1/*	$NetBSD: fpu_explode.c,v 1.11 2003/08/07 16:29:37 agc Exp $ */
2
3/*
4 * Copyright (c) 1992, 1993
5 *	The Regents of the University of California.  All rights reserved.
6 *
7 * This software was developed by the Computer Systems Engineering group
8 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9 * contributed to Berkeley.
10 *
11 * All advertising materials mentioning features or use of this software
12 * must display the following acknowledgement:
13 *	This product includes software developed by the University of
14 *	California, Lawrence Berkeley Laboratory.
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 *    notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 *    notice, this list of conditions and the following disclaimer in the
23 *    documentation and/or other materials provided with the distribution.
24 * 3. Neither the name of the University nor the names of its contributors
25 *    may be used to endorse or promote products derived from this software
26 *    without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 *	@(#)fpu_explode.c	8.1 (Berkeley) 6/11/93
41 */
42
43/*
44 * FPU subroutines: `explode' the machine's `packed binary' format numbers
45 * into our internal format.
46 */
47
48#include <sys/cdefs.h>
49__KERNEL_RCSID(0, "$NetBSD: fpu_explode.c,v 1.11 2003/08/07 16:29:37 agc Exp $");
50
51#if defined(_KERNEL_OPT)
52#include "opt_sparc_arch.h"
53#endif
54
55#include <sys/types.h>
56#include <sys/systm.h>
57
58#include <machine/ieee.h>
59#include <machine/instr.h>
60#include <machine/reg.h>
61
62#include <sparc/fpu/fpu_arith.h>
63#include <sparc/fpu/fpu_emu.h>
64#include <sparc/fpu/fpu_extern.h>
65
66/*
67 * N.B.: in all of the following, we assume the FP format is
68 *
69 *	---------------------------
70 *	| s | exponent | fraction |
71 *	---------------------------
72 *
73 * (which represents -1**s * 1.fraction * 2**exponent), so that the
74 * sign bit is way at the top (bit 31), the exponent is next, and
75 * then the remaining bits mark the fraction.  A zero exponent means
76 * zero or denormalized (0.fraction rather than 1.fraction), and the
77 * maximum possible exponent, 2bias+1, signals inf (fraction==0) or NaN.
78 *
79 * Since the sign bit is always the topmost bit---this holds even for
80 * integers---we set that outside all the *tof functions.  Each function
81 * returns the class code for the new number (but note that we use
82 * FPC_QNAN for all NaNs; fpu_explode will fix this if appropriate).
83 */
84
85/*
86 * int -> fpn.
87 */
88int
89fpu_itof(struct fpn *fp, u_int i)
90{
91
92	if (i == 0)
93		return (FPC_ZERO);
94	/*
95	 * The value FP_1 represents 2^FP_LG, so set the exponent
96	 * there and let normalization fix it up.  Convert negative
97	 * numbers to sign-and-magnitude.  Note that this relies on
98	 * fpu_norm()'s handling of `supernormals'; see fpu_subr.c.
99	 */
100	fp->fp_exp = FP_LG;
101	fp->fp_mant[0] = (int)i < 0 ? -i : i;
102	fp->fp_mant[1] = 0;
103	fp->fp_mant[2] = 0;
104	fp->fp_mant[3] = 0;
105	fpu_norm(fp);
106	return (FPC_NUM);
107}
108
109#ifdef SUN4U
110/*
111 * 64-bit int -> fpn.
112 */
113int
114fpu_xtof(struct fpn *fp, uint64_t i)
115{
116
117	if (i == 0)
118		return (FPC_ZERO);
119	/*
120	 * The value FP_1 represents 2^FP_LG, so set the exponent
121	 * there and let normalization fix it up.  Convert negative
122	 * numbers to sign-and-magnitude.  Note that this relies on
123	 * fpu_norm()'s handling of `supernormals'; see fpu_subr.c.
124	 */
125	fp->fp_exp = FP_LG2;
126	*((int64_t*)fp->fp_mant) = (int64_t)i < 0 ? -i : i;
127	fp->fp_mant[2] = 0;
128	fp->fp_mant[3] = 0;
129	fpu_norm(fp);
130	return (FPC_NUM);
131}
132#endif /* SUN4U */
133
134#define	mask(nbits) ((1L << (nbits)) - 1)
135
136/*
137 * All external floating formats convert to internal in the same manner,
138 * as defined here.  Note that only normals get an implied 1.0 inserted.
139 */
140#define	FP_TOF(exp, expbias, allfrac, f0, f1, f2, f3) \
141	if (exp == 0) { \
142		if (allfrac == 0) \
143			return (FPC_ZERO); \
144		fp->fp_exp = 1 - expbias; \
145		fp->fp_mant[0] = f0; \
146		fp->fp_mant[1] = f1; \
147		fp->fp_mant[2] = f2; \
148		fp->fp_mant[3] = f3; \
149		fpu_norm(fp); \
150		return (FPC_NUM); \
151	} \
152	if (exp == (2 * expbias + 1)) { \
153		if (allfrac == 0) \
154			return (FPC_INF); \
155		fp->fp_mant[0] = f0; \
156		fp->fp_mant[1] = f1; \
157		fp->fp_mant[2] = f2; \
158		fp->fp_mant[3] = f3; \
159		return (FPC_QNAN); \
160	} \
161	fp->fp_exp = exp - expbias; \
162	fp->fp_mant[0] = FP_1 | f0; \
163	fp->fp_mant[1] = f1; \
164	fp->fp_mant[2] = f2; \
165	fp->fp_mant[3] = f3; \
166	return (FPC_NUM)
167
168/*
169 * 32-bit single precision -> fpn.
170 * We assume a single occupies at most (64-FP_LG) bits in the internal
171 * format: i.e., needs at most fp_mant[0] and fp_mant[1].
172 */
173int
174fpu_stof(struct fpn *fp, u_int i)
175{
176	register int exp;
177	register u_int frac, f0, f1;
178#define SNG_SHIFT (SNG_FRACBITS - FP_LG)
179
180	exp = (i >> (32 - 1 - SNG_EXPBITS)) & mask(SNG_EXPBITS);
181	frac = i & mask(SNG_FRACBITS);
182	f0 = frac >> SNG_SHIFT;
183	f1 = frac << (32 - SNG_SHIFT);
184	FP_TOF(exp, SNG_EXP_BIAS, frac, f0, f1, 0, 0);
185}
186
187/*
188 * 64-bit double -> fpn.
189 * We assume this uses at most (96-FP_LG) bits.
190 */
191int
192fpu_dtof(struct fpn *fp, u_int i, u_int j)
193{
194	register int exp;
195	register u_int frac, f0, f1, f2;
196#define DBL_SHIFT (DBL_FRACBITS - 32 - FP_LG)
197
198	exp = (i >> (32 - 1 - DBL_EXPBITS)) & mask(DBL_EXPBITS);
199	frac = i & mask(DBL_FRACBITS - 32);
200	f0 = frac >> DBL_SHIFT;
201	f1 = (frac << (32 - DBL_SHIFT)) | (j >> DBL_SHIFT);
202	f2 = j << (32 - DBL_SHIFT);
203	frac |= j;
204	FP_TOF(exp, DBL_EXP_BIAS, frac, f0, f1, f2, 0);
205}
206
207/*
208 * 128-bit extended -> fpn.
209 */
210int
211fpu_qtof(register struct fpn *fp, u_int i, u_int j, u_int k, u_int l)
212{
213	register int exp;
214	register u_int frac, f0, f1, f2, f3;
215#define EXT_SHIFT (-(EXT_FRACBITS - 3 * 32 - FP_LG))	/* left shift! */
216
217	/*
218	 * Note that ext and fpn `line up', hence no shifting needed.
219	 */
220	exp = (i >> (32 - 1 - EXT_EXPBITS)) & mask(EXT_EXPBITS);
221	frac = i & mask(EXT_FRACBITS - 3 * 32);
222	f0 = (frac << EXT_SHIFT) | (j >> (32 - EXT_SHIFT));
223	f1 = (j << EXT_SHIFT) | (k >> (32 - EXT_SHIFT));
224	f2 = (k << EXT_SHIFT) | (l >> (32 - EXT_SHIFT));
225	f3 = l << EXT_SHIFT;
226	frac |= j | k | l;
227	FP_TOF(exp, EXT_EXP_BIAS, frac, f0, f1, f2, f3);
228}
229
230/*
231 * Explode the contents of a register / regpair / regquad.
232 * If the input is a signalling NaN, an NV (invalid) exception
233 * will be set.  (Note that nothing but NV can occur until ALU
234 * operations are performed.)
235 */
236void
237fpu_explode(struct fpemu *fe, struct fpn *fp, int type, int reg)
238{
239	register u_int s, *space;
240#ifdef SUN4U
241	uint64_t l, *xspace;
242
243	xspace = (uint64_t *)&fe->fe_fpstate->fs_regs[reg & ~1];
244	l = xspace[0];
245#endif /* SUN4U */
246	space = &fe->fe_fpstate->fs_regs[reg];
247	s = space[0];
248	fp->fp_sign = s >> 31;
249	fp->fp_sticky = 0;
250	switch (type) {
251#ifdef SUN4U
252	case FTYPE_LNG:
253		s = fpu_xtof(fp, l);
254		break;
255#endif /* SUN4U */
256
257	case FTYPE_INT:
258		s = fpu_itof(fp, s);
259		break;
260
261	case FTYPE_SNG:
262		s = fpu_stof(fp, s);
263		break;
264
265	case FTYPE_DBL:
266		s = fpu_dtof(fp, s, space[1]);
267		break;
268
269	case FTYPE_EXT:
270		s = fpu_qtof(fp, s, space[1], space[2], space[3]);
271		break;
272
273	default:
274		panic("fpu_explode");
275	}
276
277	if (s == FPC_QNAN && (fp->fp_mant[0] & FP_QUIETBIT) == 0) {
278		/*
279		 * Input is a signalling NaN.  All operations that return
280		 * an input NaN operand put it through a ``NaN conversion'',
281		 * which basically just means ``turn on the quiet bit''.
282		 * We do this here so that all NaNs internally look quiet
283		 * (we can tell signalling ones by their class).
284		 */
285		fp->fp_mant[0] |= FP_QUIETBIT;
286		fe->fe_cx = FSR_NV;	/* assert invalid operand */
287		s = FPC_SNAN;
288	}
289	fp->fp_class = s;
290	DPRINTF(FPE_REG, ("fpu_explode: %%%c%d => ", (type == FTYPE_LNG) ? 'x' :
291		((type == FTYPE_INT) ? 'i' :
292			((type == FTYPE_SNG) ? 's' :
293				((type == FTYPE_DBL) ? 'd' :
294					((type == FTYPE_EXT) ? 'q' : '?')))),
295		reg));
296#ifdef DEBUG
297	if (fpe_debug & FPE_REG) {
298		if (type == FTYPE_INT) printf("%d ", s);
299#ifdef SUN4U
300#ifdef _LP64
301		if (type == FTYPE_LNG) printf("%ld ", l);
302#else
303		if (type == FTYPE_LNG) printf("%lld ", l);
304#endif
305#endif /* SUN4U */
306	}
307#endif /* DEBUG */
308	DUMPFPN(FPE_REG, fp);
309	DPRINTF(FPE_REG, ("\n"));
310}
311