632
2633	sc->sc_opmode = 0;
2634
2635	atw_txdrain(sc);
2636
2637	/*
2638	 * Mark the interface down and cancel the watchdog timer.
2639	 */
2640	ifp->if_flags &= ~IFF_RUNNING;
2641	ifp->if_timer = 0;
2642
2643	if (disable)
2644		pmf_device_suspend(sc->sc_dev, &sc->sc_qual);
2645}
2646
2647/*
2648 * atw_rxdrain:
2649 *
2650 *	Drain the receive queue.
2651 */
2652void
2653atw_rxdrain(struct atw_softc *sc)
2654{
2655	struct atw_rxsoft *rxs;
2656	int i;
2657
2658	for (i = 0; i < ATW_NRXDESC; i++) {
2659		rxs = &sc->sc_rxsoft[i];
2660		if (rxs->rxs_mbuf == NULL)
2661			continue;
2662		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2663		m_freem(rxs->rxs_mbuf);
2664		rxs->rxs_mbuf = NULL;
2665	}
2666}
2667
2668/*
2669 * atw_detach:
2670 *
2671 *	Detach an ADM8211 interface.
2672 */
2673int
2674atw_detach(struct atw_softc *sc)
2675{
2676	struct ifnet *ifp = &sc->sc_if;
2677	struct atw_rxsoft *rxs;
2678	struct atw_txsoft *txs;
2679	int i;
2680
2681	/*
2682	 * Succeed now if there isn't any work to do.
2683	 */
2684	if ((sc->sc_flags & ATWF_ATTACHED) == 0)
2685		return (0);
2686
2687	pmf_device_deregister(sc->sc_dev);
2688
2689	callout_stop(&sc->sc_scan_ch);
2690
2691	ieee80211_ifdetach(&sc->sc_ic);
2692	if_detach(ifp);
2693
2694	for (i = 0; i < ATW_NRXDESC; i++) {
2695		rxs = &sc->sc_rxsoft[i];
2696		if (rxs->rxs_mbuf != NULL) {
2697			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2698			m_freem(rxs->rxs_mbuf);
2699			rxs->rxs_mbuf = NULL;
2700		}
2701		bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
2702	}
2703	for (i = 0; i < ATW_TXQUEUELEN; i++) {
2704		txs = &sc->sc_txsoft[i];
2705		if (txs->txs_mbuf != NULL) {
2706			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2707			m_freem(txs->txs_mbuf);
2708			txs->txs_mbuf = NULL;
2709		}
2710		bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
2711	}
2712	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
2713	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
2714	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
2715	    sizeof(struct atw_control_data));
2716	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2717
2718	if (sc->sc_srom)
2719		free(sc->sc_srom, M_DEVBUF);
2720
2721	atw_evcnt_detach(sc);
2722
2723	return (0);
2724}
2725
2726/* atw_shutdown: make sure the interface is stopped at reboot time. */
2727bool
2728atw_shutdown(device_t self, int flags)
2729{
2730	struct atw_softc *sc = device_private(self);
2731
2732	atw_stop(&sc->sc_if, 1);
2733	return true;
2734}
2735
2736#if 0
2737static void
2738atw_workaround1(struct atw_softc *sc)
2739{
2740	uint32_t test1;
2741
2742	test1 = ATW_READ(sc, ATW_TEST1);
2743
2744	sc->sc_misc_ev.ev_count++;
2745
2746	if ((test1 & ATW_TEST1_RXPKT1IN) != 0) {
2747		sc->sc_rxpkt1in_ev.ev_count++;
2748		return;
2749	}
2750	if (__SHIFTOUT(test1, ATW_TEST1_RRA_MASK) ==
2751	    __SHIFTOUT(test1, ATW_TEST1_RWA_MASK)) {
2752		sc->sc_rxamatch_ev.ev_count++;
2753		return;
2754	}
2755	sc->sc_workaround1_ev.ev_count++;
2756	(void)atw_init(&sc->sc_if);
2757}
2758#endif
2759
2760int
2761atw_intr(void *arg)
2762{
2763	struct atw_softc *sc = arg;
2764	struct ifnet *ifp = &sc->sc_if;
2765	u_int32_t status, rxstatus, txstatus, linkstatus;
2766	int handled = 0, txthresh;
2767
2768#ifdef DEBUG
2769	if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
2770		panic("%s: atw_intr: not enabled", device_xname(sc->sc_dev));
2771#endif
2772
2773	/*
2774	 * If the interface isn't running, the interrupt couldn't
2775	 * possibly have come from us.
2776	 */
2777	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2778	    !device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
2779		return (0);
2780
2781	for (;;) {
2782		status = ATW_READ(sc, ATW_STSR);
2783
2784		if (status)
2785			ATW_WRITE(sc, ATW_STSR, status);
2786
2787#ifdef ATW_DEBUG
2788#define PRINTINTR(flag) do { \
2789	if ((status & flag) != 0) { \
2790		printf("%s" #flag, delim); \
2791		delim = ","; \
2792	} \
2793} while (0)
2794
2795		if (atw_debug > 1 && status) {
2796			const char *delim = "<";
2797
2798			printf("%s: reg[STSR] = %x",
2799			    device_xname(sc->sc_dev), status);
2800
2801			PRINTINTR(ATW_INTR_FBE);
2802			PRINTINTR(ATW_INTR_LINKOFF);
2803			PRINTINTR(ATW_INTR_LINKON);
2804			PRINTINTR(ATW_INTR_RCI);
2805			PRINTINTR(ATW_INTR_RDU);
2806			PRINTINTR(ATW_INTR_REIS);
2807			PRINTINTR(ATW_INTR_RPS);
2808			PRINTINTR(ATW_INTR_TCI);
2809			PRINTINTR(ATW_INTR_TDU);
2810			PRINTINTR(ATW_INTR_TLT);
2811			PRINTINTR(ATW_INTR_TPS);
2812			PRINTINTR(ATW_INTR_TRT);
2813			PRINTINTR(ATW_INTR_TUF);
2814			PRINTINTR(ATW_INTR_BCNTC);
2815			PRINTINTR(ATW_INTR_ATIME);
2816			PRINTINTR(ATW_INTR_TBTT);
2817			PRINTINTR(ATW_INTR_TSCZ);
2818			PRINTINTR(ATW_INTR_TSFTF);
2819			printf(">\n");
2820		}
2821#undef PRINTINTR
2822#endif /* ATW_DEBUG */
2823
2824		if ((status & sc->sc_inten) == 0)
2825			break;
2826
2827		handled = 1;
2828
2829		rxstatus = status & sc->sc_rxint_mask;
2830		txstatus = status & sc->sc_txint_mask;
2831		linkstatus = status & sc->sc_linkint_mask;
2832
2833		if (linkstatus) {
2834			atw_linkintr(sc, linkstatus);
2835		}
2836
2837		if (rxstatus) {
2838			/* Grab any new packets. */
2839			atw_rxintr(sc);
2840
2841			if (rxstatus & ATW_INTR_RDU) {
2842				printf("%s: receive ring overrun\n",
2843				    device_xname(sc->sc_dev));
2844				/* Get the receive process going again. */
2845				ATW_WRITE(sc, ATW_RDR, 0x1);
2846			}
2847		}
2848
2849		if (txstatus) {
2850			/* Sweep up transmit descriptors. */
2851			atw_txintr(sc, txstatus);
2852
2853			if (txstatus & ATW_INTR_TLT) {
2854				DPRINTF(sc, ("%s: tx lifetime exceeded\n",
2855				    device_xname(sc->sc_dev)));
2856				(void)atw_init(&sc->sc_if);
2857			}
2858
2859			if (txstatus & ATW_INTR_TRT) {
2860				DPRINTF(sc, ("%s: tx retry limit exceeded\n",
2861				    device_xname(sc->sc_dev)));
2862			}
2863
2864			/* If Tx under-run, increase our transmit threshold
2865			 * if another is available.
2866			 */
2867			txthresh = sc->sc_txthresh + 1;
2868			if ((txstatus & ATW_INTR_TUF) &&
2869			    sc->sc_txth[txthresh].txth_name != NULL) {
2870				/* Idle the transmit process. */
2871				atw_idle(sc, ATW_NAR_ST);
2872
2873				sc->sc_txthresh = txthresh;
2874				sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
2875				sc->sc_opmode |=
2876				    sc->sc_txth[txthresh].txth_opmode;
2877				printf("%s: transmit underrun; new "
2878				    "threshold: %s\n", device_xname(sc->sc_dev),
2879				    sc->sc_txth[txthresh].txth_name);
2880
2881				/* Set the new threshold and restart
2882				 * the transmit process.
2883				 */
2884				ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2885				DELAY(atw_nar_delay);
2886				ATW_WRITE(sc, ATW_TDR, 0x1);
2887				/* XXX Log every Nth underrun from
2888				 * XXX now on?
2889				 */
2890			}
2891		}
2892
2893		if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) {
2894			if (status & ATW_INTR_TPS)
2895				printf("%s: transmit process stopped\n",
2896				    device_xname(sc->sc_dev));
2897			if (status & ATW_INTR_RPS)
2898				printf("%s: receive process stopped\n",
2899				    device_xname(sc->sc_dev));
2900			(void)atw_init(ifp);
2901			break;
2902		}
2903
2904		if (status & ATW_INTR_FBE) {
2905			aprint_error_dev(sc->sc_dev, "fatal bus error\n");
2906			(void)atw_init(ifp);
2907			break;
2908		}
2909
2910		/*
2911		 * Not handled:
2912		 *
2913		 *	Transmit buffer unavailable -- normal
2914		 *	condition, nothing to do, really.
2915		 *
2916		 *	Early receive interrupt -- not available on
2917		 *	all chips, we just use RI.  We also only
2918		 *	use single-segment receive DMA, so this
2919		 *	is mostly useless.
2920		 *
2921		 *      TBD others
2922		 */
2923	}
2924
2925	/* Try to get more packets going. */
2926	atw_start(ifp);
2927
2928	return (handled);
2929}
2930
2931/*
2932 * atw_idle:
2933 *
2934 *	Cause the transmit and/or receive processes to go idle.
2935 *
2936 *      XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
2937 *	process in STSR if I clear SR or ST after the process has already
2938 *	ceased. Fair enough. But the Rx process status bits in ATW_TEST0
2939 *      do not seem to be too reliable. Perhaps I have the sense of the
2940 *	Rx bits switched with the Tx bits?
2941 */
2942void
2943atw_idle(struct atw_softc *sc, u_int32_t bits)
2944{
2945	u_int32_t ackmask = 0, opmode, stsr, test0;
2946	int i, s;
2947
2948	s = splnet();
2949
2950	opmode = sc->sc_opmode & ~bits;
2951
2952	if (bits & ATW_NAR_SR)
2953		ackmask |= ATW_INTR_RPS;
2954
2955	if (bits & ATW_NAR_ST) {
2956		ackmask |= ATW_INTR_TPS;
2957		/* set ATW_NAR_HF to flush TX FIFO. */
2958		opmode |= ATW_NAR_HF;
2959	}
2960
2961	ATW_WRITE(sc, ATW_NAR, opmode);
2962	DELAY(atw_nar_delay);
2963
2964	for (i = 0; i < 1000; i++) {
2965		stsr = ATW_READ(sc, ATW_STSR);
2966		if ((stsr & ackmask) == ackmask)
2967			break;
2968		DELAY(10);
2969	}
2970
2971	ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
2972
2973	if ((stsr & ackmask) == ackmask)
2974		goto out;
2975
2976	test0 = ATW_READ(sc, ATW_TEST0);
2977
2978	if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
2979	    (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
2980		printf("%s: transmit process not idle [%s]\n",
2981		    device_xname(sc->sc_dev),
2982		    atw_tx_state[__SHIFTOUT(test0, ATW_TEST0_TS_MASK)]);
2983		printf("%s: bits %08x test0 %08x stsr %08x\n",
2984		    device_xname(sc->sc_dev), bits, test0, stsr);
2985	}
2986
2987	if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
2988	    (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
2989		DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
2990		    device_xname(sc->sc_dev),
2991		    atw_rx_state[__SHIFTOUT(test0, ATW_TEST0_RS_MASK)]));
2992		DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
2993		    device_xname(sc->sc_dev), bits, test0, stsr));
2994	}
2995out:
2996	if ((bits & ATW_NAR_ST) != 0)
2997		atw_txdrain(sc);
2998	splx(s);
2999	return;
3000}
3001
3002/*
3003 * atw_linkintr:
3004 *
3005 *	Helper; handle link-status interrupts.
3006 */
3007void
3008atw_linkintr(struct atw_softc *sc, u_int32_t linkstatus)
3009{
3010	struct ieee80211com *ic = &sc->sc_ic;
3011
3012	if (ic->ic_state != IEEE80211_S_RUN)
3013		return;
3014
3015	if (linkstatus & ATW_INTR_LINKON) {
3016		DPRINTF(sc, ("%s: link on\n", device_xname(sc->sc_dev)));
3017		sc->sc_rescan_timer = 0;
3018	} else if (linkstatus & ATW_INTR_LINKOFF) {
3019		DPRINTF(sc, ("%s: link off\n", device_xname(sc->sc_dev)));
3020		if (ic->ic_opmode != IEEE80211_M_STA)
3021			return;
3022		sc->sc_rescan_timer = 3;
3023		sc->sc_if.if_timer = 1;
3024	}
3025}
3026
3027static inline int
3028atw_hw_decrypted(struct atw_softc *sc, struct ieee80211_frame_min *wh)
3029{
3030	if ((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) == 0)
3031		return 0;
3032	if ((wh->i_fc[1] & IEEE80211_FC1_WEP) == 0)
3033		return 0;
3034	return (sc->sc_wepctl & ATW_WEPCTL_WEPRXBYP) == 0;
3035}
3036
3037/*
3038 * atw_rxintr:
3039 *
3040 *	Helper; handle receive interrupts.
3041 */
3042void
3043atw_rxintr(struct atw_softc *sc)
3044{
3045	static int rate_tbl[] = {2, 4, 11, 22, 44};
3046	struct ieee80211com *ic = &sc->sc_ic;
3047	struct ieee80211_node *ni;
3048	struct ieee80211_frame_min *wh;
3049	struct ifnet *ifp = &sc->sc_if;
3050	struct atw_rxsoft *rxs;
3051	struct mbuf *m;
3052	u_int32_t rxstat;
3053	int i, len, rate, rate0;
3054	u_int32_t rssi, ctlrssi;
3055
3056	for (i = sc->sc_rxptr;; i = sc->sc_rxptr) {
3057		rxs = &sc->sc_rxsoft[i];
3058
3059		ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3060
3061		rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
3062		ctlrssi = le32toh(sc->sc_rxdescs[i].ar_ctlrssi);
3063		rate0 = __SHIFTOUT(rxstat, ATW_RXSTAT_RXDR_MASK);
3064
3065		if (rxstat & ATW_RXSTAT_OWN) {
3066			ATW_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
3067			break;
3068		}
3069
3070		sc->sc_rxptr = ATW_NEXTRX(i);
3071
3072		DPRINTF3(sc,
3073		    ("%s: rx stat %08x ctlrssi %08x buf1 %08x buf2 %08x\n",
3074		    device_xname(sc->sc_dev),
3075		    rxstat, ctlrssi,
3076		    le32toh(sc->sc_rxdescs[i].ar_buf1),
3077		    le32toh(sc->sc_rxdescs[i].ar_buf2)));
3078
3079		/*
3080		 * Make sure the packet fits in one buffer.  This should
3081		 * always be the case.
3082		 */
3083		if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) !=
3084		    (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) {
3085			printf("%s: incoming packet spilled, resetting\n",
3086			    device_xname(sc->sc_dev));
3087			(void)atw_init(ifp);
3088			return;
3089		}
3090
3091		/*
3092		 * If an error occurred, update stats, clear the status
3093		 * word, and leave the packet buffer in place.  It will
3094		 * simply be reused the next time the ring comes around.
3095		 */
3096		if ((rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_RXTOE)) != 0) {
3097#define	PRINTERR(bit, str)						\
3098			if (rxstat & (bit))				\
3099				aprint_error_dev(sc->sc_dev, "receive error: %s\n",	\
3100				    str)
3101			ifp->if_ierrors++;
3102			PRINTERR(ATW_RXSTAT_DE, "descriptor error");
3103			PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
3104#if 0
3105			PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
3106			PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
3107			PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
3108			PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
3109#endif
3110#undef PRINTERR
3111			atw_init_rxdesc(sc, i);
3112			continue;
3113		}
3114
3115		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3116		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3117
3118		/*
3119		 * No errors; receive the packet.  Note the ADM8211
3120		 * includes the CRC in promiscuous mode.
3121		 */
3122		len = __SHIFTOUT(rxstat, ATW_RXSTAT_FL_MASK);
3123
3124		/*
3125		 * Allocate a new mbuf cluster.  If that fails, we are
3126		 * out of memory, and must drop the packet and recycle
3127		 * the buffer that's already attached to this descriptor.
3128		 */
3129		m = rxs->rxs_mbuf;
3130		if (atw_add_rxbuf(sc, i) != 0) {
3131			ifp->if_ierrors++;
3132			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3133			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3134			atw_init_rxdesc(sc, i);
3135			continue;
3136		}
3137
3138		ifp->if_ipackets++;
3139		m->m_pkthdr.rcvif = ifp;
3140		m->m_pkthdr.len = m->m_len = MIN(m->m_ext.ext_size, len);
3141
3142		rate = (rate0 < __arraycount(rate_tbl)) ? rate_tbl[rate0] : 0;
3143
3144		/* The RSSI comes straight from a register in the
3145		 * baseband processor.  I know that for the RF3000,
3146		 * the RSSI register also contains the antenna-selection
3147		 * bits.  Mask those off.
3148		 *
3149		 * TBD Treat other basebands.
3150		 * TBD Use short-preamble bit and such in RF3000_RXSTAT.
3151		 */
3152		if (sc->sc_bbptype == ATW_BBPTYPE_RFMD)
3153			rssi = ctlrssi & RF3000_RSSI_MASK;
3154		else
3155			rssi = ctlrssi;
3156
3157		/* Pass this up to any BPF listeners. */
3158		if (sc->sc_radiobpf != NULL) {
3159			struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
3160
3161			tap->ar_rate = rate;
3162
3163			/* TBD verify units are dB */
3164			tap->ar_antsignal = (int)rssi;
3165			if (sc->sc_opmode & ATW_NAR_PR)
3166				tap->ar_flags = IEEE80211_RADIOTAP_F_FCS;
3167			else
3168				tap->ar_flags = 0;
3169
3170			if ((rxstat & ATW_RXSTAT_CRC32E) != 0)
3171				tap->ar_flags |= IEEE80211_RADIOTAP_F_BADFCS;
3172
3173			bpf_mtap2(sc->sc_radiobpf, tap, sizeof(sc->sc_rxtapu),
3174			    m);
3175 		}
3176
3177		sc->sc_recv_ev.ev_count++;
3178
3179		if ((rxstat & (ATW_RXSTAT_CRC16E|ATW_RXSTAT_CRC32E|ATW_RXSTAT_ICVE|ATW_RXSTAT_SFDE|ATW_RXSTAT_SIGE)) != 0) {
3180			if (rxstat & ATW_RXSTAT_CRC16E)
3181				sc->sc_crc16e_ev.ev_count++;
3182			if (rxstat & ATW_RXSTAT_CRC32E)
3183				sc->sc_crc32e_ev.ev_count++;
3184			if (rxstat & ATW_RXSTAT_ICVE)
3185				sc->sc_icve_ev.ev_count++;
3186			if (rxstat & ATW_RXSTAT_SFDE)
3187				sc->sc_sfde_ev.ev_count++;
3188			if (rxstat & ATW_RXSTAT_SIGE)
3189				sc->sc_sige_ev.ev_count++;
3190			ifp->if_ierrors++;
3191			m_freem(m);
3192			continue;
3193		}
3194
3195		if (sc->sc_opmode & ATW_NAR_PR)
3196			m_adj(m, -IEEE80211_CRC_LEN);
3197
3198		wh = mtod(m, struct ieee80211_frame_min *);
3199		ni = ieee80211_find_rxnode(ic, wh);
3200#if 0
3201		if (atw_hw_decrypted(sc, wh)) {
3202			wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
3203			DPRINTF(sc, ("%s: hw decrypted\n", __func__));
3204		}
3205#endif
3206		ieee80211_input(ic, m, ni, (int)rssi, 0);
3207		ieee80211_free_node(ni);
3208	}
3209}
3210
3211/*
3212 * atw_txintr:
3213 *
3214 *	Helper; handle transmit interrupts.
3215 */
3216void
3217atw_txintr(struct atw_softc *sc, uint32_t status)
3218{
3219	static char txstat_buf[sizeof("ffffffff<>" ATW_TXSTAT_FMT)];
3220	struct ifnet *ifp = &sc->sc_if;
3221	struct atw_txsoft *txs;
3222	u_int32_t txstat;
3223
3224	DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
3225	    device_xname(sc->sc_dev), sc->sc_flags));
3226
3227	/*
3228	 * Go through our Tx list and free mbufs for those
3229	 * frames that have been transmitted.
3230	 */
3231	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
3232		ATW_CDTXSYNC(sc, txs->txs_lastdesc, 1,
3233		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3234
3235#ifdef ATW_DEBUG
3236		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3237			int i;
3238			printf("    txsoft %p transmit chain:\n", txs);
3239			ATW_CDTXSYNC(sc, txs->txs_firstdesc,
3240			    txs->txs_ndescs - 1,
3241			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3242			for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
3243				printf("     descriptor %d:\n", i);
3244				printf("       at_status:   0x%08x\n",
3245				    le32toh(sc->sc_txdescs[i].at_stat));
3246				printf("       at_flags:      0x%08x\n",
3247				    le32toh(sc->sc_txdescs[i].at_flags));
3248				printf("       at_buf1: 0x%08x\n",
3249				    le32toh(sc->sc_txdescs[i].at_buf1));
3250				printf("       at_buf2: 0x%08x\n",
3251				    le32toh(sc->sc_txdescs[i].at_buf2));
3252				if (i == txs->txs_lastdesc)
3253					break;
3254			}
3255			ATW_CDTXSYNC(sc, txs->txs_firstdesc,
3256			    txs->txs_ndescs - 1, BUS_DMASYNC_PREREAD);
3257		}
3258#endif
3259
3260		txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
3261		if (txstat & ATW_TXSTAT_OWN) {
3262			ATW_CDTXSYNC(sc, txs->txs_lastdesc, 1,
3263			    BUS_DMASYNC_PREREAD);
3264			break;
3265		}
3266
3267		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
3268
3269		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
3270		    0, txs->txs_dmamap->dm_mapsize,
3271		    BUS_DMASYNC_POSTWRITE);
3272		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
3273		m_freem(txs->txs_mbuf);
3274		txs->txs_mbuf = NULL;
3275
3276		sc->sc_txfree += txs->txs_ndescs;
3277		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
3278
3279		KASSERT(!SIMPLEQ_EMPTY(&sc->sc_txfreeq) && sc->sc_txfree != 0);
3280		sc->sc_tx_timer = 0;
3281		ifp->if_flags &= ~IFF_OACTIVE;
3282
3283		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
3284		    (txstat & ATW_TXSTAT_ERRMASK) != 0) {
3285			snprintb(txstat_buf, sizeof(txstat_buf),
3286			    ATW_TXSTAT_FMT, txstat & ATW_TXSTAT_ERRMASK);
3287			printf("%s: txstat %s %" __PRIuBITS "\n",
3288			    device_xname(sc->sc_dev), txstat_buf,
3289			    __SHIFTOUT(txstat, ATW_TXSTAT_ARC_MASK));
3290		}
3291
3292		sc->sc_xmit_ev.ev_count++;
3293
3294		/*
3295		 * Check for errors and collisions.
3296		 */
3297		if (txstat & ATW_TXSTAT_TUF)
3298			sc->sc_tuf_ev.ev_count++;
3299		if (txstat & ATW_TXSTAT_TLT)
3300			sc->sc_tlt_ev.ev_count++;
3301		if (txstat & ATW_TXSTAT_TRT)
3302			sc->sc_trt_ev.ev_count++;
3303		if (txstat & ATW_TXSTAT_TRO)
3304			sc->sc_tro_ev.ev_count++;
3305		if (txstat & ATW_TXSTAT_SOFBR)
3306			sc->sc_sofbr_ev.ev_count++;
3307
3308		if ((txstat & ATW_TXSTAT_ES) == 0)
3309			ifp->if_collisions +=
3310			    __SHIFTOUT(txstat, ATW_TXSTAT_ARC_MASK);
3311		else
3312			ifp->if_oerrors++;
3313
3314		ifp->if_opackets++;
3315	}
3316
3317	KASSERT(txs != NULL || (ifp->if_flags & IFF_OACTIVE) == 0);
3318}
3319
3320/*
3321 * atw_watchdog:	[ifnet interface function]
3322 *
3323 *	Watchdog timer handler.
3324 */
3325void
3326atw_watchdog(struct ifnet *ifp)
3327{
3328	struct atw_softc *sc = ifp->if_softc;
3329	struct ieee80211com *ic = &sc->sc_ic;
3330
3331	ifp->if_timer = 0;
3332	if (!device_is_active(sc->sc_dev))
3333		return;
3334
3335	if (sc->sc_rescan_timer != 0 && --sc->sc_rescan_timer == 0)
3336		(void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3337	if (sc->sc_tx_timer != 0 && --sc->sc_tx_timer == 0 &&
3338	    !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
3339		printf("%s: transmit timeout\n", ifp->if_xname);
3340		ifp->if_oerrors++;
3341		(void)atw_init(ifp);
3342		atw_start(ifp);
3343	}
3344	if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
3345		ifp->if_timer = 1;
3346	ieee80211_watchdog(ic);
3347}
3348
3349static void
3350atw_evcnt_detach(struct atw_softc *sc)
3351{
3352	evcnt_detach(&sc->sc_sige_ev);
3353	evcnt_detach(&sc->sc_sfde_ev);
3354	evcnt_detach(&sc->sc_icve_ev);
3355	evcnt_detach(&sc->sc_crc32e_ev);
3356	evcnt_detach(&sc->sc_crc16e_ev);
3357	evcnt_detach(&sc->sc_recv_ev);
3358
3359	evcnt_detach(&sc->sc_tuf_ev);
3360	evcnt_detach(&sc->sc_tro_ev);
3361	evcnt_detach(&sc->sc_trt_ev);
3362	evcnt_detach(&sc->sc_tlt_ev);
3363	evcnt_detach(&sc->sc_sofbr_ev);
3364	evcnt_detach(&sc->sc_xmit_ev);
3365
3366	evcnt_detach(&sc->sc_rxpkt1in_ev);
3367	evcnt_detach(&sc->sc_rxamatch_ev);
3368	evcnt_detach(&sc->sc_workaround1_ev);
3369	evcnt_detach(&sc->sc_misc_ev);
3370}
3371
3372static void
3373atw_evcnt_attach(struct atw_softc *sc)
3374{
3375	evcnt_attach_dynamic(&sc->sc_recv_ev, EVCNT_TYPE_MISC,
3376	    NULL, sc->sc_if.if_xname, "recv");
3377	evcnt_attach_dynamic(&sc->sc_crc16e_ev, EVCNT_TYPE_MISC,
3378	    &sc->sc_recv_ev, sc->sc_if.if_xname, "CRC16 error");
3379	evcnt_attach_dynamic(&sc->sc_crc32e_ev, EVCNT_TYPE_MISC,
3380	    &sc->sc_recv_ev, sc->sc_if.if_xname, "CRC32 error");
3381	evcnt_attach_dynamic(&sc->sc_icve_ev, EVCNT_TYPE_MISC,
3382	    &sc->sc_recv_ev, sc->sc_if.if_xname, "ICV error");
3383	evcnt_attach_dynamic(&sc->sc_sfde_ev, EVCNT_TYPE_MISC,
3384	    &sc->sc_recv_ev, sc->sc_if.if_xname, "PLCP SFD error");
3385	evcnt_attach_dynamic(&sc->sc_sige_ev, EVCNT_TYPE_MISC,
3386	    &sc->sc_recv_ev, sc->sc_if.if_xname, "PLCP Signal Field error");
3387
3388	evcnt_attach_dynamic(&sc->sc_xmit_ev, EVCNT_TYPE_MISC,
3389	    NULL, sc->sc_if.if_xname, "xmit");
3390	evcnt_attach_dynamic(&sc->sc_tuf_ev, EVCNT_TYPE_MISC,
3391	    &sc->sc_xmit_ev, sc->sc_if.if_xname, "transmit underflow");
3392	evcnt_attach_dynamic(&sc->sc_tro_ev, EVCNT_TYPE_MISC,
3393	    &sc->sc_xmit_ev, sc->sc_if.if_xname, "transmit overrun");
3394	evcnt_attach_dynamic(&sc->sc_trt_ev, EVCNT_TYPE_MISC,
3395	    &sc->sc_xmit_ev, sc->sc_if.if_xname, "retry count exceeded");
3396	evcnt_attach_dynamic(&sc->sc_tlt_ev, EVCNT_TYPE_MISC,
3397	    &sc->sc_xmit_ev, sc->sc_if.if_xname, "lifetime exceeded");
3398	evcnt_attach_dynamic(&sc->sc_sofbr_ev, EVCNT_TYPE_MISC,
3399	    &sc->sc_xmit_ev, sc->sc_if.if_xname, "packet size mismatch");
3400
3401	evcnt_attach_dynamic(&sc->sc_misc_ev, EVCNT_TYPE_MISC,
3402	    NULL, sc->sc_if.if_xname, "misc");
3403	evcnt_attach_dynamic(&sc->sc_workaround1_ev, EVCNT_TYPE_MISC,
3404	    &sc->sc_misc_ev, sc->sc_if.if_xname, "workaround #1");
3405	evcnt_attach_dynamic(&sc->sc_rxamatch_ev, EVCNT_TYPE_MISC,
3406	    &sc->sc_misc_ev, sc->sc_if.if_xname, "rra equals rwa");
3407	evcnt_attach_dynamic(&sc->sc_rxpkt1in_ev, EVCNT_TYPE_MISC,
3408	    &sc->sc_misc_ev, sc->sc_if.if_xname, "rxpkt1in set");
3409}
3410
3411#ifdef ATW_DEBUG
3412static void
3413atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
3414{
3415	struct atw_softc *sc = ifp->if_softc;
3416	struct mbuf *m;
3417	int i, noctets = 0;
3418
3419	printf("%s: %d-byte packet\n", device_xname(sc->sc_dev),
3420	    m0->m_pkthdr.len);
3421
3422	for (m = m0; m; m = m->m_next) {
3423		if (m->m_len == 0)
3424			continue;
3425		for (i = 0; i < m->m_len; i++) {
3426			printf(" %02x", ((u_int8_t*)m->m_data)[i]);
3427			if (++noctets % 24 == 0)
3428				printf("\n");
3429		}
3430	}
3431	printf("%s%s: %d bytes emitted\n",
3432	    (noctets % 24 != 0) ? "\n" : "", device_xname(sc->sc_dev), noctets);
3433}
3434#endif /* ATW_DEBUG */
3435
3436/*
3437 * atw_start:		[ifnet interface function]
3438 *
3439 *	Start packet transmission on the interface.
3440 */
3441void
3442atw_start(struct ifnet *ifp)
3443{
3444	struct atw_softc *sc = ifp->if_softc;
3445	struct ieee80211_key *k;
3446	struct ieee80211com *ic = &sc->sc_ic;
3447	struct ieee80211_node *ni;
3448	struct ieee80211_frame_min *whm;
3449	struct ieee80211_frame *wh;
3450	struct atw_frame *hh;
3451	uint16_t hdrctl;
3452	struct mbuf *m0, *m;
3453	struct atw_txsoft *txs, *last_txs;
3454	struct atw_txdesc *txd;
3455	int npkt, rate;
3456	bus_dmamap_t dmamap;
3457	int ctl, error, firsttx, nexttx, lasttx, first, ofree, seg;
3458
3459	DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
3460	    device_xname(sc->sc_dev), sc->sc_flags, ifp->if_flags));
3461
3462	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3463		return;
3464
3465	/*
3466	 * Remember the previous number of free descriptors and
3467	 * the first descriptor we'll use.
3468	 */
3469	ofree = sc->sc_txfree;
3470	firsttx = lasttx = sc->sc_txnext;
3471
3472	DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
3473	    device_xname(sc->sc_dev), ofree, firsttx));
3474
3475	/*
3476	 * Loop through the send queue, setting up transmit descriptors
3477	 * until we drain the queue, or use up all available transmit
3478	 * descriptors.
3479	 */
3480	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
3481	       sc->sc_txfree != 0) {
3482
3483		hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
3484
3485		/*
3486		 * Grab a packet off the management queue, if it
3487		 * is not empty. Otherwise, from the data queue.
3488		 */
3489		IF_DEQUEUE(&ic->ic_mgtq, m0);
3490		if (m0 != NULL) {
3491			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
3492			m0->m_pkthdr.rcvif = NULL;
3493		} else if (ic->ic_state != IEEE80211_S_RUN)
3494			break; /* send no data until associated */
3495		else {
3496			IFQ_DEQUEUE(&ifp->if_snd, m0);
3497			if (m0 == NULL)
3498				break;
3499			bpf_mtap(ifp, m0);
3500			ni = ieee80211_find_txnode(ic,
3501			    mtod(m0, struct ether_header *)->ether_dhost);
3502			if (ni == NULL) {
3503				ifp->if_oerrors++;
3504				break;
3505			}
3506			if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
3507				ieee80211_free_node(ni);
3508				ifp->if_oerrors++;
3509				break;
3510			}
3511		}
3512
3513		rate = MAX(ieee80211_get_rate(ni), 2);
3514
3515		whm = mtod(m0, struct ieee80211_frame_min *);
3516
3517		if ((whm->i_fc[1] & IEEE80211_FC1_WEP) == 0)
3518			k = NULL;
3519		else if ((k = ieee80211_crypto_encap(ic, ni, m0)) == NULL) {
3520			m_freem(m0);
3521			ieee80211_free_node(ni);
3522			ifp->if_oerrors++;
3523			break;
3524		}
3525#if 0
3526		if (IEEE80211_IS_MULTICAST(wh->i_addr1) &&
3527		    m0->m_pkthdr.len > ic->ic_fragthreshold)
3528			hdrctl |= htole16(ATW_HDRCTL_MORE_FRAG);
3529#endif
3530
3531		if (m0->m_pkthdr.len + IEEE80211_CRC_LEN >= ic->ic_rtsthreshold)
3532			hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
3533
3534		if (ieee80211_compute_duration(whm, k, m0->m_pkthdr.len,
3535		    ic->ic_flags, ic->ic_fragthreshold, rate,
3536		    &txs->txs_d0, &txs->txs_dn, &npkt, 0) == -1) {
3537			DPRINTF2(sc, ("%s: fail compute duration\n", __func__));
3538			m_freem(m0);
3539			break;
3540		}
3541
3542		/* XXX Misleading if fragmentation is enabled.  Better
3543		 * to fragment in software?
3544		 */
3545		*(uint16_t *)whm->i_dur = htole16(txs->txs_d0.d_rts_dur);
3546
3547		/*
3548		 * Pass the packet to any BPF listeners.
3549		 */
3550		bpf_mtap3(ic->ic_rawbpf, m0);
3551
3552		if (sc->sc_radiobpf != NULL) {
3553			struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
3554
3555			tap->at_rate = rate;
3556
3557			bpf_mtap2(sc->sc_radiobpf, tap, sizeof(sc->sc_txtapu),
3558			    m0);
3559		}
3560
3561		M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
3562
3563		if (ni != NULL)
3564			ieee80211_free_node(ni);
3565
3566		if (m0 == NULL) {
3567			ifp->if_oerrors++;
3568			break;
3569		}
3570
3571		/* just to make sure. */
3572		m0 = m_pullup(m0, sizeof(struct atw_frame));
3573
3574		if (m0 == NULL) {
3575			ifp->if_oerrors++;
3576			break;
3577		}
3578
3579		hh = mtod(m0, struct atw_frame *);
3580		wh = &hh->atw_ihdr;
3581
3582		/* Copy everything we need from the 802.11 header:
3583		 * Frame Control; address 1, address 3, or addresses
3584		 * 3 and 4. NIC fills in BSSID, SA.
3585		 */
3586		if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
3587			if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
3588				panic("%s: illegal WDS frame",
3589				    device_xname(sc->sc_dev));
3590			memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
3591		} else
3592			memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
3593
3594		*(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc;
3595
3596		/* initialize remaining Tx parameters */
3597		memset(&hh->u, 0, sizeof(hh->u));
3598
3599		hh->atw_rate = rate * 5;
3600		/* XXX this could be incorrect if M_FCS. _encap should
3601		 * probably strip FCS just in case it sticks around in
3602		 * bridged packets.
3603		 */
3604		hh->atw_service = 0x00; /* XXX guess */
3605		hh->atw_paylen = htole16(m0->m_pkthdr.len -
3606		    sizeof(struct atw_frame));
3607
3608		/* never fragment multicast frames */
3609		if (IEEE80211_IS_MULTICAST(hh->atw_dst))
3610			hh->atw_fragthr = htole16(IEEE80211_FRAG_MAX);
3611		else {
3612			if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3613			    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE))
3614				hdrctl |= htole16(ATW_HDRCTL_SHORT_PREAMBLE);
3615			hh->atw_fragthr = htole16(ic->ic_fragthreshold);
3616		}
3617
3618		hh->atw_rtylmt = 3;
3619#if 0
3620		if (do_encrypt) {
3621			hdrctl |= htole16(ATW_HDRCTL_WEP);
3622			hh->atw_keyid = ic->ic_def_txkey;
3623		}
3624#endif
3625
3626		hh->atw_head_plcplen = htole16(txs->txs_d0.d_plcp_len);
3627		hh->atw_tail_plcplen = htole16(txs->txs_dn.d_plcp_len);
3628		if (txs->txs_d0.d_residue)
3629			hh->atw_head_plcplen |= htole16(0x8000);
3630		if (txs->txs_dn.d_residue)
3631			hh->atw_tail_plcplen |= htole16(0x8000);
3632		hh->atw_head_dur = htole16(txs->txs_d0.d_rts_dur);
3633		hh->atw_tail_dur = htole16(txs->txs_dn.d_rts_dur);
3634
3635		hh->atw_hdrctl = hdrctl;
3636		hh->atw_fragnum = npkt << 4;
3637#ifdef ATW_DEBUG
3638
3639		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3640			printf("%s: dst = %s, rate = 0x%02x, "
3641			    "service = 0x%02x, paylen = 0x%04x\n",
3642			    device_xname(sc->sc_dev), ether_sprintf(hh->atw_dst),
3643			    hh->atw_rate, hh->atw_service, hh->atw_paylen);
3644
3645			printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
3646			    "dur1 = 0x%04x, dur2 = 0x%04x, "
3647			    "dur3 = 0x%04x, rts_dur = 0x%04x\n",
3648			    device_xname(sc->sc_dev), hh->atw_fc[0], hh->atw_fc[1],
3649			    hh->atw_tail_plcplen, hh->atw_head_plcplen,
3650			    hh->atw_tail_dur, hh->atw_head_dur);
3651
3652			printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
3653			    "fragnum = 0x%02x, rtylmt = 0x%04x\n",
3654			    device_xname(sc->sc_dev), hh->atw_hdrctl,
3655			    hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
3656
3657			printf("%s: keyid = %d\n",
3658			    device_xname(sc->sc_dev), hh->atw_keyid);
3659
3660			atw_dump_pkt(ifp, m0);
3661		}
3662#endif /* ATW_DEBUG */
3663
3664		dmamap = txs->txs_dmamap;
3665
3666		/*
3667		 * Load the DMA map.  Copy and try (once) again if the packet
3668		 * didn't fit in the alloted number of segments.
3669		 */
3670		for (first = 1;
3671		     (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
3672		                  BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 && first;
3673		     first = 0) {
3674			MGETHDR(m, M_DONTWAIT, MT_DATA);
3675			if (m == NULL) {
3676				aprint_error_dev(sc->sc_dev, "unable to allocate Tx mbuf\n");
3677				break;
3678			}
3679			if (m0->m_pkthdr.len > MHLEN) {
3680				MCLGET(m, M_DONTWAIT);
3681				if ((m->m_flags & M_EXT) == 0) {
3682					aprint_error_dev(sc->sc_dev, "unable to allocate Tx "
3683					    "cluster\n");
3684					m_freem(m);
3685					break;
3686				}
3687			}
3688			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
3689			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3690			m_freem(m0);
3691			m0 = m;
3692			m = NULL;
3693		}
3694		if (error != 0) {
3695			aprint_error_dev(sc->sc_dev, "unable to load Tx buffer, "
3696			    "error = %d\n", error);
3697			m_freem(m0);
3698			break;
3699		}
3700
3701		/*
3702		 * Ensure we have enough descriptors free to describe
3703		 * the packet.
3704		 */
3705		if (dmamap->dm_nsegs > sc->sc_txfree) {
3706			/*
3707			 * Not enough free descriptors to transmit
3708			 * this packet.  Unload the DMA map and
3709			 * drop the packet.  Notify the upper layer
3710			 * that there are no more slots left.
3711			 *
3712			 * XXX We could allocate an mbuf and copy, but
3713			 * XXX it is worth it?
3714			 */
3715			bus_dmamap_unload(sc->sc_dmat, dmamap);
3716			m_freem(m0);
3717			break;
3718		}
3719
3720		/*
3721		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
3722		 */
3723
3724		/* Sync the DMA map. */
3725		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
3726		    BUS_DMASYNC_PREWRITE);
3727
3728		/* XXX arbitrary retry limit; 8 because I have seen it in
3729		 * use already and maybe 0 means "no tries" !
3730		 */
3731		ctl = htole32(__SHIFTIN(8, ATW_TXCTL_TL_MASK));
3732
3733		DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
3734		    device_xname(sc->sc_dev), rate * 5));
3735		ctl |= htole32(__SHIFTIN(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
3736
3737		/*
3738		 * Initialize the transmit descriptors.
3739		 */
3740		for (nexttx = sc->sc_txnext, seg = 0;
3741		     seg < dmamap->dm_nsegs;
3742		     seg++, nexttx = ATW_NEXTTX(nexttx)) {
3743			/*
3744			 * If this is the first descriptor we're
3745			 * enqueueing, don't set the OWN bit just
3746			 * yet.  That could cause a race condition.
3747			 * We'll do it below.
3748			 */
3749			txd = &sc->sc_txdescs[nexttx];
3750			txd->at_ctl = ctl |
3751			    ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
3752
3753			txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
3754			txd->at_flags =
3755			    htole32(__SHIFTIN(dmamap->dm_segs[seg].ds_len,
3756			                   ATW_TXFLAG_TBS1_MASK)) |
3757			    ((nexttx == (ATW_NTXDESC - 1))
3758			        ? htole32(ATW_TXFLAG_TER) : 0);
3759			lasttx = nexttx;
3760		}
3761
3762		/* Set `first segment' and `last segment' appropriately. */
3763		sc->sc_txdescs[sc->sc_txnext].at_flags |=
3764		    htole32(ATW_TXFLAG_FS);
3765		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
3766
3767#ifdef ATW_DEBUG
3768		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3769			printf("     txsoft %p transmit chain:\n", txs);
3770			for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
3771				printf("     descriptor %d:\n", seg);
3772				printf("       at_ctl:   0x%08x\n",
3773				    le32toh(sc->sc_txdescs[seg].at_ctl));
3774				printf("       at_flags:      0x%08x\n",
3775				    le32toh(sc->sc_txdescs[seg].at_flags));
3776				printf("       at_buf1: 0x%08x\n",
3777				    le32toh(sc->sc_txdescs[seg].at_buf1));
3778				printf("       at_buf2: 0x%08x\n",
3779				    le32toh(sc->sc_txdescs[seg].at_buf2));
3780				if (seg == lasttx)
3781					break;
3782			}
3783		}
3784#endif
3785
3786		/* Sync the descriptors we're using. */
3787		ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
3788		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3789
3790		/*
3791		 * Store a pointer to the packet so we can free it later,
3792		 * and remember what txdirty will be once the packet is
3793		 * done.
3794		 */
3795		txs->txs_mbuf = m0;
3796		txs->txs_firstdesc = sc->sc_txnext;
3797		txs->txs_lastdesc = lasttx;
3798		txs->txs_ndescs = dmamap->dm_nsegs;
3799
3800		/* Advance the tx pointer. */
3801		sc->sc_txfree -= dmamap->dm_nsegs;
3802		sc->sc_txnext = nexttx;
3803
3804		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
3805		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
3806
3807		last_txs = txs;
3808	}
3809
3810	if (sc->sc_txfree != ofree) {
3811		DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
3812		    device_xname(sc->sc_dev), lasttx, firsttx));
3813		/*
3814		 * Cause a transmit interrupt to happen on the
3815		 * last packet we enqueued.
3816		 */
3817		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
3818		ATW_CDTXSYNC(sc, lasttx, 1,
3819		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3820
3821		/*
3822		 * The entire packet chain is set up.  Give the
3823		 * first descriptor to the chip now.
3824		 */
3825		sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
3826		ATW_CDTXSYNC(sc, firsttx, 1,
3827		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3828
3829		/* Wake up the transmitter. */
3830		ATW_WRITE(sc, ATW_TDR, 0x1);
3831
3832		if (txs == NULL || sc->sc_txfree == 0)
3833			ifp->if_flags |= IFF_OACTIVE;
3834
3835		/* Set a watchdog timer in case the chip flakes out. */
3836		sc->sc_tx_timer = 5;
3837		ifp->if_timer = 1;
3838	}
3839}
3840
3841/*
3842 * atw_ioctl:		[ifnet interface function]
3843 *
3844 *	Handle control requests from the operator.
3845 */
3846int
3847atw_ioctl(struct ifnet *ifp, u_long cmd, void *data)
3848{
3849	struct atw_softc *sc = ifp->if_softc;
3850	struct ieee80211req *ireq;
3851	int s, error = 0;
3852
3853	s = splnet();
3854
3855	switch (cmd) {
3856	case SIOCSIFFLAGS:
3857		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
3858			break;
3859		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
3860		case IFF_UP|IFF_RUNNING:
3861			/*
3862			 * To avoid rescanning another access point,
3863			 * do not call atw_init() here.  Instead,
3864			 * only reflect media settings.
3865			 */
3866			if (device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
3867				atw_filter_setup(sc);
3868			break;
3869		case IFF_UP:
3870			error = atw_init(ifp);
3871			break;
3872		case IFF_RUNNING:
3873			atw_stop(ifp, 1);
3874			break;
3875		case 0:
3876			break;
3877		}
3878		break;
3879	case SIOCADDMULTI:
3880	case SIOCDELMULTI:
3881		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
3882			if (ifp->if_flags & IFF_RUNNING)
3883				atw_filter_setup(sc); /* do not rescan */
3884			error = 0;
3885		}
3886		break;
3887	case SIOCS80211:
3888		ireq = data;
3889		if (ireq->i_type == IEEE80211_IOC_FRAGTHRESHOLD) {
3890			if ((error = kauth_authorize_network(curlwp->l_cred,
3891			    KAUTH_NETWORK_INTERFACE,
3892			    KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
3893			    (void *)cmd, NULL)) != 0)
3894				break;
3895			if (!(IEEE80211_FRAG_MIN <= ireq->i_val &&
3896			      ireq->i_val <= IEEE80211_FRAG_MAX))
3897				error = EINVAL;
3898			else
3899				sc->sc_ic.ic_fragthreshold = ireq->i_val;
3900			break;
3901		}
3902		/*FALLTHROUGH*/
3903	default:
3904		error = ieee80211_ioctl(&sc->sc_ic, cmd, data);
3905		if (error == ENETRESET || error == ERESTART) {
3906			if (is_running(ifp))
3907				error = atw_init(ifp);
3908			else
3909				error = 0;
3910		}
3911		break;
3912	}
3913
3914	/* Try to get more packets going. */
3915	if (device_is_active(sc->sc_dev))
3916		atw_start(ifp);
3917
3918	splx(s);
3919	return (error);
3920}
3921
3922static int
3923atw_media_change(struct ifnet *ifp)
3924{
3925	int error;
3926
3927	error = ieee80211_media_change(ifp);
3928	if (error == ENETRESET) {
3929		if (is_running(ifp))
3930			error = atw_init(ifp);
3931		else
3932			error = 0;
3933	}
3934	return error;
3935}
3936