1/*	$NetBSD: audio.c,v 1.257.2.3 2012/05/07 03:03:18 riz Exp $	*/
2
3/*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32/*
33 * Copyright (c) 1991-1993 Regents of the University of California.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 *    notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 *    notice, this list of conditions and the following disclaimer in the
43 *    documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 *    must display the following acknowledgement:
46 *	This product includes software developed by the Computer Systems
47 *	Engineering Group at Lawrence Berkeley Laboratory.
48 * 4. Neither the name of the University nor of the Laboratory may be used
49 *    to endorse or promote products derived from this software without
50 *    specific prior written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
56 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
57 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
58 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
60 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
61 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62 * SUCH DAMAGE.
63 */
64
65/*
66 * This is a (partially) SunOS-compatible /dev/audio driver for NetBSD.
67 *
68 * This code tries to do something half-way sensible with
69 * half-duplex hardware, such as with the SoundBlaster hardware.  With
70 * half-duplex hardware allowing O_RDWR access doesn't really make
71 * sense.  However, closing and opening the device to "turn around the
72 * line" is relatively expensive and costs a card reset (which can
73 * take some time, at least for the SoundBlaster hardware).  Instead
74 * we allow O_RDWR access, and provide an ioctl to set the "mode",
75 * i.e. playing or recording.
76 *
77 * If you write to a half-duplex device in record mode, the data is
78 * tossed.  If you read from the device in play mode, you get silence
79 * filled buffers at the rate at which samples are naturally
80 * generated.
81 *
82 * If you try to set both play and record mode on a half-duplex
83 * device, playing takes precedence.
84 */
85
86/*
87 * Locking: there are three locks.
88 *
89 * - sc_lock, provided by the underlying driver.  This is an adaptive lock,
90 *   returned in the second parameter to hw_if->get_locks().  It is known
91 *   as the "thread lock".
92 *
93 *   It serializes access to state in all places except the
94 *   driver's interrupt service routine.  This lock is taken from process
95 *   context (example: access to /dev/audio).  It is also taken from soft
96 *   interrupt handlers in this module, primarily to serialize delivery of
97 *   wakeups.  This lock may be used/provided by modules external to the
98 *   audio subsystem, so take care not to introduce a lock order problem.
99 *   LONG TERM SLEEPS MUST NOT OCCUR WITH THIS LOCK HELD.
100 *
101 * - sc_intr_lock, provided by the underlying driver.  This may be either a
102 *   spinlock (at IPL_SCHED or IPL_VM) or an adaptive lock (IPL_NONE),
103 *   returned in the first parameter to hw_if->get_locks().  It is known as
104 *   the "interrupt lock".
105 *
106 *   It provides atomic access to the device's hardware state, and to audio
107 *   channel data that may be accessed by the hardware driver's ISR.
108 *   In all places outside the ISR, sc_lock must be held before taking
109 *   sc_intr_lock.  This is to ensure that groups of hardware operations are
110 *   made atomically.  SLEEPS CANNOT OCCUR WITH THIS LOCK HELD.
111 *
112 * - sc_dvlock, private to this module.  This is a custom reader/writer lock
113 *   built on sc_lock and a condition variable.  Some operations release
114 *   sc_lock in order to allocate memory, to wait for in-flight I/O to
115 *   complete, to copy to/from user context, etc.  sc_dvlock serializes
116 *   changes to filters and audio device settings while a read/write to the
117 *   hardware is in progress.  A write lock is taken only under exceptional
118 *   circumstances, for example when opening /dev/audio or changing audio
119 *   parameters.  Long term sleeps and copy to/from user space may be done
120 *   with this lock held.
121 *
122 * List of hardware interface methods, and which locks are held when each
123 * is called by this module:
124 *
125 *	METHOD			INTR	THREAD  NOTES
126 *	----------------------- ------- -------	-------------------------
127 *	open 			x	x
128 *	close 			x	x
129 *	drain 			x	x
130 *	query_encoding		-	x
131 *	set_params 		-	x
132 *	round_blocksize		-	x
133 *	commit_settings		-	x
134 *	init_output 		x	x
135 *	init_input 		x	x
136 *	start_output 		x	x
137 *	start_input 		x	x
138 *	halt_output 		x	x
139 *	halt_input 		x	x
140 *	speaker_ctl 		x	x
141 *	getdev 			-	x
142 *	setfd 			-	x
143 *	set_port 		-	x
144 *	get_port 		-	x
145 *	query_devinfo 		-	x
146 *	allocm 			-	-	Called at attach time
147 *	freem 			-	-	Called at attach time
148 *	round_buffersize 	-	x
149 *	mappage 		-	-	Mem. unchanged after attach
150 *	get_props 		-	x
151 *	trigger_output 		x	x
152 *	trigger_input 		x	x
153 *	dev_ioctl 		-	x
154 *	get_locks 		-	-	Called at attach time
155 */
156
157#include <sys/cdefs.h>
158__KERNEL_RCSID(0, "$NetBSD: audio.c,v 1.257.2.3 2012/05/07 03:03:18 riz Exp $");
159
160#include "audio.h"
161#if NAUDIO > 0
162
163#include <sys/param.h>
164#include <sys/ioctl.h>
165#include <sys/fcntl.h>
166#include <sys/vnode.h>
167#include <sys/select.h>
168#include <sys/poll.h>
169#include <sys/kmem.h>
170#include <sys/malloc.h>
171#include <sys/proc.h>
172#include <sys/systm.h>
173#include <sys/syslog.h>
174#include <sys/kernel.h>
175#include <sys/signalvar.h>
176#include <sys/conf.h>
177#include <sys/audioio.h>
178#include <sys/device.h>
179#include <sys/intr.h>
180#include <sys/cpu.h>
181
182#include <dev/audio_if.h>
183#include <dev/audiovar.h>
184
185#include <machine/endian.h>
186
187/* #define AUDIO_DEBUG	1 */
188#ifdef AUDIO_DEBUG
189#define DPRINTF(x)	if (audiodebug) printf x
190#define DPRINTFN(n,x)	if (audiodebug>(n)) printf x
191int	audiodebug = AUDIO_DEBUG;
192#else
193#define DPRINTF(x)
194#define DPRINTFN(n,x)
195#endif
196
197#define ROUNDSIZE(x)	x &= -16	/* round to nice boundary */
198#define SPECIFIED(x)	(x != ~0)
199#define SPECIFIED_CH(x)	(x != (u_char)~0)
200
201/* #define AUDIO_PM_IDLE */
202#ifdef AUDIO_PM_IDLE
203int	audio_idle_timeout = 30;
204#endif
205
206int	audio_blk_ms = AUDIO_BLK_MS;
207
208int	audiosetinfo(struct audio_softc *, struct audio_info *);
209int	audiogetinfo(struct audio_softc *, struct audio_info *, int);
210
211int	audio_open(dev_t, struct audio_softc *, int, int, struct lwp *);
212int	audio_close(struct audio_softc *, int, int, struct lwp *);
213int	audio_read(struct audio_softc *, struct uio *, int);
214int	audio_write(struct audio_softc *, struct uio *, int);
215int	audio_ioctl(struct audio_softc *, u_long, void *, int, struct lwp *);
216int	audio_poll(struct audio_softc *, int, struct lwp *);
217int	audio_kqfilter(struct audio_softc *, struct knote *);
218paddr_t	audio_mmap(struct audio_softc *, off_t, int);
219
220int	mixer_open(dev_t, struct audio_softc *, int, int, struct lwp *);
221int	mixer_close(struct audio_softc *, int, int, struct lwp *);
222int	mixer_ioctl(struct audio_softc *, u_long, void *, int, struct lwp *);
223static	void mixer_remove(struct audio_softc *);
224static	void mixer_signal(struct audio_softc *);
225
226void	audio_init_record(struct audio_softc *);
227void	audio_init_play(struct audio_softc *);
228int	audiostartr(struct audio_softc *);
229int	audiostartp(struct audio_softc *);
230void	audio_rint(void *);
231void	audio_pint(void *);
232int	audio_check_params(struct audio_params *);
233
234void	audio_calc_blksize(struct audio_softc *, int);
235void	audio_fill_silence(struct audio_params *, uint8_t *, int);
236int	audio_silence_copyout(struct audio_softc *, int, struct uio *);
237
238void	audio_init_ringbuffer(struct audio_softc *,
239			      struct audio_ringbuffer *, int);
240int	audio_initbufs(struct audio_softc *);
241void	audio_calcwater(struct audio_softc *);
242int	audio_drain(struct audio_softc *);
243void	audio_clear(struct audio_softc *);
244void	audio_clear_intr_unlocked(struct audio_softc *sc);
245static inline void audio_pint_silence
246	(struct audio_softc *, struct audio_ringbuffer *, uint8_t *, int);
247
248int	audio_alloc_ring
249	(struct audio_softc *, struct audio_ringbuffer *, int, size_t);
250void	audio_free_ring(struct audio_softc *, struct audio_ringbuffer *);
251static int audio_setup_pfilters(struct audio_softc *, const audio_params_t *,
252				stream_filter_list_t *);
253static int audio_setup_rfilters(struct audio_softc *, const audio_params_t *,
254				stream_filter_list_t *);
255static void audio_stream_dtor(audio_stream_t *);
256static int audio_stream_ctor(audio_stream_t *, const audio_params_t *, int);
257static void stream_filter_list_append
258	(stream_filter_list_t *, stream_filter_factory_t,
259	 const audio_params_t *);
260static void stream_filter_list_prepend
261	(stream_filter_list_t *, stream_filter_factory_t,
262	 const audio_params_t *);
263static void stream_filter_list_set
264	(stream_filter_list_t *, int, stream_filter_factory_t,
265	 const audio_params_t *);
266int	audio_set_defaults(struct audio_softc *, u_int);
267
268int	audioprobe(device_t, cfdata_t, void *);
269void	audioattach(device_t, device_t, void *);
270int	audiodetach(device_t, int);
271int	audioactivate(device_t, enum devact);
272
273#ifdef AUDIO_PM_IDLE
274static void	audio_idle(void *);
275static void	audio_activity(device_t, devactive_t);
276#endif
277
278static bool	audio_suspend(device_t dv, const pmf_qual_t *);
279static bool	audio_resume(device_t dv, const pmf_qual_t *);
280static void	audio_volume_down(device_t);
281static void	audio_volume_up(device_t);
282static void	audio_volume_toggle(device_t);
283
284static void	audio_mixer_capture(struct audio_softc *);
285static void	audio_mixer_restore(struct audio_softc *);
286
287static int	audio_get_props(struct audio_softc *);
288static bool	audio_can_playback(struct audio_softc *);
289static bool	audio_can_capture(struct audio_softc *);
290
291static void	audio_softintr_rd(void *);
292static void	audio_softintr_wr(void *);
293
294static int	audio_enter(dev_t, krw_t, struct audio_softc **);
295static void	audio_exit(struct audio_softc *);
296static int	audio_waitio(struct audio_softc *, kcondvar_t *);
297
298struct portname {
299	const char *name;
300	int mask;
301};
302static const struct portname itable[] = {
303	{ AudioNmicrophone,	AUDIO_MICROPHONE },
304	{ AudioNline,		AUDIO_LINE_IN },
305	{ AudioNcd,		AUDIO_CD },
306	{ 0, 0 }
307};
308static const struct portname otable[] = {
309	{ AudioNspeaker,	AUDIO_SPEAKER },
310	{ AudioNheadphone,	AUDIO_HEADPHONE },
311	{ AudioNline,		AUDIO_LINE_OUT },
312	{ 0, 0 }
313};
314void	au_setup_ports(struct audio_softc *, struct au_mixer_ports *,
315			mixer_devinfo_t *, const struct portname *);
316int	au_set_gain(struct audio_softc *, struct au_mixer_ports *,
317			int, int);
318void	au_get_gain(struct audio_softc *, struct au_mixer_ports *,
319			u_int *, u_char *);
320int	au_set_port(struct audio_softc *, struct au_mixer_ports *,
321			u_int);
322int	au_get_port(struct audio_softc *, struct au_mixer_ports *);
323int	au_get_lr_value(struct audio_softc *, mixer_ctrl_t *,
324			int *, int *);
325int	au_set_lr_value(struct audio_softc *, mixer_ctrl_t *,
326			int, int);
327int	au_portof(struct audio_softc *, char *, int);
328
329typedef struct uio_fetcher {
330	stream_fetcher_t base;
331	struct uio *uio;
332	int usedhigh;
333	int last_used;
334} uio_fetcher_t;
335
336static void	uio_fetcher_ctor(uio_fetcher_t *, struct uio *, int);
337static int	uio_fetcher_fetch_to(struct audio_softc *, stream_fetcher_t *,
338				     audio_stream_t *, int);
339static int	null_fetcher_fetch_to(struct audio_softc *, stream_fetcher_t *,
340				      audio_stream_t *, int);
341
342dev_type_open(audioopen);
343dev_type_close(audioclose);
344dev_type_read(audioread);
345dev_type_write(audiowrite);
346dev_type_ioctl(audioioctl);
347dev_type_poll(audiopoll);
348dev_type_mmap(audiommap);
349dev_type_kqfilter(audiokqfilter);
350
351const struct cdevsw audio_cdevsw = {
352	audioopen, audioclose, audioread, audiowrite, audioioctl,
353	nostop, notty, audiopoll, audiommap, audiokqfilter, D_OTHER | D_MPSAFE
354};
355
356/* The default audio mode: 8 kHz mono mu-law */
357const struct audio_params audio_default = {
358	.sample_rate = 8000,
359	.encoding = AUDIO_ENCODING_ULAW,
360	.precision = 8,
361	.validbits = 8,
362	.channels = 1,
363};
364
365CFATTACH_DECL3_NEW(audio, sizeof(struct audio_softc),
366    audioprobe, audioattach, audiodetach, audioactivate, NULL, NULL,
367    DVF_DETACH_SHUTDOWN);
368
369extern struct cfdriver audio_cd;
370
371int
372audioprobe(device_t parent, cfdata_t match, void *aux)
373{
374	struct audio_attach_args *sa;
375
376	sa = aux;
377	DPRINTF(("audioprobe: type=%d sa=%p hw=%p\n",
378		 sa->type, sa, sa->hwif));
379	return (sa->type == AUDIODEV_TYPE_AUDIO) ? 1 : 0;
380}
381
382void
383audioattach(device_t parent, device_t self, void *aux)
384{
385	struct audio_softc *sc;
386	struct audio_attach_args *sa;
387	const struct audio_hw_if *hwp;
388	void *hdlp;
389	int error;
390	mixer_devinfo_t mi;
391	int iclass, mclass, oclass, rclass, props;
392	int record_master_found, record_source_found;
393	bool can_capture, can_playback;
394
395	sc = device_private(self);
396	sc->dev = self;
397	sa = aux;
398	hwp = sa->hwif;
399	hdlp = sa->hdl;
400
401	cv_init(&sc->sc_rchan, "audiord");
402	cv_init(&sc->sc_wchan, "audiowr");
403	cv_init(&sc->sc_lchan, "audiolk");
404
405	if (hwp == 0 || hwp->get_locks == 0) {
406		printf(": missing method\n");
407		panic("audioattach");
408	}
409
410	hwp->get_locks(hdlp, &sc->sc_intr_lock, &sc->sc_lock);
411
412#ifdef DIAGNOSTIC
413	if (hwp->query_encoding == 0 ||
414	    hwp->set_params == 0 ||
415	    (hwp->start_output == 0 && hwp->trigger_output == 0) ||
416	    (hwp->start_input == 0 && hwp->trigger_input == 0) ||
417	    hwp->halt_output == 0 ||
418	    hwp->halt_input == 0 ||
419	    hwp->getdev == 0 ||
420	    hwp->set_port == 0 ||
421	    hwp->get_port == 0 ||
422	    hwp->query_devinfo == 0 ||
423	    hwp->get_props == 0) {
424		printf(": missing method\n");
425		sc->hw_if = 0;
426		return;
427	}
428#endif
429
430	sc->hw_if = hwp;
431	sc->hw_hdl = hdlp;
432	sc->sc_dev = parent;
433	sc->sc_lastinfovalid = false;
434
435	mutex_enter(sc->sc_lock);
436	props = audio_get_props(sc);
437	mutex_exit(sc->sc_lock);
438
439	if (props & AUDIO_PROP_FULLDUPLEX)
440		aprint_normal(": full duplex");
441	else
442		aprint_normal(": half duplex");
443
444	if (props & AUDIO_PROP_PLAYBACK)
445		aprint_normal(", playback");
446	if (props & AUDIO_PROP_CAPTURE)
447		aprint_normal(", capture");
448	if (props & AUDIO_PROP_MMAP)
449		aprint_normal(", mmap");
450	if (props & AUDIO_PROP_INDEPENDENT)
451		aprint_normal(", independent");
452
453	aprint_naive("\n");
454	aprint_normal("\n");
455
456	mutex_enter(sc->sc_lock);
457	can_playback = audio_can_playback(sc);
458	can_capture = audio_can_capture(sc);
459 	mutex_exit(sc->sc_lock);
460
461	if (can_playback) {
462		error = audio_alloc_ring(sc, &sc->sc_pr,
463		    AUMODE_PLAY, AU_RING_SIZE);
464		if (error) {
465			sc->hw_if = NULL;
466			aprint_error("audio: could not allocate play buffer\n");
467			return;
468		}
469	}
470	if (can_capture) {
471		error = audio_alloc_ring(sc, &sc->sc_rr,
472		    AUMODE_RECORD, AU_RING_SIZE);
473		if (error) {
474			if (sc->sc_pr.s.start != 0)
475				audio_free_ring(sc, &sc->sc_pr);
476			sc->hw_if = NULL;
477			aprint_error("audio: could not allocate record buffer\n");
478			return;
479		}
480	}
481
482	sc->sc_lastgain = 128;
483
484	mutex_enter(sc->sc_lock);
485	error = audio_set_defaults(sc, 0);
486	mutex_exit(sc->sc_lock);
487	if (error != 0) {
488		aprint_error("audioattach: audio_set_defaults() failed\n");
489		sc->hw_if = NULL;
490		return;
491	}
492
493	sc->sc_sih_rd = softint_establish(SOFTINT_SERIAL | SOFTINT_MPSAFE,
494	    audio_softintr_rd, sc);
495	sc->sc_sih_wr = softint_establish(SOFTINT_SERIAL | SOFTINT_MPSAFE,
496	    audio_softintr_wr, sc);
497
498	iclass = mclass = oclass = rclass = -1;
499	sc->sc_inports.index = -1;
500	sc->sc_inports.master = -1;
501	sc->sc_inports.nports = 0;
502	sc->sc_inports.isenum = false;
503	sc->sc_inports.allports = 0;
504	sc->sc_inports.isdual = false;
505	sc->sc_inports.mixerout = -1;
506	sc->sc_inports.cur_port = -1;
507	sc->sc_outports.index = -1;
508	sc->sc_outports.master = -1;
509	sc->sc_outports.nports = 0;
510	sc->sc_outports.isenum = false;
511	sc->sc_outports.allports = 0;
512	sc->sc_outports.isdual = false;
513	sc->sc_outports.mixerout = -1;
514	sc->sc_outports.cur_port = -1;
515	sc->sc_monitor_port = -1;
516	/*
517	 * Read through the underlying driver's list, picking out the class
518	 * names from the mixer descriptions. We'll need them to decode the
519	 * mixer descriptions on the next pass through the loop.
520	 */
521	mutex_enter(sc->sc_lock);
522	for(mi.index = 0; ; mi.index++) {
523		if (hwp->query_devinfo(hdlp, &mi) != 0)
524			break;
525		 /*
526		  * The type of AUDIO_MIXER_CLASS merely introduces a class.
527		  * All the other types describe an actual mixer.
528		  */
529		if (mi.type == AUDIO_MIXER_CLASS) {
530			if (strcmp(mi.label.name, AudioCinputs) == 0)
531				iclass = mi.mixer_class;
532			if (strcmp(mi.label.name, AudioCmonitor) == 0)
533				mclass = mi.mixer_class;
534			if (strcmp(mi.label.name, AudioCoutputs) == 0)
535				oclass = mi.mixer_class;
536			if (strcmp(mi.label.name, AudioCrecord) == 0)
537				rclass = mi.mixer_class;
538		}
539	}
540	mutex_exit(sc->sc_lock);
541
542	/* Allocate save area.  Ensure non-zero allocation. */
543	sc->sc_nmixer_states = mi.index;
544	sc->sc_mixer_state = kmem_alloc(sizeof(mixer_ctrl_t) *
545	    sc->sc_nmixer_states + 1, KM_SLEEP);
546
547	/*
548	 * This is where we assign each control in the "audio" model, to the
549	 * underlying "mixer" control.  We walk through the whole list once,
550	 * assigning likely candidates as we come across them.
551	 */
552	record_master_found = 0;
553	record_source_found = 0;
554	mutex_enter(sc->sc_lock);
555	for(mi.index = 0; ; mi.index++) {
556		if (hwp->query_devinfo(hdlp, &mi) != 0)
557			break;
558		KASSERT(mi.index < sc->sc_nmixer_states);
559		if (mi.type == AUDIO_MIXER_CLASS)
560			continue;
561		if (mi.mixer_class == iclass) {
562			/*
563			 * AudioCinputs is only a fallback, when we don't
564			 * find what we're looking for in AudioCrecord, so
565			 * check the flags before accepting one of these.
566			 */
567			if (strcmp(mi.label.name, AudioNmaster) == 0
568			    && record_master_found == 0)
569				sc->sc_inports.master = mi.index;
570			if (strcmp(mi.label.name, AudioNsource) == 0
571			    && record_source_found == 0) {
572				if (mi.type == AUDIO_MIXER_ENUM) {
573				    int i;
574				    for(i = 0; i < mi.un.e.num_mem; i++)
575					if (strcmp(mi.un.e.member[i].label.name,
576						    AudioNmixerout) == 0)
577						sc->sc_inports.mixerout =
578						    mi.un.e.member[i].ord;
579				}
580				au_setup_ports(sc, &sc->sc_inports, &mi,
581				    itable);
582			}
583			if (strcmp(mi.label.name, AudioNdac) == 0 &&
584			    sc->sc_outports.master == -1)
585				sc->sc_outports.master = mi.index;
586		} else if (mi.mixer_class == mclass) {
587			if (strcmp(mi.label.name, AudioNmonitor) == 0)
588				sc->sc_monitor_port = mi.index;
589		} else if (mi.mixer_class == oclass) {
590			if (strcmp(mi.label.name, AudioNmaster) == 0)
591				sc->sc_outports.master = mi.index;
592			if (strcmp(mi.label.name, AudioNselect) == 0)
593				au_setup_ports(sc, &sc->sc_outports, &mi,
594				    otable);
595		} else if (mi.mixer_class == rclass) {
596			/*
597			 * These are the preferred mixers for the audio record
598			 * controls, so set the flags here, but don't check.
599			 */
600			if (strcmp(mi.label.name, AudioNmaster) == 0) {
601				sc->sc_inports.master = mi.index;
602				record_master_found = 1;
603			}
604#if 1	/* Deprecated. Use AudioNmaster. */
605			if (strcmp(mi.label.name, AudioNrecord) == 0) {
606				sc->sc_inports.master = mi.index;
607				record_master_found = 1;
608			}
609			if (strcmp(mi.label.name, AudioNvolume) == 0) {
610				sc->sc_inports.master = mi.index;
611				record_master_found = 1;
612			}
613#endif
614			if (strcmp(mi.label.name, AudioNsource) == 0) {
615				if (mi.type == AUDIO_MIXER_ENUM) {
616				    int i;
617				    for(i = 0; i < mi.un.e.num_mem; i++)
618					if (strcmp(mi.un.e.member[i].label.name,
619						    AudioNmixerout) == 0)
620						sc->sc_inports.mixerout =
621						    mi.un.e.member[i].ord;
622				}
623				au_setup_ports(sc, &sc->sc_inports, &mi,
624				    itable);
625				record_source_found = 1;
626			}
627		}
628	}
629	mutex_exit(sc->sc_lock);
630	DPRINTF(("audio_attach: inputs ports=0x%x, input master=%d, "
631		 "output ports=0x%x, output master=%d\n",
632		 sc->sc_inports.allports, sc->sc_inports.master,
633		 sc->sc_outports.allports, sc->sc_outports.master));
634
635	selinit(&sc->sc_rsel);
636	selinit(&sc->sc_wsel);
637
638#ifdef AUDIO_PM_IDLE
639	callout_init(&sc->sc_idle_counter, 0);
640	callout_setfunc(&sc->sc_idle_counter, audio_idle, self);
641#endif
642
643	if (!pmf_device_register(self, audio_suspend, audio_resume))
644		aprint_error_dev(self, "couldn't establish power handler\n");
645#ifdef AUDIO_PM_IDLE
646	if (!device_active_register(self, audio_activity))
647		aprint_error_dev(self, "couldn't register activity handler\n");
648#endif
649
650	if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_DOWN,
651	    audio_volume_down, true))
652		aprint_error_dev(self, "couldn't add volume down handler\n");
653	if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_UP,
654	    audio_volume_up, true))
655		aprint_error_dev(self, "couldn't add volume up handler\n");
656	if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_TOGGLE,
657	    audio_volume_toggle, true))
658		aprint_error_dev(self, "couldn't add volume toggle handler\n");
659
660#ifdef AUDIO_PM_IDLE
661	callout_schedule(&sc->sc_idle_counter, audio_idle_timeout * hz);
662#endif
663}
664
665int
666audioactivate(device_t self, enum devact act)
667{
668	struct audio_softc *sc = device_private(self);
669
670	switch (act) {
671	case DVACT_DEACTIVATE:
672		mutex_enter(sc->sc_lock);
673		sc->sc_dying = true;
674		mutex_exit(sc->sc_lock);
675		return 0;
676	default:
677		return EOPNOTSUPP;
678	}
679}
680
681int
682audiodetach(device_t self, int flags)
683{
684	struct audio_softc *sc;
685	int maj, mn, i;
686
687	sc = device_private(self);
688	DPRINTF(("audio_detach: sc=%p flags=%d\n", sc, flags));
689
690	/* Start draining existing accessors of the device. */
691	mutex_enter(sc->sc_lock);
692	sc->sc_dying = true;
693	cv_broadcast(&sc->sc_wchan);
694	cv_broadcast(&sc->sc_rchan);
695	mutex_exit(sc->sc_lock);
696
697	/* locate the major number */
698	maj = cdevsw_lookup_major(&audio_cdevsw);
699
700	/*
701	 * Nuke the vnodes for any open instances (calls close).
702	 * Will wait until any activity on the device nodes has ceased.
703	 *
704	 * XXXAD NOT YET.
705	 *
706	 * XXXAD NEED TO PREVENT NEW REFERENCES THROUGH AUDIO_ENTER().
707	 */
708	mn = device_unit(self);
709	vdevgone(maj, mn | SOUND_DEVICE,    mn | SOUND_DEVICE, VCHR);
710	vdevgone(maj, mn | AUDIO_DEVICE,    mn | AUDIO_DEVICE, VCHR);
711	vdevgone(maj, mn | AUDIOCTL_DEVICE, mn | AUDIOCTL_DEVICE, VCHR);
712	vdevgone(maj, mn | MIXER_DEVICE,    mn | MIXER_DEVICE, VCHR);
713
714	pmf_event_deregister(self, PMFE_AUDIO_VOLUME_DOWN,
715	    audio_volume_down, true);
716	pmf_event_deregister(self, PMFE_AUDIO_VOLUME_UP,
717	    audio_volume_up, true);
718	pmf_event_deregister(self, PMFE_AUDIO_VOLUME_TOGGLE,
719	    audio_volume_toggle, true);
720
721#ifdef AUDIO_PM_IDLE
722	callout_halt(&sc->sc_idle_counter, sc->sc_lock);
723
724	device_active_deregister(self, audio_activity);
725#endif
726
727	pmf_device_deregister(self);
728
729	/* free resources */
730	audio_free_ring(sc, &sc->sc_pr);
731	audio_free_ring(sc, &sc->sc_rr);
732	for (i = 0; i < sc->sc_nrfilters; i++) {
733		sc->sc_rfilters[i]->dtor(sc->sc_rfilters[i]);
734		sc->sc_rfilters[i] = NULL;
735		audio_stream_dtor(&sc->sc_rstreams[i]);
736	}
737	sc->sc_nrfilters = 0;
738	for (i = 0; i < sc->sc_npfilters; i++) {
739		sc->sc_pfilters[i]->dtor(sc->sc_pfilters[i]);
740		sc->sc_pfilters[i] = NULL;
741		audio_stream_dtor(&sc->sc_pstreams[i]);
742	}
743	sc->sc_npfilters = 0;
744
745	if (sc->sc_sih_rd) {
746		softint_disestablish(sc->sc_sih_rd);
747		sc->sc_sih_rd = NULL;
748	}
749	if (sc->sc_sih_wr) {
750		softint_disestablish(sc->sc_sih_wr);
751		sc->sc_sih_wr = NULL;
752	}
753
754#ifdef AUDIO_PM_IDLE
755	callout_destroy(&sc->sc_idle_counter);
756#endif
757	seldestroy(&sc->sc_rsel);
758	seldestroy(&sc->sc_wsel);
759
760	cv_destroy(&sc->sc_rchan);
761	cv_destroy(&sc->sc_wchan);
762	cv_destroy(&sc->sc_lchan);
763
764	return 0;
765}
766
767int
768au_portof(struct audio_softc *sc, char *name, int class)
769{
770	mixer_devinfo_t mi;
771
772	for(mi.index = 0;
773	    sc->hw_if->query_devinfo(sc->hw_hdl, &mi) == 0;
774	    mi.index++)
775		if (mi.mixer_class == class && strcmp(mi.label.name, name) == 0)
776			return mi.index;
777	return -1;
778}
779
780void
781au_setup_ports(struct audio_softc *sc, struct au_mixer_ports *ports,
782	       mixer_devinfo_t *mi, const struct portname *tbl)
783{
784	int i, j;
785
786	ports->index = mi->index;
787	if (mi->type == AUDIO_MIXER_ENUM) {
788		ports->isenum = true;
789		for(i = 0; tbl[i].name; i++)
790		    for(j = 0; j < mi->un.e.num_mem; j++)
791			if (strcmp(mi->un.e.member[j].label.name,
792							    tbl[i].name) == 0) {
793				ports->allports |= tbl[i].mask;
794				ports->aumask[ports->nports] = tbl[i].mask;
795				ports->misel[ports->nports] =
796				    mi->un.e.member[j].ord;
797				ports->miport[ports->nports] =
798				    au_portof(sc, mi->un.e.member[j].label.name,
799				    mi->mixer_class);
800				if (ports->mixerout != -1 &&
801				    ports->miport[ports->nports] != -1)
802					ports->isdual = true;
803				++ports->nports;
804			}
805	} else if (mi->type == AUDIO_MIXER_SET) {
806		for(i = 0; tbl[i].name; i++)
807		    for(j = 0; j < mi->un.s.num_mem; j++)
808			if (strcmp(mi->un.s.member[j].label.name,
809							    tbl[i].name) == 0) {
810				ports->allports |= tbl[i].mask;
811				ports->aumask[ports->nports] = tbl[i].mask;
812				ports->misel[ports->nports] =
813				    mi->un.s.member[j].mask;
814				ports->miport[ports->nports] =
815				    au_portof(sc, mi->un.s.member[j].label.name,
816				    mi->mixer_class);
817				++ports->nports;
818			}
819	}
820}
821
822/*
823 * Called from hardware driver.  This is where the MI audio driver gets
824 * probed/attached to the hardware driver.
825 */
826device_t
827audio_attach_mi(const struct audio_hw_if *ahwp, void *hdlp, device_t dev)
828{
829	struct audio_attach_args arg;
830
831#ifdef DIAGNOSTIC
832	if (ahwp == NULL) {
833		aprint_error("audio_attach_mi: NULL\n");
834		return 0;
835	}
836#endif
837	arg.type = AUDIODEV_TYPE_AUDIO;
838	arg.hwif = ahwp;
839	arg.hdl = hdlp;
840	return config_found(dev, &arg, audioprint);
841}
842
843#ifdef AUDIO_DEBUG
844void	audio_printsc(struct audio_softc *);
845void	audio_print_params(const char *, struct audio_params *);
846
847void
848audio_printsc(struct audio_softc *sc)
849{
850	printf("hwhandle %p hw_if %p ", sc->hw_hdl, sc->hw_if);
851	printf("open 0x%x mode 0x%x\n", sc->sc_open, sc->sc_mode);
852	printf("rchan 0x%x wchan 0x%x ", cv_has_waiters(&sc->sc_rchan),
853	    cv_has_waiters(&sc->sc_wchan));
854	printf("rring used 0x%x pring used=%d\n",
855	       audio_stream_get_used(&sc->sc_rr.s),
856	       audio_stream_get_used(&sc->sc_pr.s));
857	printf("rbus 0x%x pbus 0x%x ", sc->sc_rbus, sc->sc_pbus);
858	printf("blksize %d", sc->sc_pr.blksize);
859	printf("hiwat %d lowat %d\n", sc->sc_pr.usedhigh, sc->sc_pr.usedlow);
860}
861
862void
863audio_print_params(const char *s, struct audio_params *p)
864{
865	printf("%s enc=%u %uch %u/%ubit %uHz\n", s, p->encoding, p->channels,
866	       p->validbits, p->precision, p->sample_rate);
867}
868#endif
869
870int
871audio_alloc_ring(struct audio_softc *sc, struct audio_ringbuffer *r,
872		 int direction, size_t bufsize)
873{
874	const struct audio_hw_if *hw;
875	void *hdl;
876
877	hw = sc->hw_if;
878	hdl = sc->hw_hdl;
879	/*
880	 * Alloc DMA play and record buffers
881	 */
882	if (bufsize < AUMINBUF)
883		bufsize = AUMINBUF;
884	ROUNDSIZE(bufsize);
885	if (hw->round_buffersize) {
886		mutex_enter(sc->sc_lock);
887		bufsize = hw->round_buffersize(hdl, direction, bufsize);
888 		mutex_exit(sc->sc_lock);
889	}
890	if (hw->allocm)
891		r->s.start = hw->allocm(hdl, direction, bufsize);
892	else
893		r->s.start = kmem_alloc(bufsize, KM_SLEEP);
894	if (r->s.start == 0)
895		return ENOMEM;
896	r->s.bufsize = bufsize;
897	return 0;
898}
899
900void
901audio_free_ring(struct audio_softc *sc, struct audio_ringbuffer *r)
902{
903	if (r->s.start == 0)
904		return;
905
906	if (sc->hw_if->freem)
907		sc->hw_if->freem(sc->hw_hdl, r->s.start, r->s.bufsize);
908	else
909		kmem_free(r->s.start, r->s.bufsize);
910	r->s.start = 0;
911}
912
913static int
914audio_setup_pfilters(struct audio_softc *sc, const audio_params_t *pp,
915		     stream_filter_list_t *pfilters)
916{
917	stream_filter_t *pf[AUDIO_MAX_FILTERS], *of[AUDIO_MAX_FILTERS];
918	audio_stream_t ps[AUDIO_MAX_FILTERS], os[AUDIO_MAX_FILTERS];
919	const audio_params_t *from_param;
920	audio_params_t *to_param;
921	int i, n, onfilters;
922
923	KASSERT(mutex_owned(sc->sc_lock));
924
925	/* Construct new filters. */
926	mutex_exit(sc->sc_lock);
927	memset(pf, 0, sizeof(pf));
928	memset(ps, 0, sizeof(ps));
929	from_param = pp;
930	for (i = 0; i < pfilters->req_size; i++) {
931		n = pfilters->req_size - i - 1;
932		to_param = &pfilters->filters[n].param;
933		audio_check_params(to_param);
934		pf[i] = pfilters->filters[n].factory(sc, from_param, to_param);
935		if (pf[i] == NULL)
936			break;
937		if (audio_stream_ctor(&ps[i], from_param, AU_RING_SIZE))
938			break;
939		if (i > 0)
940			pf[i]->set_fetcher(pf[i], &pf[i - 1]->base);
941		from_param = to_param;
942	}
943	if (i < pfilters->req_size) { /* failure */
944		DPRINTF(("%s: pfilters failure\n", __func__));
945		for (; i >= 0; i--) {
946			if (pf[i] != NULL)
947				pf[i]->dtor(pf[i]);
948			audio_stream_dtor(&ps[i]);
949		}
950		mutex_enter(sc->sc_lock);
951		return EINVAL;
952	}
953	mutex_enter(sc->sc_lock);
954
955	/* Swap in new filters. */
956	mutex_enter(sc->sc_intr_lock);
957	memcpy(of, sc->sc_pfilters, sizeof(of));
958	memcpy(os, sc->sc_pstreams, sizeof(os));
959	onfilters = sc->sc_npfilters;
960	memcpy(sc->sc_pfilters, pf, sizeof(pf));
961	memcpy(sc->sc_pstreams, ps, sizeof(ps));
962	sc->sc_npfilters = pfilters->req_size;
963	for (i = 0; i < pfilters->req_size; i++) {
964		pf[i]->set_inputbuffer(pf[i], &sc->sc_pstreams[i]);
965	}
966	/* hardware format and the buffer near to userland */
967	if (pfilters->req_size <= 0) {
968		sc->sc_pr.s.param = *pp;
969		sc->sc_pustream = &sc->sc_pr.s;
970	} else {
971		sc->sc_pr.s.param = pfilters->filters[0].param;
972		sc->sc_pustream = &sc->sc_pstreams[0];
973	}
974	mutex_exit(sc->sc_intr_lock);
975
976	/* Destroy old filters. */
977	mutex_exit(sc->sc_lock);
978	for (i = 0; i < onfilters; i++) {
979		of[i]->dtor(of[i]);
980		audio_stream_dtor(&os[i]);
981	}
982	mutex_enter(sc->sc_lock);
983
984#ifdef AUDIO_DEBUG
985	printf("%s: HW-buffer=%p pustream=%p\n",
986	       __func__, &sc->sc_pr.s, sc->sc_pustream);
987	for (i = 0; i < pfilters->req_size; i++) {
988		char num[100];
989		snprintf(num, 100, "[%d]", i);
990		audio_print_params(num, &sc->sc_pstreams[i].param);
991	}
992	audio_print_params("[HW]", &sc->sc_pr.s.param);
993#endif /* AUDIO_DEBUG */
994
995	return 0;
996}
997
998static int
999audio_setup_rfilters(struct audio_softc *sc, const audio_params_t *rp,
1000		     stream_filter_list_t *rfilters)
1001{
1002	stream_filter_t *rf[AUDIO_MAX_FILTERS], *of[AUDIO_MAX_FILTERS];
1003	audio_stream_t rs[AUDIO_MAX_FILTERS], os[AUDIO_MAX_FILTERS];
1004	const audio_params_t *to_param;
1005	audio_params_t *from_param;
1006	int i, onfilters;
1007
1008	KASSERT(mutex_owned(sc->sc_lock));
1009
1010	/* Construct new filters. */
1011	mutex_exit(sc->sc_lock);
1012	memset(rf, 0, sizeof(rf));
1013	memset(rs, 0, sizeof(rs));
1014	for (i = 0; i < rfilters->req_size; i++) {
1015		from_param = &rfilters->filters[i].param;
1016		audio_check_params(from_param);
1017		to_param = i + 1 < rfilters->req_size
1018			? &rfilters->filters[i + 1].param : rp;
1019		rf[i] = rfilters->filters[i].factory(sc, from_param, to_param);
1020		if (rf[i] == NULL)
1021			break;
1022		if (audio_stream_ctor(&rs[i], to_param, AU_RING_SIZE))
1023			break;
1024		if (i > 0) {
1025			rf[i]->set_fetcher(rf[i], &rf[i - 1]->base);
1026		} else {
1027			/* rf[0] has no previous fetcher because
1028			 * the audio hardware fills data to the
1029			 * input buffer. */
1030			rf[0]->set_inputbuffer(rf[0], &sc->sc_rr.s);
1031		}
1032	}
1033	if (i < rfilters->req_size) { /* failure */
1034		DPRINTF(("%s: rfilters failure\n", __func__));
1035		for (; i >= 0; i--) {
1036			if (rf[i] != NULL)
1037				rf[i]->dtor(rf[i]);
1038			audio_stream_dtor(&rs[i]);
1039		}
1040		mutex_enter(sc->sc_lock);
1041		return EINVAL;
1042	}
1043	mutex_enter(sc->sc_lock);
1044
1045	/* Swap in new filters. */
1046	mutex_enter(sc->sc_intr_lock);
1047	memcpy(of, sc->sc_rfilters, sizeof(of));
1048	memcpy(os, sc->sc_rstreams, sizeof(os));
1049	onfilters = sc->sc_nrfilters;
1050	memcpy(sc->sc_rfilters, rf, sizeof(rf));
1051	memcpy(sc->sc_rstreams, rs, sizeof(rs));
1052	sc->sc_nrfilters = rfilters->req_size;
1053	for (i = 1; i < rfilters->req_size; i++) {
1054		rf[i]->set_inputbuffer(rf[i], &sc->sc_rstreams[i - 1]);
1055	}
1056	/* hardware format and the buffer near to userland */
1057	if (rfilters->req_size <= 0) {
1058		sc->sc_rr.s.param = *rp;
1059		sc->sc_rustream = &sc->sc_rr.s;
1060	} else {
1061		sc->sc_rr.s.param = rfilters->filters[0].param;
1062		sc->sc_rustream = &sc->sc_rstreams[rfilters->req_size - 1];
1063	}
1064	mutex_exit(sc->sc_intr_lock);
1065
1066#ifdef AUDIO_DEBUG
1067	printf("%s: HW-buffer=%p pustream=%p\n",
1068	       __func__, &sc->sc_rr.s, sc->sc_rustream);
1069	audio_print_params("[HW]", &sc->sc_rr.s.param);
1070	for (i = 0; i < rfilters->req_size; i++) {
1071		char num[100];
1072		snprintf(num, 100, "[%d]", i);
1073		audio_print_params(num, &sc->sc_rstreams[i].param);
1074	}
1075#endif /* AUDIO_DEBUG */
1076
1077	/* Destroy old filters. */
1078	mutex_exit(sc->sc_lock);
1079	for (i = 0; i < onfilters; i++) {
1080		of[i]->dtor(of[i]);
1081		audio_stream_dtor(&os[i]);
1082	}
1083	mutex_enter(sc->sc_lock);
1084
1085	return 0;
1086}
1087
1088static void
1089audio_stream_dtor(audio_stream_t *stream)
1090{
1091
1092	if (stream->start != NULL)
1093		kmem_free(stream->start, stream->bufsize);
1094	memset(stream, 0, sizeof(audio_stream_t));
1095}
1096
1097static int
1098audio_stream_ctor(audio_stream_t *stream, const audio_params_t *param, int size)
1099{
1100	int frame_size;
1101
1102	size = min(size, AU_RING_SIZE);
1103	stream->bufsize = size;
1104	stream->start = kmem_alloc(size, KM_SLEEP);
1105	if (stream->start == NULL)
1106		return ENOMEM;
1107	frame_size = (param->precision + 7) / 8 * param->channels;
1108	size = (size / frame_size) * frame_size;
1109	stream->end = stream->start + size;
1110	stream->inp = stream->start;
1111	stream->outp = stream->start;
1112	stream->used = 0;
1113	stream->param = *param;
1114	stream->loop = false;
1115	return 0;
1116}
1117
1118static void
1119stream_filter_list_append(stream_filter_list_t *list,
1120			  stream_filter_factory_t factory,
1121			  const audio_params_t *param)
1122{
1123
1124	if (list->req_size >= AUDIO_MAX_FILTERS) {
1125		printf("%s: increase AUDIO_MAX_FILTERS in sys/dev/audio_if.h\n",
1126		       __func__);
1127		return;
1128	}
1129	list->filters[list->req_size].factory = factory;
1130	list->filters[list->req_size].param = *param;
1131	list->req_size++;
1132}
1133
1134static void
1135stream_filter_list_set(stream_filter_list_t *list, int i,
1136		       stream_filter_factory_t factory,
1137		       const audio_params_t *param)
1138{
1139
1140	if (i < 0 || i >= AUDIO_MAX_FILTERS) {
1141		printf("%s: invalid index: %d\n", __func__, i);
1142		return;
1143	}
1144
1145	list->filters[i].factory = factory;
1146	list->filters[i].param = *param;
1147	if (list->req_size <= i)
1148		list->req_size = i + 1;
1149}
1150
1151static void
1152stream_filter_list_prepend(stream_filter_list_t *list,
1153			   stream_filter_factory_t factory,
1154			   const audio_params_t *param)
1155{
1156
1157	if (list->req_size >= AUDIO_MAX_FILTERS) {
1158		printf("%s: increase AUDIO_MAX_FILTERS in sys/dev/audio_if.h\n",
1159		       __func__);
1160		return;
1161	}
1162	memmove(&list->filters[1], &list->filters[0],
1163		sizeof(struct stream_filter_req) * list->req_size);
1164	list->filters[0].factory = factory;
1165	list->filters[0].param = *param;
1166	list->req_size++;
1167}
1168
1169/*
1170 * Look up audio device and acquire locks for device access.
1171 */
1172static int
1173audio_enter(dev_t dev, krw_t rw, struct audio_softc **scp)
1174{
1175	struct audio_softc *sc;
1176
1177	/* First, find the device and take sc_lock. */
1178	sc = device_lookup_private(&audio_cd, AUDIOUNIT(dev));
1179	if (sc == NULL)
1180		return ENXIO;
1181	mutex_enter(sc->sc_lock);
1182	if (sc->sc_dying) {
1183		mutex_exit(sc->sc_lock);
1184		return EIO;
1185	}
1186
1187	/* Acquire device access lock. */
1188	switch (rw) {
1189	case RW_WRITER:
1190		while (__predict_false(sc->sc_dvlock != 0)) {
1191			cv_wait(&sc->sc_lchan, sc->sc_lock);
1192		}
1193		sc->sc_dvlock = -1;
1194		break;
1195	case RW_READER:
1196		while (__predict_false(sc->sc_dvlock < 0)) {
1197			cv_wait(&sc->sc_lchan, sc->sc_lock);
1198		}
1199		sc->sc_dvlock++;
1200		break;
1201	default:
1202		panic("audio_enter");
1203	}
1204
1205	*scp = sc;
1206	return 0;
1207}
1208
1209/*
1210 * Release reference to device acquired with audio_enter().
1211 */
1212static void
1213audio_exit(struct audio_softc *sc)
1214{
1215
1216	KASSERT(mutex_owned(sc->sc_lock));
1217	KASSERT(sc->sc_dvlock != 0);
1218
1219	/* Release device level lock. */
1220	if (__predict_false(sc->sc_dvlock < 0)) {
1221		sc->sc_dvlock = 0;
1222	} else {
1223		sc->sc_dvlock--;
1224	}
1225	cv_broadcast(&sc->sc_lchan);
1226	mutex_exit(sc->sc_lock);
1227}
1228
1229/*
1230 * Wait for I/O to complete, releasing device lock.
1231 */
1232static int
1233audio_waitio(struct audio_softc *sc, kcondvar_t *chan)
1234{
1235	int error;
1236	krw_t rw;
1237
1238	KASSERT(mutex_owned(sc->sc_lock));
1239
1240	/* Release device level lock while sleeping. */
1241	if (__predict_false(sc->sc_dvlock < 0)) {
1242		sc->sc_dvlock = 0;
1243		rw = RW_WRITER;
1244	} else {
1245		KASSERT(sc->sc_dvlock > 0);
1246		sc->sc_dvlock--;
1247		rw = RW_READER;
1248	}
1249	cv_broadcast(&sc->sc_lchan);
1250
1251	/* Wait for pending I/O to complete. */
1252	error = cv_wait_sig(chan, sc->sc_lock);
1253
1254	/* Re-acquire device level lock. */
1255	if (__predict_false(rw == RW_WRITER)) {
1256		while (__predict_false(sc->sc_dvlock != 0)) {
1257			cv_wait(&sc->sc_lchan, sc->sc_lock);
1258		}
1259		sc->sc_dvlock = -1;
1260	} else {
1261		while (__predict_false(sc->sc_dvlock < 0)) {
1262			cv_wait(&sc->sc_lchan, sc->sc_lock);
1263		}
1264		sc->sc_dvlock++;
1265	}
1266
1267	return error;
1268}
1269
1270int
1271audioopen(dev_t dev, int flags, int ifmt, struct lwp *l)
1272{
1273	struct audio_softc *sc;
1274	int error;
1275
1276	if ((error = audio_enter(dev, RW_WRITER, &sc)) != 0)
1277		return error;
1278	device_active(sc->dev, DVA_SYSTEM);
1279	switch (AUDIODEV(dev)) {
1280	case SOUND_DEVICE:
1281	case AUDIO_DEVICE:
1282		error = audio_open(dev, sc, flags, ifmt, l);
1283		break;
1284	case AUDIOCTL_DEVICE:
1285		error = 0;
1286		break;
1287	case MIXER_DEVICE:
1288		error = mixer_open(dev, sc, flags, ifmt, l);
1289		break;
1290	default:
1291		error = ENXIO;
1292		break;
1293	}
1294	audio_exit(sc);
1295
1296	return error;
1297}
1298
1299int
1300audioclose(dev_t dev, int flags, int ifmt, struct lwp *l)
1301{
1302	struct audio_softc *sc;
1303	int error;
1304
1305	if ((error = audio_enter(dev, RW_WRITER, &sc)) != 0)
1306		return error;
1307	device_active(sc->dev, DVA_SYSTEM);
1308	switch (AUDIODEV(dev)) {
1309	case SOUND_DEVICE:
1310	case AUDIO_DEVICE:
1311		error = audio_close(sc, flags, ifmt, l);
1312		break;
1313	case MIXER_DEVICE:
1314		error = mixer_close(sc, flags, ifmt, l);
1315		break;
1316	case AUDIOCTL_DEVICE:
1317		error = 0;
1318		break;
1319	default:
1320		error = ENXIO;
1321		break;
1322	}
1323	audio_exit(sc);
1324
1325	return error;
1326}
1327
1328int
1329audioread(dev_t dev, struct uio *uio, int ioflag)
1330{
1331	struct audio_softc *sc;
1332	int error;
1333
1334	if ((error = audio_enter(dev, RW_READER, &sc)) != 0)
1335		return error;
1336	switch (AUDIODEV(dev)) {
1337	case SOUND_DEVICE:
1338	case AUDIO_DEVICE:
1339		error = audio_read(sc, uio, ioflag);
1340		break;
1341	case AUDIOCTL_DEVICE:
1342	case MIXER_DEVICE:
1343		error = ENODEV;
1344		break;
1345	default:
1346		error = ENXIO;
1347		break;
1348	}
1349	audio_exit(sc);
1350
1351	return error;
1352}
1353
1354int
1355audiowrite(dev_t dev, struct uio *uio, int ioflag)
1356{
1357	struct audio_softc *sc;
1358	int error;
1359
1360	if ((error = audio_enter(dev, RW_READER, &sc)) != 0)
1361		return error;
1362	switch (AUDIODEV(dev)) {
1363	case SOUND_DEVICE:
1364	case AUDIO_DEVICE:
1365		error = audio_write(sc, uio, ioflag);
1366		break;
1367	case AUDIOCTL_DEVICE:
1368	case MIXER_DEVICE:
1369		error = ENODEV;
1370		break;
1371	default:
1372		error = ENXIO;
1373		break;
1374	}
1375	audio_exit(sc);
1376
1377	return error;
1378}
1379
1380int
1381audioioctl(dev_t dev, u_long cmd, void *addr, int flag, struct lwp *l)
1382{
1383	struct audio_softc *sc;
1384	int error;
1385	krw_t rw;
1386
1387	/* Figure out which lock type we need. */
1388	switch (cmd) {
1389	case AUDIO_FLUSH:
1390	case AUDIO_SETINFO:
1391	case AUDIO_DRAIN:
1392	case AUDIO_SETFD:
1393		rw = RW_WRITER;
1394		break;
1395	default:
1396		rw = RW_READER;
1397		break;
1398	}
1399
1400	if ((error = audio_enter(dev, rw, &sc)) != 0)
1401		return error;
1402	switch (AUDIODEV(dev)) {
1403	case SOUND_DEVICE:
1404	case AUDIO_DEVICE:
1405	case AUDIOCTL_DEVICE:
1406		device_active(sc->dev, DVA_SYSTEM);
1407		if (IOCGROUP(cmd) == IOCGROUP(AUDIO_MIXER_READ))
1408			error = mixer_ioctl(sc, cmd, addr, flag, l);
1409		else
1410			error = audio_ioctl(sc, cmd, addr, flag, l);
1411		break;
1412	case MIXER_DEVICE:
1413		error = mixer_ioctl(sc, cmd, addr, flag, l);
1414		break;
1415	default:
1416		error = ENXIO;
1417		break;
1418	}
1419	audio_exit(sc);
1420
1421	return error;
1422}
1423
1424int
1425audiopoll(dev_t dev, int events, struct lwp *l)
1426{
1427	struct audio_softc *sc;
1428	int revents;
1429
1430	/* Don't bother with device level lock here. */
1431	sc = device_lookup_private(&audio_cd, AUDIOUNIT(dev));
1432	if (sc == NULL)
1433		return ENXIO;
1434	mutex_enter(sc->sc_lock);
1435	if (sc->sc_dying) {
1436		mutex_exit(sc->sc_lock);
1437		return EIO;
1438	}
1439	switch (AUDIODEV(dev)) {
1440	case SOUND_DEVICE:
1441	case AUDIO_DEVICE:
1442		revents = audio_poll(sc, events, l);
1443		break;
1444	case AUDIOCTL_DEVICE:
1445	case MIXER_DEVICE:
1446		revents = 0;
1447		break;
1448	default:
1449		revents = POLLERR;
1450		break;
1451	}
1452	mutex_exit(sc->sc_lock);
1453
1454	return revents;
1455}
1456
1457int
1458audiokqfilter(dev_t dev, struct knote *kn)
1459{
1460	struct audio_softc *sc;
1461	int rv;
1462
1463	/* Don't bother with device level lock here. */
1464	sc = device_lookup_private(&audio_cd, AUDIOUNIT(dev));
1465	if (sc == NULL)
1466		return ENXIO;
1467	mutex_enter(sc->sc_lock);
1468	if (sc->sc_dying) {
1469		mutex_exit(sc->sc_lock);
1470		return EIO;
1471	}
1472	switch (AUDIODEV(dev)) {
1473	case SOUND_DEVICE:
1474	case AUDIO_DEVICE:
1475		rv = audio_kqfilter(sc, kn);
1476		break;
1477	case AUDIOCTL_DEVICE:
1478	case MIXER_DEVICE:
1479		rv = 1;
1480		break;
1481	default:
1482		rv = 1;
1483	}
1484	mutex_exit(sc->sc_lock);
1485
1486	return rv;
1487}
1488
1489paddr_t
1490audiommap(dev_t dev, off_t off, int prot)
1491{
1492	struct audio_softc *sc;
1493	paddr_t error;
1494
1495	/*
1496	 * Acquire a reader lock.  audio_mmap() will drop sc_lock
1497	 * in order to allow the device's mmap routine to sleep.
1498	 * Although not yet possible, we want to prevent memory
1499	 * from being allocated or freed out from under us.
1500	 */
1501	if ((error = audio_enter(dev, RW_READER, &sc)) != 0)
1502		return 1;
1503	device_active(sc->dev, DVA_SYSTEM); /* XXXJDM */
1504	switch (AUDIODEV(dev)) {
1505	case SOUND_DEVICE:
1506	case AUDIO_DEVICE:
1507		error = audio_mmap(sc, off, prot);
1508		break;
1509	case AUDIOCTL_DEVICE:
1510	case MIXER_DEVICE:
1511		error = -1;
1512		break;
1513	default:
1514		error = -1;
1515		break;
1516	}
1517	audio_exit(sc);
1518	return error;
1519}
1520
1521/*
1522 * Audio driver
1523 */
1524void
1525audio_init_ringbuffer(struct audio_softc *sc, struct audio_ringbuffer *rp,
1526		      int mode)
1527{
1528	int nblks;
1529	int blksize;
1530
1531	blksize = rp->blksize;
1532	if (blksize < AUMINBLK)
1533		blksize = AUMINBLK;
1534	if (blksize > rp->s.bufsize / AUMINNOBLK)
1535		blksize = rp->s.bufsize / AUMINNOBLK;
1536	ROUNDSIZE(blksize);
1537	DPRINTF(("audio_init_ringbuffer: MI blksize=%d\n", blksize));
1538	if (sc->hw_if->round_blocksize)
1539		blksize = sc->hw_if->round_blocksize(sc->hw_hdl, blksize,
1540						     mode, &rp->s.param);
1541	if (blksize <= 0)
1542		panic("audio_init_ringbuffer: blksize");
1543	nblks = rp->s.bufsize / blksize;
1544
1545	DPRINTF(("audio_init_ringbuffer: final blksize=%d\n", blksize));
1546	rp->blksize = blksize;
1547	rp->maxblks = nblks;
1548	rp->s.end = rp->s.start + nblks * blksize;
1549	rp->s.outp = rp->s.inp = rp->s.start;
1550	rp->s.used = 0;
1551	rp->stamp = 0;
1552	rp->stamp_last = 0;
1553	rp->fstamp = 0;
1554	rp->drops = 0;
1555	rp->copying = false;
1556	rp->needfill = false;
1557	rp->mmapped = false;
1558}
1559
1560int
1561audio_initbufs(struct audio_softc *sc)
1562{
1563	const struct audio_hw_if *hw;
1564	int error;
1565
1566	DPRINTF(("audio_initbufs: mode=0x%x\n", sc->sc_mode));
1567	hw = sc->hw_if;
1568	if (audio_can_capture(sc)) {
1569		audio_init_ringbuffer(sc, &sc->sc_rr, AUMODE_RECORD);
1570		if (hw->init_input && (sc->sc_mode & AUMODE_RECORD)) {
1571			error = hw->init_input(sc->hw_hdl, sc->sc_rr.s.start,
1572				       sc->sc_rr.s.end - sc->sc_rr.s.start);
1573			if (error)
1574				return error;
1575		}
1576	}
1577
1578	if (audio_can_playback(sc)) {
1579		audio_init_ringbuffer(sc, &sc->sc_pr, AUMODE_PLAY);
1580		sc->sc_sil_count = 0;
1581		if (hw->init_output && (sc->sc_mode & AUMODE_PLAY)) {
1582			error = hw->init_output(sc->hw_hdl, sc->sc_pr.s.start,
1583					sc->sc_pr.s.end - sc->sc_pr.s.start);
1584			if (error)
1585				return error;
1586		}
1587	}
1588
1589#ifdef AUDIO_INTR_TIME
1590#define double u_long
1591	if (audio_can_playback(sc)) {
1592		sc->sc_pnintr = 0;
1593		sc->sc_pblktime = (u_long)(
1594		    (double)sc->sc_pr.blksize * 100000 /
1595		    (double)(sc->sc_pparams.precision / NBBY *
1596			     sc->sc_pparams.channels *
1597			     sc->sc_pparams.sample_rate)) * 10;
1598		DPRINTF(("audio: play blktime = %lu for %d\n",
1599			 sc->sc_pblktime, sc->sc_pr.blksize));
1600	}
1601	if (audio_can_capture(sc)) {
1602		sc->sc_rnintr = 0;
1603		sc->sc_rblktime = (u_long)(
1604		    (double)sc->sc_rr.blksize * 100000 /
1605		    (double)(sc->sc_rparams.precision / NBBY *
1606			     sc->sc_rparams.channels *
1607			     sc->sc_rparams.sample_rate)) * 10;
1608		DPRINTF(("audio: record blktime = %lu for %d\n",
1609			 sc->sc_rblktime, sc->sc_rr.blksize));
1610	}
1611#undef double
1612#endif
1613
1614	return 0;
1615}
1616
1617void
1618audio_calcwater(struct audio_softc *sc)
1619{
1620
1621	/* set high at 100% */
1622	if (audio_can_playback(sc)) {
1623		sc->sc_pr.usedhigh =
1624		    sc->sc_pustream->end - sc->sc_pustream->start;
1625		/* set low at 75% of usedhigh */
1626		sc->sc_pr.usedlow = sc->sc_pr.usedhigh * 3 / 4;
1627		if (sc->sc_pr.usedlow == sc->sc_pr.usedhigh)
1628			sc->sc_pr.usedlow -= sc->sc_pr.blksize;
1629	}
1630
1631	if (audio_can_capture(sc)) {
1632		sc->sc_rr.usedhigh =
1633		    sc->sc_rustream->end - sc->sc_rustream->start -
1634		    sc->sc_rr.blksize;
1635		sc->sc_rr.usedlow = 0;
1636		DPRINTF(("%s: plow=%d phigh=%d rlow=%d rhigh=%d\n", __func__,
1637			 sc->sc_pr.usedlow, sc->sc_pr.usedhigh,
1638			 sc->sc_rr.usedlow, sc->sc_rr.usedhigh));
1639	}
1640}
1641
1642int
1643audio_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
1644    struct lwp *l)
1645{
1646	int error;
1647	u_int mode;
1648	const struct audio_hw_if *hw;
1649
1650	KASSERT(mutex_owned(sc->sc_lock));
1651
1652	hw = sc->hw_if;
1653	if (hw == NULL)
1654		return ENXIO;
1655
1656	DPRINTF(("audio_open: flags=0x%x sc=%p hdl=%p\n",
1657		 flags, sc, sc->hw_hdl));
1658
1659	if (((flags & FREAD) && (sc->sc_open & AUOPEN_READ)) ||
1660	    ((flags & FWRITE) && (sc->sc_open & AUOPEN_WRITE)))
1661		return EBUSY;
1662
1663	if (hw->open != NULL) {
1664		mutex_enter(sc->sc_intr_lock);
1665		error = hw->open(sc->hw_hdl, flags);
1666		mutex_exit(sc->sc_intr_lock);
1667		if (error)
1668			return error;
1669	}
1670
1671	sc->sc_async_audio = 0;
1672	sc->sc_sil_count = 0;
1673	sc->sc_rbus = false;
1674	sc->sc_pbus = false;
1675	sc->sc_eof = 0;
1676	sc->sc_playdrop = 0;
1677
1678	mutex_enter(sc->sc_intr_lock);
1679	sc->sc_full_duplex =
1680		(flags & (FWRITE|FREAD)) == (FWRITE|FREAD) &&
1681		(audio_get_props(sc) & AUDIO_PROP_FULLDUPLEX);
1682	mutex_exit(sc->sc_intr_lock);
1683
1684	mode = 0;
1685	if (flags & FREAD) {
1686		sc->sc_open |= AUOPEN_READ;
1687		mode |= AUMODE_RECORD;
1688	}
1689	if (flags & FWRITE) {
1690		sc->sc_open |= AUOPEN_WRITE;
1691		mode |= AUMODE_PLAY | AUMODE_PLAY_ALL;
1692	}
1693
1694	/*
1695	 * Multiplex device: /dev/audio (MU-Law) and /dev/sound (linear)
1696	 * The /dev/audio is always (re)set to 8-bit MU-Law mono
1697	 * For the other devices, you get what they were last set to.
1698	 */
1699	if (ISDEVAUDIO(dev)) {
1700		error = audio_set_defaults(sc, mode);
1701	} else {
1702		struct audio_info ai;
1703
1704		AUDIO_INITINFO(&ai);
1705		ai.mode = mode;
1706		error = audiosetinfo(sc, &ai);
1707	}
1708	if (error)
1709		goto bad;
1710
1711#ifdef DIAGNOSTIC
1712	/*
1713	 * Sample rate and precision are supposed to be set to proper
1714	 * default values by the hardware driver, so that it may give
1715	 * us these values.
1716	 */
1717	if (sc->sc_rparams.precision == 0 || sc->sc_pparams.precision == 0) {
1718		printf("audio_open: 0 precision\n");
1719		return EINVAL;
1720	}
1721#endif
1722
1723	/* audio_close() decreases sc_pr.usedlow, recalculate here */
1724	audio_calcwater(sc);
1725
1726	DPRINTF(("audio_open: done sc_mode = 0x%x\n", sc->sc_mode));
1727
1728	return 0;
1729
1730bad:
1731	mutex_enter(sc->sc_intr_lock);
1732	if (hw->close != NULL)
1733		hw->close(sc->hw_hdl);
1734	sc->sc_open = 0;
1735	sc->sc_mode = 0;
1736	mutex_exit(sc->sc_intr_lock);
1737	sc->sc_full_duplex = 0;
1738	return error;
1739}
1740
1741/*
1742 * Must be called from task context.
1743 */
1744void
1745audio_init_record(struct audio_softc *sc)
1746{
1747
1748	KASSERT(mutex_owned(sc->sc_lock));
1749
1750	mutex_enter(sc->sc_intr_lock);
1751	if (sc->hw_if->speaker_ctl &&
1752	    (!sc->sc_full_duplex || (sc->sc_mode & AUMODE_PLAY) == 0))
1753		sc->hw_if->speaker_ctl(sc->hw_hdl, SPKR_OFF);
1754	mutex_exit(sc->sc_intr_lock);
1755}
1756
1757/*
1758 * Must be called from task context.
1759 */
1760void
1761audio_init_play(struct audio_softc *sc)
1762{
1763
1764	KASSERT(mutex_owned(sc->sc_lock));
1765
1766	mutex_enter(sc->sc_intr_lock);
1767	sc->sc_wstamp = sc->sc_pr.stamp;
1768	if (sc->hw_if->speaker_ctl)
1769		sc->hw_if->speaker_ctl(sc->hw_hdl, SPKR_ON);
1770	mutex_exit(sc->sc_intr_lock);
1771}
1772
1773int
1774audio_drain(struct audio_softc *sc)
1775{
1776	struct audio_ringbuffer *cb;
1777	int error, drops;
1778	int i, used;
1779
1780	KASSERT(mutex_owned(sc->sc_lock));
1781	KASSERT(mutex_owned(sc->sc_intr_lock));
1782
1783	DPRINTF(("audio_drain: enter busy=%d\n", sc->sc_pbus));
1784	cb = &sc->sc_pr;
1785	if (cb->mmapped)
1786		return 0;
1787
1788	used = audio_stream_get_used(&sc->sc_pr.s);
1789	for (i = 0; i < sc->sc_npfilters; i++)
1790		used += audio_stream_get_used(&sc->sc_pstreams[i]);
1791	if (used <= 0)
1792		return 0;
1793
1794	if (!sc->sc_pbus) {
1795		/* We've never started playing, probably because the
1796		 * block was too short.  Pad it and start now.
1797		 */
1798		int cc;
1799		uint8_t *inp = cb->s.inp;
1800
1801		cc = cb->blksize - (inp - cb->s.start) % cb->blksize;
1802		audio_fill_silence(&cb->s.param, inp, cc);
1803		cb->s.inp = audio_stream_add_inp(&cb->s, inp, cc);
1804		error = audiostartp(sc);
1805		if (error)
1806			return error;
1807	}
1808	/*
1809	 * Play until a silence block has been played, then we
1810	 * know all has been drained.
1811	 * XXX This should be done some other way to avoid
1812	 * playing silence.
1813	 */
1814#ifdef DIAGNOSTIC
1815	if (cb->copying) {
1816		printf("audio_drain: copying in progress!?!\n");
1817		cb->copying = false;
1818	}
1819#endif
1820	drops = cb->drops;
1821	error = 0;
1822	while (cb->drops == drops && !error) {
1823		DPRINTF(("audio_drain: used=%d, drops=%ld\n",
1824			 audio_stream_get_used(&sc->sc_pr.s), cb->drops));
1825		mutex_exit(sc->sc_intr_lock);
1826		error = audio_waitio(sc, &sc->sc_wchan);
1827		mutex_enter(sc->sc_intr_lock);
1828		if (sc->sc_dying)
1829			error = EIO;
1830	}
1831	return error;
1832}
1833
1834/*
1835 * Close an audio chip.
1836 */
1837/* ARGSUSED */
1838int
1839audio_close(struct audio_softc *sc, int flags, int ifmt,
1840    struct lwp *l)
1841{
1842	const struct audio_hw_if *hw;
1843
1844	KASSERT(mutex_owned(sc->sc_lock));
1845
1846	DPRINTF(("audio_close: sc=%p\n", sc));
1847	hw = sc->hw_if;
1848	mutex_enter(sc->sc_intr_lock);
1849	/* Stop recording. */
1850	if ((flags & FREAD) && sc->sc_rbus) {
1851		/*
1852		 * XXX Some drivers (e.g. SB) use the same routine
1853		 * to halt input and output so don't halt input if
1854		 * in full duplex mode.  These drivers should be fixed.
1855		 */
1856		if (!sc->sc_full_duplex || hw->halt_input != hw->halt_output)
1857			hw->halt_input(sc->hw_hdl);
1858		sc->sc_rbus = false;
1859	}
1860	/*
1861	 * Block until output drains, but allow ^C interrupt.
1862	 */
1863	sc->sc_pr.usedlow = sc->sc_pr.blksize;	/* avoid excessive wakeups */
1864	/*
1865	 * If there is pending output, let it drain (unless
1866	 * the output is paused).
1867	 */
1868	if ((flags & FWRITE) && sc->sc_pbus) {
1869		if (!sc->sc_pr.pause && !audio_drain(sc) && hw->drain)
1870			(void)hw->drain(sc->hw_hdl);
1871		hw->halt_output(sc->hw_hdl);
1872		sc->sc_pbus = false;
1873	}
1874	if (hw->close != NULL)
1875		hw->close(sc->hw_hdl);
1876	sc->sc_open = 0;
1877	sc->sc_mode = 0;
1878	sc->sc_full_duplex = 0;
1879	mutex_exit(sc->sc_intr_lock);
1880	sc->sc_async_audio = 0;
1881
1882	return 0;
1883}
1884
1885int
1886audio_read(struct audio_softc *sc, struct uio *uio, int ioflag)
1887{
1888	struct audio_ringbuffer *cb;
1889	const uint8_t *outp;
1890	uint8_t *inp;
1891	int error, used, cc, n;
1892
1893	KASSERT(mutex_owned(sc->sc_lock));
1894
1895	cb = &sc->sc_rr;
1896	if (cb->mmapped)
1897		return EINVAL;
1898
1899	DPRINTFN(1,("audio_read: cc=%zu mode=%d\n",
1900		    uio->uio_resid, sc->sc_mode));
1901
1902#ifdef AUDIO_PM_IDLE
1903	if (device_is_active(&sc->dev) || sc->sc_idle)
1904		device_active(&sc->dev, DVA_SYSTEM);
1905#endif
1906
1907	error = 0;
1908	/*
1909	 * If hardware is half-duplex and currently playing, return
1910	 * silence blocks based on the number of blocks we have output.
1911	 */
1912	if (!sc->sc_full_duplex && (sc->sc_mode & AUMODE_PLAY)) {
1913		while (uio->uio_resid > 0 && !error) {
1914			for(;;) {
1915				/*
1916				 * No need to lock, as any wakeup will be
1917				 * held for us while holding sc_lock.
1918				 */
1919				cc = sc->sc_pr.stamp - sc->sc_wstamp;
1920				if (cc > 0)
1921					break;
1922				DPRINTF(("audio_read: stamp=%lu, wstamp=%lu\n",
1923					 sc->sc_pr.stamp, sc->sc_wstamp));
1924				if (ioflag & IO_NDELAY)
1925					return EWOULDBLOCK;
1926				error = audio_waitio(sc, &sc->sc_rchan);
1927				if (sc->sc_dying)
1928					error = EIO;
1929				if (error)
1930					return error;
1931			}
1932
1933			if (uio->uio_resid < cc)
1934				cc = uio->uio_resid;
1935			DPRINTFN(1,("audio_read: reading in write mode, "
1936				    "cc=%d\n", cc));
1937			error = audio_silence_copyout(sc, cc, uio);
1938			sc->sc_wstamp += cc;
1939		}
1940		return error;
1941	}
1942
1943	mutex_enter(sc->sc_intr_lock);
1944	while (uio->uio_resid > 0 && !error) {
1945		while ((used = audio_stream_get_used(sc->sc_rustream)) <= 0) {
1946			if (!sc->sc_rbus && !sc->sc_rr.pause)
1947				error = audiostartr(sc);
1948			mutex_exit(sc->sc_intr_lock);
1949			if (error)
1950				return error;
1951			if (ioflag & IO_NDELAY)
1952				return EWOULDBLOCK;
1953			DPRINTFN(2, ("audio_read: sleep used=%d\n", used));
1954			error = audio_waitio(sc, &sc->sc_rchan);
1955			if (sc->sc_dying)
1956				error = EIO;
1957			if (error)
1958				return error;
1959			mutex_enter(sc->sc_intr_lock);
1960		}
1961
1962		outp = sc->sc_rustream->outp;
1963		inp = sc->sc_rustream->inp;
1964		cb->copying = true;
1965
1966		/*
1967		 * cc is the amount of data in the sc_rustream excluding
1968		 * wrapped data.  Note the tricky case of inp == outp, which
1969		 * must mean the buffer is full, not empty, because used > 0.
1970		 */
1971		cc = outp < inp ? inp - outp :sc->sc_rustream->end - outp;
1972		DPRINTFN(1,("audio_read: outp=%p, cc=%d\n", outp, cc));
1973
1974		n = uio->uio_resid;
1975		mutex_exit(sc->sc_intr_lock);
1976		mutex_exit(sc->sc_lock);
1977		error = uiomove(__UNCONST(outp), cc, uio);
1978		mutex_enter(sc->sc_lock);
1979		mutex_enter(sc->sc_intr_lock);
1980		n -= uio->uio_resid; /* number of bytes actually moved */
1981
1982		sc->sc_rustream->outp = audio_stream_add_outp
1983			(sc->sc_rustream, outp, n);
1984		cb->copying = false;
1985	}
1986	mutex_exit(sc->sc_intr_lock);
1987	return error;
1988}
1989
1990void
1991audio_clear(struct audio_softc *sc)
1992{
1993
1994	KASSERT(mutex_owned(sc->sc_intr_lock));
1995
1996	if (sc->sc_rbus) {
1997		cv_broadcast(&sc->sc_rchan);
1998		sc->hw_if->halt_input(sc->hw_hdl);
1999		sc->sc_rbus = false;
2000		sc->sc_rr.pause = false;
2001	}
2002	if (sc->sc_pbus) {
2003		cv_broadcast(&sc->sc_wchan);
2004		sc->hw_if->halt_output(sc->hw_hdl);
2005		sc->sc_pbus = false;
2006		sc->sc_pr.pause = false;
2007	}
2008}
2009
2010void
2011audio_clear_intr_unlocked(struct audio_softc *sc)
2012{
2013
2014	mutex_enter(sc->sc_intr_lock);
2015	audio_clear(sc);
2016	mutex_exit(sc->sc_intr_lock);
2017}
2018
2019void
2020audio_calc_blksize(struct audio_softc *sc, int mode)
2021{
2022	const audio_params_t *parm;
2023	struct audio_ringbuffer *rb;
2024
2025	if (sc->sc_blkset)
2026		return;
2027
2028	if (mode == AUMODE_PLAY) {
2029		rb = &sc->sc_pr;
2030		parm = &rb->s.param;
2031	} else {
2032		rb = &sc->sc_rr;
2033		parm = &rb->s.param;
2034	}
2035
2036	rb->blksize = parm->sample_rate * audio_blk_ms / 1000 *
2037	     parm->channels * parm->precision / NBBY;
2038
2039	DPRINTF(("audio_calc_blksize: %s blksize=%d\n",
2040		 mode == AUMODE_PLAY ? "play" : "record", rb->blksize));
2041}
2042
2043void
2044audio_fill_silence(struct audio_params *params, uint8_t *p, int n)
2045{
2046	uint8_t auzero0, auzero1;
2047	int nfill;
2048
2049	auzero1 = 0;		/* initialize to please gcc */
2050	nfill = 1;
2051	switch (params->encoding) {
2052	case AUDIO_ENCODING_ULAW:
2053		auzero0 = 0x7f;
2054		break;
2055	case AUDIO_ENCODING_ALAW:
2056		auzero0 = 0x55;
2057		break;
2058	case AUDIO_ENCODING_MPEG_L1_STREAM:
2059	case AUDIO_ENCODING_MPEG_L1_PACKETS:
2060	case AUDIO_ENCODING_MPEG_L1_SYSTEM:
2061	case AUDIO_ENCODING_MPEG_L2_STREAM:
2062	case AUDIO_ENCODING_MPEG_L2_PACKETS:
2063	case AUDIO_ENCODING_MPEG_L2_SYSTEM:
2064	case AUDIO_ENCODING_AC3:
2065	case AUDIO_ENCODING_ADPCM: /* is this right XXX */
2066	case AUDIO_ENCODING_SLINEAR_LE:
2067	case AUDIO_ENCODING_SLINEAR_BE:
2068		auzero0 = 0;/* fortunately this works for any number of bits */
2069		break;
2070	case AUDIO_ENCODING_ULINEAR_LE:
2071	case AUDIO_ENCODING_ULINEAR_BE:
2072		if (params->precision > 8) {
2073			nfill = (params->precision + NBBY - 1)/ NBBY;
2074			auzero0 = 0x80;
2075			auzero1 = 0;
2076		} else
2077			auzero0 = 0x80;
2078		break;
2079	default:
2080		DPRINTF(("audio: bad encoding %d\n", params->encoding));
2081		auzero0 = 0;
2082		break;
2083	}
2084	if (nfill == 1) {
2085		while (--n >= 0)
2086			*p++ = auzero0; /* XXX memset */
2087	} else /* nfill must no longer be 2 */ {
2088		if (params->encoding == AUDIO_ENCODING_ULINEAR_LE) {
2089			int k = nfill;
2090			while (--k > 0)
2091				*p++ = auzero1;
2092			n -= nfill - 1;
2093		}
2094		while (n >= nfill) {
2095			int k = nfill;
2096			*p++ = auzero0;
2097			while (--k > 0)
2098				*p++ = auzero1;
2099
2100			n -= nfill;
2101		}
2102		if (n-- > 0)	/* XXX must be 1 - DIAGNOSTIC check? */
2103			*p++ = auzero0;
2104	}
2105}
2106
2107int
2108audio_silence_copyout(struct audio_softc *sc, int n, struct uio *uio)
2109{
2110	uint8_t zerobuf[128];
2111	int error;
2112	int k;
2113
2114	audio_fill_silence(&sc->sc_rparams, zerobuf, sizeof zerobuf);
2115
2116	error = 0;
2117	while (n > 0 && uio->uio_resid > 0 && !error) {
2118		k = min(n, min(uio->uio_resid, sizeof zerobuf));
2119		mutex_exit(sc->sc_lock);
2120		error = uiomove(zerobuf, k, uio);
2121		mutex_enter(sc->sc_lock);
2122		n -= k;
2123	}
2124
2125	return error;
2126}
2127
2128static int
2129uio_fetcher_fetch_to(struct audio_softc *sc, stream_fetcher_t *self,
2130    audio_stream_t *p, int max_used)
2131{
2132	uio_fetcher_t *this;
2133	int size;
2134	int stream_space;
2135	int error;
2136
2137	KASSERT(mutex_owned(sc->sc_lock));
2138	KASSERT(!cpu_intr_p());
2139	KASSERT(!cpu_softintr_p());
2140
2141	this = (uio_fetcher_t *)self;
2142	this->last_used = audio_stream_get_used(p);
2143	if (this->last_used >= this->usedhigh)
2144		return 0;
2145	/*
2146	 * uio_fetcher ignores max_used and move the data as
2147	 * much as possible in order to return the correct value
2148	 * for audio_prinfo::seek and kfilters.
2149	 */
2150	stream_space = audio_stream_get_space(p);
2151	size = min(this->uio->uio_resid, stream_space);
2152
2153	/* the first fragment of the space */
2154	stream_space = p->end - p->inp;
2155	if (stream_space >= size) {
2156		mutex_exit(sc->sc_lock);
2157		error = uiomove(p->inp, size, this->uio);
2158		mutex_enter(sc->sc_lock);
2159		if (error)
2160			return error;
2161		p->inp = audio_stream_add_inp(p, p->inp, size);
2162	} else {
2163		mutex_exit(sc->sc_lock);
2164		error = uiomove(p->inp, stream_space, this->uio);
2165		mutex_enter(sc->sc_lock);
2166		if (error)
2167			return error;
2168		p->inp = audio_stream_add_inp(p, p->inp, stream_space);
2169		mutex_exit(sc->sc_lock);
2170		error = uiomove(p->start, size - stream_space, this->uio);
2171		mutex_enter(sc->sc_lock);
2172		if (error)
2173			return error;
2174		p->inp = audio_stream_add_inp(p, p->inp, size - stream_space);
2175	}
2176	this->last_used = audio_stream_get_used(p);
2177	return 0;
2178}
2179
2180static int
2181null_fetcher_fetch_to(struct audio_softc *sc, stream_fetcher_t *self,
2182    audio_stream_t *p, int max_used)
2183{
2184
2185	return 0;
2186}
2187
2188static void
2189uio_fetcher_ctor(uio_fetcher_t *this, struct uio *u, int h)
2190{
2191
2192	this->base.fetch_to = uio_fetcher_fetch_to;
2193	this->uio = u;
2194	this->usedhigh = h;
2195}
2196
2197int
2198audio_write(struct audio_softc *sc, struct uio *uio, int ioflag)
2199{
2200	uio_fetcher_t ufetcher;
2201	audio_stream_t stream;
2202	struct audio_ringbuffer *cb;
2203	stream_fetcher_t *fetcher;
2204	stream_filter_t *filter;
2205	uint8_t *inp, *einp;
2206	int saveerror, error, n, cc, used;
2207
2208	KASSERT(mutex_owned(sc->sc_lock));
2209
2210	DPRINTFN(2,("audio_write: sc=%p count=%zu used=%d(hi=%d)\n",
2211		    sc, uio->uio_resid, audio_stream_get_used(sc->sc_pustream),
2212		    sc->sc_pr.usedhigh));
2213	cb = &sc->sc_pr;
2214	if (cb->mmapped)
2215		return EINVAL;
2216
2217	if (uio->uio_resid == 0) {
2218		sc->sc_eof++;
2219		return 0;
2220	}
2221
2222#ifdef AUDIO_PM_IDLE
2223	if (device_is_active(&sc->dev) || sc->sc_idle)
2224		device_active(&sc->dev, DVA_SYSTEM);
2225#endif
2226
2227	/*
2228	 * If half-duplex and currently recording, throw away data.
2229	 */
2230	if (!sc->sc_full_duplex &&
2231	    (sc->sc_mode & AUMODE_RECORD)) {
2232		uio->uio_offset += uio->uio_resid;
2233		uio->uio_resid = 0;
2234		DPRINTF(("audio_write: half-dpx read busy\n"));
2235		return 0;
2236	}
2237
2238	if (!(sc->sc_mode & AUMODE_PLAY_ALL) && sc->sc_playdrop > 0) {
2239		n = min(sc->sc_playdrop, uio->uio_resid);
2240		DPRINTF(("audio_write: playdrop %d\n", n));
2241		uio->uio_offset += n;
2242		uio->uio_resid -= n;
2243		sc->sc_playdrop -= n;
2244		if (uio->uio_resid == 0)
2245			return 0;
2246	}
2247
2248	/**
2249	 * setup filter pipeline
2250	 */
2251	uio_fetcher_ctor(&ufetcher, uio, cb->usedhigh);
2252	if (sc->sc_npfilters > 0) {
2253		fetcher = &sc->sc_pfilters[sc->sc_npfilters - 1]->base;
2254	} else {
2255		fetcher = &ufetcher.base;
2256	}
2257
2258	error = 0;
2259	mutex_enter(sc->sc_intr_lock);
2260	while (uio->uio_resid > 0 && !error) {
2261		/* wait if the first buffer is occupied */
2262		while ((used = audio_stream_get_used(sc->sc_pustream))
2263		    >= cb->usedhigh) {
2264			DPRINTFN(2, ("audio_write: sleep used=%d lowat=%d "
2265				     "hiwat=%d\n", used,
2266				     cb->usedlow, cb->usedhigh));
2267			mutex_exit(sc->sc_intr_lock);
2268			if (ioflag & IO_NDELAY)
2269				return EWOULDBLOCK;
2270			error = audio_waitio(sc, &sc->sc_wchan);
2271			if (sc->sc_dying)
2272				error = EIO;
2273			if (error)
2274				return error;
2275			mutex_enter(sc->sc_intr_lock);
2276		}
2277		inp = cb->s.inp;
2278		cb->copying = true;
2279		stream = cb->s;
2280		used = stream.used;
2281
2282		/* Write to the sc_pustream as much as possible. */
2283		mutex_exit(sc->sc_intr_lock);
2284		if (sc->sc_npfilters > 0) {
2285			filter = sc->sc_pfilters[0];
2286			filter->set_fetcher(filter, &ufetcher.base);
2287			fetcher = &sc->sc_pfilters[sc->sc_npfilters - 1]->base;
2288			cc = cb->blksize * 2;
2289			error = fetcher->fetch_to(sc, fetcher, &stream, cc);
2290			if (error != 0) {
2291				fetcher = &ufetcher.base;
2292				cc = sc->sc_pustream->end - sc->sc_pustream->start;
2293				error = fetcher->fetch_to(sc, fetcher,
2294				    sc->sc_pustream, cc);
2295			}
2296		} else {
2297			fetcher = &ufetcher.base;
2298			cc = stream.end - stream.start;
2299			error = fetcher->fetch_to(sc, fetcher, &stream, cc);
2300		}
2301		mutex_enter(sc->sc_intr_lock);
2302		if (sc->sc_npfilters > 0) {
2303			cb->fstamp += ufetcher.last_used
2304			    - audio_stream_get_used(sc->sc_pustream);
2305		}
2306		cb->s.used += stream.used - used;
2307		cb->s.inp = stream.inp;
2308		einp = cb->s.inp;
2309
2310		/*
2311		 * This is a very suboptimal way of keeping track of
2312		 * silence in the buffer, but it is simple.
2313		 */
2314		sc->sc_sil_count = 0;
2315
2316		/*
2317		 * If the interrupt routine wants the last block filled AND
2318		 * the copy did not fill the last block completely it needs to
2319		 * be padded.
2320		 */
2321		if (cb->needfill && inp < einp &&
2322		    (inp  - cb->s.start) / cb->blksize ==
2323		    (einp - cb->s.start) / cb->blksize) {
2324			/* Figure out how many bytes to a block boundary. */
2325			cc = cb->blksize - (einp - cb->s.start) % cb->blksize;
2326			DPRINTF(("audio_write: partial fill %d\n", cc));
2327		} else
2328			cc = 0;
2329		cb->needfill = false;
2330		cb->copying = false;
2331		if (!sc->sc_pbus && !cb->pause) {
2332			saveerror = error;
2333			error = audiostartp(sc);
2334			if (saveerror != 0) {
2335				/* Report the first error that occurred. */
2336				error = saveerror;
2337			}
2338		}
2339		if (cc != 0) {
2340			DPRINTFN(1, ("audio_write: fill %d\n", cc));
2341			audio_fill_silence(&cb->s.param, einp, cc);
2342		}
2343	}
2344	mutex_exit(sc->sc_intr_lock);
2345
2346	return error;
2347}
2348
2349int
2350audio_ioctl(struct audio_softc *sc, u_long cmd, void *addr, int flag,
2351	    struct lwp *l)
2352{
2353	const struct audio_hw_if *hw;
2354	struct audio_offset *ao;
2355	u_long stamp;
2356	int error, offs, fd;
2357	bool rbus, pbus;
2358
2359	KASSERT(mutex_owned(sc->sc_lock));
2360
2361	DPRINTF(("audio_ioctl(%lu,'%c',%lu)\n",
2362		 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd&0xff));
2363	hw = sc->hw_if;
2364	error = 0;
2365	switch (cmd) {
2366	case FIONBIO:
2367		/* All handled in the upper FS layer. */
2368		break;
2369
2370	case FIONREAD:
2371		*(int *)addr = audio_stream_get_used(sc->sc_rustream);
2372		break;
2373
2374	case FIOASYNC:
2375		if (*(int *)addr) {
2376			if (sc->sc_async_audio != 0)
2377				error = EBUSY;
2378			else
2379				sc->sc_async_audio = curproc->p_pid;
2380			DPRINTF(("audio_ioctl: FIOASYNC pid %d\n",
2381			    curproc->p_pid));
2382		} else
2383			sc->sc_async_audio = 0;
2384		break;
2385
2386	case AUDIO_FLUSH:
2387		DPRINTF(("AUDIO_FLUSH\n"));
2388		rbus = sc->sc_rbus;
2389		pbus = sc->sc_pbus;
2390		mutex_enter(sc->sc_intr_lock);
2391		audio_clear(sc);
2392		error = audio_initbufs(sc);
2393		if (error) {
2394			mutex_exit(sc->sc_intr_lock);
2395			return error;
2396		}
2397		if ((sc->sc_mode & AUMODE_PLAY) && !sc->sc_pbus && pbus)
2398			error = audiostartp(sc);
2399		if (!error &&
2400		    (sc->sc_mode & AUMODE_RECORD) && !sc->sc_rbus && rbus)
2401			error = audiostartr(sc);
2402		mutex_exit(sc->sc_intr_lock);
2403		break;
2404
2405	/*
2406	 * Number of read (write) samples dropped.  We don't know where or
2407	 * when they were dropped.
2408	 */
2409	case AUDIO_RERROR:
2410		*(int *)addr = sc->sc_rr.drops;
2411		break;
2412
2413	case AUDIO_PERROR:
2414		*(int *)addr = sc->sc_pr.drops;
2415		break;
2416
2417	/*
2418	 * Offsets into buffer.
2419	 */
2420	case AUDIO_GETIOFFS:
2421		ao = (struct audio_offset *)addr;
2422		mutex_enter(sc->sc_intr_lock);
2423		/* figure out where next DMA will start */
2424		stamp = sc->sc_rustream == &sc->sc_rr.s
2425			? sc->sc_rr.stamp : sc->sc_rr.fstamp;
2426		offs = sc->sc_rustream->inp - sc->sc_rustream->start;
2427		mutex_exit(sc->sc_intr_lock);
2428		ao->samples = stamp;
2429		ao->deltablks =
2430		  (stamp / sc->sc_rr.blksize) -
2431		  (sc->sc_rr.stamp_last / sc->sc_rr.blksize);
2432		sc->sc_rr.stamp_last = stamp;
2433		ao->offset = offs;
2434		break;
2435
2436	case AUDIO_GETOOFFS:
2437		ao = (struct audio_offset *)addr;
2438		mutex_enter(sc->sc_intr_lock);
2439		/* figure out where next DMA will start */
2440		stamp = sc->sc_pustream == &sc->sc_pr.s
2441			? sc->sc_pr.stamp : sc->sc_pr.fstamp;
2442		offs = sc->sc_pustream->outp - sc->sc_pustream->start
2443			+ sc->sc_pr.blksize;
2444		mutex_exit(sc->sc_intr_lock);
2445		ao->samples = stamp;
2446		ao->deltablks =
2447		  (stamp / sc->sc_pr.blksize) -
2448		  (sc->sc_pr.stamp_last / sc->sc_pr.blksize);
2449		sc->sc_pr.stamp_last = stamp;
2450		if (sc->sc_pustream->start + offs >= sc->sc_pustream->end)
2451			offs = 0;
2452		ao->offset = offs;
2453		break;
2454
2455	/*
2456	 * How many bytes will elapse until mike hears the first
2457	 * sample of what we write next?
2458	 */
2459	case AUDIO_WSEEK:
2460		*(u_long *)addr = audio_stream_get_used(sc->sc_pustream);
2461		break;
2462
2463	case AUDIO_SETINFO:
2464		DPRINTF(("AUDIO_SETINFO mode=0x%x\n", sc->sc_mode));
2465		error = audiosetinfo(sc, (struct audio_info *)addr);
2466		break;
2467
2468	case AUDIO_GETINFO:
2469		DPRINTF(("AUDIO_GETINFO\n"));
2470		error = audiogetinfo(sc, (struct audio_info *)addr, 0);
2471		break;
2472
2473	case AUDIO_GETBUFINFO:
2474		DPRINTF(("AUDIO_GETBUFINFO\n"));
2475		error = audiogetinfo(sc, (struct audio_info *)addr, 1);
2476		break;
2477
2478	case AUDIO_DRAIN:
2479		DPRINTF(("AUDIO_DRAIN\n"));
2480		mutex_enter(sc->sc_intr_lock);
2481		error = audio_drain(sc);
2482		if (!error && hw->drain)
2483		    error = hw->drain(sc->hw_hdl);
2484		mutex_exit(sc->sc_intr_lock);
2485		break;
2486
2487	case AUDIO_GETDEV:
2488		DPRINTF(("AUDIO_GETDEV\n"));
2489		error = hw->getdev(sc->hw_hdl, (audio_device_t *)addr);
2490		break;
2491
2492	case AUDIO_GETENC:
2493		DPRINTF(("AUDIO_GETENC\n"));
2494		error = hw->query_encoding(sc->hw_hdl,
2495		    (struct audio_encoding *)addr);
2496		break;
2497
2498	case AUDIO_GETFD:
2499		DPRINTF(("AUDIO_GETFD\n"));
2500		*(int *)addr = sc->sc_full_duplex;
2501		break;
2502
2503	case AUDIO_SETFD:
2504		DPRINTF(("AUDIO_SETFD\n"));
2505		fd = *(int *)addr;
2506		if (audio_get_props(sc) & AUDIO_PROP_FULLDUPLEX) {
2507			if (hw->setfd)
2508				error = hw->setfd(sc->hw_hdl, fd);
2509			else
2510				error = 0;
2511			if (!error)
2512				sc->sc_full_duplex = fd;
2513		} else {
2514			if (fd)
2515				error = ENOTTY;
2516			else
2517				error = 0;
2518		}
2519		break;
2520
2521	case AUDIO_GETPROPS:
2522		DPRINTF(("AUDIO_GETPROPS\n"));
2523		*(int *)addr = audio_get_props(sc);
2524		break;
2525
2526	default:
2527		if (hw->dev_ioctl) {
2528			error = hw->dev_ioctl(sc->hw_hdl, cmd, addr, flag, l);
2529		} else {
2530			DPRINTF(("audio_ioctl: unknown ioctl\n"));
2531			error = EINVAL;
2532		}
2533		break;
2534	}
2535	DPRINTF(("audio_ioctl(%lu,'%c',%lu) result %d\n",
2536		 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd&0xff, error));
2537	return error;
2538}
2539
2540int
2541audio_poll(struct audio_softc *sc, int events, struct lwp *l)
2542{
2543	int revents;
2544	int used;
2545
2546	KASSERT(mutex_owned(sc->sc_lock));
2547
2548	DPRINTF(("audio_poll: events=0x%x mode=%d\n", events, sc->sc_mode));
2549
2550	revents = 0;
2551	mutex_enter(sc->sc_intr_lock);
2552	if (events & (POLLIN | POLLRDNORM)) {
2553		used = audio_stream_get_used(sc->sc_rustream);
2554		/*
2555		 * If half duplex and playing, audio_read() will generate
2556		 * silence at the play rate; poll for silence being
2557		 * available.  Otherwise, poll for recorded sound.
2558		 */
2559		if ((!sc->sc_full_duplex && (sc->sc_mode & AUMODE_PLAY)) ?
2560		    sc->sc_pr.stamp > sc->sc_wstamp :
2561		    used > sc->sc_rr.usedlow)
2562			revents |= events & (POLLIN | POLLRDNORM);
2563	}
2564
2565	if (events & (POLLOUT | POLLWRNORM)) {
2566		used = audio_stream_get_used(sc->sc_pustream);
2567		/*
2568		 * If half duplex and recording, audio_write() will throw
2569		 * away play data, which means we are always ready to write.
2570		 * Otherwise, poll for play buffer being below its low water
2571		 * mark.
2572		 */
2573		if ((!sc->sc_full_duplex && (sc->sc_mode & AUMODE_RECORD)) ||
2574		    (!(sc->sc_mode & AUMODE_PLAY_ALL) && sc->sc_playdrop > 0) ||
2575		    (used <= sc->sc_pr.usedlow))
2576			revents |= events & (POLLOUT | POLLWRNORM);
2577	}
2578	mutex_exit(sc->sc_intr_lock);
2579
2580	if (revents == 0) {
2581		if (events & (POLLIN | POLLRDNORM))
2582			selrecord(l, &sc->sc_rsel);
2583
2584		if (events & (POLLOUT | POLLWRNORM))
2585			selrecord(l, &sc->sc_wsel);
2586	}
2587
2588	return revents;
2589}
2590
2591static void
2592filt_audiordetach(struct knote *kn)
2593{
2594	struct audio_softc *sc;
2595
2596	sc = kn->kn_hook;
2597	mutex_enter(sc->sc_intr_lock);
2598	SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
2599	mutex_exit(sc->sc_intr_lock);
2600}
2601
2602static int
2603filt_audioread(struct knote *kn, long hint)
2604{
2605	struct audio_softc *sc;
2606
2607	sc = kn->kn_hook;
2608	mutex_enter(sc->sc_intr_lock);
2609	if (!sc->sc_full_duplex && (sc->sc_mode & AUMODE_PLAY))
2610		kn->kn_data = sc->sc_pr.stamp - sc->sc_wstamp;
2611	else
2612		kn->kn_data = audio_stream_get_used(sc->sc_rustream)
2613			- sc->sc_rr.usedlow;
2614	mutex_exit(sc->sc_intr_lock);
2615
2616	return kn->kn_data > 0;
2617}
2618
2619static const struct filterops audioread_filtops =
2620	{ 1, NULL, filt_audiordetach, filt_audioread };
2621
2622static void
2623filt_audiowdetach(struct knote *kn)
2624{
2625	struct audio_softc *sc;
2626
2627	sc = kn->kn_hook;
2628	mutex_enter(sc->sc_intr_lock);
2629	SLIST_REMOVE(&sc->sc_wsel.sel_klist, kn, knote, kn_selnext);
2630	mutex_exit(sc->sc_intr_lock);
2631}
2632
2633static int
2634filt_audiowrite(struct knote *kn, long hint)
2635{
2636	struct audio_softc *sc;
2637	audio_stream_t *stream;
2638
2639	sc = kn->kn_hook;
2640	mutex_enter(sc->sc_intr_lock);
2641	stream = sc->sc_pustream;
2642	kn->kn_data = (stream->end - stream->start)
2643		- audio_stream_get_used(stream);
2644	mutex_exit(sc->sc_intr_lock);
2645
2646	return kn->kn_data > 0;
2647}
2648
2649static const struct filterops audiowrite_filtops =
2650	{ 1, NULL, filt_audiowdetach, filt_audiowrite };
2651
2652int
2653audio_kqfilter(struct audio_softc *sc, struct knote *kn)
2654{
2655	struct klist *klist;
2656
2657	switch (kn->kn_filter) {
2658	case EVFILT_READ:
2659		klist = &sc->sc_rsel.sel_klist;
2660		kn->kn_fop = &audioread_filtops;
2661		break;
2662
2663	case EVFILT_WRITE:
2664		klist = &sc->sc_wsel.sel_klist;
2665		kn->kn_fop = &audiowrite_filtops;
2666		break;
2667
2668	default:
2669		return EINVAL;
2670	}
2671
2672	kn->kn_hook = sc;
2673
2674	mutex_enter(sc->sc_intr_lock);
2675	SLIST_INSERT_HEAD(klist, kn, kn_selnext);
2676	mutex_exit(sc->sc_intr_lock);
2677
2678	return 0;
2679}
2680
2681paddr_t
2682audio_mmap(struct audio_softc *sc, off_t off, int prot)
2683{
2684	const struct audio_hw_if *hw;
2685	struct audio_ringbuffer *cb;
2686	paddr_t rv;
2687
2688	KASSERT(mutex_owned(sc->sc_lock));
2689	KASSERT(sc->sc_dvlock > 0);
2690
2691	DPRINTF(("audio_mmap: off=%lld, prot=%d\n", (long long)off, prot));
2692	hw = sc->hw_if;
2693	if (!(audio_get_props(sc) & AUDIO_PROP_MMAP) || !hw->mappage)
2694		return -1;
2695#if 0
2696/* XXX
2697 * The idea here was to use the protection to determine if
2698 * we are mapping the read or write buffer, but it fails.
2699 * The VM system is broken in (at least) two ways.
2700 * 1) If you map memory VM_PROT_WRITE you SIGSEGV
2701 *    when writing to it, so VM_PROT_READ|VM_PROT_WRITE
2702 *    has to be used for mmapping the play buffer.
2703 * 2) Even if calling mmap() with VM_PROT_READ|VM_PROT_WRITE
2704 *    audio_mmap will get called at some point with VM_PROT_READ
2705 *    only.
2706 * So, alas, we always map the play buffer for now.
2707 */
2708	if (prot == (VM_PROT_READ|VM_PROT_WRITE) ||
2709	    prot == VM_PROT_WRITE)
2710		cb = &sc->sc_pr;
2711	else if (prot == VM_PROT_READ)
2712		cb = &sc->sc_rr;
2713	else
2714		return -1;
2715#else
2716	cb = &sc->sc_pr;
2717#endif
2718
2719	if ((u_int)off >= cb->s.bufsize)
2720		return -1;
2721	if (!cb->mmapped) {
2722		cb->mmapped = true;
2723		if (cb == &sc->sc_pr) {
2724			audio_fill_silence(&cb->s.param, cb->s.start,
2725					   cb->s.bufsize);
2726			mutex_enter(sc->sc_intr_lock);
2727			sc->sc_pustream = &cb->s;
2728			if (!sc->sc_pbus && !sc->sc_pr.pause)
2729				(void)audiostartp(sc);
2730			mutex_exit(sc->sc_intr_lock);
2731		} else {
2732			mutex_enter(sc->sc_intr_lock);
2733			sc->sc_rustream = &cb->s;
2734			if (!sc->sc_rbus && !sc->sc_rr.pause)
2735				(void)audiostartr(sc);
2736			mutex_exit(sc->sc_intr_lock);
2737		}
2738	}
2739
2740	mutex_exit(sc->sc_lock);
2741	rv = hw->mappage(sc->hw_hdl, cb->s.start, off, prot);
2742	mutex_enter(sc->sc_lock);
2743
2744	return rv;
2745}
2746
2747int
2748audiostartr(struct audio_softc *sc)
2749{
2750	int error;
2751
2752	KASSERT(mutex_owned(sc->sc_lock));
2753	KASSERT(mutex_owned(sc->sc_intr_lock));
2754
2755	DPRINTF(("audiostartr: start=%p used=%d(hi=%d) mmapped=%d\n",
2756		 sc->sc_rr.s.start, audio_stream_get_used(&sc->sc_rr.s),
2757		 sc->sc_rr.usedhigh, sc->sc_rr.mmapped));
2758
2759	if (!audio_can_capture(sc))
2760		return EINVAL;
2761
2762	if (sc->hw_if->trigger_input)
2763		error = sc->hw_if->trigger_input(sc->hw_hdl, sc->sc_rr.s.start,
2764		    sc->sc_rr.s.end, sc->sc_rr.blksize,
2765		    audio_rint, (void *)sc, &sc->sc_rr.s.param);
2766	else
2767		error = sc->hw_if->start_input(sc->hw_hdl, sc->sc_rr.s.start,
2768		    sc->sc_rr.blksize, audio_rint, (void *)sc);
2769	if (error) {
2770		DPRINTF(("audiostartr failed: %d\n", error));
2771		return error;
2772	}
2773	sc->sc_rbus = true;
2774	return 0;
2775}
2776
2777int
2778audiostartp(struct audio_softc *sc)
2779{
2780	int error;
2781	int used;
2782
2783	KASSERT(mutex_owned(sc->sc_lock));
2784	KASSERT(mutex_owned(sc->sc_intr_lock));
2785
2786	used = audio_stream_get_used(&sc->sc_pr.s);
2787	DPRINTF(("audiostartp: start=%p used=%d(hi=%d blk=%d) mmapped=%d\n",
2788		 sc->sc_pr.s.start, used, sc->sc_pr.usedhigh,
2789		 sc->sc_pr.blksize, sc->sc_pr.mmapped));
2790
2791	if (!audio_can_playback(sc))
2792		return EINVAL;
2793
2794	if (!sc->sc_pr.mmapped && used < sc->sc_pr.blksize) {
2795		cv_broadcast(&sc->sc_wchan);
2796		DPRINTF(("%s: wakeup and return\n", __func__));
2797		return 0;
2798	}
2799
2800	if (sc->hw_if->trigger_output) {
2801		DPRINTF(("%s: call trigger_output\n", __func__));
2802		error = sc->hw_if->trigger_output(sc->hw_hdl, sc->sc_pr.s.start,
2803		    sc->sc_pr.s.end, sc->sc_pr.blksize,
2804		    audio_pint, (void *)sc, &sc->sc_pr.s.param);
2805	} else {
2806		DPRINTF(("%s: call start_output\n", __func__));
2807		error = sc->hw_if->start_output(sc->hw_hdl,
2808		    __UNCONST(sc->sc_pr.s.outp), sc->sc_pr.blksize,
2809		    audio_pint, (void *)sc);
2810	}
2811	if (error) {
2812		DPRINTF(("audiostartp failed: %d\n", error));
2813		return error;
2814	}
2815	sc->sc_pbus = true;
2816	return 0;
2817}
2818
2819/*
2820 * When the play interrupt routine finds that the write isn't keeping
2821 * the buffer filled it will insert silence in the buffer to make up
2822 * for this.  The part of the buffer that is filled with silence
2823 * is kept track of in a very approximate way: it starts at sc_sil_start
2824 * and extends sc_sil_count bytes.  If there is already silence in
2825 * the requested area nothing is done; so when the whole buffer is
2826 * silent nothing happens.  When the writer starts again sc_sil_count
2827 * is set to 0.
2828 *
2829 * XXX
2830 * Putting silence into the output buffer should not really be done
2831 * from the device interrupt handler.  Consider deferring to the soft
2832 * interrupt.
2833 */
2834static inline void
2835audio_pint_silence(struct audio_softc *sc, struct audio_ringbuffer *cb,
2836		   uint8_t *inp, int cc)
2837{
2838	uint8_t *s, *e, *p, *q;
2839
2840	KASSERT(mutex_owned(sc->sc_intr_lock));
2841
2842	if (sc->sc_sil_count > 0) {
2843		s = sc->sc_sil_start; /* start of silence */
2844		e = s + sc->sc_sil_count; /* end of sil., may be beyond end */
2845		p = inp;	/* adjusted pointer to area to fill */
2846		if (p < s)
2847			p += cb->s.end - cb->s.start;
2848		q = p + cc;
2849		/* Check if there is already silence. */
2850		if (!(s <= p && p <  e &&
2851		      s <= q && q <= e)) {
2852			if (s <= p)
2853				sc->sc_sil_count = max(sc->sc_sil_count, q-s);
2854			DPRINTFN(5,("audio_pint_silence: fill cc=%d inp=%p, "
2855				    "count=%d size=%d\n",
2856				    cc, inp, sc->sc_sil_count,
2857				    (int)(cb->s.end - cb->s.start)));
2858			audio_fill_silence(&cb->s.param, inp, cc);
2859		} else {
2860			DPRINTFN(5,("audio_pint_silence: already silent "
2861				    "cc=%d inp=%p\n", cc, inp));
2862
2863		}
2864	} else {
2865		sc->sc_sil_start = inp;
2866		sc->sc_sil_count = cc;
2867		DPRINTFN(5, ("audio_pint_silence: start fill %p %d\n",
2868			     inp, cc));
2869		audio_fill_silence(&cb->s.param, inp, cc);
2870	}
2871}
2872
2873static void
2874audio_softintr_rd(void *cookie)
2875{
2876	struct audio_softc *sc = cookie;
2877	proc_t *p;
2878	pid_t pid;
2879
2880	mutex_enter(sc->sc_lock);
2881	cv_broadcast(&sc->sc_rchan);
2882	selnotify(&sc->sc_rsel, 0, NOTE_SUBMIT);
2883	if ((pid = sc->sc_async_audio) != 0) {
2884		DPRINTFN(3, ("audio_softintr_rd: sending SIGIO %d\n", pid));
2885		mutex_enter(proc_lock);
2886		if ((p = proc_find(pid)) != NULL)
2887			psignal(p, SIGIO);
2888		mutex_exit(proc_lock);
2889	}
2890	mutex_exit(sc->sc_lock);
2891}
2892
2893static void
2894audio_softintr_wr(void *cookie)
2895{
2896	struct audio_softc *sc = cookie;
2897	proc_t *p;
2898	pid_t pid;
2899
2900	mutex_enter(sc->sc_lock);
2901	cv_broadcast(&sc->sc_wchan);
2902	selnotify(&sc->sc_wsel, 0, NOTE_SUBMIT);
2903	if ((pid = sc->sc_async_audio) != 0) {
2904		DPRINTFN(3, ("audio_softintr_wr: sending SIGIO %d\n", pid));
2905		mutex_enter(proc_lock);
2906		if ((p = proc_find(pid)) != NULL)
2907			psignal(p, SIGIO);
2908		mutex_exit(proc_lock);
2909	}
2910	mutex_exit(sc->sc_lock);
2911}
2912
2913/*
2914 * Called from HW driver module on completion of DMA output.
2915 * Start output of new block, wrap in ring buffer if needed.
2916 * If no more buffers to play, output zero instead.
2917 * Do a wakeup if necessary.
2918 */
2919void
2920audio_pint(void *v)
2921{
2922	stream_fetcher_t null_fetcher;
2923	struct audio_softc *sc;
2924	const struct audio_hw_if *hw;
2925	struct audio_ringbuffer *cb;
2926	stream_fetcher_t *fetcher;
2927	uint8_t *inp;
2928	int cc, used;
2929	int blksize;
2930	int error;
2931
2932	sc = v;
2933
2934	KASSERT(mutex_owned(sc->sc_intr_lock));
2935
2936	if (!sc->sc_open)
2937		return;		/* ignore interrupt if not open */
2938
2939	hw = sc->hw_if;
2940	cb = &sc->sc_pr;
2941	blksize = cb->blksize;
2942	cb->s.outp = audio_stream_add_outp(&cb->s, cb->s.outp, blksize);
2943	cb->stamp += blksize;
2944	if (cb->mmapped) {
2945		DPRINTFN(5, ("audio_pint: mmapped outp=%p cc=%d inp=%p\n",
2946			     cb->s.outp, blksize, cb->s.inp));
2947		if (hw->trigger_output == NULL)
2948			(void)hw->start_output(sc->hw_hdl, __UNCONST(cb->s.outp),
2949			    blksize, audio_pint, (void *)sc);
2950		return;
2951	}
2952
2953#ifdef AUDIO_INTR_TIME
2954	{
2955		struct timeval tv;
2956		u_long t;
2957		microtime(&tv);
2958		t = tv.tv_usec + 1000000 * tv.tv_sec;
2959		if (sc->sc_pnintr) {
2960			long lastdelta, totdelta;
2961			lastdelta = t - sc->sc_plastintr - sc->sc_pblktime;
2962			if (lastdelta > sc->sc_pblktime / 3) {
2963				printf("audio: play interrupt(%d) off "
2964				       "relative by %ld us (%lu)\n",
2965				       sc->sc_pnintr, lastdelta,
2966				       sc->sc_pblktime);
2967			}
2968			totdelta = t - sc->sc_pfirstintr -
2969				sc->sc_pblktime * sc->sc_pnintr;
2970			if (totdelta > sc->sc_pblktime) {
2971				printf("audio: play interrupt(%d) off "
2972				       "absolute by %ld us (%lu) (LOST)\n",
2973				       sc->sc_pnintr, totdelta,
2974				       sc->sc_pblktime);
2975				sc->sc_pnintr++; /* avoid repeated messages */
2976			}
2977		} else
2978			sc->sc_pfirstintr = t;
2979		sc->sc_plastintr = t;
2980		sc->sc_pnintr++;
2981	}
2982#endif
2983
2984	used = audio_stream_get_used(&cb->s);
2985	/*
2986	 * "used <= cb->usedlow" should be "used < blksize" ideally.
2987	 * Some HW drivers such as uaudio(4) does not call audio_pint()
2988	 * at accurate timing.  If used < blksize, uaudio(4) already
2989	 * request transfer of garbage data.
2990	 */
2991	if (used <= cb->usedlow && !cb->copying && sc->sc_npfilters > 0) {
2992		/* we might have data in filter pipeline */
2993		null_fetcher.fetch_to = null_fetcher_fetch_to;
2994		fetcher = &sc->sc_pfilters[sc->sc_npfilters - 1]->base;
2995		sc->sc_pfilters[0]->set_fetcher(sc->sc_pfilters[0],
2996						&null_fetcher);
2997		used = audio_stream_get_used(sc->sc_pustream);
2998		cc = cb->s.end - cb->s.start;
2999		if (blksize * 2 < cc)
3000			cc = blksize * 2;
3001		fetcher->fetch_to(sc, fetcher, &cb->s, cc);
3002		cb->fstamp += used - audio_stream_get_used(sc->sc_pustream);
3003		used = audio_stream_get_used(&cb->s);
3004	}
3005	if (used < blksize) {
3006		/* we don't have a full block to use */
3007		if (cb->copying) {
3008			/* writer is in progress, don't disturb */
3009			cb->needfill = true;
3010			DPRINTFN(1, ("audio_pint: copying in progress\n"));
3011		} else {
3012			inp = cb->s.inp;
3013			cc = blksize - (inp - cb->s.start) % blksize;
3014			if (cb->pause)
3015				cb->pdrops += cc;
3016			else {
3017				cb->drops += cc;
3018				sc->sc_playdrop += cc;
3019			}
3020			audio_pint_silence(sc, cb, inp, cc);
3021			cb->s.inp = audio_stream_add_inp(&cb->s, inp, cc);
3022
3023			/* Clear next block so we keep ahead of the DMA. */
3024			used = audio_stream_get_used(&cb->s);
3025			if (used + blksize < cb->s.end - cb->s.start)
3026				audio_pint_silence(sc, cb, cb->s.inp, blksize);
3027		}
3028	}
3029
3030	DPRINTFN(5, ("audio_pint: outp=%p cc=%d\n", cb->s.outp, blksize));
3031	if (hw->trigger_output == NULL) {
3032		error = hw->start_output(sc->hw_hdl, __UNCONST(cb->s.outp),
3033		    blksize, audio_pint, (void *)sc);
3034		if (error) {
3035			/* XXX does this really help? */
3036			DPRINTF(("audio_pint restart failed: %d\n", error));
3037			audio_clear(sc);
3038		}
3039	}
3040
3041	DPRINTFN(2, ("audio_pint: mode=%d pause=%d used=%d lowat=%d\n",
3042		     sc->sc_mode, cb->pause,
3043		     audio_stream_get_used(sc->sc_pustream), cb->usedlow));
3044	if ((sc->sc_mode & AUMODE_PLAY) && !cb->pause) {
3045		if (audio_stream_get_used(sc->sc_pustream) <= cb->usedlow)
3046			softint_schedule(sc->sc_sih_wr);
3047	}
3048
3049	/* Possible to return one or more "phantom blocks" now. */
3050	if (!sc->sc_full_duplex)
3051		softint_schedule(sc->sc_sih_rd);
3052}
3053
3054/*
3055 * Called from HW driver module on completion of DMA input.
3056 * Mark it as input in the ring buffer (fiddle pointers).
3057 * Do a wakeup if necessary.
3058 */
3059void
3060audio_rint(void *v)
3061{
3062	stream_fetcher_t null_fetcher;
3063	struct audio_softc *sc;
3064	const struct audio_hw_if *hw;
3065	struct audio_ringbuffer *cb;
3066	stream_fetcher_t *last_fetcher;
3067	int cc;
3068	int used;
3069	int blksize;
3070	int error;
3071
3072	sc = v;
3073	cb = &sc->sc_rr;
3074
3075	KASSERT(mutex_owned(sc->sc_intr_lock));
3076
3077	if (!sc->sc_open)
3078		return;		/* ignore interrupt if not open */
3079
3080	hw = sc->hw_if;
3081	blksize = cb->blksize;
3082	cb->s.inp = audio_stream_add_inp(&cb->s, cb->s.inp, blksize);
3083	cb->stamp += blksize;
3084	if (cb->mmapped) {
3085		DPRINTFN(2, ("audio_rint: mmapped inp=%p cc=%d\n",
3086			     cb->s.inp, blksize));
3087		if (hw->trigger_input == NULL)
3088			(void)hw->start_input(sc->hw_hdl, cb->s.inp, blksize,
3089			    audio_rint, (void *)sc);
3090		return;
3091	}
3092
3093#ifdef AUDIO_INTR_TIME
3094	{
3095		struct timeval tv;
3096		u_long t;
3097		microtime(&tv);
3098		t = tv.tv_usec + 1000000 * tv.tv_sec;
3099		if (sc->sc_rnintr) {
3100			long lastdelta, totdelta;
3101			lastdelta = t - sc->sc_rlastintr - sc->sc_rblktime;
3102			if (lastdelta > sc->sc_rblktime / 5) {
3103				printf("audio: record interrupt(%d) off "
3104				       "relative by %ld us (%lu)\n",
3105				       sc->sc_rnintr, lastdelta,
3106				       sc->sc_rblktime);
3107			}
3108			totdelta = t - sc->sc_rfirstintr -
3109				sc->sc_rblktime * sc->sc_rnintr;
3110			if (totdelta > sc->sc_rblktime / 2) {
3111				sc->sc_rnintr++;
3112				printf("audio: record interrupt(%d) off "
3113				       "absolute by %ld us (%lu)\n",
3114				       sc->sc_rnintr, totdelta,
3115				       sc->sc_rblktime);
3116				sc->sc_rnintr++; /* avoid repeated messages */
3117			}
3118		} else
3119			sc->sc_rfirstintr = t;
3120		sc->sc_rlastintr = t;
3121		sc->sc_rnintr++;
3122	}
3123#endif
3124
3125	if (!cb->pause && sc->sc_nrfilters > 0) {
3126		null_fetcher.fetch_to = null_fetcher_fetch_to;
3127		last_fetcher = &sc->sc_rfilters[sc->sc_nrfilters - 1]->base;
3128		sc->sc_rfilters[0]->set_fetcher(sc->sc_rfilters[0],
3129						&null_fetcher);
3130		used = audio_stream_get_used(sc->sc_rustream);
3131		cc = sc->sc_rustream->end - sc->sc_rustream->start;
3132		error = last_fetcher->fetch_to
3133			(sc, last_fetcher, sc->sc_rustream, cc);
3134		cb->fstamp += audio_stream_get_used(sc->sc_rustream) - used;
3135		/* XXX what should do for error? */
3136	}
3137	used = audio_stream_get_used(&sc->sc_rr.s);
3138	if (cb->pause) {
3139		DPRINTFN(1, ("audio_rint: pdrops %lu\n", cb->pdrops));
3140		cb->pdrops += blksize;
3141		cb->s.outp = audio_stream_add_outp(&cb->s, cb->s.outp, blksize);
3142	} else if (used + blksize > cb->s.end - cb->s.start && !cb->copying) {
3143		DPRINTFN(1, ("audio_rint: drops %lu\n", cb->drops));
3144		cb->drops += blksize;
3145		cb->s.outp = audio_stream_add_outp(&cb->s, cb->s.outp, blksize);
3146	}
3147
3148	DPRINTFN(2, ("audio_rint: inp=%p cc=%d\n", cb->s.inp, blksize));
3149	if (hw->trigger_input == NULL) {
3150		error = hw->start_input(sc->hw_hdl, cb->s.inp, blksize,
3151		    audio_rint, (void *)sc);
3152		if (error) {
3153			/* XXX does this really help? */
3154			DPRINTF(("audio_rint: restart failed: %d\n", error));
3155			audio_clear(sc);
3156		}
3157	}
3158
3159	softint_schedule(sc->sc_sih_rd);
3160}
3161
3162int
3163audio_check_params(struct audio_params *p)
3164{
3165
3166	if (p->encoding == AUDIO_ENCODING_PCM16) {
3167		if (p->precision == 8)
3168			p->encoding = AUDIO_ENCODING_ULINEAR;
3169		else
3170			p->encoding = AUDIO_ENCODING_SLINEAR;
3171	} else if (p->encoding == AUDIO_ENCODING_PCM8) {
3172		if (p->precision == 8)
3173			p->encoding = AUDIO_ENCODING_ULINEAR;
3174		else
3175			return EINVAL;
3176	}
3177
3178	if (p->encoding == AUDIO_ENCODING_SLINEAR)
3179#if BYTE_ORDER == LITTLE_ENDIAN
3180		p->encoding = AUDIO_ENCODING_SLINEAR_LE;
3181#else
3182		p->encoding = AUDIO_ENCODING_SLINEAR_BE;
3183#endif
3184	if (p->encoding == AUDIO_ENCODING_ULINEAR)
3185#if BYTE_ORDER == LITTLE_ENDIAN
3186		p->encoding = AUDIO_ENCODING_ULINEAR_LE;
3187#else
3188		p->encoding = AUDIO_ENCODING_ULINEAR_BE;
3189#endif
3190
3191	switch (p->encoding) {
3192	case AUDIO_ENCODING_ULAW:
3193	case AUDIO_ENCODING_ALAW:
3194		if (p->precision != 8)
3195			return EINVAL;
3196		break;
3197	case AUDIO_ENCODING_ADPCM:
3198		if (p->precision != 4 && p->precision != 8)
3199			return EINVAL;
3200		break;
3201	case AUDIO_ENCODING_SLINEAR_LE:
3202	case AUDIO_ENCODING_SLINEAR_BE:
3203	case AUDIO_ENCODING_ULINEAR_LE:
3204	case AUDIO_ENCODING_ULINEAR_BE:
3205		/* XXX is: our zero-fill can handle any multiple of 8 */
3206		if (p->precision !=  8 && p->precision != 16 &&
3207		    p->precision != 24 && p->precision != 32)
3208			return EINVAL;
3209		if (p->precision == 8 && p->encoding == AUDIO_ENCODING_SLINEAR_BE)
3210			p->encoding = AUDIO_ENCODING_SLINEAR_LE;
3211		if (p->precision == 8 && p->encoding == AUDIO_ENCODING_ULINEAR_BE)
3212			p->encoding = AUDIO_ENCODING_ULINEAR_LE;
3213		if (p->validbits > p->precision)
3214			return EINVAL;
3215		break;
3216	case AUDIO_ENCODING_MPEG_L1_STREAM:
3217	case AUDIO_ENCODING_MPEG_L1_PACKETS:
3218	case AUDIO_ENCODING_MPEG_L1_SYSTEM:
3219	case AUDIO_ENCODING_MPEG_L2_STREAM:
3220	case AUDIO_ENCODING_MPEG_L2_PACKETS:
3221	case AUDIO_ENCODING_MPEG_L2_SYSTEM:
3222	case AUDIO_ENCODING_AC3:
3223		break;
3224	default:
3225		return EINVAL;
3226	}
3227
3228	/* sanity check # of channels*/
3229	if (p->channels < 1 || p->channels > AUDIO_MAX_CHANNELS)
3230		return EINVAL;
3231
3232	return 0;
3233}
3234
3235int
3236audio_set_defaults(struct audio_softc *sc, u_int mode)
3237{
3238	struct audio_info ai;
3239
3240	KASSERT(mutex_owned(sc->sc_lock));
3241
3242	/* default parameters */
3243	sc->sc_rparams = audio_default;
3244	sc->sc_pparams = audio_default;
3245	sc->sc_blkset = false;
3246
3247	AUDIO_INITINFO(&ai);
3248	ai.record.sample_rate = sc->sc_rparams.sample_rate;
3249	ai.record.encoding    = sc->sc_rparams.encoding;
3250	ai.record.channels    = sc->sc_rparams.channels;
3251	ai.record.precision   = sc->sc_rparams.precision;
3252	ai.record.pause	      = false;
3253	ai.play.sample_rate   = sc->sc_pparams.sample_rate;
3254	ai.play.encoding      = sc->sc_pparams.encoding;
3255	ai.play.channels      = sc->sc_pparams.channels;
3256	ai.play.precision     = sc->sc_pparams.precision;
3257	ai.play.pause         = false;
3258	ai.mode		      = mode;
3259
3260	return audiosetinfo(sc, &ai);
3261}
3262
3263int
3264au_set_lr_value(struct	audio_softc *sc, mixer_ctrl_t *ct, int l, int r)
3265{
3266
3267	KASSERT(mutex_owned(sc->sc_lock));
3268
3269	ct->type = AUDIO_MIXER_VALUE;
3270	ct->un.value.num_channels = 2;
3271	ct->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = l;
3272	ct->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = r;
3273	if (sc->hw_if->set_port(sc->hw_hdl, ct) == 0)
3274		return 0;
3275	ct->un.value.num_channels = 1;
3276	ct->un.value.level[AUDIO_MIXER_LEVEL_MONO] = (l+r)/2;
3277	return sc->hw_if->set_port(sc->hw_hdl, ct);
3278}
3279
3280int
3281au_set_gain(struct audio_softc *sc, struct au_mixer_ports *ports,
3282	    int gain, int balance)
3283{
3284	mixer_ctrl_t ct;
3285	int i, error;
3286	int l, r;
3287	u_int mask;
3288	int nset;
3289
3290	KASSERT(mutex_owned(sc->sc_lock));
3291
3292	if (balance == AUDIO_MID_BALANCE) {
3293		l = r = gain;
3294	} else if (balance < AUDIO_MID_BALANCE) {
3295		l = gain;
3296		r = (balance * gain) / AUDIO_MID_BALANCE;
3297	} else {
3298		r = gain;
3299		l = ((AUDIO_RIGHT_BALANCE - balance) * gain)
3300		    / AUDIO_MID_BALANCE;
3301	}
3302	DPRINTF(("au_set_gain: gain=%d balance=%d, l=%d r=%d\n",
3303		 gain, balance, l, r));
3304
3305	if (ports->index == -1) {
3306	usemaster:
3307		if (ports->master == -1)
3308			return 0; /* just ignore it silently */
3309		ct.dev = ports->master;
3310		error = au_set_lr_value(sc, &ct, l, r);
3311	} else {
3312		ct.dev = ports->index;
3313		if (ports->isenum) {
3314			ct.type = AUDIO_MIXER_ENUM;
3315			error = sc->hw_if->get_port(sc->hw_hdl, &ct);
3316			if (error)
3317				return error;
3318			if (ports->isdual) {
3319				if (ports->cur_port == -1)
3320					ct.dev = ports->master;
3321				else
3322					ct.dev = ports->miport[ports->cur_port];
3323				error = au_set_lr_value(sc, &ct, l, r);
3324			} else {
3325				for(i = 0; i < ports->nports; i++)
3326				    if (ports->misel[i] == ct.un.ord) {
3327					    ct.dev = ports->miport[i];
3328					    if (ct.dev == -1 ||
3329						au_set_lr_value(sc, &ct, l, r))
3330						    goto usemaster;
3331					    else
3332						    break;
3333				    }
3334			}
3335		} else {
3336			ct.type = AUDIO_MIXER_SET;
3337			error = sc->hw_if->get_port(sc->hw_hdl, &ct);
3338			if (error)
3339				return error;
3340			mask = ct.un.mask;
3341			nset = 0;
3342			for(i = 0; i < ports->nports; i++) {
3343				if (ports->misel[i] & mask) {
3344				    ct.dev = ports->miport[i];
3345				    if (ct.dev != -1 &&
3346					au_set_lr_value(sc, &ct, l, r) == 0)
3347					    nset++;
3348				}
3349			}
3350			if (nset == 0)
3351				goto usemaster;
3352		}
3353	}
3354	if (!error)
3355		mixer_signal(sc);
3356	return error;
3357}
3358
3359int
3360au_get_lr_value(struct	audio_softc *sc, mixer_ctrl_t *ct, int *l, int *r)
3361{
3362	int error;
3363
3364	KASSERT(mutex_owned(sc->sc_lock));
3365
3366	ct->un.value.num_channels = 2;
3367	if (sc->hw_if->get_port(sc->hw_hdl, ct) == 0) {
3368		*l = ct->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
3369		*r = ct->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
3370	} else {
3371		ct->un.value.num_channels = 1;
3372		error = sc->hw_if->get_port(sc->hw_hdl, ct);
3373		if (error)
3374			return error;
3375		*r = *l = ct->un.value.level[AUDIO_MIXER_LEVEL_MONO];
3376	}
3377	return 0;
3378}
3379
3380void
3381au_get_gain(struct audio_softc *sc, struct au_mixer_ports *ports,
3382	    u_int *pgain, u_char *pbalance)
3383{
3384	mixer_ctrl_t ct;
3385	int i, l, r, n;
3386	int lgain, rgain;
3387
3388	KASSERT(mutex_owned(sc->sc_lock));
3389
3390	lgain = AUDIO_MAX_GAIN / 2;
3391	rgain = AUDIO_MAX_GAIN / 2;
3392	if (ports->index == -1) {
3393	usemaster:
3394		if (ports->master == -1)
3395			goto bad;
3396		ct.dev = ports->master;
3397		ct.type = AUDIO_MIXER_VALUE;
3398		if (au_get_lr_value(sc, &ct, &lgain, &rgain))
3399			goto bad;
3400	} else {
3401		ct.dev = ports->index;
3402		if (ports->isenum) {
3403			ct.type = AUDIO_MIXER_ENUM;
3404			if (sc->hw_if->get_port(sc->hw_hdl, &ct))
3405				goto bad;
3406			ct.type = AUDIO_MIXER_VALUE;
3407			if (ports->isdual) {
3408				if (ports->cur_port == -1)
3409					ct.dev = ports->master;
3410				else
3411					ct.dev = ports->miport[ports->cur_port];
3412				au_get_lr_value(sc, &ct, &lgain, &rgain);
3413			} else {
3414				for(i = 0; i < ports->nports; i++)
3415				    if (ports->misel[i] == ct.un.ord) {
3416					    ct.dev = ports->miport[i];
3417					    if (ct.dev == -1 ||
3418						au_get_lr_value(sc, &ct,
3419								&lgain, &rgain))
3420						    goto usemaster;
3421					    else
3422						    break;
3423				    }
3424			}
3425		} else {
3426			ct.type = AUDIO_MIXER_SET;
3427			if (sc->hw_if->get_port(sc->hw_hdl, &ct))
3428				goto bad;
3429			ct.type = AUDIO_MIXER_VALUE;
3430			lgain = rgain = n = 0;
3431			for(i = 0; i < ports->nports; i++) {
3432				if (ports->misel[i] & ct.un.mask) {
3433					ct.dev = ports->miport[i];
3434					if (ct.dev == -1 ||
3435					    au_get_lr_value(sc, &ct, &l, &r))
3436						goto usemaster;
3437					else {
3438						lgain += l;
3439						rgain += r;
3440						n++;
3441					}
3442				}
3443			}
3444			if (n != 0) {
3445				lgain /= n;
3446				rgain /= n;
3447			}
3448		}
3449	}
3450bad:
3451	if (lgain == rgain) {	/* handles lgain==rgain==0 */
3452		*pgain = lgain;
3453		*pbalance = AUDIO_MID_BALANCE;
3454	} else if (lgain < rgain) {
3455		*pgain = rgain;
3456		/* balance should be > AUDIO_MID_BALANCE */
3457		*pbalance = AUDIO_RIGHT_BALANCE -
3458			(AUDIO_MID_BALANCE * lgain) / rgain;
3459	} else /* lgain > rgain */ {
3460		*pgain = lgain;
3461		/* balance should be < AUDIO_MID_BALANCE */
3462		*pbalance = (AUDIO_MID_BALANCE * rgain) / lgain;
3463	}
3464}
3465
3466int
3467au_set_port(struct audio_softc *sc, struct au_mixer_ports *ports, u_int port)
3468{
3469	mixer_ctrl_t ct;
3470	int i, error, use_mixerout;
3471
3472	KASSERT(mutex_owned(sc->sc_lock));
3473
3474	use_mixerout = 1;
3475	if (port == 0) {
3476		if (ports->allports == 0)
3477			return 0;		/* Allow this special case. */
3478		else if (ports->isdual) {
3479			if (ports->cur_port == -1) {
3480				return 0;
3481			} else {
3482				port = ports->aumask[ports->cur_port];
3483				ports->cur_port = -1;
3484				use_mixerout = 0;
3485			}
3486		}
3487	}
3488	if (ports->index == -1)
3489		return EINVAL;
3490	ct.dev = ports->index;
3491	if (ports->isenum) {
3492		if (port & (port-1))
3493			return EINVAL; /* Only one port allowed */
3494		ct.type = AUDIO_MIXER_ENUM;
3495		error = EINVAL;
3496		for(i = 0; i < ports->nports; i++)
3497			if (ports->aumask[i] == port) {
3498				if (ports->isdual && use_mixerout) {
3499					ct.un.ord = ports->mixerout;
3500					ports->cur_port = i;
3501				} else {
3502					ct.un.ord = ports->misel[i];
3503				}
3504				error = sc->hw_if->set_port(sc->hw_hdl, &ct);
3505				break;
3506			}
3507	} else {
3508		ct.type = AUDIO_MIXER_SET;
3509		ct.un.mask = 0;
3510		for(i = 0; i < ports->nports; i++)
3511			if (ports->aumask[i] & port)
3512				ct.un.mask |= ports->misel[i];
3513		if (port != 0 && ct.un.mask == 0)
3514			error = EINVAL;
3515		else
3516			error = sc->hw_if->set_port(sc->hw_hdl, &ct);
3517	}
3518	if (!error)
3519		mixer_signal(sc);
3520	return error;
3521}
3522
3523int
3524au_get_port(struct audio_softc *sc, struct au_mixer_ports *ports)
3525{
3526	mixer_ctrl_t ct;
3527	int i, aumask;
3528
3529	KASSERT(mutex_owned(sc->sc_lock));
3530
3531	if (ports->index == -1)
3532		return 0;
3533	ct.dev = ports->index;
3534	ct.type = ports->isenum ? AUDIO_MIXER_ENUM : AUDIO_MIXER_SET;
3535	if (sc->hw_if->get_port(sc->hw_hdl, &ct))
3536		return 0;
3537	aumask = 0;
3538	if (ports->isenum) {
3539		if (ports->isdual && ports->cur_port != -1) {
3540			if (ports->mixerout == ct.un.ord)
3541				aumask = ports->aumask[ports->cur_port];
3542			else
3543				ports->cur_port = -1;
3544		}
3545		if (aumask == 0)
3546			for(i = 0; i < ports->nports; i++)
3547				if (ports->misel[i] == ct.un.ord)
3548					aumask = ports->aumask[i];
3549	} else {
3550		for(i = 0; i < ports->nports; i++)
3551			if (ct.un.mask & ports->misel[i])
3552				aumask |= ports->aumask[i];
3553	}
3554	return aumask;
3555}
3556
3557int
3558audiosetinfo(struct audio_softc *sc, struct audio_info *ai)
3559{
3560	stream_filter_list_t pfilters, rfilters;
3561	audio_params_t pp, rp;
3562	struct audio_prinfo *r, *p;
3563	const struct audio_hw_if *hw;
3564	audio_stream_t *oldpus, *oldrus;
3565	int setmode;
3566	int error;
3567	int np, nr;
3568	unsigned int blks;
3569	int oldpblksize, oldrblksize;
3570	u_int gain;
3571	bool rbus, pbus;
3572	bool cleared, modechange, pausechange;
3573	u_char balance;
3574
3575	KASSERT(mutex_owned(sc->sc_lock));
3576
3577	hw = sc->hw_if;
3578	if (hw == NULL)		/* HW has not attached */
3579		return ENXIO;
3580
3581	DPRINTF(("%s sc=%p ai=%p\n", __func__, sc, ai));
3582	r = &ai->record;
3583	p = &ai->play;
3584	rbus = sc->sc_rbus;
3585	pbus = sc->sc_pbus;
3586	error = 0;
3587	cleared = false;
3588	modechange = false;
3589	pausechange = false;
3590
3591	pp = sc->sc_pparams;	/* Temporary encoding storage in */
3592	rp = sc->sc_rparams;	/* case setting the modes fails. */
3593	nr = np = 0;
3594
3595	if (SPECIFIED(p->sample_rate)) {
3596		pp.sample_rate = p->sample_rate;
3597		np++;
3598	}
3599	if (SPECIFIED(r->sample_rate)) {
3600		rp.sample_rate = r->sample_rate;
3601		nr++;
3602	}
3603	if (SPECIFIED(p->encoding)) {
3604		pp.encoding = p->encoding;
3605		np++;
3606	}
3607	if (SPECIFIED(r->encoding)) {
3608		rp.encoding = r->encoding;
3609		nr++;
3610	}
3611	if (SPECIFIED(p->precision)) {
3612		pp.precision = p->precision;
3613		/* we don't have API to specify validbits */
3614		pp.validbits = p->precision;
3615		np++;
3616	}
3617	if (SPECIFIED(r->precision)) {
3618		rp.precision = r->precision;
3619		/* we don't have API to specify validbits */
3620		rp.validbits = r->precision;
3621		nr++;
3622	}
3623	if (SPECIFIED(p->channels)) {
3624		pp.channels = p->channels;
3625		np++;
3626	}
3627	if (SPECIFIED(r->channels)) {
3628		rp.channels = r->channels;
3629		nr++;
3630	}
3631
3632	if (!audio_can_capture(sc))
3633		nr = 0;
3634	if (!audio_can_playback(sc))
3635		np = 0;
3636
3637#ifdef AUDIO_DEBUG
3638	if (audiodebug && nr > 0)
3639	    audio_print_params("audiosetinfo() Setting record params:", &rp);
3640	if (audiodebug && np > 0)
3641	    audio_print_params("audiosetinfo() Setting play params:", &pp);
3642#endif
3643	if (nr > 0 && (error = audio_check_params(&rp)))
3644		return error;
3645	if (np > 0 && (error = audio_check_params(&pp)))
3646		return error;
3647
3648	oldpblksize = sc->sc_pr.blksize;
3649	oldrblksize = sc->sc_rr.blksize;
3650
3651	setmode = 0;
3652	if (nr > 0) {
3653		if (!cleared) {
3654			audio_clear_intr_unlocked(sc);
3655			cleared = true;
3656		}
3657		modechange = true;
3658		setmode |= AUMODE_RECORD;
3659	}
3660	if (np > 0) {
3661		if (!cleared) {
3662			audio_clear_intr_unlocked(sc);
3663			cleared = true;
3664		}
3665		modechange = true;
3666		setmode |= AUMODE_PLAY;
3667	}
3668
3669	if (SPECIFIED(ai->mode)) {
3670		if (!cleared) {
3671			audio_clear_intr_unlocked(sc);
3672			cleared = true;
3673		}
3674		modechange = true;
3675		sc->sc_mode = ai->mode;
3676		if (sc->sc_mode & AUMODE_PLAY_ALL)
3677			sc->sc_mode |= AUMODE_PLAY;
3678		if ((sc->sc_mode & AUMODE_PLAY) && !sc->sc_full_duplex)
3679			/* Play takes precedence */
3680			sc->sc_mode &= ~AUMODE_RECORD;
3681	}
3682
3683	oldpus = sc->sc_pustream;
3684	oldrus = sc->sc_rustream;
3685	if (modechange) {
3686		int indep;
3687
3688		indep = audio_get_props(sc) & AUDIO_PROP_INDEPENDENT;
3689		if (!indep) {
3690			if (setmode == AUMODE_RECORD)
3691				pp = rp;
3692			else if (setmode == AUMODE_PLAY)
3693				rp = pp;
3694		}
3695		memset(&pfilters, 0, sizeof(pfilters));
3696		memset(&rfilters, 0, sizeof(rfilters));
3697		pfilters.append = stream_filter_list_append;
3698		pfilters.prepend = stream_filter_list_prepend;
3699		pfilters.set = stream_filter_list_set;
3700		rfilters.append = stream_filter_list_append;
3701		rfilters.prepend = stream_filter_list_prepend;
3702		rfilters.set = stream_filter_list_set;
3703		/* Some device drivers change channels/sample_rate and change
3704		 * no channels/sample_rate. */
3705		error = hw->set_params(sc->hw_hdl, setmode,
3706		    sc->sc_mode & (AUMODE_PLAY | AUMODE_RECORD), &pp, &rp,
3707		    &pfilters, &rfilters);
3708		if (error) {
3709			DPRINTF(("%s: hw->set_params() failed with %d\n",
3710				 __func__, error));
3711			goto cleanup;
3712		}
3713
3714		audio_check_params(&pp);
3715		audio_check_params(&rp);
3716		if (!indep) {
3717			/* XXX for !indep device, we have to use the same
3718			 * parameters for the hardware, not userland */
3719			if (setmode == AUMODE_RECORD) {
3720				pp = rp;
3721			} else if (setmode == AUMODE_PLAY) {
3722				rp = pp;
3723			}
3724		}
3725
3726		if (sc->sc_pr.mmapped && pfilters.req_size > 0) {
3727			DPRINTF(("%s: mmapped, and filters are requested.\n",
3728				 __func__));
3729			error = EINVAL;
3730			goto cleanup;
3731		}
3732
3733		/* construct new filter chain */
3734		if (setmode & AUMODE_PLAY) {
3735			error = audio_setup_pfilters(sc, &pp, &pfilters);
3736			if (error)
3737				goto cleanup;
3738		}
3739		if (setmode & AUMODE_RECORD) {
3740			error = audio_setup_rfilters(sc, &rp, &rfilters);
3741			if (error)
3742				goto cleanup;
3743		}
3744		DPRINTF(("%s: filter setup is completed.\n", __func__));
3745
3746		/* userland formats */
3747		sc->sc_pparams = pp;
3748		sc->sc_rparams = rp;
3749	}
3750
3751	/* Play params can affect the record params, so recalculate blksize. */
3752	if (nr > 0 || np > 0) {
3753		audio_calc_blksize(sc, AUMODE_RECORD);
3754		audio_calc_blksize(sc, AUMODE_PLAY);
3755	}
3756#ifdef AUDIO_DEBUG
3757	if (audiodebug > 1 && nr > 0)
3758	    audio_print_params("audiosetinfo() After setting record params:", &sc->sc_rparams);
3759	if (audiodebug > 1 && np > 0)
3760	    audio_print_params("audiosetinfo() After setting play params:", &sc->sc_pparams);
3761#endif
3762
3763	if (SPECIFIED(p->port)) {
3764		if (!cleared) {
3765			audio_clear_intr_unlocked(sc);
3766			cleared = true;
3767		}
3768		error = au_set_port(sc, &sc->sc_outports, p->port);
3769		if (error)
3770			goto cleanup;
3771	}
3772	if (SPECIFIED(r->port)) {
3773		if (!cleared) {
3774			audio_clear_intr_unlocked(sc);
3775			cleared = true;
3776		}
3777		error = au_set_port(sc, &sc->sc_inports, r->port);
3778		if (error)
3779			goto cleanup;
3780	}
3781	if (SPECIFIED(p->gain)) {
3782		au_get_gain(sc, &sc->sc_outports, &gain, &balance);
3783		error = au_set_gain(sc, &sc->sc_outports, p->gain, balance);
3784		if (error)
3785			goto cleanup;
3786	}
3787	if (SPECIFIED(r->gain)) {
3788		au_get_gain(sc, &sc->sc_inports, &gain, &balance);
3789		error = au_set_gain(sc, &sc->sc_inports, r->gain, balance);
3790		if (error)
3791			goto cleanup;
3792	}
3793
3794	if (SPECIFIED_CH(p->balance)) {
3795		au_get_gain(sc, &sc->sc_outports, &gain, &balance);
3796		error = au_set_gain(sc, &sc->sc_outports, gain, p->balance);
3797		if (error)
3798			goto cleanup;
3799	}
3800	if (SPECIFIED_CH(r->balance)) {
3801		au_get_gain(sc, &sc->sc_inports, &gain, &balance);
3802		error = au_set_gain(sc, &sc->sc_inports, gain, r->balance);
3803		if (error)
3804			goto cleanup;
3805	}
3806
3807	if (SPECIFIED(ai->monitor_gain) && sc->sc_monitor_port != -1) {
3808		mixer_ctrl_t ct;
3809
3810		ct.dev = sc->sc_monitor_port;
3811		ct.type = AUDIO_MIXER_VALUE;
3812		ct.un.value.num_channels = 1;
3813		ct.un.value.level[AUDIO_MIXER_LEVEL_MONO] = ai->monitor_gain;
3814		error = sc->hw_if->set_port(sc->hw_hdl, &ct);
3815		if (error)
3816			goto cleanup;
3817	}
3818
3819	if (SPECIFIED_CH(p->pause)) {
3820		sc->sc_pr.pause = p->pause;
3821		pbus = !p->pause;
3822		pausechange = true;
3823	}
3824	if (SPECIFIED_CH(r->pause)) {
3825		sc->sc_rr.pause = r->pause;
3826		rbus = !r->pause;
3827		pausechange = true;
3828	}
3829
3830	if (SPECIFIED(ai->blocksize)) {
3831		int pblksize, rblksize;
3832
3833		/* Block size specified explicitly. */
3834		if (ai->blocksize == 0) {
3835			if (!cleared) {
3836				audio_clear_intr_unlocked(sc);
3837				cleared = true;
3838			}
3839			sc->sc_blkset = false;
3840			audio_calc_blksize(sc, AUMODE_RECORD);
3841			audio_calc_blksize(sc, AUMODE_PLAY);
3842		} else {
3843			sc->sc_blkset = true;
3844			/* check whether new blocksize changes actually */
3845			if (hw->round_blocksize == NULL) {
3846				if (!cleared) {
3847					audio_clear_intr_unlocked(sc);
3848					cleared = true;
3849				}
3850				sc->sc_pr.blksize = ai->blocksize;
3851				sc->sc_rr.blksize = ai->blocksize;
3852			} else {
3853				pblksize = hw->round_blocksize(sc->hw_hdl,
3854				    ai->blocksize, AUMODE_PLAY, &sc->sc_pr.s.param);
3855				rblksize = hw->round_blocksize(sc->hw_hdl,
3856				    ai->blocksize, AUMODE_RECORD, &sc->sc_rr.s.param);
3857				if (pblksize != sc->sc_pr.blksize ||
3858				    rblksize != sc->sc_rr.blksize) {
3859					if (!cleared) {
3860						audio_clear_intr_unlocked(sc);
3861						cleared = true;
3862					}
3863					sc->sc_pr.blksize = ai->blocksize;
3864					sc->sc_rr.blksize = ai->blocksize;
3865				}
3866			}
3867		}
3868	}
3869
3870	if (SPECIFIED(ai->mode)) {
3871		if (sc->sc_mode & AUMODE_PLAY)
3872			audio_init_play(sc);
3873		if (sc->sc_mode & AUMODE_RECORD)
3874			audio_init_record(sc);
3875	}
3876
3877	if (hw->commit_settings) {
3878		error = hw->commit_settings(sc->hw_hdl);
3879		if (error)
3880			goto cleanup;
3881	}
3882
3883	sc->sc_lastinfo = *ai;
3884	sc->sc_lastinfovalid = true;
3885
3886cleanup:
3887	if (cleared || pausechange) {
3888		int init_error;
3889
3890		mutex_enter(sc->sc_intr_lock);
3891		init_error = audio_initbufs(sc);
3892		if (init_error) goto err;
3893		if (sc->sc_pr.blksize != oldpblksize ||
3894		    sc->sc_rr.blksize != oldrblksize ||
3895		    sc->sc_pustream != oldpus ||
3896		    sc->sc_rustream != oldrus)
3897			audio_calcwater(sc);
3898		if ((sc->sc_mode & AUMODE_PLAY) &&
3899		    pbus && !sc->sc_pbus)
3900			init_error = audiostartp(sc);
3901		if (!init_error &&
3902		    (sc->sc_mode & AUMODE_RECORD) &&
3903		    rbus && !sc->sc_rbus)
3904			init_error = audiostartr(sc);
3905	err:
3906		mutex_exit(sc->sc_intr_lock);
3907		if (init_error)
3908			return init_error;
3909	}
3910
3911	/* Change water marks after initializing the buffers. */
3912	if (SPECIFIED(ai->hiwat)) {
3913		blks = ai->hiwat;
3914		if (blks > sc->sc_pr.maxblks)
3915			blks = sc->sc_pr.maxblks;
3916		if (blks < 2)
3917			blks = 2;
3918		sc->sc_pr.usedhigh = blks * sc->sc_pr.blksize;
3919	}
3920	if (SPECIFIED(ai->lowat)) {
3921		blks = ai->lowat;
3922		if (blks > sc->sc_pr.maxblks - 1)
3923			blks = sc->sc_pr.maxblks - 1;
3924		sc->sc_pr.usedlow = blks * sc->sc_pr.blksize;
3925	}
3926	if (SPECIFIED(ai->hiwat) || SPECIFIED(ai->lowat)) {
3927		if (sc->sc_pr.usedlow > sc->sc_pr.usedhigh - sc->sc_pr.blksize)
3928			sc->sc_pr.usedlow =
3929				sc->sc_pr.usedhigh - sc->sc_pr.blksize;
3930	}
3931
3932	return error;
3933}
3934
3935int
3936audiogetinfo(struct audio_softc *sc, struct audio_info *ai, int buf_only_mode)
3937{
3938	struct audio_prinfo *r, *p;
3939	const struct audio_hw_if *hw;
3940
3941	KASSERT(mutex_owned(sc->sc_lock));
3942
3943	r = &ai->record;
3944	p = &ai->play;
3945	hw = sc->hw_if;
3946	if (hw == NULL)		/* HW has not attached */
3947		return ENXIO;
3948
3949	p->sample_rate = sc->sc_pparams.sample_rate;
3950	r->sample_rate = sc->sc_rparams.sample_rate;
3951	p->channels = sc->sc_pparams.channels;
3952	r->channels = sc->sc_rparams.channels;
3953	p->precision = sc->sc_pparams.precision;
3954	r->precision = sc->sc_rparams.precision;
3955	p->encoding = sc->sc_pparams.encoding;
3956	r->encoding = sc->sc_rparams.encoding;
3957
3958	if (buf_only_mode) {
3959		r->port = 0;
3960		p->port = 0;
3961
3962		r->avail_ports = 0;
3963		p->avail_ports = 0;
3964
3965		r->gain = 0;
3966		r->balance = 0;
3967
3968		p->gain = 0;
3969		p->balance = 0;
3970	} else {
3971		r->port = au_get_port(sc, &sc->sc_inports);
3972		p->port = au_get_port(sc, &sc->sc_outports);
3973
3974		r->avail_ports = sc->sc_inports.allports;
3975		p->avail_ports = sc->sc_outports.allports;
3976
3977		au_get_gain(sc, &sc->sc_inports,  &r->gain, &r->balance);
3978		au_get_gain(sc, &sc->sc_outports, &p->gain, &p->balance);
3979	}
3980
3981	if (sc->sc_monitor_port != -1 && buf_only_mode == 0) {
3982		mixer_ctrl_t ct;
3983
3984		ct.dev = sc->sc_monitor_port;
3985		ct.type = AUDIO_MIXER_VALUE;
3986		ct.un.value.num_channels = 1;
3987		if (sc->hw_if->get_port(sc->hw_hdl, &ct))
3988			ai->monitor_gain = 0;
3989		else
3990			ai->monitor_gain =
3991				ct.un.value.level[AUDIO_MIXER_LEVEL_MONO];
3992	} else
3993		ai->monitor_gain = 0;
3994
3995	p->seek = audio_stream_get_used(sc->sc_pustream);
3996	r->seek = audio_stream_get_used(sc->sc_rustream);
3997
3998	/*
3999	 * XXX samples should be a value for userland data.
4000	 * But drops is a value for HW data.
4001	 */
4002	p->samples = (sc->sc_pustream == &sc->sc_pr.s
4003		      ? sc->sc_pr.stamp : sc->sc_pr.fstamp) - sc->sc_pr.drops;
4004	r->samples = (sc->sc_rustream == &sc->sc_rr.s
4005		      ? sc->sc_rr.stamp : sc->sc_rr.fstamp) - sc->sc_rr.drops;
4006
4007	p->eof = sc->sc_eof;
4008	r->eof = 0;
4009
4010	p->pause = sc->sc_pr.pause;
4011	r->pause = sc->sc_rr.pause;
4012
4013	p->error = sc->sc_pr.drops != 0;
4014	r->error = sc->sc_rr.drops != 0;
4015
4016	p->waiting = r->waiting = 0;		/* open never hangs */
4017
4018	p->open = (sc->sc_open & AUOPEN_WRITE) != 0;
4019	r->open = (sc->sc_open & AUOPEN_READ) != 0;
4020
4021	p->active = sc->sc_pbus;
4022	r->active = sc->sc_rbus;
4023
4024	p->buffer_size = sc->sc_pustream ? sc->sc_pustream->bufsize : 0;
4025	r->buffer_size = sc->sc_rustream ? sc->sc_rustream->bufsize : 0;
4026
4027	ai->blocksize = sc->sc_pr.blksize;
4028	if (sc->sc_pr.blksize > 0) {
4029		ai->hiwat = sc->sc_pr.usedhigh / sc->sc_pr.blksize;
4030		ai->lowat = sc->sc_pr.usedlow / sc->sc_pr.blksize;
4031	} else
4032		ai->hiwat = ai->lowat = 0;
4033	ai->mode = sc->sc_mode;
4034
4035	return 0;
4036}
4037
4038/*
4039 * Mixer driver
4040 */
4041int
4042mixer_open(dev_t dev, struct audio_softc *sc, int flags,
4043    int ifmt, struct lwp *l)
4044{
4045
4046	KASSERT(mutex_owned(sc->sc_lock));
4047
4048	if (sc->hw_if == NULL)
4049		return  ENXIO;
4050
4051	DPRINTF(("mixer_open: flags=0x%x sc=%p\n", flags, sc));
4052
4053	return 0;
4054}
4055
4056/*
4057 * Remove a process from those to be signalled on mixer activity.
4058 */
4059static void
4060mixer_remove(struct audio_softc *sc)
4061{
4062	struct mixer_asyncs **pm, *m;
4063	pid_t pid;
4064
4065	KASSERT(mutex_owned(sc->sc_lock));
4066
4067	pid = curproc->p_pid;
4068	for (pm = &sc->sc_async_mixer; *pm; pm = &(*pm)->next) {
4069		if ((*pm)->pid == pid) {
4070			m = *pm;
4071			*pm = m->next;
4072			kmem_free(m, sizeof(*m));
4073			return;
4074		}
4075	}
4076}
4077
4078/*
4079 * Signal all processes waiting for the mixer.
4080 */
4081static void
4082mixer_signal(struct audio_softc *sc)
4083{
4084	struct mixer_asyncs *m;
4085	proc_t *p;
4086
4087	for (m = sc->sc_async_mixer; m; m = m->next) {
4088		mutex_enter(proc_lock);
4089		if ((p = proc_find(m->pid)) != NULL)
4090			psignal(p, SIGIO);
4091		mutex_exit(proc_lock);
4092	}
4093}
4094
4095/*
4096 * Close a mixer device
4097 */
4098/* ARGSUSED */
4099int
4100mixer_close(struct audio_softc *sc, int flags, int ifmt,
4101    struct lwp *l)
4102{
4103
4104	KASSERT(mutex_owned(sc->sc_lock));
4105
4106	DPRINTF(("mixer_close: sc %p\n", sc));
4107	mixer_remove(sc);
4108	return 0;
4109}
4110
4111int
4112mixer_ioctl(struct audio_softc *sc, u_long cmd, void *addr, int flag,
4113	    struct lwp *l)
4114{
4115	const struct audio_hw_if *hw;
4116	struct mixer_asyncs *ma;
4117	mixer_ctrl_t *mc;
4118	int error;
4119
4120	DPRINTF(("mixer_ioctl(%lu,'%c',%lu)\n",
4121		 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd&0xff));
4122	hw = sc->hw_if;
4123	error = EINVAL;
4124
4125	/* we can return cached values if we are sleeping */
4126	if (cmd != AUDIO_MIXER_READ)
4127		device_active(sc->dev, DVA_SYSTEM);
4128
4129	switch (cmd) {
4130	case FIOASYNC:
4131		if (*(int *)addr) {
4132			mutex_exit(sc->sc_lock);
4133			ma = kmem_alloc(sizeof(struct mixer_asyncs), KM_SLEEP);
4134			mutex_enter(sc->sc_lock);
4135		} else {
4136			ma = NULL;
4137		}
4138		mixer_remove(sc);	/* remove old entry */
4139		if (ma != NULL) {
4140			ma->next = sc->sc_async_mixer;
4141			ma->pid = curproc->p_pid;
4142			sc->sc_async_mixer = ma;
4143		}
4144		error = 0;
4145		break;
4146
4147	case AUDIO_GETDEV:
4148		DPRINTF(("AUDIO_GETDEV\n"));
4149		error = hw->getdev(sc->hw_hdl, (audio_device_t *)addr);
4150		break;
4151
4152	case AUDIO_MIXER_DEVINFO:
4153		DPRINTF(("AUDIO_MIXER_DEVINFO\n"));
4154		((mixer_devinfo_t *)addr)->un.v.delta = 0; /* default */
4155		error = hw->query_devinfo(sc->hw_hdl, (mixer_devinfo_t *)addr);
4156		break;
4157
4158	case AUDIO_MIXER_READ:
4159		DPRINTF(("AUDIO_MIXER_READ\n"));
4160		mc = (mixer_ctrl_t *)addr;
4161
4162		if (device_is_active(sc->sc_dev))
4163			error = hw->get_port(sc->hw_hdl, mc);
4164		else if (mc->dev >= sc->sc_nmixer_states)
4165			error = ENXIO;
4166		else {
4167			int dev = mc->dev;
4168			memcpy(mc, &sc->sc_mixer_state[dev],
4169			    sizeof(mixer_ctrl_t));
4170			error = 0;
4171		}
4172		break;
4173
4174	case AUDIO_MIXER_WRITE:
4175		DPRINTF(("AUDIO_MIXER_WRITE\n"));
4176		error = hw->set_port(sc->hw_hdl, (mixer_ctrl_t *)addr);
4177		if (!error && hw->commit_settings)
4178			error = hw->commit_settings(sc->hw_hdl);
4179		if (!error)
4180			mixer_signal(sc);
4181		break;
4182
4183	default:
4184		if (hw->dev_ioctl)
4185			error = hw->dev_ioctl(sc->hw_hdl, cmd, addr, flag, l);
4186		else
4187			error = EINVAL;
4188		break;
4189	}
4190	DPRINTF(("mixer_ioctl(%lu,'%c',%lu) result %d\n",
4191		 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd&0xff, error));
4192	return error;
4193}
4194#endif /* NAUDIO > 0 */
4195
4196#include "midi.h"
4197
4198#if NAUDIO == 0 && (NMIDI > 0 || NMIDIBUS > 0)
4199#include <sys/param.h>
4200#include <sys/systm.h>
4201#include <sys/device.h>
4202#include <sys/audioio.h>
4203#include <dev/audio_if.h>
4204#endif
4205
4206#if NAUDIO > 0 || (NMIDI > 0 || NMIDIBUS > 0)
4207int
4208audioprint(void *aux, const char *pnp)
4209{
4210	struct audio_attach_args *arg;
4211	const char *type;
4212
4213	if (pnp != NULL) {
4214		arg = aux;
4215		switch (arg->type) {
4216		case AUDIODEV_TYPE_AUDIO:
4217			type = "audio";
4218			break;
4219		case AUDIODEV_TYPE_MIDI:
4220			type = "midi";
4221			break;
4222		case AUDIODEV_TYPE_OPL:
4223			type = "opl";
4224			break;
4225		case AUDIODEV_TYPE_MPU:
4226			type = "mpu";
4227			break;
4228		default:
4229			panic("audioprint: unknown type %d", arg->type);
4230		}
4231		aprint_normal("%s at %s", type, pnp);
4232	}
4233	return UNCONF;
4234}
4235
4236#endif /* NAUDIO > 0 || (NMIDI > 0 || NMIDIBUS > 0) */
4237
4238#if NAUDIO > 0
4239static void
4240audio_mixer_capture(struct audio_softc *sc)
4241{
4242	mixer_devinfo_t mi;
4243	mixer_ctrl_t *mc;
4244
4245	KASSERT(mutex_owned(sc->sc_lock));
4246
4247	for (mi.index = 0;; mi.index++) {
4248		if (sc->hw_if->query_devinfo(sc->hw_hdl, &mi) != 0)
4249			break;
4250		KASSERT(mi.index < sc->sc_nmixer_states);
4251		if (mi.type == AUDIO_MIXER_CLASS)
4252			continue;
4253		mc = &sc->sc_mixer_state[mi.index];
4254		mc->dev = mi.index;
4255		mc->type = mi.type;
4256		mc->un.value.num_channels = mi.un.v.num_channels;
4257		(void)sc->hw_if->get_port(sc->hw_hdl, mc);
4258	}
4259
4260	return;
4261}
4262
4263static void
4264audio_mixer_restore(struct audio_softc *sc)
4265{
4266	mixer_devinfo_t mi;
4267	mixer_ctrl_t *mc;
4268
4269	KASSERT(mutex_owned(sc->sc_lock));
4270
4271	for (mi.index = 0; ; mi.index++) {
4272		if (sc->hw_if->query_devinfo(sc->hw_hdl, &mi) != 0)
4273			break;
4274		if (mi.type == AUDIO_MIXER_CLASS)
4275			continue;
4276		mc = &sc->sc_mixer_state[mi.index];
4277		(void)sc->hw_if->set_port(sc->hw_hdl, mc);
4278	}
4279	if (sc->hw_if->commit_settings)
4280		sc->hw_if->commit_settings(sc->hw_hdl);
4281
4282	return;
4283}
4284
4285#ifdef AUDIO_PM_IDLE
4286static void
4287audio_idle(void *arg)
4288{
4289	device_t dv = arg;
4290	struct audio_softc *sc = device_private(dv);
4291
4292#ifdef PNP_DEBUG
4293	extern int pnp_debug_idle;
4294	if (pnp_debug_idle)
4295		printf("%s: idle handler called\n", device_xname(dv));
4296#endif
4297
4298	sc->sc_idle = true;
4299
4300	/* XXX joerg Make pmf_device_suspend handle children? */
4301	if (!pmf_device_suspend(dv, PMF_Q_SELF))
4302		return;
4303
4304	if (!pmf_device_suspend(sc->sc_dev, PMF_Q_SELF))
4305		pmf_device_resume(dv, PMF_Q_SELF);
4306}
4307
4308static void
4309audio_activity(device_t dv, devactive_t type)
4310{
4311	struct audio_softc *sc = device_private(dv);
4312
4313	if (type != DVA_SYSTEM)
4314		return;
4315
4316	callout_schedule(&sc->sc_idle_counter, audio_idle_timeout * hz);
4317
4318	sc->sc_idle = false;
4319	if (!device_is_active(dv)) {
4320		/* XXX joerg How to deal with a failing resume... */
4321		pmf_device_resume(sc->sc_dev, PMF_Q_SELF);
4322		pmf_device_resume(dv, PMF_Q_SELF);
4323	}
4324}
4325#endif
4326
4327static bool
4328audio_suspend(device_t dv, const pmf_qual_t *qual)
4329{
4330	struct audio_softc *sc = device_private(dv);
4331	const struct audio_hw_if *hwp = sc->hw_if;
4332
4333	mutex_enter(sc->sc_lock);
4334	audio_mixer_capture(sc);
4335	mutex_enter(sc->sc_intr_lock);
4336	if (sc->sc_pbus == true)
4337		hwp->halt_output(sc->hw_hdl);
4338	if (sc->sc_rbus == true)
4339		hwp->halt_input(sc->hw_hdl);
4340	mutex_exit(sc->sc_intr_lock);
4341#ifdef AUDIO_PM_IDLE
4342	callout_halt(&sc->sc_idle_counter, sc->sc_lock);
4343#endif
4344	mutex_exit(sc->sc_lock);
4345
4346	return true;
4347}
4348
4349static bool
4350audio_resume(device_t dv, const pmf_qual_t *qual)
4351{
4352	struct audio_softc *sc = device_private(dv);
4353
4354	mutex_enter(sc->sc_lock);
4355	if (sc->sc_lastinfovalid)
4356		audiosetinfo(sc, &sc->sc_lastinfo);
4357	audio_mixer_restore(sc);
4358	mutex_enter(sc->sc_intr_lock);
4359	if ((sc->sc_pbus == true) && !sc->sc_pr.pause)
4360		audiostartp(sc);
4361	if ((sc->sc_rbus == true) && !sc->sc_rr.pause)
4362		audiostartr(sc);
4363	mutex_exit(sc->sc_intr_lock);
4364	mutex_exit(sc->sc_lock);
4365
4366	return true;
4367}
4368
4369static void
4370audio_volume_down(device_t dv)
4371{
4372	struct audio_softc *sc = device_private(dv);
4373	mixer_devinfo_t mi;
4374	int newgain;
4375	u_int gain;
4376	u_char balance;
4377
4378	mutex_enter(sc->sc_lock);
4379	if (sc->sc_outports.index == -1 && sc->sc_outports.master != -1) {
4380		mi.index = sc->sc_outports.master;
4381		mi.un.v.delta = 0;
4382		if (sc->hw_if->query_devinfo(sc->hw_hdl, &mi) == 0) {
4383			au_get_gain(sc, &sc->sc_outports, &gain, &balance);
4384			newgain = gain - mi.un.v.delta;
4385			if (newgain < AUDIO_MIN_GAIN)
4386				newgain = AUDIO_MIN_GAIN;
4387			au_set_gain(sc, &sc->sc_outports, newgain, balance);
4388		}
4389	}
4390	mutex_exit(sc->sc_lock);
4391}
4392
4393static void
4394audio_volume_up(device_t dv)
4395{
4396	struct audio_softc *sc = device_private(dv);
4397	mixer_devinfo_t mi;
4398	u_int gain, newgain;
4399	u_char balance;
4400
4401	mutex_enter(sc->sc_lock);
4402	if (sc->sc_outports.index == -1 && sc->sc_outports.master != -1) {
4403		mi.index = sc->sc_outports.master;
4404		mi.un.v.delta = 0;
4405		if (sc->hw_if->query_devinfo(sc->hw_hdl, &mi) == 0) {
4406			au_get_gain(sc, &sc->sc_outports, &gain, &balance);
4407			newgain = gain + mi.un.v.delta;
4408			if (newgain > AUDIO_MAX_GAIN)
4409				newgain = AUDIO_MAX_GAIN;
4410			au_set_gain(sc, &sc->sc_outports, newgain, balance);
4411		}
4412	}
4413	mutex_exit(sc->sc_lock);
4414}
4415
4416static void
4417audio_volume_toggle(device_t dv)
4418{
4419	struct audio_softc *sc = device_private(dv);
4420	u_int gain, newgain;
4421	u_char balance;
4422
4423	mutex_enter(sc->sc_lock);
4424	au_get_gain(sc, &sc->sc_outports, &gain, &balance);
4425	if (gain != 0) {
4426		sc->sc_lastgain = gain;
4427		newgain = 0;
4428	} else
4429		newgain = sc->sc_lastgain;
4430	au_set_gain(sc, &sc->sc_outports, newgain, balance);
4431	mutex_exit(sc->sc_lock);
4432}
4433
4434static int
4435audio_get_props(struct audio_softc *sc)
4436{
4437	const struct audio_hw_if *hw;
4438	int props;
4439
4440	KASSERT(mutex_owned(sc->sc_lock));
4441
4442	hw = sc->hw_if;
4443	props = hw->get_props(sc->hw_hdl);
4444
4445	/*
4446	 * if neither playback nor capture properties are reported,
4447	 * assume both are supported by the device driver
4448	 */
4449	if ((props & (AUDIO_PROP_PLAYBACK|AUDIO_PROP_CAPTURE)) == 0)
4450		props |= (AUDIO_PROP_PLAYBACK | AUDIO_PROP_CAPTURE);
4451
4452	return props;
4453}
4454
4455static bool
4456audio_can_playback(struct audio_softc *sc)
4457{
4458	return audio_get_props(sc) & AUDIO_PROP_PLAYBACK ? true : false;
4459}
4460
4461static bool
4462audio_can_capture(struct audio_softc *sc)
4463{
4464	return audio_get_props(sc) & AUDIO_PROP_CAPTURE ? true : false;
4465}
4466
4467#endif /* NAUDIO > 0 */
4468