1/* $NetBSD$        */
2
3/*
4 * Low level routines for the Advanced Systems Inc. SCSI controllers chips
5 *
6 * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
7 * All rights reserved.
8 *
9 * Author: Baldassare Dante Profeta <dante@mclink.it>
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 *    must display the following acknowledgement:
21 *        This product includes software developed by the NetBSD
22 *        Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 *    contributors may be used to endorse or promote products derived
25 *    from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39/*
40 * Ported from:
41 */
42/*
43 * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
44 *
45 * Copyright (c) 1995-2000 Advanced System Products, Inc.
46 * All Rights Reserved.
47 *
48 * Redistribution and use in source and binary forms, with or without
49 * modification, are permitted provided that redistributions of source
50 * code retain the above copyright notice and this comment without
51 * modification.
52 */
53
54#include <sys/cdefs.h>
55__KERNEL_RCSID(0, "$NetBSD$");
56
57#include <sys/param.h>
58#include <sys/systm.h>
59#include <sys/malloc.h>
60#include <sys/kernel.h>
61#include <sys/queue.h>
62#include <sys/device.h>
63
64#include <sys/bus.h>
65#include <sys/intr.h>
66
67#include <dev/scsipi/scsi_all.h>
68#include <dev/scsipi/scsipi_all.h>
69#include <dev/scsipi/scsiconf.h>
70
71#include <dev/pci/pcidevs.h>
72
73#include <dev/ic/adwlib.h>
74#include <dev/ic/adwmcode.h>
75#include <dev/ic/adw.h>
76
77
78/* Static Functions */
79
80int AdwRamSelfTest(bus_space_tag_t, bus_space_handle_t, u_int8_t);
81int AdwLoadMCode(bus_space_tag_t, bus_space_handle_t, u_int16_t *, u_int8_t);
82int AdwASC3550Cabling(bus_space_tag_t, bus_space_handle_t, ADW_DVC_CFG *);
83int AdwASC38C0800Cabling(bus_space_tag_t, bus_space_handle_t, ADW_DVC_CFG *);
84int AdwASC38C1600Cabling(bus_space_tag_t, bus_space_handle_t, ADW_DVC_CFG *);
85
86static u_int16_t AdwGetEEPROMConfig(bus_space_tag_t, bus_space_handle_t,
87     							ADW_EEPROM *);
88static void AdwSetEEPROMConfig(bus_space_tag_t, bus_space_handle_t,
89					                 ADW_EEPROM *);
90static u_int16_t AdwReadEEPWord(bus_space_tag_t, bus_space_handle_t, int);
91static void AdwWaitEEPCmd(bus_space_tag_t, bus_space_handle_t);
92
93static void AdwInquiryHandling(ADW_SOFTC *, ADW_SCSI_REQ_Q *);
94
95static void AdwSleepMilliSecond(u_int32_t);
96static void AdwDelayMicroSecond(u_int32_t);
97
98
99/*
100 * EEPROM Configuration.
101 *
102 * All drivers should use this structure to set the default EEPROM
103 * configuration. The BIOS now uses this structure when it is built.
104 * Additional structure information can be found in adwlib.h where
105 * the structure is defined.
106 */
107static const ADW_EEPROM adw_3550_Default_EEPROM = {
108	ADW_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
109	0x0000,			/* 01 cfg_msw */
110	0xFFFF,			/* 02 disc_enable */
111	0xFFFF,			/* 03 wdtr_able */
112	{ 0xFFFF },		/* 04 sdtr_able */
113	0xFFFF,			/* 05 start_motor */
114	0xFFFF,			/* 06 tagqng_able */
115	0xFFFF,			/* 07 bios_scan */
116	0,			/* 08 scam_tolerant */
117	7,			/* 09 adapter_scsi_id */
118	0,			/*    bios_boot_delay */
119	3,			/* 10 scsi_reset_delay */
120	0,			/*    bios_id_lun */
121	0,			/* 11 termination */
122	0,			/*    reserved1 */
123	0xFFE7,			/* 12 bios_ctrl */
124	{ 0xFFFF },		/* 13 ultra_able */
125	{ 0 },			/* 14 reserved2 */
126	ADW_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
127	ADW_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
128	0,			/* 16 dvc_cntl */
129	{ 0 },			/* 17 bug_fix */
130	{ 0,0,0 },		/* 18-20 serial_number[3] */
131	0,			/* 21 check_sum */
132	{			/* 22-29 oem_name[16] */
133	  0,0,0,0,0,0,0,0,
134	  0,0,0,0,0,0,0,0
135	},
136	0,			/* 30 dvc_err_code */
137	0,			/* 31 adv_err_code */
138	0,			/* 32 adv_err_addr */
139	0,			/* 33 saved_dvc_err_code */
140	0,			/* 34 saved_adv_err_code */
141	0,			/* 35 saved_adv_err_addr */
142	{			/* 36-55 reserved1[16] */
143	  0,0,0,0,0,0,0,0,0,0,
144	  0,0,0,0,0,0,0,0,0,0
145	},
146	0,			/* 56 cisptr_lsw */
147	0,			/* 57 cisprt_msw */
148	0,			/* 58 subsysvid */
149	0,			/* 59 subsysid */
150	{ 0,0,0,0 }		/* 60-63 reserved2[4] */
151};
152
153static const ADW_EEPROM adw_38C0800_Default_EEPROM = {
154	ADW_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
155	0x0000,			/* 01 cfg_msw */
156	0xFFFF,			/* 02 disc_enable */
157	0xFFFF,			/* 03 wdtr_able */
158	{ 0x4444 },		/* 04 sdtr_speed1 */
159	0xFFFF,			/* 05 start_motor */
160	0xFFFF,			/* 06 tagqng_able */
161	0xFFFF,			/* 07 bios_scan */
162	0,			/* 08 scam_tolerant */
163	7,			/* 09 adapter_scsi_id */
164	0,			/*    bios_boot_delay */
165	3,			/* 10 scsi_reset_delay */
166	0,			/*    bios_id_lun */
167	0,			/* 11 termination_se */
168	0,			/*    termination_lvd */
169	0xFFE7,			/* 12 bios_ctrl */
170	{ 0x4444 },		/* 13 sdtr_speed2 */
171	{ 0x4444 },		/* 14 sdtr_speed3 */
172	ADW_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
173	ADW_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
174	0,			/* 16 dvc_cntl */
175	{ 0x4444 },		/* 17 sdtr_speed4 */
176	{ 0,0,0 },		/* 18-20 serial_number[3] */
177	0,			/* 21 check_sum */
178	{			/* 22-29 oem_name[16] */
179	  0,0,0,0,0,0,0,0,
180	  0,0,0,0,0,0,0,0
181	},
182	0,			/* 30 dvc_err_code */
183	0,			/* 31 adv_err_code */
184	0,			/* 32 adv_err_addr */
185	0,			/* 33 saved_dvc_err_code */
186	0,			/* 34 saved_adv_err_code */
187	0,			/* 35 saved_adv_err_addr */
188	{			/* 36-55 reserved1[16] */
189	  0,0,0,0,0,0,0,0,0,0,
190	  0,0,0,0,0,0,0,0,0,0
191	},
192	0,			/* 56 cisptr_lsw */
193	0,			/* 57 cisprt_msw */
194	PCI_VENDOR_ADVSYS,	/* 58 subsysvid */
195	PCI_PRODUCT_ADVSYS_U2W,	/* 59 subsysid */
196	{ 0,0,0,0 }		/* 60-63 reserved2[4] */
197};
198
199static const ADW_EEPROM adw_38C1600_Default_EEPROM = {
200	ADW_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
201	0x0000,			/* 01 cfg_msw */
202	0xFFFF,			/* 02 disc_enable */
203	0xFFFF,			/* 03 wdtr_able */
204	{ 0x5555 },		/* 04 sdtr_speed1 */
205	0xFFFF,			/* 05 start_motor */
206	0xFFFF,			/* 06 tagqng_able */
207	0xFFFF,			/* 07 bios_scan */
208	0,			/* 08 scam_tolerant */
209	7,			/* 09 adapter_scsi_id */
210	0,			/*    bios_boot_delay */
211	3,			/* 10 scsi_reset_delay */
212	0,			/*    bios_id_lun */
213	0,			/* 11 termination_se */
214	0,			/*    termination_lvd */
215	0xFFE7,			/* 12 bios_ctrl */
216	{ 0x5555 },		/* 13 sdtr_speed2 */
217	{ 0x5555 },		/* 14 sdtr_speed3 */
218	ADW_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
219	ADW_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
220	0,			/* 16 dvc_cntl */
221	{ 0x5555 },		/* 17 sdtr_speed4 */
222	{ 0,0,0 },		/* 18-20 serial_number[3] */
223	0,			/* 21 check_sum */
224	{			/* 22-29 oem_name[16] */
225	  0,0,0,0,0,0,0,0,
226	  0,0,0,0,0,0,0,0
227	},
228	0,			/* 30 dvc_err_code */
229	0,			/* 31 adv_err_code */
230	0,			/* 32 adv_err_addr */
231	0,			/* 33 saved_dvc_err_code */
232	0,			/* 34 saved_adv_err_code */
233	0,			/* 35 saved_adv_err_addr */
234	{			/* 36-55 reserved1[16] */
235	  0,0,0,0,0,0,0,0,0,0,
236	  0,0,0,0,0,0,0,0,0,0
237	},
238	0,			/* 56 cisptr_lsw */
239	0,			/* 57 cisprt_msw */
240	PCI_VENDOR_ADVSYS,	/* 58 subsysvid */
241	PCI_PRODUCT_ADVSYS_U3W, /* 59 subsysid */
242	{ 0,0,0,0 }		/* 60-63 reserved2[4] */
243};
244
245
246/*
247 * Read the board's EEPROM configuration. Set fields in ADW_SOFTC and
248 * ADW_DVC_CFG based on the EEPROM settings. The chip is stopped while
249 * all of this is done.
250 *
251 * For a non-fatal error return a warning code. If there are no warnings
252 * then 0 is returned.
253 *
254 * Note: Chip is stopped on entry.
255 */
256int
257AdwInitFromEEPROM(ADW_SOFTC *sc)
258{
259	bus_space_tag_t iot = sc->sc_iot;
260	bus_space_handle_t ioh = sc->sc_ioh;
261	ADW_EEPROM		eep_config;
262	u_int16_t		warn_code;
263	u_int16_t		sdtr_speed = 0;
264	u_int8_t		tid, termination;
265	int			i, j;
266
267
268	warn_code = 0;
269
270	/*
271	 * Read the board's EEPROM configuration.
272	 *
273	 * Set default values if a bad checksum is found.
274	 *
275	 * XXX - Don't handle big-endian access to EEPROM yet.
276	 */
277	if (AdwGetEEPROMConfig(iot, ioh, &eep_config) != eep_config.check_sum) {
278		warn_code |= ADW_WARN_EEPROM_CHKSUM;
279
280		/*
281		 * Set EEPROM default values.
282		 */
283		switch(sc->chip_type) {
284		case ADW_CHIP_ASC3550:
285			eep_config = adw_3550_Default_EEPROM;
286			break;
287		case ADW_CHIP_ASC38C0800:
288			eep_config = adw_38C0800_Default_EEPROM;
289			break;
290		case ADW_CHIP_ASC38C1600:
291			eep_config = adw_38C1600_Default_EEPROM;
292
293#if 0
294XXX	  TODO!!!	if (ASC_PCI_ID2FUNC(sc->cfg.pci_slot_info) != 0) {
295#endif
296			if (sc->cfg.pci_slot_info != 0) {
297				u_int8_t lsw_msb;
298
299				lsw_msb = eep_config.cfg_lsw >> 8;
300				/*
301				 * Set Function 1 EEPROM Word 0 MSB
302				 *
303				 * Clear the BIOS_ENABLE (bit 14) and
304				 * INTAB (bit 11) EEPROM bits.
305				 *
306				 * Disable Bit 14 (BIOS_ENABLE) to fix
307				 * SPARC Ultra 60 and old Mac system booting
308				 * problem. The Expansion ROM must
309				 * be disabled in Function 1 for these systems.
310				 */
311				lsw_msb &= ~(((ADW_EEPROM_BIOS_ENABLE |
312						ADW_EEPROM_INTAB) >> 8) & 0xFF);
313				/*
314				 * Set the INTAB (bit 11) if the GPIO 0 input
315				 * indicates the Function 1 interrupt line is
316				 * wired to INTA.
317				 *
318				 * Set/Clear Bit 11 (INTAB) from
319				 * the GPIO bit 0 input:
320				 *   1 - Function 1 intr line wired to INT A.
321				 *   0 - Function 1 intr line wired to INT B.
322				 *
323				 * Note: Adapter boards always have Function 0
324				 * wired to INTA.
325				 * Put all 5 GPIO bits in input mode and then
326				 * read their input values.
327				 */
328				ADW_WRITE_BYTE_REGISTER(iot, ioh,
329							IOPB_GPIO_CNTL, 0);
330				if (ADW_READ_BYTE_REGISTER(iot, ioh,
331						IOPB_GPIO_DATA) & 0x01) {
332					/*
333					 * Function 1 interrupt wired to INTA;
334					 * Set EEPROM bit.
335					 */
336					lsw_msb |= (ADW_EEPROM_INTAB >> 8)
337							 & 0xFF;
338				 }
339				 eep_config.cfg_lsw &= 0x00FF;
340				 eep_config.cfg_lsw |= lsw_msb << 8;
341			}
342			break;
343		}
344
345		/*
346		 * Assume the 6 byte board serial number that was read
347		 * from EEPROM is correct even if the EEPROM checksum
348		 * failed.
349		 */
350		for (i=2, j=1; i>=0; i--, j++) {
351		eep_config.serial_number[i] =
352			AdwReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - j);
353		}
354
355		AdwSetEEPROMConfig(iot, ioh, &eep_config);
356	}
357	/*
358	 * Set sc and sc->cfg variables from the EEPROM configuration
359	 * that was read.
360	 *
361	 * This is the mapping of EEPROM fields to Adw Library fields.
362	 */
363	sc->wdtr_able = eep_config.wdtr_able;
364	if (sc->chip_type == ADW_CHIP_ASC3550) {
365		sc->sdtr_able = eep_config.sdtr1.sdtr_able;
366		sc->ultra_able = eep_config.sdtr2.ultra_able;
367	} else {
368		sc->sdtr_speed1 = eep_config.sdtr1.sdtr_speed1;
369		sc->sdtr_speed2 = eep_config.sdtr2.sdtr_speed2;
370		sc->sdtr_speed3 = eep_config.sdtr3.sdtr_speed3;
371		sc->sdtr_speed4 = eep_config.sdtr4.sdtr_speed4;
372	}
373	sc->ppr_able = 0;
374	sc->tagqng_able = eep_config.tagqng_able;
375	sc->cfg.disc_enable = eep_config.disc_enable;
376	sc->max_host_qng = eep_config.max_host_qng;
377	sc->max_dvc_qng = eep_config.max_dvc_qng;
378	sc->chip_scsi_id = (eep_config.adapter_scsi_id & ADW_MAX_TID);
379	sc->start_motor = eep_config.start_motor;
380	sc->scsi_reset_wait = eep_config.scsi_reset_delay;
381	sc->bios_ctrl = eep_config.bios_ctrl;
382	sc->no_scam = eep_config.scam_tolerant;
383	sc->cfg.serial1 = eep_config.serial_number[0];
384	sc->cfg.serial2 = eep_config.serial_number[1];
385	sc->cfg.serial3 = eep_config.serial_number[2];
386
387	if (sc->chip_type == ADW_CHIP_ASC38C0800 ||
388	    sc->chip_type == ADW_CHIP_ASC38C1600) {
389		sc->sdtr_able = 0;
390		for (tid = 0; tid <= ADW_MAX_TID; tid++) {
391			if (tid == 0) {
392				sdtr_speed = sc->sdtr_speed1;
393			} else if (tid == 4) {
394				sdtr_speed = sc->sdtr_speed2;
395			} else if (tid == 8) {
396				sdtr_speed = sc->sdtr_speed3;
397			} else if (tid == 12) {
398				sdtr_speed = sc->sdtr_speed4;
399			}
400			if (sdtr_speed & ADW_MAX_TID) {
401				sc->sdtr_able |= (1 << tid);
402			}
403			sdtr_speed >>= 4;
404		}
405	}
406
407	/*
408	 * Set the host maximum queuing (max. 253, min. 16) and the per device
409	 * maximum queuing (max. 63, min. 4).
410	 */
411	if (eep_config.max_host_qng > ADW_DEF_MAX_HOST_QNG) {
412		eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
413	} else if (eep_config.max_host_qng < ADW_DEF_MIN_HOST_QNG)
414	{
415		/* If the value is zero, assume it is uninitialized. */
416		if (eep_config.max_host_qng == 0) {
417			eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
418		} else {
419			eep_config.max_host_qng = ADW_DEF_MIN_HOST_QNG;
420		}
421	}
422
423	if (eep_config.max_dvc_qng > ADW_DEF_MAX_DVC_QNG) {
424		eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
425	} else if (eep_config.max_dvc_qng < ADW_DEF_MIN_DVC_QNG) {
426		/* If the value is zero, assume it is uninitialized. */
427		if (eep_config.max_dvc_qng == 0) {
428			eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
429		} else {
430			eep_config.max_dvc_qng = ADW_DEF_MIN_DVC_QNG;
431		}
432	}
433
434	/*
435	 * If 'max_dvc_qng' is greater than 'max_host_qng', then
436	 * set 'max_dvc_qng' to 'max_host_qng'.
437	 */
438	if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
439		eep_config.max_dvc_qng = eep_config.max_host_qng;
440	}
441
442	/*
443	 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
444	 * values based on possibly adjusted EEPROM values.
445	 */
446	sc->max_host_qng = eep_config.max_host_qng;
447	sc->max_dvc_qng = eep_config.max_dvc_qng;
448
449
450	/*
451	 * If the EEPROM 'termination' field is set to automatic (0), then set
452	 * the ADV_DVC_CFG 'termination' field to automatic also.
453	 *
454	 * If the termination is specified with a non-zero 'termination'
455	 * value check that a legal value is set and set the ADV_DVC_CFG
456	 * 'termination' field appropriately.
457	 */
458
459	switch(sc->chip_type) {
460	case ADW_CHIP_ASC3550:
461		sc->cfg.termination = 0;	/* auto termination */
462		switch(eep_config.termination_se) {
463		case 3:
464			/* Enable manual control with low on / high on. */
465			sc->cfg.termination |= ADW_TERM_CTL_L;
466		case 2:
467			/* Enable manual control with low off / high on. */
468			sc->cfg.termination |= ADW_TERM_CTL_H;
469		case 1:
470			/* Enable manual control with low off / high off. */
471			sc->cfg.termination |= ADW_TERM_CTL_SEL;
472		case 0:
473			break;
474		default:
475			warn_code |= ADW_WARN_EEPROM_TERMINATION;
476		}
477		break;
478
479	case ADW_CHIP_ASC38C0800:
480	case ADW_CHIP_ASC38C1600:
481		switch(eep_config.termination_se) {
482		case 0:
483			/* auto termination for SE */
484			termination = 0;
485			break;
486		case 1:
487			/* Enable manual control with low off / high off. */
488			termination = 0;
489			break;
490		case 2:
491			/* Enable manual control with low off / high on. */
492			termination = ADW_TERM_SE_HI;
493			break;
494		case 3:
495			/* Enable manual control with low on / high on. */
496			termination = ADW_TERM_SE;
497			break;
498		default:
499			/*
500			 * The EEPROM 'termination_se' field contains a
501			 * bad value. Use automatic termination instead.
502			 */
503			termination = 0;
504			warn_code |= ADW_WARN_EEPROM_TERMINATION;
505		}
506
507		switch(eep_config.termination_lvd) {
508		case 0:
509			/* auto termination for LVD */
510			sc->cfg.termination = termination;
511			break;
512		case 1:
513			/* Enable manual control with low off / high off. */
514			sc->cfg.termination = termination;
515			break;
516		case 2:
517			/* Enable manual control with low off / high on. */
518			sc->cfg.termination = termination | ADW_TERM_LVD_HI;
519			break;
520		case 3:
521			/* Enable manual control with low on / high on. */
522			sc->cfg.termination = termination | ADW_TERM_LVD;
523			break;
524		default:
525			/*
526			 * The EEPROM 'termination_lvd' field contains a
527			 * bad value. Use automatic termination instead.
528			 */
529			sc->cfg.termination = termination;
530			warn_code |= ADW_WARN_EEPROM_TERMINATION;
531		}
532		break;
533	}
534
535	return warn_code;
536}
537
538
539/*
540 * Initialize the ASC-3550/ASC-38C0800/ASC-38C1600.
541 *
542 * On failure return the error code.
543 */
544int
545AdwInitDriver(ADW_SOFTC *sc)
546{
547	bus_space_tag_t iot = sc->sc_iot;
548	bus_space_handle_t ioh = sc->sc_ioh;
549	u_int16_t	error_code;
550	int		word;
551	int		i;
552	u_int16_t	bios_mem[ADW_MC_BIOSLEN/2];	/* BIOS RISC Memory
553								0x40-0x8F. */
554	u_int16_t	wdtr_able = 0, sdtr_able, ppr_able, tagqng_able;
555	u_int8_t	max_cmd[ADW_MAX_TID + 1];
556	u_int8_t	tid;
557
558
559	error_code = 0;
560
561	/*
562	 * Save the RISC memory BIOS region before writing the microcode.
563	 * The BIOS may already be loaded and using its RISC LRAM region
564	 * so its region must be saved and restored.
565	 *
566	 * Note: This code makes the assumption, which is currently true,
567	 * that a chip reset does not clear RISC LRAM.
568	 */
569	for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
570		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM+(2*i), bios_mem[i]);
571	}
572
573	/*
574	 * Save current per TID negotiated values.
575	 */
576	switch (sc->chip_type) {
577	case ADW_CHIP_ASC3550:
578		if (bios_mem[(ADW_MC_BIOS_SIGNATURE-ADW_MC_BIOSMEM)/2]==0x55AA){
579
580			u_int16_t  bios_version, major, minor;
581
582			bios_version = bios_mem[(ADW_MC_BIOS_VERSION -
583					ADW_MC_BIOSMEM) / 2];
584			major = (bios_version  >> 12) & 0xF;
585			minor = (bios_version  >> 8) & 0xF;
586			if (major < 3 || (major == 3 && minor == 1)) {
587			    /*
588			     * BIOS 3.1 and earlier location of
589			     * 'wdtr_able' variable.
590			     */
591			    ADW_READ_WORD_LRAM(iot, ioh, 0x120, wdtr_able);
592			} else {
593			    ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
594					    wdtr_able);
595			}
596		}
597		break;
598
599	case ADW_CHIP_ASC38C1600:
600		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
601		/* FALLTHROUGH */
602	case ADW_CHIP_ASC38C0800:
603		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
604		break;
605	}
606	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
607	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
608	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
609		ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
610			max_cmd[tid]);
611	}
612
613	/*
614	 * Perform a RAM Built-In Self Test
615	 */
616	if((error_code = AdwRamSelfTest(iot, ioh, sc->chip_type))) {
617		return error_code;
618	}
619
620	/*
621	 * Load the Microcode
622	 */
623	;
624	if((error_code = AdwLoadMCode(iot, ioh, bios_mem, sc->chip_type))) {
625		return error_code;
626	}
627
628	/*
629	 * Read microcode version and date.
630	 */
631	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_DATE, sc->cfg.mcode_date);
632	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_NUM, sc->cfg.mcode_version);
633
634	/*
635	 * If the PCI Configuration Command Register "Parity Error Response
636	 * Control" Bit was clear (0), then set the microcode variable
637	 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
638	 * to ignore DMA parity errors.
639	 */
640	if (sc->cfg.control_flag & CONTROL_FLAG_IGNORE_PERR) {
641		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
642		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG,
643					word | CONTROL_FLAG_IGNORE_PERR);
644	}
645
646	switch (sc->chip_type) {
647	case ADW_CHIP_ASC3550:
648		/*
649		 * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a
650		 * FIFO threshold of 128 bytes.
651		 * This register is only accessible to the host.
652		 */
653		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
654				START_CTL_EMFU | READ_CMD_MRM);
655		break;
656
657	case ADW_CHIP_ASC38C0800:
658		/*
659		 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
660		 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
661		 * cable detection and then we are able to read C_DET[3:0].
662		 *
663		 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
664		 * Microcode Default Value' section below.
665		 */
666		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,
667				ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1)
668				| ADW_DIS_TERM_DRV);
669
670		/*
671		 * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and
672		 * START_CTL_TH [3:2] bits for the default FIFO threshold.
673		 *
674		 * Note: ASC-38C0800 FIFO threshold has been changed to
675		 * 256 bytes.
676		 *
677		 * For DMA Errata #4 set the BC_THRESH_ENB bit.
678		 */
679		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
680						BC_THRESH_ENB | FIFO_THRESH_80B
681						| START_CTL_TH | READ_CMD_MRM);
682		break;
683
684	case ADW_CHIP_ASC38C1600:
685		/*
686		 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
687		 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
688		 * cable detection and then we are able to read C_DET[3:0].
689		 *
690		 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
691		 * Microcode Default Value' section below.
692		 */
693		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,
694				ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1)
695				| ADW_DIS_TERM_DRV);
696
697		/*
698		 * If the BIOS control flag AIPP (Asynchronous Information
699		 * Phase Protection) disable bit is not set, then set the
700		 * firmware 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to
701		 * enable AIPP checking and encoding.
702		 */
703		if ((sc->bios_ctrl & BIOS_CTRL_AIPP_DIS) == 0) {
704			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
705			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG,
706					word | CONTROL_FLAG_ENABLE_AIPP);
707		}
708
709		/*
710		 * For ASC-38C1600 use DMA_CFG0 default values:
711		 * FIFO_THRESH_80B [6:4], and START_CTL_TH [3:2].
712		 */
713		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
714				FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM);
715		break;
716	}
717
718	/*
719	 * Microcode operating variables for WDTR, SDTR, and command tag
720	 * queuing will be set in AdvInquiryHandling() based on what a
721	 * device reports it is capable of in Inquiry byte 7.
722	 *
723	 * If SCSI Bus Resets have been disabled, then directly set
724	 * SDTR and WDTR from the EEPROM configuration. This will allow
725	 * the BIOS and warm boot to work without a SCSI bus hang on
726	 * the Inquiry caused by host and target mismatched DTR values.
727	 * Without the SCSI Bus Reset, before an Inquiry a device can't
728	 * be assumed to be in Asynchronous, Narrow mode.
729	 */
730	if ((sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
731		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, sc->wdtr_able);
732		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sc->sdtr_able);
733	}
734
735	/*
736	 * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2,
737	 * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID
738	 * bitmask. These values determine the maximum SDTR speed negotiated
739	 * with a device.
740	 *
741	 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
742	 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
743	 * without determining here whether the device supports SDTR.
744	 */
745	switch (sc->chip_type) {
746	case ADW_CHIP_ASC3550:
747		word = 0;
748		for (tid = 0; tid <= ADW_MAX_TID; tid++) {
749			if (ADW_TID_TO_TIDMASK(tid) & sc->ultra_able) {
750				/* Set Ultra speed for TID 'tid'. */
751				word |= (0x3 << (4 * (tid % 4)));
752			} else {
753				/* Set Fast speed for TID 'tid'. */
754				word |= (0x2 << (4 * (tid % 4)));
755			}
756			/* Check if done with sdtr_speed1. */
757			if (tid == 3) {
758				ADW_WRITE_WORD_LRAM(iot, ioh,
759						ADW_MC_SDTR_SPEED1, word);
760				word = 0;
761			/* Check if done with sdtr_speed2. */
762			} else if (tid == 7) {
763				ADW_WRITE_WORD_LRAM(iot, ioh,
764						ADW_MC_SDTR_SPEED2, word);
765				word = 0;
766			/* Check if done with sdtr_speed3. */
767			} else if (tid == 11) {
768				ADW_WRITE_WORD_LRAM(iot, ioh,
769						ADW_MC_SDTR_SPEED3, word);
770				word = 0;
771			/* Check if done with sdtr_speed4. */
772			} else if (tid == 15) {
773				ADW_WRITE_WORD_LRAM(iot, ioh,
774						ADW_MC_SDTR_SPEED4, word);
775				/* End of loop. */
776			}
777		}
778
779		/*
780		 * Set microcode operating variable for the
781		 * disconnect per TID bitmask.
782		 */
783		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DISC_ENABLE,
784							sc->cfg.disc_enable);
785		break;
786
787	case ADW_CHIP_ASC38C0800:
788		/* FALLTHROUGH */
789	case ADW_CHIP_ASC38C1600:
790		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DISC_ENABLE,
791							sc->cfg.disc_enable);
792		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED1,
793							sc->sdtr_speed1);
794		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED2,
795							sc->sdtr_speed2);
796		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED3,
797							sc->sdtr_speed3);
798		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED4,
799							sc->sdtr_speed4);
800		break;
801	}
802
803
804	/*
805	 * Set SCSI_CFG0 Microcode Default Value.
806	 *
807	 * The microcode will set the SCSI_CFG0 register using this value
808	 * after it is started below.
809	 */
810	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG0,
811		ADW_PARITY_EN | ADW_QUEUE_128 | ADW_SEL_TMO_LONG |
812		ADW_OUR_ID_EN | sc->chip_scsi_id);
813
814
815	switch(sc->chip_type) {
816	case ADW_CHIP_ASC3550:
817		error_code = AdwASC3550Cabling(iot, ioh, &sc->cfg);
818		break;
819
820	case ADW_CHIP_ASC38C0800:
821		error_code = AdwASC38C0800Cabling(iot, ioh, &sc->cfg);
822		break;
823
824	case ADW_CHIP_ASC38C1600:
825		error_code = AdwASC38C1600Cabling(iot, ioh, &sc->cfg);
826		break;
827	}
828	if(error_code) {
829		return error_code;
830	}
831
832	/*
833	 * Set SEL_MASK Microcode Default Value
834	 *
835	 * The microcode will set the SEL_MASK register using this value
836	 * after it is started below.
837	 */
838	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SEL_MASK,
839		ADW_TID_TO_TIDMASK(sc->chip_scsi_id));
840
841	/*
842	 * Create and Initialize Host->RISC Carrier lists
843	 */
844	sc->carr_freelist = AdwInitCarriers(sc->sc_dmamap_carrier,
845						sc->sc_control->carriers);
846
847	/*
848	 * Set-up the Host->RISC Initiator Command Queue (ICQ).
849	 */
850
851	if ((sc->icq_sp = sc->carr_freelist) == NULL) {
852		return ADW_IERR_NO_CARRIER;
853	}
854	sc->carr_freelist = ADW_CARRIER_VADDR(sc,
855			ASC_GET_CARRP(sc->icq_sp->next_ba));
856
857	/*
858	 * The first command issued will be placed in the stopper carrier.
859	 */
860	sc->icq_sp->next_ba = htole32(ASC_CQ_STOPPER);
861
862	/*
863	 * Set RISC ICQ physical address start value.
864	 */
865	ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_ICQ, le32toh(sc->icq_sp->carr_ba));
866
867	/*
868	 * Initialize the COMMA register to the same value otherwise
869	 * the RISC will prematurely detect a command is available.
870	 */
871	if(sc->chip_type == ADW_CHIP_ASC38C1600) {
872		ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA,
873						le32toh(sc->icq_sp->carr_ba));
874	}
875
876	/*
877	 * Set-up the RISC->Host Initiator Response Queue (IRQ).
878	 */
879	if ((sc->irq_sp = sc->carr_freelist) == NULL) {
880		return ADW_IERR_NO_CARRIER;
881	}
882	sc->carr_freelist = ADW_CARRIER_VADDR(sc,
883			ASC_GET_CARRP(sc->irq_sp->next_ba));
884
885	/*
886	 * The first command completed by the RISC will be placed in
887	 * the stopper.
888	 *
889	 * Note: Set 'next_ba' to ASC_CQ_STOPPER. When the request is
890	 * completed the RISC will set the ASC_RQ_DONE bit.
891	 */
892	sc->irq_sp->next_ba = htole32(ASC_CQ_STOPPER);
893
894	/*
895	 * Set RISC IRQ physical address start value.
896	 */
897	ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IRQ, le32toh(sc->irq_sp->carr_ba));
898	sc->carr_pending_cnt = 0;
899
900	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_INTR_ENABLES,
901		(ADW_INTR_ENABLE_HOST_INTR | ADW_INTR_ENABLE_GLOBAL_INTR));
902	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, word);
903	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_PC, word);
904
905	/* finally, finally, gentlemen, start your engine */
906	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_RUN);
907
908	/*
909	 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
910	 * Resets should be performed. The RISC has to be running
911	 * to issue a SCSI Bus Reset.
912	 */
913	if (sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS)
914	{
915		/*
916		 * If the BIOS Signature is present in memory, restore the
917		 * BIOS Handshake Configuration Table and do not perform
918		 * a SCSI Bus Reset.
919		 */
920		if (bios_mem[(ADW_MC_BIOS_SIGNATURE - ADW_MC_BIOSMEM)/2] ==
921				0x55AA) {
922			/*
923			 * Restore per TID negotiated values.
924			 */
925			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
926					wdtr_able);
927			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,
928					sdtr_able);
929			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
930					tagqng_able);
931			for (tid = 0; tid <= ADW_MAX_TID; tid++) {
932				ADW_WRITE_BYTE_LRAM(iot, ioh,
933						ADW_MC_NUMBER_OF_MAX_CMD + tid,
934						max_cmd[tid]);
935			}
936		} else {
937			if (AdwResetCCB(sc) != ADW_TRUE) {
938				error_code = ADW_WARN_BUSRESET_ERROR;
939			}
940		}
941	}
942
943	return error_code;
944}
945
946
947int
948AdwRamSelfTest(bus_space_tag_t iot, bus_space_handle_t ioh, u_int8_t chip_type)
949{
950	int		i;
951	u_int8_t	byte;
952
953
954	if ((chip_type == ADW_CHIP_ASC38C0800) ||
955	    (chip_type == ADW_CHIP_ASC38C1600)) {
956		/*
957		 * RAM BIST (RAM Built-In Self Test)
958		 *
959		 * Address : I/O base + offset 0x38h register (byte).
960		 * Function: Bit 7-6(RW) : RAM mode
961		 *			    Normal Mode   : 0x00
962		 *			    Pre-test Mode : 0x40
963		 *			    RAM Test Mode : 0x80
964		 *	     Bit 5	 : unused
965		 *	     Bit 4(RO)   : Done bit
966		 *	     Bit 3-0(RO) : Status
967		 *			    Host Error    : 0x08
968		 *			    Int_RAM Error : 0x04
969		 *			    RISC Error    : 0x02
970		 *			    SCSI Error    : 0x01
971		 *			    No Error	  : 0x00
972		 *
973		 * Note: RAM BIST code should be put right here, before loading
974		 * the microcode and after saving the RISC memory BIOS region.
975		 */
976
977		/*
978		 * LRAM Pre-test
979		 *
980		 * Write PRE_TEST_MODE (0x40) to register and wait for
981		 * 10 milliseconds.
982		 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05),
983		 * return an error. Reset to NORMAL_MODE (0x00) and do again.
984		 * If cannot reset to NORMAL_MODE, return an error too.
985		 */
986		for (i = 0; i < 2; i++) {
987			ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST,
988					PRE_TEST_MODE);
989			 /* Wait for 10ms before reading back. */
990			AdwSleepMilliSecond(10);
991			byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
992			if ((byte & RAM_TEST_DONE) == 0 || (byte & 0x0F) !=
993					PRE_TEST_VALUE) {
994				return ADW_IERR_BIST_PRE_TEST;
995			}
996
997			ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST,
998								NORMAL_MODE);
999			/* Wait for 10ms before reading back. */
1000			AdwSleepMilliSecond(10);
1001			if (ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST)
1002			    != NORMAL_VALUE) {
1003				return ADW_IERR_BIST_PRE_TEST;
1004			}
1005		}
1006
1007		/*
1008		 * LRAM Test - It takes about 1.5 ms to run through the test.
1009		 *
1010		 * Write RAM_TEST_MODE (0x80) to register and wait for
1011		 * 10 milliseconds.
1012		 * If Done bit not set or Status not 0, save register byte,
1013		 * set the err_code, and return an error.
1014		 */
1015		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, RAM_TEST_MODE);
1016		/* Wait for 10ms before checking status. */
1017		AdwSleepMilliSecond(10);
1018
1019		byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
1020		if ((byte & RAM_TEST_DONE)==0 || (byte & RAM_TEST_STATUS)!=0) {
1021			/* Get here if Done bit not set or Status not 0. */
1022			return ADW_IERR_BIST_RAM_TEST;
1023		}
1024
1025		/* We need to reset back to normal mode after LRAM test passes*/
1026		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, NORMAL_MODE);
1027	}
1028
1029	return 0;
1030}
1031
1032
1033int
1034AdwLoadMCode(bus_space_tag_t iot, bus_space_handle_t ioh, u_int16_t *bios_mem, u_int8_t chip_type)
1035{
1036	const u_int8_t	*mcode_data;
1037	u_int32_t	 mcode_chksum;
1038	u_int16_t	 mcode_size;
1039	u_int32_t	sum;
1040	u_int16_t	code_sum;
1041	int		begin_addr;
1042	int		end_addr;
1043	int		word;
1044	int		adw_memsize;
1045	int		adw_mcode_expanded_size;
1046	int		i, j;
1047
1048
1049	switch(chip_type) {
1050	case ADW_CHIP_ASC3550:
1051		mcode_data = (const u_int8_t *)adw_asc3550_mcode_data.mcode_data;
1052		mcode_chksum = (u_int32_t)adw_asc3550_mcode_data.mcode_chksum;
1053		mcode_size = (u_int16_t)adw_asc3550_mcode_data.mcode_size;
1054		adw_memsize = ADW_3550_MEMSIZE;
1055		break;
1056
1057	case ADW_CHIP_ASC38C0800:
1058		mcode_data = (const u_int8_t *)adw_asc38C0800_mcode_data.mcode_data;
1059		mcode_chksum =(u_int32_t)adw_asc38C0800_mcode_data.mcode_chksum;
1060		mcode_size = (u_int16_t)adw_asc38C0800_mcode_data.mcode_size;
1061		adw_memsize = ADW_38C0800_MEMSIZE;
1062		break;
1063
1064	case ADW_CHIP_ASC38C1600:
1065		mcode_data = (const u_int8_t *)adw_asc38C1600_mcode_data.mcode_data;
1066		mcode_chksum =(u_int32_t)adw_asc38C1600_mcode_data.mcode_chksum;
1067		mcode_size = (u_int16_t)adw_asc38C1600_mcode_data.mcode_size;
1068		adw_memsize = ADW_38C1600_MEMSIZE;
1069		break;
1070
1071	default:
1072		return (EINVAL);
1073	}
1074
1075	/*
1076	 * Write the microcode image to RISC memory starting at address 0.
1077	 */
1078	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
1079
1080	/* Assume the following compressed format of the microcode buffer:
1081	 *
1082	 *  254 word (508 byte) table indexed by byte code followed
1083	 *  by the following byte codes:
1084	 *
1085	 *    1-Byte Code:
1086	 *	00: Emit word 0 in table.
1087	 *	01: Emit word 1 in table.
1088	 *	.
1089	 *	FD: Emit word 253 in table.
1090	 *
1091	 *    Multi-Byte Code:
1092	 *	FE WW WW: (3 byte code) Word to emit is the next word WW WW.
1093	 *	FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
1094	 */
1095	word = 0;
1096	for (i = 253 * 2; i < mcode_size; i++) {
1097		if (mcode_data[i] == 0xff) {
1098			for (j = 0; j < mcode_data[i + 1]; j++) {
1099				ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
1100				  (((u_int16_t)mcode_data[i + 3] << 8) |
1101				  mcode_data[i + 2]));
1102				word++;
1103			}
1104			i += 3;
1105		} else if (mcode_data[i] == 0xfe) {
1106			ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
1107			    (((u_int16_t)mcode_data[i + 2] << 8) |
1108			    mcode_data[i + 1]));
1109			i += 2;
1110			word++;
1111		} else {
1112			ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, (((u_int16_t)
1113			 mcode_data[(mcode_data[i] * 2) + 1] <<8) |
1114			 mcode_data[mcode_data[i] * 2]));
1115			word++;
1116		}
1117	}
1118
1119	/*
1120	 * Set 'word' for later use to clear the rest of memory and save
1121	 * the expanded mcode size.
1122	 */
1123	word *= 2;
1124	adw_mcode_expanded_size = word;
1125
1126	/*
1127	 * Clear the rest of the Internal RAM.
1128	 */
1129	for (; word < adw_memsize; word += 2) {
1130		ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, 0);
1131	}
1132
1133	/*
1134	 * Verify the microcode checksum.
1135	 */
1136	sum = 0;
1137	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
1138
1139	for (word = 0; word < adw_mcode_expanded_size; word += 2) {
1140		sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
1141	}
1142
1143	if (sum != mcode_chksum) {
1144		return ADW_IERR_MCODE_CHKSUM;
1145	}
1146
1147	/*
1148	 * Restore the RISC memory BIOS region.
1149	 */
1150	for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
1151		if(chip_type == ADW_CHIP_ASC3550) {
1152			ADW_WRITE_BYTE_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i),
1153								bios_mem[i]);
1154		} else {
1155			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i),
1156								bios_mem[i]);
1157		}
1158	}
1159
1160	/*
1161	 * Calculate and write the microcode code checksum to the microcode
1162	 * code checksum location ADW_MC_CODE_CHK_SUM (0x2C).
1163	 */
1164	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, begin_addr);
1165	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_END_ADDR, end_addr);
1166	code_sum = 0;
1167	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, begin_addr);
1168	for (word = begin_addr; word < end_addr; word += 2) {
1169		code_sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
1170	}
1171	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CODE_CHK_SUM, code_sum);
1172
1173	/*
1174	 * Set the chip type.
1175	 */
1176	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CHIP_TYPE, chip_type);
1177
1178	return 0;
1179}
1180
1181
1182int
1183AdwASC3550Cabling(bus_space_tag_t iot, bus_space_handle_t ioh, ADW_DVC_CFG *cfg)
1184{
1185	u_int16_t	scsi_cfg1;
1186
1187
1188	/*
1189	 * Determine SCSI_CFG1 Microcode Default Value.
1190	 *
1191	 * The microcode will set the SCSI_CFG1 register using this value
1192	 * after it is started below.
1193	 */
1194
1195	/* Read current SCSI_CFG1 Register value. */
1196	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
1197
1198	/*
1199	 * If all three connectors are in use in ASC3550, return an error.
1200	 */
1201	if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 ||
1202	     (scsi_cfg1 & CABLE_ILLEGAL_B) == 0) {
1203		return ADW_IERR_ILLEGAL_CONNECTION;
1204	}
1205
1206	/*
1207	 * If the cable is reversed all of the SCSI_CTRL register signals
1208	 * will be set. Check for and return an error if this condition is
1209	 * found.
1210	 */
1211	if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
1212		return ADW_IERR_REVERSED_CABLE;
1213	}
1214
1215	/*
1216	 * If this is a differential board and a single-ended device
1217	 * is attached to one of the connectors, return an error.
1218	 */
1219	if ((scsi_cfg1 & ADW_DIFF_MODE) &&
1220	    (scsi_cfg1 & ADW_DIFF_SENSE) == 0) {
1221		return ADW_IERR_SINGLE_END_DEVICE;
1222	}
1223
1224	/*
1225	 * If automatic termination control is enabled, then set the
1226	 * termination value based on a table listed in a_condor.h.
1227	 *
1228	 * If manual termination was specified with an EEPROM setting
1229	 * then 'termination' was set-up in AdwInitFromEEPROM() and
1230	 * is ready to be 'ored' into SCSI_CFG1.
1231	 */
1232	if (cfg->termination == 0) {
1233		/*
1234		 * The software always controls termination by setting
1235		 * TERM_CTL_SEL.
1236		 * If TERM_CTL_SEL were set to 0, the hardware would set
1237		 * termination.
1238		 */
1239		cfg->termination |= ADW_TERM_CTL_SEL;
1240
1241		switch(scsi_cfg1 & ADW_CABLE_DETECT) {
1242			/* TERM_CTL_H: on, TERM_CTL_L: on */
1243			case 0x3: case 0x7: case 0xB:
1244			case 0xD: case 0xE: case 0xF:
1245				cfg->termination |=
1246				(ADW_TERM_CTL_H | ADW_TERM_CTL_L);
1247				break;
1248
1249			/* TERM_CTL_H: on, TERM_CTL_L: off */
1250			case 0x1: case 0x5: case 0x9:
1251			case 0xA: case 0xC:
1252				cfg->termination |= ADW_TERM_CTL_H;
1253				break;
1254
1255			/* TERM_CTL_H: off, TERM_CTL_L: off */
1256			case 0x2: case 0x6:
1257				break;
1258		}
1259	}
1260
1261	/*
1262	 * Clear any set TERM_CTL_H and TERM_CTL_L bits.
1263	 */
1264	scsi_cfg1 &= ~ADW_TERM_CTL;
1265
1266	/*
1267	 * Invert the TERM_CTL_H and TERM_CTL_L bits and then
1268	 * set 'scsi_cfg1'. The TERM_POL bit does not need to be
1269	 * referenced, because the hardware internally inverts
1270	 * the Termination High and Low bits if TERM_POL is set.
1271	 */
1272	scsi_cfg1 |= (ADW_TERM_CTL_SEL | (~cfg->termination & ADW_TERM_CTL));
1273
1274	/*
1275	 * Set SCSI_CFG1 Microcode Default Value
1276	 *
1277	 * Set filter value and possibly modified termination control
1278	 * bits in the Microcode SCSI_CFG1 Register Value.
1279	 *
1280	 * The microcode will set the SCSI_CFG1 register using this value
1281	 * after it is started below.
1282	 */
1283	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1,
1284						ADW_FLTR_DISABLE | scsi_cfg1);
1285
1286	/*
1287	 * Set MEM_CFG Microcode Default Value
1288	 *
1289	 * The microcode will set the MEM_CFG register using this value
1290	 * after it is started below.
1291	 *
1292	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
1293	 * are defined.
1294	 *
1295	 * ASC-3550 has 8KB internal memory.
1296	 */
1297	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
1298						ADW_BIOS_EN | ADW_RAM_SZ_8KB);
1299
1300	return 0;
1301}
1302
1303
1304int
1305AdwASC38C0800Cabling(bus_space_tag_t iot, bus_space_handle_t ioh, ADW_DVC_CFG *cfg)
1306{
1307	u_int16_t	scsi_cfg1;
1308
1309
1310	/*
1311	 * Determine SCSI_CFG1 Microcode Default Value.
1312	 *
1313	 * The microcode will set the SCSI_CFG1 register using this value
1314	 * after it is started below.
1315	 */
1316
1317	/* Read current SCSI_CFG1 Register value. */
1318	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
1319
1320	/*
1321	 * If the cable is reversed all of the SCSI_CTRL register signals
1322	 * will be set. Check for and return an error if this condition is
1323	 * found.
1324	 */
1325	if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
1326		return ADW_IERR_REVERSED_CABLE;
1327	}
1328
1329	/*
1330	 * All kind of combinations of devices attached to one of four
1331	 * connectors are acceptable except HVD device attached.
1332	 * For example, LVD device can be attached to SE connector while
1333	 * SE device attached to LVD connector.
1334	 * If LVD device attached to SE connector, it only runs up to
1335	 * Ultra speed.
1336	 *
1337	 * If an HVD device is attached to one of LVD connectors, return
1338	 * an error.
1339	 * However, there is no way to detect HVD device attached to
1340	 * SE connectors.
1341	 */
1342	if (scsi_cfg1 & ADW_HVD) {
1343		return ADW_IERR_HVD_DEVICE;
1344	}
1345
1346	/*
1347	 * If either SE or LVD automatic termination control is enabled, then
1348	 * set the termination value based on a table listed in a_condor.h.
1349	 *
1350	 * If manual termination was specified with an EEPROM setting then
1351	 * 'termination' was set-up in AdwInitFromEEPROM() and is ready
1352	 * to be 'ored' into SCSI_CFG1.
1353	 */
1354	if ((cfg->termination & ADW_TERM_SE) == 0) {
1355		/* SE automatic termination control is enabled. */
1356		switch(scsi_cfg1 & ADW_C_DET_SE) {
1357			/* TERM_SE_HI: on, TERM_SE_LO: on */
1358			case 0x1: case 0x2: case 0x3:
1359				cfg->termination |= ADW_TERM_SE;
1360				break;
1361
1362			/* TERM_SE_HI: on, TERM_SE_LO: off */
1363			case 0x0:
1364				cfg->termination |= ADW_TERM_SE_HI;
1365				break;
1366		}
1367	}
1368
1369	if ((cfg->termination & ADW_TERM_LVD) == 0) {
1370		/* LVD automatic termination control is enabled. */
1371		switch(scsi_cfg1 & ADW_C_DET_LVD) {
1372			/* TERM_LVD_HI: on, TERM_LVD_LO: on */
1373			case 0x4: case 0x8: case 0xC:
1374				cfg->termination |= ADW_TERM_LVD;
1375				break;
1376
1377			/* TERM_LVD_HI: off, TERM_LVD_LO: off */
1378			case 0x0:
1379				break;
1380		}
1381	}
1382
1383	/*
1384	 * Clear any set TERM_SE and TERM_LVD bits.
1385	 */
1386	scsi_cfg1 &= (~ADW_TERM_SE & ~ADW_TERM_LVD);
1387
1388	/*
1389	 * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'.
1390	 */
1391	scsi_cfg1 |= (~cfg->termination & 0xF0);
1392
1393	/*
1394	 * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and
1395	 * HVD/LVD/SE bits and set possibly modified termination control bits
1396	 * in the Microcode SCSI_CFG1 Register Value.
1397	 */
1398	scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV &
1399					~ADW_TERM_POL & ~ADW_HVD_LVD_SE);
1400
1401	/*
1402	 * Set SCSI_CFG1 Microcode Default Value
1403	 *
1404	 * Set possibly modified termination control and reset DIS_TERM_DRV
1405	 * bits in the Microcode SCSI_CFG1 Register Value.
1406	 *
1407	 * The microcode will set the SCSI_CFG1 register using this value
1408	 * after it is started below.
1409	 */
1410	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
1411
1412	/*
1413	 * Set MEM_CFG Microcode Default Value
1414	 *
1415	 * The microcode will set the MEM_CFG register using this value
1416	 * after it is started below.
1417	 *
1418	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
1419	 * are defined.
1420	 *
1421	 * ASC-38C0800 has 16KB internal memory.
1422	 */
1423	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
1424						ADW_BIOS_EN | ADW_RAM_SZ_16KB);
1425
1426	return 0;
1427}
1428
1429
1430int
1431AdwASC38C1600Cabling(bus_space_tag_t iot, bus_space_handle_t ioh, ADW_DVC_CFG *cfg)
1432{
1433	u_int16_t	scsi_cfg1;
1434
1435
1436	/*
1437	 * Determine SCSI_CFG1 Microcode Default Value.
1438	 *
1439	 * The microcode will set the SCSI_CFG1 register using this value
1440	 * after it is started below.
1441	 * Each ASC-38C1600 function has only two cable detect bits.
1442	 * The bus mode override bits are in IOPB_SOFT_OVER_WR.
1443	 */
1444
1445	/* Read current SCSI_CFG1 Register value. */
1446	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
1447
1448	/*
1449	 * If the cable is reversed all of the SCSI_CTRL register signals
1450	 * will be set. Check for and return an error if this condition is
1451	 * found.
1452	 */
1453	if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
1454		return ADW_IERR_REVERSED_CABLE;
1455	}
1456
1457	/*
1458	 * Each ASC-38C1600 function has two connectors. Only an HVD device
1459	 * cannot be connected to either connector. An LVD device or SE device
1460	 * may be connected to either connector. If an SE device is connected,
1461	 * then at most Ultra speed (20 MHz) can be used on both connectors.
1462	 *
1463	 * If an HVD device is attached, return an error.
1464	 */
1465	if (scsi_cfg1 & ADW_HVD) {
1466		return ADW_IERR_HVD_DEVICE;
1467	}
1468
1469	/*
1470	 * Each function in the ASC-38C1600 uses only the SE cable detect and
1471	 * termination because there are two connectors for each function.
1472	 * Each function may use either LVD or SE mode.
1473	 * Corresponding the SE automatic termination control EEPROM bits are
1474	 * used for each function.
1475	 * Each function has its own EEPROM. If SE automatic control is enabled
1476	 * for the function, then set the termination value based on a table
1477	 * listed in adwlib.h.
1478	 *
1479	 * If manual termination is specified in the EEPROM for the function,
1480	 * then 'termination' was set-up in AdwInitFromEEPROM() and is
1481	 * ready to be 'ored' into SCSI_CFG1.
1482	 */
1483	if ((cfg->termination & ADW_TERM_SE) == 0) {
1484		/* SE automatic termination control is enabled. */
1485		switch(scsi_cfg1 & ADW_C_DET_SE) {
1486			/* TERM_SE_HI: on, TERM_SE_LO: on */
1487			case 0x1: case 0x2: case 0x3:
1488				cfg->termination |= ADW_TERM_SE;
1489				break;
1490
1491			case 0x0:
1492#if 0
1493	/* !!!!TODO!!!! */
1494				if (ASC_PCI_ID2FUNC(cfg->pci_slot_info) == 0) {
1495				/* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */
1496				}
1497				else
1498#endif
1499				{
1500				/* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */
1501					cfg->termination |= ADW_TERM_SE_HI;
1502				}
1503				break;
1504			}
1505	}
1506
1507	/*
1508	 * Clear any set TERM_SE bits.
1509	 */
1510	scsi_cfg1 &= ~ADW_TERM_SE;
1511
1512	/*
1513	 * Invert the TERM_SE bits and then set 'scsi_cfg1'.
1514	 */
1515	scsi_cfg1 |= (~cfg->termination & ADW_TERM_SE);
1516
1517	/*
1518	 * Clear Big Endian and Terminator Polarity bits and set possibly
1519	 * modified termination control bits in the Microcode SCSI_CFG1
1520	 * Register Value.
1521	 */
1522	scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV & ~ADW_TERM_POL);
1523
1524	/*
1525	 * Set SCSI_CFG1 Microcode Default Value
1526	 *
1527	 * Set possibly modified termination control bits in the Microcode
1528	 * SCSI_CFG1 Register Value.
1529	 *
1530	 * The microcode will set the SCSI_CFG1 register using this value
1531	 * after it is started below.
1532	 */
1533	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
1534
1535	/*
1536	 * Set MEM_CFG Microcode Default Value
1537	 *
1538	 * The microcode will set the MEM_CFG register using this value
1539	 * after it is started below.
1540	 *
1541	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
1542	 * are defined.
1543	 *
1544	 * ASC-38C1600 has 32KB internal memory.
1545	 */
1546	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
1547						ADW_BIOS_EN | ADW_RAM_SZ_32KB);
1548
1549	return 0;
1550}
1551
1552
1553/*
1554 * Read EEPROM configuration into the specified buffer.
1555 *
1556 * Return a checksum based on the EEPROM configuration read.
1557 */
1558static u_int16_t
1559AdwGetEEPROMConfig(bus_space_tag_t iot, bus_space_handle_t ioh, ADW_EEPROM *cfg_buf)
1560{
1561	u_int16_t	       wval, chksum;
1562	u_int16_t	       *wbuf;
1563	int		    eep_addr;
1564
1565
1566	wbuf = (u_int16_t *) cfg_buf;
1567	chksum = 0;
1568
1569	for (eep_addr = ASC_EEP_DVC_CFG_BEGIN;
1570		eep_addr < ASC_EEP_DVC_CFG_END;
1571		eep_addr++, wbuf++) {
1572		wval = AdwReadEEPWord(iot, ioh, eep_addr);
1573		chksum += wval;
1574		*wbuf = wval;
1575	}
1576
1577	*wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
1578	wbuf++;
1579	for (eep_addr = ASC_EEP_DVC_CTL_BEGIN;
1580			eep_addr < ASC_EEP_MAX_WORD_ADDR;
1581			eep_addr++, wbuf++) {
1582		*wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
1583	}
1584
1585	return chksum;
1586}
1587
1588
1589/*
1590 * Read the EEPROM from specified location
1591 */
1592static u_int16_t
1593AdwReadEEPWord(bus_space_tag_t iot, bus_space_handle_t ioh, int eep_word_addr)
1594{
1595	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
1596		ASC_EEP_CMD_READ | eep_word_addr);
1597	AdwWaitEEPCmd(iot, ioh);
1598
1599	return ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_DATA);
1600}
1601
1602
1603/*
1604 * Wait for EEPROM command to complete
1605 */
1606static void
1607AdwWaitEEPCmd(bus_space_tag_t iot, bus_space_handle_t ioh)
1608{
1609	int eep_delay_ms;
1610
1611
1612	for (eep_delay_ms = 0; eep_delay_ms < ASC_EEP_DELAY_MS; eep_delay_ms++){
1613		if (ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD) &
1614				ASC_EEP_CMD_DONE) {
1615			break;
1616		}
1617		AdwSleepMilliSecond(1);
1618	}
1619
1620	(void)ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD);
1621}
1622
1623
1624/*
1625 * Write the EEPROM from 'cfg_buf'.
1626 */
1627static void
1628AdwSetEEPROMConfig(bus_space_tag_t iot, bus_space_handle_t ioh, ADW_EEPROM *cfg_buf)
1629{
1630	u_int16_t *wbuf;
1631	u_int16_t addr, chksum;
1632
1633
1634	wbuf = (u_int16_t *) cfg_buf;
1635	chksum = 0;
1636
1637	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
1638	AdwWaitEEPCmd(iot, ioh);
1639
1640	/*
1641	 * Write EEPROM from word 0 to word 20
1642	 */
1643	for (addr = ASC_EEP_DVC_CFG_BEGIN;
1644	     addr < ASC_EEP_DVC_CFG_END; addr++, wbuf++) {
1645		chksum += *wbuf;
1646		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
1647		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
1648				ASC_EEP_CMD_WRITE | addr);
1649		AdwWaitEEPCmd(iot, ioh);
1650		AdwSleepMilliSecond(ASC_EEP_DELAY_MS);
1651	}
1652
1653	/*
1654	 * Write EEPROM checksum at word 21
1655	 */
1656	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, chksum);
1657	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
1658			ASC_EEP_CMD_WRITE | addr);
1659	AdwWaitEEPCmd(iot, ioh);
1660	wbuf++;        /* skip over check_sum */
1661
1662	/*
1663	 * Write EEPROM OEM name at words 22 to 29
1664	 */
1665	for (addr = ASC_EEP_DVC_CTL_BEGIN;
1666	     addr < ASC_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
1667		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
1668		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
1669				ASC_EEP_CMD_WRITE | addr);
1670		AdwWaitEEPCmd(iot, ioh);
1671	}
1672
1673	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
1674			ASC_EEP_CMD_WRITE_DISABLE);
1675	AdwWaitEEPCmd(iot, ioh);
1676
1677	return;
1678}
1679
1680
1681/*
1682 * AdwExeScsiQueue() - Send a request to the RISC microcode program.
1683 *
1684 *   Allocate a carrier structure, point the carrier to the ADW_SCSI_REQ_Q,
1685 *   add the carrier to the ICQ (Initiator Command Queue), and tickle the
1686 *   RISC to notify it a new command is ready to be executed.
1687 *
1688 * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be
1689 * set to SCSI_MAX_RETRY.
1690 *
1691 * Return:
1692 *      ADW_SUCCESS(1) - The request was successfully queued.
1693 *      ADW_BUSY(0) -    Resource unavailable; Retry again after pending
1694 *                       request completes.
1695 *      ADW_ERROR(-1) -  Invalid ADW_SCSI_REQ_Q request structure
1696 *                       host IC error.
1697 */
1698int
1699AdwExeScsiQueue(ADW_SOFTC *sc, ADW_SCSI_REQ_Q *scsiq)
1700{
1701	bus_space_tag_t iot = sc->sc_iot;
1702	bus_space_handle_t ioh = sc->sc_ioh;
1703	ADW_CCB		*ccb;
1704	u_int32_t	req_paddr;
1705	ADW_CARRIER	*new_carrp;
1706
1707	/*
1708	 * The ADW_SCSI_REQ_Q 'target_id' field should never exceed ADW_MAX_TID.
1709	 */
1710	if (scsiq->target_id > ADW_MAX_TID) {
1711		scsiq->host_status = QHSTA_M_INVALID_DEVICE;
1712		scsiq->done_status = QD_WITH_ERROR;
1713		return ADW_ERROR;
1714	}
1715
1716	/*
1717	 * Begin of CRITICAL SECTION: Must be protected within splbio/splx pair
1718	 */
1719
1720	ccb = adw_ccb_phys_kv(sc, scsiq->ccb_ptr);
1721
1722	/*
1723	 * Allocate a carrier and initialize fields.
1724	 */
1725	if ((new_carrp = sc->carr_freelist) == NULL) {
1726		return ADW_BUSY;
1727	}
1728	sc->carr_freelist = ADW_CARRIER_VADDR(sc,
1729			ASC_GET_CARRP(new_carrp->next_ba));
1730	sc->carr_pending_cnt++;
1731
1732	/*
1733	 * Set the carrier to be a stopper by setting 'next_ba'
1734	 * to the stopper value. The current stopper will be changed
1735	 * below to point to the new stopper.
1736	 */
1737	new_carrp->next_ba = htole32(ASC_CQ_STOPPER);
1738
1739	req_paddr = sc->sc_dmamap_control->dm_segs[0].ds_addr +
1740		ADW_CCB_OFF(ccb) + offsetof(struct adw_ccb, scsiq);
1741
1742	/* Save physical address of ADW_SCSI_REQ_Q and Carrier. */
1743	scsiq->scsiq_rptr = htole32(req_paddr);
1744
1745	/*
1746	 * Every ADV_CARR_T.carr_ba is byte swapped to little-endian
1747	 * order during initialization.
1748	 */
1749	scsiq->carr_ba = sc->icq_sp->carr_ba;
1750	scsiq->carr_va = sc->icq_sp->carr_ba;
1751
1752	/*
1753	 * Use the current stopper to send the ADW_SCSI_REQ_Q command to
1754	 * the microcode. The newly allocated stopper will become the new
1755	 * stopper.
1756	 */
1757	sc->icq_sp->areq_ba = htole32(req_paddr);
1758
1759	/*
1760	 * Set the 'next_ba' pointer for the old stopper to be the
1761	 * physical address of the new stopper. The RISC can only
1762	 * follow physical addresses.
1763	 */
1764	sc->icq_sp->next_ba = new_carrp->carr_ba;
1765
1766#if ADW_DEBUG
1767	printf("icq 0x%x, 0x%x, 0x%x, 0x%x\n",
1768			sc->icq_sp->carr_id,
1769			sc->icq_sp->carr_ba,
1770			sc->icq_sp->areq_ba,
1771			sc->icq_sp->next_ba);
1772#endif
1773	/*
1774	 * Set the host adapter stopper pointer to point to the new carrier.
1775	 */
1776	sc->icq_sp = new_carrp;
1777
1778	if (sc->chip_type == ADW_CHIP_ASC3550 ||
1779	    sc->chip_type == ADW_CHIP_ASC38C0800) {
1780		/*
1781		 * Tickle the RISC to tell it to read its Command Queue Head
1782		 * pointer.
1783		 */
1784		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_A);
1785		if (sc->chip_type == ADW_CHIP_ASC3550) {
1786			/*
1787			 * Clear the tickle value. In the ASC-3550 the RISC flag
1788			 * command 'clr_tickle_a' does not work unless the host
1789			 * value is cleared.
1790			 */
1791			ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE,
1792					ADW_TICKLE_NOP);
1793		}
1794	} else if (sc->chip_type == ADW_CHIP_ASC38C1600) {
1795		/*
1796		 * Notify the RISC a carrier is ready by writing the physical
1797		 * address of the new carrier stopper to the COMMA register.
1798		 */
1799		ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA,
1800				le32toh(new_carrp->carr_ba));
1801	}
1802
1803	/*
1804	 * End of CRITICAL SECTION: Must be protected within splbio/splx pair
1805	 */
1806
1807	return ADW_SUCCESS;
1808}
1809
1810
1811void
1812AdwResetChip(bus_space_tag_t iot, bus_space_handle_t ioh)
1813{
1814
1815	/*
1816	 * Reset Chip.
1817	 */
1818	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
1819			ADW_CTRL_REG_CMD_RESET);
1820	AdwSleepMilliSecond(100);
1821	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
1822			ADW_CTRL_REG_CMD_WR_IO_REG);
1823}
1824
1825
1826/*
1827 * Reset SCSI Bus and purge all outstanding requests.
1828 *
1829 * Return Value:
1830 *      ADW_TRUE(1) -   All requests are purged and SCSI Bus is reset.
1831 *      ADW_FALSE(0) -  Microcode command failed.
1832 *      ADW_ERROR(-1) - Microcode command timed-out. Microcode or IC
1833 *                      may be hung which requires driver recovery.
1834 */
1835int
1836AdwResetCCB(ADW_SOFTC *sc)
1837{
1838	int	    status;
1839
1840	/*
1841	 * Send the SCSI Bus Reset idle start idle command which asserts
1842	 * the SCSI Bus Reset signal.
1843	 */
1844	status = AdwSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_START, 0L);
1845	if (status != ADW_TRUE) {
1846		return status;
1847	}
1848
1849	/*
1850	 * Delay for the specified SCSI Bus Reset hold time.
1851	 *
1852	 * The hold time delay is done on the host because the RISC has no
1853	 * microsecond accurate timer.
1854	 */
1855	AdwDelayMicroSecond((u_int16_t) ASC_SCSI_RESET_HOLD_TIME_US);
1856
1857	/*
1858	 * Send the SCSI Bus Reset end idle command which de-asserts
1859	 * the SCSI Bus Reset signal and purges any pending requests.
1860	 */
1861	status = AdwSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_END, 0L);
1862	if (status != ADW_TRUE) {
1863		return status;
1864	}
1865
1866	AdwSleepMilliSecond((u_int32_t) sc->scsi_reset_wait * 1000);
1867
1868	return status;
1869}
1870
1871
1872/*
1873 * Reset chip and SCSI Bus.
1874 *
1875 * Return Value:
1876 *      ADW_TRUE(1) -   Chip re-initialization and SCSI Bus Reset successful.
1877 *      ADW_FALSE(0) -  Chip re-initialization and SCSI Bus Reset failure.
1878 */
1879int
1880AdwResetSCSIBus(ADW_SOFTC *sc)
1881{
1882	bus_space_tag_t iot = sc->sc_iot;
1883	bus_space_handle_t ioh = sc->sc_ioh;
1884	int		status;
1885	u_int16_t	wdtr_able, sdtr_able, tagqng_able;
1886	u_int16_t	ppr_able = 0; /* XXX: gcc */
1887	u_int8_t	tid, max_cmd[ADW_MAX_TID + 1];
1888	u_int16_t	bios_sig;
1889
1890
1891	/*
1892	 * Save current per TID negotiated values.
1893	 */
1894	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
1895	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
1896	if (sc->chip_type == ADW_CHIP_ASC38C1600) {
1897		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
1898	}
1899	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
1900	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
1901		ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
1902			max_cmd[tid]);
1903	}
1904
1905	/*
1906	 * Force the AdwInitAscDriver() function to perform a SCSI Bus Reset
1907	 * by clearing the BIOS signature word.
1908	 * The initialization functions assumes a SCSI Bus Reset is not
1909	 * needed if the BIOS signature word is present.
1910	 */
1911	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, bios_sig);
1912	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, 0);
1913
1914	/*
1915	 * Stop chip and reset it.
1916	 */
1917	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_STOP);
1918	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
1919			ADW_CTRL_REG_CMD_RESET);
1920	AdwSleepMilliSecond(100);
1921	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
1922			ADW_CTRL_REG_CMD_WR_IO_REG);
1923
1924	/*
1925	 * Reset Adv Library error code, if any, and try
1926	 * re-initializing the chip.
1927	 * Then translate initialization return value to status value.
1928	 */
1929	status = (AdwInitDriver(sc) == 0)? ADW_TRUE : ADW_FALSE;
1930
1931	/*
1932	 * Restore the BIOS signature word.
1933	 */
1934	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, bios_sig);
1935
1936	/*
1937	 * Restore per TID negotiated values.
1938	 */
1939	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
1940	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
1941	if (sc->chip_type == ADW_CHIP_ASC38C1600) {
1942		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
1943	}
1944	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
1945	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
1946		ADW_WRITE_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
1947			max_cmd[tid]);
1948	}
1949
1950	return status;
1951}
1952
1953
1954/*
1955 * Adv Library Interrupt Service Routine
1956 *
1957 *  This function is called by a driver's interrupt service routine.
1958 *  The function disables and re-enables interrupts.
1959 *
1960 *  When a microcode idle command is completed, the ADV_DVC_VAR
1961 *  'idle_cmd_done' field is set to ADW_TRUE.
1962 *
1963 *  Note: AdwISR() can be called when interrupts are disabled or even
1964 *  when there is no hardware interrupt condition present. It will
1965 *  always check for completed idle commands and microcode requests.
1966 *  This is an important feature that shouldn't be changed because it
1967 *  allows commands to be completed from polling mode loops.
1968 *
1969 * Return:
1970 *   ADW_TRUE(1) - interrupt was pending
1971 *   ADW_FALSE(0) - no interrupt was pending
1972 */
1973int
1974AdwISR(ADW_SOFTC *sc)
1975{
1976	bus_space_tag_t iot = sc->sc_iot;
1977	bus_space_handle_t ioh = sc->sc_ioh;
1978	u_int8_t	int_stat;
1979	ADW_CARRIER	*free_carrp/*, *ccb_carr*/;
1980	u_int32_t	irq_next_pa;
1981	ADW_SCSI_REQ_Q	*scsiq;
1982	ADW_CCB		*ccb;
1983	int		s;
1984
1985
1986	s = splbio();
1987
1988	/* Reading the register clears the interrupt. */
1989	int_stat = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_INTR_STATUS_REG);
1990
1991	if ((int_stat & (ADW_INTR_STATUS_INTRA | ADW_INTR_STATUS_INTRB |
1992	     ADW_INTR_STATUS_INTRC)) == 0) {
1993		splx(s);
1994		return ADW_FALSE;
1995	}
1996
1997	/*
1998	 * Notify the driver of an asynchronous microcode condition by
1999	 * calling the ADV_DVC_VAR.async_callback function. The function
2000	 * is passed the microcode ADW_MC_INTRB_CODE byte value.
2001	 */
2002	if (int_stat & ADW_INTR_STATUS_INTRB) {
2003		u_int8_t intrb_code;
2004
2005		ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_INTRB_CODE, intrb_code);
2006
2007		if (sc->chip_type == ADW_CHIP_ASC3550 ||
2008	    	    sc->chip_type == ADW_CHIP_ASC38C0800) {
2009			if (intrb_code == ADV_ASYNC_CARRIER_READY_FAILURE &&
2010				sc->carr_pending_cnt != 0) {
2011				ADW_WRITE_BYTE_REGISTER(iot, ioh,
2012					IOPB_TICKLE, ADW_TICKLE_A);
2013				if (sc->chip_type == ADW_CHIP_ASC3550) {
2014					ADW_WRITE_BYTE_REGISTER(iot, ioh,
2015						IOPB_TICKLE, ADW_TICKLE_NOP);
2016				}
2017			}
2018		}
2019
2020		if (sc->async_callback != 0) {
2021		    (*(ADW_ASYNC_CALLBACK)sc->async_callback)(sc, intrb_code);
2022		}
2023	}
2024
2025	/*
2026	 * Check if the IRQ stopper carrier contains a completed request.
2027	 */
2028	while (((le32toh(irq_next_pa = sc->irq_sp->next_ba)) & ASC_RQ_DONE) != 0)
2029	{
2030#if ADW_DEBUG
2031		printf("irq 0x%x, 0x%x, 0x%x, 0x%x\n",
2032				sc->irq_sp->carr_id,
2033				sc->irq_sp->carr_ba,
2034				sc->irq_sp->areq_ba,
2035				sc->irq_sp->next_ba);
2036#endif
2037		/*
2038		 * Get a pointer to the newly completed ADW_SCSI_REQ_Q
2039		 * structure.
2040		 * The RISC will have set 'areq_ba' to a virtual address.
2041		 *
2042		 * The firmware will have copied the ASC_SCSI_REQ_Q.ccb_ptr
2043		 * field to the carrier ADV_CARR_T.areq_ba field.
2044		 * The conversion below complements the conversion of
2045		 * ASC_SCSI_REQ_Q.scsiq_ptr' in AdwExeScsiQueue().
2046		 */
2047		ccb = adw_ccb_phys_kv(sc, sc->irq_sp->areq_ba);
2048		scsiq = &ccb->scsiq;
2049		scsiq->ccb_ptr = sc->irq_sp->areq_ba;
2050
2051		/*
2052		 * Request finished with good status and the queue was not
2053		 * DMAed to host memory by the firmware. Set all status fields
2054		 * to indicate good status.
2055		 */
2056		if ((le32toh(irq_next_pa) & ASC_RQ_GOOD) != 0) {
2057			scsiq->done_status = QD_NO_ERROR;
2058			scsiq->host_status = scsiq->scsi_status = 0;
2059			scsiq->data_cnt = 0L;
2060		}
2061
2062		/*
2063		 * Advance the stopper pointer to the next carrier
2064		 * ignoring the lower four bits. Free the previous
2065		 * stopper carrier.
2066		 */
2067		free_carrp = sc->irq_sp;
2068		sc->irq_sp = ADW_CARRIER_VADDR(sc, ASC_GET_CARRP(irq_next_pa));
2069
2070		free_carrp->next_ba = (sc->carr_freelist == NULL) ? 0
2071					: sc->carr_freelist->carr_ba;
2072		sc->carr_freelist = free_carrp;
2073		sc->carr_pending_cnt--;
2074
2075		/*
2076		 * Clear request microcode control flag.
2077		 */
2078		scsiq->cntl = 0;
2079
2080		/*
2081		 * Check Condition handling
2082		 */
2083		/*
2084		 * If the command that completed was a SCSI INQUIRY and
2085		 * LUN 0 was sent the command, then process the INQUIRY
2086		 * command information for the device.
2087		 */
2088		if (scsiq->done_status == QD_NO_ERROR &&
2089		    scsiq->cdb[0] == INQUIRY &&
2090		    scsiq->target_lun == 0) {
2091			AdwInquiryHandling(sc, scsiq);
2092		}
2093
2094		/*
2095		 * Notify the driver of the completed request by passing
2096		 * the ADW_SCSI_REQ_Q pointer to its callback function.
2097		 */
2098		(*(ADW_ISR_CALLBACK)sc->isr_callback)(sc, scsiq);
2099		/*
2100		 * Note: After the driver callback function is called, 'scsiq'
2101		 * can no longer be referenced.
2102		 *
2103		 * Fall through and continue processing other completed
2104		 * requests...
2105		 */
2106	}
2107
2108	splx(s);
2109
2110	return ADW_TRUE;
2111}
2112
2113
2114/*
2115 * Send an idle command to the chip and wait for completion.
2116 *
2117 * Command completion is polled for once per microsecond.
2118 *
2119 * The function can be called from anywhere including an interrupt handler.
2120 * But the function is not re-entrant, so it uses the splbio/splx()
2121 * functions to prevent reentrancy.
2122 *
2123 * Return Values:
2124 *   ADW_TRUE - command completed successfully
2125 *   ADW_FALSE - command failed
2126 *   ADW_ERROR - command timed out
2127 */
2128int
2129AdwSendIdleCmd(ADW_SOFTC *sc, u_int16_t idle_cmd, u_int32_t idle_cmd_parameter)
2130{
2131	bus_space_tag_t iot = sc->sc_iot;
2132	bus_space_handle_t ioh = sc->sc_ioh;
2133	u_int16_t	result;
2134	u_int32_t	i, j, s;
2135
2136	s = splbio();
2137
2138	/*
2139	 * Clear the idle command status which is set by the microcode
2140	 * to a non-zero value to indicate when the command is completed.
2141	 */
2142	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_STATUS, (u_int16_t) 0);
2143
2144	/*
2145	 * Write the idle command value after the idle command parameter
2146	 * has been written to avoid a race condition. If the order is not
2147	 * followed, the microcode may process the idle command before the
2148	 * parameters have been written to LRAM.
2149	 */
2150	ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_PARAMETER,
2151			idle_cmd_parameter);
2152	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD, idle_cmd);
2153
2154	/*
2155	 * Tickle the RISC to tell it to process the idle command.
2156	 */
2157	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_B);
2158	if (sc->chip_type == ADW_CHIP_ASC3550) {
2159		/*
2160		 * Clear the tickle value. In the ASC-3550 the RISC flag
2161		 * command 'clr_tickle_b' does not work unless the host
2162		 * value is cleared.
2163		 */
2164		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_NOP);
2165	}
2166
2167	/* Wait for up to 100 millisecond for the idle command to timeout. */
2168	for (i = 0; i < SCSI_WAIT_100_MSEC; i++) {
2169		/* Poll once each microsecond for command completion. */
2170		for (j = 0; j < SCSI_US_PER_MSEC; j++) {
2171			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_STATUS,
2172									result);
2173			if (result != 0) {
2174				splx(s);
2175				return result;
2176			}
2177			AdwDelayMicroSecond(1);
2178		}
2179	}
2180
2181	splx(s);
2182	return ADW_ERROR;
2183}
2184
2185
2186/*
2187 * Inquiry Information Byte 7 Handling
2188 *
2189 * Handle SCSI Inquiry Command information for a device by setting
2190 * microcode operating variables that affect WDTR, SDTR, and Tag
2191 * Queuing.
2192 */
2193static void
2194AdwInquiryHandling(ADW_SOFTC *sc, ADW_SCSI_REQ_Q *scsiq)
2195{
2196#ifndef FAILSAFE
2197	bus_space_tag_t iot = sc->sc_iot;
2198	bus_space_handle_t ioh = sc->sc_ioh;
2199	u_int8_t		tid;
2200	struct scsipi_inquiry_data *inq;
2201	u_int16_t		tidmask;
2202	u_int16_t		cfg_word;
2203
2204
2205	/*
2206	 * AdwInquiryHandling() requires up to INQUIRY information Byte 7
2207	 * to be available.
2208	 *
2209	 * If less than 8 bytes of INQUIRY information were requested or less
2210	 * than 8 bytes were transferred, then return. cdb[4] is the request
2211	 * length and the ADW_SCSI_REQ_Q 'data_cnt' field is set by the
2212	 * microcode to the transfer residual count.
2213	 */
2214
2215	if (scsiq->cdb[4] < 8 || (scsiq->cdb[4] - scsiq->data_cnt) < 8) {
2216		return;
2217	}
2218
2219	tid = scsiq->target_id;
2220
2221	inq = (struct scsipi_inquiry_data *) scsiq->vdata_addr;
2222
2223	/*
2224	 * WDTR, SDTR, and Tag Queuing cannot be enabled for old devices.
2225	 */
2226	if (((inq->response_format & SID_RespDataFmt) < 2) /*SCSI-1 | CCS*/ &&
2227	    ((inq->version & SID_ANSII) < 2)) {
2228		return;
2229	} else {
2230		/*
2231		 * INQUIRY Byte 7 Handling
2232		 *
2233		 * Use a device's INQUIRY byte 7 to determine whether it
2234		 * supports WDTR, SDTR, and Tag Queuing. If the feature
2235		 * is enabled in the EEPROM and the device supports the
2236		 * feature, then enable it in the microcode.
2237		 */
2238
2239		tidmask = ADW_TID_TO_TIDMASK(tid);
2240
2241		/*
2242		 * Wide Transfers
2243		 *
2244		 * If the EEPROM enabled WDTR for the device and the device
2245		 * supports wide bus (16 bit) transfers, then turn on the
2246		 * device's 'wdtr_able' bit and write the new value to the
2247		 * microcode.
2248		 */
2249#ifdef SCSI_ADW_WDTR_DISABLE
2250	if(!(tidmask & SCSI_ADW_WDTR_DISABLE))
2251#endif /* SCSI_ADW_WDTR_DISABLE */
2252		if ((sc->wdtr_able & tidmask) && (inq->flags3 & SID_WBus16)) {
2253			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
2254					cfg_word);
2255			if ((cfg_word & tidmask) == 0) {
2256				cfg_word |= tidmask;
2257				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
2258						cfg_word);
2259
2260				/*
2261				 * Clear the microcode "SDTR negotiation" and
2262				 * "WDTR negotiation" done indicators for the
2263				 * target to cause it to negotiate with the new
2264				 * setting set above.
2265				 * WDTR when accepted causes the target to enter
2266				 * asynchronous mode, so SDTR must be negotiated
2267				 */
2268				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
2269						cfg_word);
2270				cfg_word &= ~tidmask;
2271				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
2272						cfg_word);
2273				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_DONE,
2274						cfg_word);
2275				cfg_word &= ~tidmask;
2276				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_DONE,
2277						cfg_word);
2278			}
2279		}
2280
2281		/*
2282		 * Synchronous Transfers
2283		 *
2284		 * If the EEPROM enabled SDTR for the device and the device
2285		 * supports synchronous transfers, then turn on the device's
2286		 * 'sdtr_able' bit. Write the new value to the microcode.
2287		 */
2288#ifdef SCSI_ADW_SDTR_DISABLE
2289	if(!(tidmask & SCSI_ADW_SDTR_DISABLE))
2290#endif /* SCSI_ADW_SDTR_DISABLE */
2291		if ((sc->sdtr_able & tidmask) && (inq->flags3 & SID_Sync)) {
2292			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,cfg_word);
2293			if ((cfg_word & tidmask) == 0) {
2294				cfg_word |= tidmask;
2295				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,
2296						cfg_word);
2297
2298				/*
2299				 * Clear the microcode "SDTR negotiation"
2300				 * done indicator for the target to cause it
2301				 * to negotiate with the new setting set above.
2302				 */
2303				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
2304						cfg_word);
2305				cfg_word &= ~tidmask;
2306				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
2307						cfg_word);
2308			}
2309		}
2310		/*
2311		 * If the Inquiry data included enough space for the SPI-3
2312		 * Clocking field, then check if DT mode is supported.
2313		 */
2314		if (sc->chip_type == ADW_CHIP_ASC38C1600 &&
2315		   (scsiq->cdb[4] >= 57 ||
2316		   (scsiq->cdb[4] - scsiq->data_cnt) >= 57)) {
2317			/*
2318			 * PPR (Parallel Protocol Request) Capable
2319			 *
2320			 * If the device supports DT mode, then it must be
2321			 * PPR capable.
2322			 * The PPR message will be used in place of the SDTR
2323			 * and WDTR messages to negotiate synchronous speed
2324			 * and offset, transfer width, and protocol options.
2325			 */
2326			if((inq->flags4 & SID_Clocking) & SID_CLOCKING_DT_ONLY){
2327				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE,
2328						sc->ppr_able);
2329				sc->ppr_able |= tidmask;
2330				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE,
2331						sc->ppr_able);
2332			}
2333		}
2334
2335		/*
2336		 * If the EEPROM enabled Tag Queuing for the device and the
2337		 * device supports Tag Queueing, then turn on the device's
2338		 * 'tagqng_enable' bit in the microcode and set the microcode
2339		 * maximum command count to the ADV_DVC_VAR 'max_dvc_qng'
2340		 * value.
2341		 *
2342		 * Tag Queuing is disabled for the BIOS which runs in polled
2343		 * mode and would see no benefit from Tag Queuing. Also by
2344		 * disabling Tag Queuing in the BIOS devices with Tag Queuing
2345		 * bugs will at least work with the BIOS.
2346		 */
2347#ifdef SCSI_ADW_TAGQ_DISABLE
2348	if(!(tidmask & SCSI_ADW_TAGQ_DISABLE))
2349#endif /* SCSI_ADW_TAGQ_DISABLE */
2350		if ((sc->tagqng_able & tidmask) && (inq->flags3 & SID_CmdQue)) {
2351			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
2352					cfg_word);
2353			cfg_word |= tidmask;
2354			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
2355					cfg_word);
2356
2357			ADW_WRITE_BYTE_LRAM(iot, ioh,
2358					ADW_MC_NUMBER_OF_MAX_CMD + tid,
2359					sc->max_dvc_qng);
2360		}
2361	}
2362#endif /* FAILSAFE */
2363}
2364
2365
2366static void
2367AdwSleepMilliSecond(u_int32_t n)
2368{
2369
2370	DELAY(n * 1000);
2371}
2372
2373
2374static void
2375AdwDelayMicroSecond(u_int32_t n)
2376{
2377
2378	DELAY(n);
2379}
2380
2381