1/*	$NetBSD: pq3etsec.c,v 1.9.8.1 2012/05/17 18:09:44 riz Exp $	*/
2/*-
3 * Copyright (c) 2010, 2011 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Raytheon BBN Technologies Corp and Defense Advanced Research Projects
8 * Agency and which was developed by Matt Thomas of 3am Software Foundry.
9 *
10 * This material is based upon work supported by the Defense Advanced Research
11 * Projects Agency and Space and Naval Warfare Systems Center, Pacific, under
12 * Contract No. N66001-09-C-2073.
13 * Approved for Public Release, Distribution Unlimited
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 *    notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 *    notice, this list of conditions and the following disclaimer in the
22 *    documentation and/or other materials provided with the distribution.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 */
36
37#include "opt_inet.h"
38
39#include <sys/cdefs.h>
40
41__KERNEL_RCSID(0, "$NetBSD: pq3etsec.c,v 1.9.8.1 2012/05/17 18:09:44 riz Exp $");
42
43#include <sys/param.h>
44#include <sys/cpu.h>
45#include <sys/device.h>
46#include <sys/mbuf.h>
47#include <sys/ioctl.h>
48#include <sys/intr.h>
49#include <sys/bus.h>
50#include <sys/kernel.h>
51#include <sys/kmem.h>
52#include <sys/proc.h>
53#include <sys/atomic.h>
54#include <sys/callout.h>
55
56#include <net/if.h>
57#include <net/if_dl.h>
58#include <net/if_ether.h>
59#include <net/if_media.h>
60
61#include <dev/mii/miivar.h>
62
63#include "ioconf.h"
64
65#include <net/bpf.h>
66
67#ifdef INET
68#include <netinet/in.h>
69#include <netinet/in_systm.h>
70#include <netinet/ip.h>
71#include <netinet/in_offload.h>
72#endif /* INET */
73#ifdef INET6
74#include <netinet6/in6.h>
75#include <netinet/ip6.h>
76#endif
77#include <netinet6/in6_offload.h>
78
79
80#include <powerpc/spr.h>
81#include <powerpc/booke/spr.h>
82
83#include <powerpc/booke/cpuvar.h>
84#include <powerpc/booke/e500var.h>
85#include <powerpc/booke/e500reg.h>
86#include <powerpc/booke/etsecreg.h>
87
88#define	M_HASFCB		M_LINK2	/* tx packet has FCB prepended */
89
90#define	ETSEC_MAXTXMBUFS	30
91#define	ETSEC_NTXSEGS		30
92#define	ETSEC_MAXRXMBUFS	511
93#define	ETSEC_MINRXMBUFS	32
94#define	ETSEC_NRXSEGS		1
95
96#define	IFCAP_RCTRL_IPCSEN	IFCAP_CSUM_IPv4_Rx
97#define	IFCAP_RCTRL_TUCSEN	(IFCAP_CSUM_TCPv4_Rx\
98				 |IFCAP_CSUM_UDPv4_Rx\
99				 |IFCAP_CSUM_TCPv6_Rx\
100				 |IFCAP_CSUM_UDPv6_Rx)
101
102#define	IFCAP_TCTRL_IPCSEN	IFCAP_CSUM_IPv4_Tx
103#define	IFCAP_TCTRL_TUCSEN	(IFCAP_CSUM_TCPv4_Tx\
104				 |IFCAP_CSUM_UDPv4_Tx\
105				 |IFCAP_CSUM_TCPv6_Tx\
106				 |IFCAP_CSUM_UDPv6_Tx)
107
108#define	IFCAP_ETSEC		(IFCAP_RCTRL_IPCSEN|IFCAP_RCTRL_TUCSEN\
109				 |IFCAP_TCTRL_IPCSEN|IFCAP_TCTRL_TUCSEN)
110
111#define	M_CSUM_IP	(M_CSUM_CIP|M_CSUM_CTU)
112#define	M_CSUM_IP6	(M_CSUM_TCPv6|M_CSUM_UDPv6)
113#define	M_CSUM_TUP	(M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TCPv6|M_CSUM_UDPv6)
114#define	M_CSUM_UDP	(M_CSUM_UDPv4|M_CSUM_UDPv6)
115#define	M_CSUM_IP4	(M_CSUM_IPv4|M_CSUM_UDPv4|M_CSUM_TCPv4)
116#define	M_CSUM_CIP	(M_CSUM_IPv4)
117#define	M_CSUM_CTU	(M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TCPv6|M_CSUM_UDPv6)
118
119struct pq3etsec_txqueue {
120	bus_dmamap_t txq_descmap;
121	volatile struct txbd *txq_consumer;
122	volatile struct txbd *txq_producer;
123	volatile struct txbd *txq_first;
124	volatile struct txbd *txq_last;
125	struct ifqueue txq_mbufs;
126	struct mbuf *txq_next;
127#ifdef ETSEC_DEBUG
128	struct mbuf *txq_lmbufs[512];
129#endif
130	uint32_t txq_qmask;
131	uint32_t txq_free;
132	uint32_t txq_threshold;
133	uint32_t txq_lastintr;
134	bus_size_t txq_reg_tbase;
135	bus_dma_segment_t txq_descmap_seg;
136};
137
138struct pq3etsec_rxqueue {
139	bus_dmamap_t rxq_descmap;
140	volatile struct rxbd *rxq_consumer;
141	volatile struct rxbd *rxq_producer;
142	volatile struct rxbd *rxq_first;
143	volatile struct rxbd *rxq_last;
144	struct mbuf *rxq_mhead;
145	struct mbuf **rxq_mtail;
146	struct mbuf *rxq_mconsumer;
147#ifdef ETSEC_DEBUG
148	struct mbuf *rxq_mbufs[512];
149#endif
150	uint32_t rxq_qmask;
151	uint32_t rxq_inuse;
152	uint32_t rxq_threshold;
153	bus_size_t rxq_reg_rbase;
154	bus_size_t rxq_reg_rbptr;
155	bus_dma_segment_t rxq_descmap_seg;
156};
157
158struct pq3etsec_mapcache {
159	u_int dmc_nmaps;
160	u_int dmc_maxseg;
161	u_int dmc_maxmaps;
162	u_int dmc_maxmapsize;
163	bus_dmamap_t dmc_maps[0];
164};
165
166struct pq3etsec_softc {
167	device_t sc_dev;
168	struct ethercom sc_ec;
169#define sc_if		sc_ec.ec_if
170	struct mii_data sc_mii;
171	bus_space_tag_t sc_bst;
172	bus_space_handle_t sc_bsh;
173	bus_dma_tag_t sc_dmat;
174	int sc_phy_addr;
175	prop_dictionary_t sc_intrmap;
176	uint32_t sc_intrmask;
177
178	uint32_t sc_soft_flags;
179#define	SOFT_RESET		0x0001
180#define	SOFT_RXINTR		0x0010
181#define	SOFT_RXBSY		0x0020
182#define	SOFT_TXINTR		0x0100
183#define	SOFT_TXERROR		0x0200
184
185	struct pq3etsec_txqueue sc_txq;
186	struct pq3etsec_rxqueue sc_rxq;
187	uint32_t sc_txerrors;
188	uint32_t sc_rxerrors;
189
190	size_t sc_rx_adjlen;
191
192	/*
193	 * Copies of various ETSEC registers.
194	 */
195	uint32_t sc_imask;
196	uint32_t sc_maccfg1;
197	uint32_t sc_maccfg2;
198	uint32_t sc_maxfrm;
199	uint32_t sc_ecntrl;
200	uint32_t sc_dmactrl;
201	uint32_t sc_macstnaddr1;
202	uint32_t sc_macstnaddr2;
203	uint32_t sc_tctrl;
204	uint32_t sc_rctrl;
205	uint32_t sc_gaddr[16];
206	uint64_t sc_macaddrs[15];
207
208	void *sc_tx_ih;
209	void *sc_rx_ih;
210	void *sc_error_ih;
211	void *sc_soft_ih;
212
213	kmutex_t *sc_lock;
214
215	struct evcnt sc_ev_tx_stall;
216	struct evcnt sc_ev_tx_intr;
217	struct evcnt sc_ev_rx_stall;
218	struct evcnt sc_ev_rx_intr;
219	struct evcnt sc_ev_error_intr;
220	struct evcnt sc_ev_soft_intr;
221	struct evcnt sc_ev_tx_pause;
222	struct evcnt sc_ev_rx_pause;
223	struct evcnt sc_ev_mii_ticks;
224
225	struct callout sc_mii_callout;
226	uint64_t sc_mii_last_tick;
227
228	struct ifqueue sc_rx_bufcache;
229	struct pq3etsec_mapcache *sc_rx_mapcache;
230	struct pq3etsec_mapcache *sc_tx_mapcache;
231};
232
233static int pq3etsec_match(device_t, cfdata_t, void *);
234static void pq3etsec_attach(device_t, device_t, void *);
235
236static void pq3etsec_ifstart(struct ifnet *);
237static void pq3etsec_ifwatchdog(struct ifnet *);
238static int pq3etsec_ifinit(struct ifnet *);
239static void pq3etsec_ifstop(struct ifnet *, int);
240static int pq3etsec_ifioctl(struct ifnet *, u_long, void *);
241
242static int pq3etsec_mapcache_create(struct pq3etsec_softc *,
243    struct pq3etsec_mapcache **, size_t, size_t, size_t);
244static void pq3etsec_mapcache_destroy(struct pq3etsec_softc *,
245    struct pq3etsec_mapcache *);
246static bus_dmamap_t pq3etsec_mapcache_get(struct pq3etsec_softc *,
247    struct pq3etsec_mapcache *);
248static void pq3etsec_mapcache_put(struct pq3etsec_softc *,
249    struct pq3etsec_mapcache *, bus_dmamap_t);
250
251static int pq3etsec_txq_attach(struct pq3etsec_softc *,
252    struct pq3etsec_txqueue *, u_int);
253static void pq3etsec_txq_purge(struct pq3etsec_softc *,
254    struct pq3etsec_txqueue *);
255static void pq3etsec_txq_reset(struct pq3etsec_softc *,
256    struct pq3etsec_txqueue *);
257static bool pq3etsec_txq_consume(struct pq3etsec_softc *,
258    struct pq3etsec_txqueue *);
259static bool pq3etsec_txq_produce(struct pq3etsec_softc *,
260    struct pq3etsec_txqueue *, struct mbuf *m);
261static bool pq3etsec_txq_active_p(struct pq3etsec_softc *,
262    struct pq3etsec_txqueue *);
263
264static int pq3etsec_rxq_attach(struct pq3etsec_softc *,
265    struct pq3etsec_rxqueue *, u_int);
266static bool pq3etsec_rxq_produce(struct pq3etsec_softc *,
267    struct pq3etsec_rxqueue *);
268static void pq3etsec_rxq_purge(struct pq3etsec_softc *,
269    struct pq3etsec_rxqueue *, bool);
270static void pq3etsec_rxq_reset(struct pq3etsec_softc *,
271    struct pq3etsec_rxqueue *);
272
273static void pq3etsec_mc_setup(struct pq3etsec_softc *);
274
275static void pq3etsec_mii_tick(void *);
276static int pq3etsec_rx_intr(void *);
277static int pq3etsec_tx_intr(void *);
278static int pq3etsec_error_intr(void *);
279static void pq3etsec_soft_intr(void *);
280
281CFATTACH_DECL_NEW(pq3etsec, sizeof(struct pq3etsec_softc),
282    pq3etsec_match, pq3etsec_attach, NULL, NULL);
283
284static int
285pq3etsec_match(device_t parent, cfdata_t cf, void *aux)
286{
287
288	if (!e500_cpunode_submatch(parent, cf, cf->cf_name, aux))
289		return 0;
290
291	return 1;
292}
293
294static inline uint32_t
295etsec_read(struct pq3etsec_softc *sc, bus_size_t off)
296{
297	return bus_space_read_4(sc->sc_bst, sc->sc_bsh, off);
298}
299
300static inline void
301etsec_write(struct pq3etsec_softc *sc, bus_size_t off, uint32_t data)
302{
303	bus_space_write_4(sc->sc_bst, sc->sc_bsh, off, data);
304}
305
306static int
307pq3etsec_mii_readreg(device_t self, int phy, int reg)
308{
309	struct pq3etsec_softc * const sc = device_private(self);
310	uint32_t miimcom = etsec_read(sc, MIIMCOM);
311
312//	int s = splnet();
313
314	etsec_write(sc, MIIMADD,
315	    __SHIFTIN(phy, MIIMADD_PHY) | __SHIFTIN(reg, MIIMADD_REG));
316
317	etsec_write(sc, IEVENT, IEVENT_MMRD);
318	etsec_write(sc, MIIMCOM, 0);	/* clear any past bits */
319	etsec_write(sc, MIIMCOM, MIIMCOM_READ);
320#if 0
321	sc->sc_imask |= IEVENT_MMRD;
322	etsec_write(sc, IMASK, sc->sc_imask);
323#endif
324
325	while (etsec_read(sc, MIIMIND) != 0) {
326			delay(1);
327	}
328	int data = etsec_read(sc, MIIMSTAT);
329
330	if (miimcom == MIIMCOM_SCAN)
331		etsec_write(sc, MIIMCOM, miimcom);
332
333#if 0
334	aprint_normal_dev(sc->sc_dev, "%s: phy %d reg %d: %#x\n",
335	    __func__, phy, reg, data);
336#endif
337	etsec_write(sc, IEVENT, IEVENT_MMRD);
338//	splx(s);
339	return data;
340}
341
342static void
343pq3etsec_mii_writereg(device_t self, int phy, int reg, int data)
344{
345	struct pq3etsec_softc * const sc = device_private(self);
346	uint32_t miimcom = etsec_read(sc, MIIMCOM);
347
348#if 0
349	aprint_normal_dev(sc->sc_dev, "%s: phy %d reg %d: %#x\n",
350	    __func__, phy, reg, data);
351#endif
352
353//	int s = splnet();
354	etsec_write(sc, IEVENT, IEVENT_MMWR);
355	etsec_write(sc, MIIMADD,
356	    __SHIFTIN(phy, MIIMADD_PHY) | __SHIFTIN(reg, MIIMADD_REG));
357	etsec_write(sc, MIIMCOM, 0);	/* clear any past bits */
358	etsec_write(sc, MIIMCON, data);
359
360#if 0
361	sc->sc_imask |= IEVENT_MMWR;
362	etsec_write(sc, IMASK, sc->sc_imask);
363#endif
364
365	int timo = 1000;	/* 1ms */
366	while ((etsec_read(sc, MIIMIND) & MIIMIND_BUSY) && --timo > 0) {
367			delay(1);
368	}
369
370	if (miimcom == MIIMCOM_SCAN)
371		etsec_write(sc, MIIMCOM, miimcom);
372	etsec_write(sc, IEVENT, IEVENT_MMWR);
373//	splx(s);
374}
375
376static void
377pq3etsec_mii_statchg(device_t self)
378{
379	struct pq3etsec_softc * const sc = device_private(self);
380	struct mii_data * const mii = &sc->sc_mii;
381
382	uint32_t maccfg1 = sc->sc_maccfg1;
383	uint32_t maccfg2 = sc->sc_maccfg2;
384	uint32_t ecntrl = sc->sc_ecntrl;
385
386	maccfg1 &= ~(MACCFG1_TX_FLOW|MACCFG1_RX_FLOW);
387	maccfg2 &= ~(MACCFG2_IFMODE|MACCFG2_FD);
388
389	if (sc->sc_mii.mii_media_active & IFM_FDX) {
390		maccfg2 |= MACCFG2_FD;
391	}
392
393	/*
394	 * Now deal with the flow control bits.
395	 */
396	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO
397	    && (mii->mii_media_active & IFM_ETH_FMASK)) {
398		if (mii->mii_media_active & IFM_ETH_RXPAUSE)
399			maccfg1 |= MACCFG1_RX_FLOW;
400		if (mii->mii_media_active & IFM_ETH_TXPAUSE)
401			maccfg1 |= MACCFG1_TX_FLOW;
402	}
403
404	/*
405	 * Now deal with the speed.
406	 */
407	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
408		maccfg2 |= MACCFG2_IFMODE_GMII;
409	} else {
410		maccfg2 |= MACCFG2_IFMODE_MII;
411		ecntrl &= ~ECNTRL_R100M;
412		if (IFM_SUBTYPE(mii->mii_media_active) != IFM_10_T) {
413			ecntrl |= ECNTRL_R100M;
414		}
415	}
416
417	/*
418	 * If things are different, re-init things.
419	 */
420	if (maccfg1 != sc->sc_maccfg1
421	    || maccfg2 != sc->sc_maccfg2
422	    || ecntrl != sc->sc_ecntrl) {
423		if (sc->sc_if.if_flags & IFF_RUNNING)
424			atomic_or_uint(&sc->sc_soft_flags, SOFT_RESET);
425		sc->sc_maccfg1 = maccfg1;
426		sc->sc_maccfg2 = maccfg2;
427		sc->sc_ecntrl = ecntrl;
428	}
429}
430
431#if 0
432static void
433pq3etsec_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
434{
435	struct pq3etsec_softc * const sc = ifp->if_softc;
436
437	mii_pollstat(&sc->sc_mii);
438	ether_mediastatus(ifp, ifmr);
439        ifmr->ifm_status = sc->sc_mii.mii_media_status;
440        ifmr->ifm_active = sc->sc_mii.mii_media_active;
441}
442
443static int
444pq3etsec_mediachange(struct ifnet *ifp)
445{
446	struct pq3etsec_softc * const sc = ifp->if_softc;
447
448	if ((ifp->if_flags & IFF_UP) == 0)
449		return 0;
450
451	int rv = mii_mediachg(&sc->sc_mii);
452	return (rv == ENXIO) ? 0 : rv;
453}
454#endif
455
456static void
457pq3etsec_attach(device_t parent, device_t self, void *aux)
458{
459	struct cpunode_softc * const psc = device_private(parent);
460	struct pq3etsec_softc * const sc = device_private(self);
461	struct cpunode_attach_args * const cna = aux;
462	struct cpunode_locators * const cnl = &cna->cna_locs;
463	cfdata_t cf = device_cfdata(self);
464	int error;
465
466	psc->sc_children |= cna->cna_childmask;
467	sc->sc_dev = self;
468	sc->sc_bst = cna->cna_memt;
469	sc->sc_dmat = &booke_bus_dma_tag;
470
471	/*
472	 * If we have a common MDIO bus, if all off instance 1.
473	 */
474	device_t miiself = (cf->cf_flags & 0x100) ? tsec_cd.cd_devs[0] : self;
475
476	/*
477	 * See if the phy is in the config file...
478	 */
479	if (cf->cf_flags & 0x3f) {
480		sc->sc_phy_addr = (cf->cf_flags & 0x3f) - 1;
481	} else {
482		unsigned char prop_name[20];
483		snprintf(prop_name, sizeof(prop_name), "tsec%u-phy-addr",
484		    cnl->cnl_instance);
485		sc->sc_phy_addr = board_info_get_number(prop_name);
486	}
487	if (sc->sc_phy_addr != MII_PHY_ANY)
488		aprint_normal(" phy %d", sc->sc_phy_addr);
489
490	error = bus_space_map(sc->sc_bst, cnl->cnl_addr, cnl->cnl_size, 0,
491	    &sc->sc_bsh);
492	if (error) {
493		aprint_error(": error mapping registers: %d\n", error);
494		return;
495	}
496
497	/*
498	 * Assume firmware has aready set the mac address and fetch it
499	 * before we reinit it.
500	 */
501	sc->sc_macstnaddr2 = etsec_read(sc, MACSTNADDR2);
502	sc->sc_macstnaddr1 = etsec_read(sc, MACSTNADDR1);
503	sc->sc_rctrl = RCTRL_DEFAULT;
504	sc->sc_ecntrl = etsec_read(sc, ECNTRL);
505	sc->sc_maccfg1 = etsec_read(sc, MACCFG1);
506	sc->sc_maccfg2 = etsec_read(sc, MACCFG2) | MACCFG2_DEFAULT;
507
508	if (sc->sc_macstnaddr1 == 0 && sc->sc_macstnaddr2 == 0) {
509		size_t len;
510		const uint8_t *mac_addr =
511		    board_info_get_data("tsec-mac-addr-base", &len);
512		KASSERT(len == ETHER_ADDR_LEN);
513		sc->sc_macstnaddr2 =
514		    (mac_addr[1] << 24)
515		    | (mac_addr[0] << 16);
516		sc->sc_macstnaddr1 =
517		    ((mac_addr[5] + cnl->cnl_instance - 1) << 24)
518		    | (mac_addr[4] << 16)
519		    | (mac_addr[3] << 8)
520		    | (mac_addr[2] << 0);
521#if 0
522		aprint_error(": mac-address unknown\n");
523		return;
524#endif
525	}
526
527	char enaddr[ETHER_ADDR_LEN] = {
528	    [0] = sc->sc_macstnaddr2 >> 16,
529	    [1] = sc->sc_macstnaddr2 >> 24,
530	    [2] = sc->sc_macstnaddr1 >>  0,
531	    [3] = sc->sc_macstnaddr1 >>  8,
532	    [4] = sc->sc_macstnaddr1 >> 16,
533	    [5] = sc->sc_macstnaddr1 >> 24,
534	};
535
536	error = pq3etsec_rxq_attach(sc, &sc->sc_rxq, 0);
537	if (error) {
538		aprint_error(": failed to init rxq: %d\n", error);
539		return;
540	}
541
542	error = pq3etsec_txq_attach(sc, &sc->sc_txq, 0);
543	if (error) {
544		aprint_error(": failed to init txq: %d\n", error);
545		return;
546	}
547
548	error = pq3etsec_mapcache_create(sc, &sc->sc_rx_mapcache,
549	    ETSEC_MAXRXMBUFS, MCLBYTES, ETSEC_NRXSEGS);
550	if (error) {
551		aprint_error(": failed to allocate rx dmamaps: %d\n", error);
552		return;
553	}
554
555	error = pq3etsec_mapcache_create(sc, &sc->sc_tx_mapcache,
556	    ETSEC_MAXTXMBUFS, MCLBYTES, ETSEC_NTXSEGS);
557	if (error) {
558		aprint_error(": failed to allocate tx dmamaps: %d\n", error);
559		return;
560	}
561
562	sc->sc_tx_ih = intr_establish(cnl->cnl_intrs[0], IPL_VM, IST_ONCHIP,
563	    pq3etsec_tx_intr, sc);
564	if (sc->sc_tx_ih == NULL) {
565		aprint_error(": failed to establish tx interrupt: %d\n",
566		    cnl->cnl_intrs[0]);
567		return;
568	}
569
570	sc->sc_rx_ih = intr_establish(cnl->cnl_intrs[1], IPL_VM, IST_ONCHIP,
571	    pq3etsec_rx_intr, sc);
572	if (sc->sc_rx_ih == NULL) {
573		aprint_error(": failed to establish rx interrupt: %d\n",
574		    cnl->cnl_intrs[1]);
575		return;
576	}
577
578	sc->sc_error_ih = intr_establish(cnl->cnl_intrs[2], IPL_VM, IST_ONCHIP,
579	    pq3etsec_error_intr, sc);
580	if (sc->sc_error_ih == NULL) {
581		aprint_error(": failed to establish error interrupt: %d\n",
582		    cnl->cnl_intrs[2]);
583		return;
584	}
585
586	sc->sc_soft_ih = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE,
587	    pq3etsec_soft_intr, sc);
588	if (sc->sc_soft_ih == NULL) {
589		aprint_error(": failed to establish soft interrupt\n");
590		return;
591	}
592
593	aprint_normal("\n");
594
595	etsec_write(sc, ATTR, ATTR_DEFAULT);
596	etsec_write(sc, ATTRELI, ATTRELI_DEFAULT);
597
598	sc->sc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
599
600	callout_init(&sc->sc_mii_callout, CALLOUT_MPSAFE);
601	callout_setfunc(&sc->sc_mii_callout, pq3etsec_mii_tick, sc);
602
603	aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
604	   ether_sprintf(enaddr));
605
606	const char * const xname = device_xname(sc->sc_dev);
607	struct ethercom * const ec = &sc->sc_ec;
608	struct ifnet * const ifp = &ec->ec_if;
609
610	ec->ec_mii = &sc->sc_mii;
611
612	sc->sc_mii.mii_ifp = ifp;
613	sc->sc_mii.mii_readreg = pq3etsec_mii_readreg;
614	sc->sc_mii.mii_writereg = pq3etsec_mii_writereg;
615	sc->sc_mii.mii_statchg = pq3etsec_mii_statchg;
616
617	ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
618	    ether_mediastatus);
619
620	if (sc->sc_phy_addr < 32) {
621		mii_attach(miiself, &sc->sc_mii, 0xffffffff,
622		    sc->sc_phy_addr, MII_OFFSET_ANY, MIIF_DOPAUSE);
623
624		if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
625			ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
626			ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
627		} else {
628			callout_schedule(&sc->sc_mii_callout, hz);
629			ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
630		}
631	} else {
632		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
633		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_1000_T|IFM_FDX);
634	}
635
636	ec->ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING
637	    | ETHERCAP_JUMBO_MTU;
638
639	strlcpy(ifp->if_xname, xname, IFNAMSIZ);
640	ifp->if_softc = sc;
641	ifp->if_capabilities = IFCAP_ETSEC;
642	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
643	ifp->if_ioctl = pq3etsec_ifioctl;
644	ifp->if_start = pq3etsec_ifstart;
645	ifp->if_watchdog = pq3etsec_ifwatchdog;
646	ifp->if_init = pq3etsec_ifinit;
647	ifp->if_stop = pq3etsec_ifstop;
648	IFQ_SET_READY(&ifp->if_snd);
649
650	pq3etsec_ifstop(ifp, true);
651
652	/*
653	 * Attach the interface.
654	 */
655	if_attach(ifp);
656	ether_ifattach(ifp, enaddr);
657
658	evcnt_attach_dynamic(&sc->sc_ev_rx_stall, EVCNT_TYPE_MISC,
659	    NULL, xname, "rx stall");
660	evcnt_attach_dynamic(&sc->sc_ev_tx_stall, EVCNT_TYPE_MISC,
661	    NULL, xname, "tx stall");
662	evcnt_attach_dynamic(&sc->sc_ev_tx_intr, EVCNT_TYPE_INTR,
663	    NULL, xname, "tx intr");
664	evcnt_attach_dynamic(&sc->sc_ev_rx_intr, EVCNT_TYPE_INTR,
665	    NULL, xname, "rx intr");
666	evcnt_attach_dynamic(&sc->sc_ev_error_intr, EVCNT_TYPE_INTR,
667	    NULL, xname, "error intr");
668	evcnt_attach_dynamic(&sc->sc_ev_soft_intr, EVCNT_TYPE_INTR,
669	    NULL, xname, "soft intr");
670	evcnt_attach_dynamic(&sc->sc_ev_tx_pause, EVCNT_TYPE_MISC,
671	    NULL, xname, "tx pause");
672	evcnt_attach_dynamic(&sc->sc_ev_rx_pause, EVCNT_TYPE_MISC,
673	    NULL, xname, "rx pause");
674	evcnt_attach_dynamic(&sc->sc_ev_mii_ticks, EVCNT_TYPE_MISC,
675	    NULL, xname, "mii ticks");
676}
677
678static uint64_t
679pq3etsec_macaddr_create(const uint8_t *lladdr)
680{
681	uint64_t macaddr = 0;
682
683	lladdr += ETHER_ADDR_LEN;
684	for (u_int i = ETHER_ADDR_LEN; i-- > 0; ) {
685		macaddr = (macaddr << 8) | *--lladdr;
686	}
687	return macaddr << 16;
688}
689
690static int
691pq3etsec_ifinit(struct ifnet *ifp)
692{
693	struct pq3etsec_softc * const sc = ifp->if_softc;
694	int error = 0;
695
696	KASSERT(!cpu_softintr_p());
697
698	sc->sc_maxfrm = max(ifp->if_mtu + 32, MCLBYTES);
699	if (ifp->if_mtu > ETHERMTU_JUMBO)
700		return error;
701
702	KASSERT(ifp->if_flags & IFF_UP);
703
704	/*
705	 * Stop the interface (steps 1 to 4 in the Soft Reset and
706	 * Reconfigurating Procedure.
707	 */
708	pq3etsec_ifstop(ifp, 0);
709
710	/*
711	 * If our frame size has changed (or it's our first time through)
712	 * destroy the existing transmit mapcache.
713	 */
714	if (sc->sc_tx_mapcache != NULL
715	    && sc->sc_maxfrm != sc->sc_tx_mapcache->dmc_maxmapsize) {
716		pq3etsec_mapcache_destroy(sc, sc->sc_tx_mapcache);
717		sc->sc_tx_mapcache = NULL;
718	}
719
720	if (sc->sc_tx_mapcache == NULL) {
721		error = pq3etsec_mapcache_create(sc, &sc->sc_tx_mapcache,
722		    ETSEC_MAXTXMBUFS, sc->sc_maxfrm, ETSEC_NTXSEGS);
723		if (error)
724			return error;
725	}
726
727	sc->sc_ev_mii_ticks.ev_count++;
728	mii_tick(&sc->sc_mii);
729
730	if (ifp->if_flags & IFF_PROMISC) {
731		sc->sc_rctrl |= RCTRL_PROM;
732	} else {
733		sc->sc_rctrl &= ~RCTRL_PROM;
734	}
735
736	uint32_t rctrl_prsdep = 0;
737	sc->sc_rctrl &= ~(RCTRL_IPCSEN|RCTRL_TUCSEN|RCTRL_VLEX|RCTRL_PRSDEP);
738	if (VLAN_ATTACHED(&sc->sc_ec)) {
739		sc->sc_rctrl |= RCTRL_VLEX;
740		rctrl_prsdep = RCTRL_PRSDEP_L2;
741	}
742	if (ifp->if_capenable & IFCAP_RCTRL_IPCSEN) {
743		sc->sc_rctrl |= RCTRL_IPCSEN;
744		rctrl_prsdep = RCTRL_PRSDEP_L3;
745	}
746	if (ifp->if_capenable & IFCAP_RCTRL_TUCSEN) {
747		sc->sc_rctrl |= RCTRL_TUCSEN;
748		rctrl_prsdep = RCTRL_PRSDEP_L4;
749	}
750	sc->sc_rctrl |= rctrl_prsdep;
751#if 0
752	if (sc->sc_rctrl & (RCTRL_IPCSEN|RCTRL_TUCSEN|RCTRL_VLEX|RCTRL_PRSDEP))
753		aprint_normal_dev(sc->sc_dev,
754		    "rctrl=%#x ipcsen=%"PRIuMAX" tucsen=%"PRIuMAX" vlex=%"PRIuMAX" prsdep=%"PRIuMAX"\n",
755		    sc->sc_rctrl,
756		    __SHIFTOUT(sc->sc_rctrl, RCTRL_IPCSEN),
757		    __SHIFTOUT(sc->sc_rctrl, RCTRL_TUCSEN),
758		    __SHIFTOUT(sc->sc_rctrl, RCTRL_VLEX),
759		    __SHIFTOUT(sc->sc_rctrl, RCTRL_PRSDEP));
760#endif
761
762	sc->sc_tctrl &= ~(TCTRL_IPCSEN|TCTRL_TUCSEN|TCTRL_VLINS);
763	if (VLAN_ATTACHED(&sc->sc_ec))		/* is this really true */
764		sc->sc_tctrl |= TCTRL_VLINS;
765	if (ifp->if_capenable & IFCAP_TCTRL_IPCSEN)
766		sc->sc_tctrl |= TCTRL_IPCSEN;
767	if (ifp->if_capenable & IFCAP_TCTRL_TUCSEN)
768		sc->sc_tctrl |= TCTRL_TUCSEN;
769#if 0
770	if (sc->sc_tctrl & (TCTRL_IPCSEN|TCTRL_TUCSEN|TCTRL_VLINS))
771		aprint_normal_dev(sc->sc_dev,
772		    "tctrl=%#x ipcsen=%"PRIuMAX" tucsen=%"PRIuMAX" vlins=%"PRIuMAX"\n",
773		    sc->sc_tctrl,
774		    __SHIFTOUT(sc->sc_tctrl, TCTRL_IPCSEN),
775		    __SHIFTOUT(sc->sc_tctrl, TCTRL_TUCSEN),
776		    __SHIFTOUT(sc->sc_tctrl, TCTRL_VLINS));
777#endif
778
779	sc->sc_maccfg1 &= ~(MACCFG1_TX_EN|MACCFG1_RX_EN);
780
781	const uint64_t macstnaddr =
782	    pq3etsec_macaddr_create(CLLADDR(ifp->if_sadl));
783
784	sc->sc_imask = IEVENT_DPE;
785
786	/* 5. Load TDBPH, TBASEH, TBASE0-TBASE7 with new Tx BD pointers */
787	pq3etsec_rxq_reset(sc, &sc->sc_rxq);
788	pq3etsec_rxq_produce(sc, &sc->sc_rxq);	/* fill with rx buffers */
789
790	/* 6. Load RDBPH, RBASEH, RBASE0-RBASE7 with new Rx BD pointers */
791	pq3etsec_txq_reset(sc, &sc->sc_txq);
792
793	/* 7. Setup other MAC registers (MACCFG2, MAXFRM, etc.) */
794	KASSERT(MACCFG2_PADCRC & sc->sc_maccfg2);
795	etsec_write(sc, MAXFRM, sc->sc_maxfrm);
796	etsec_write(sc, MACSTNADDR1, (uint32_t)(macstnaddr >> 32));
797	etsec_write(sc, MACSTNADDR2, (uint32_t)(macstnaddr >>  0));
798	etsec_write(sc, MACCFG1, sc->sc_maccfg1);
799	etsec_write(sc, MACCFG2, sc->sc_maccfg2);
800	etsec_write(sc, ECNTRL, sc->sc_ecntrl);
801
802	/* 8. Setup group address hash table (GADDR0-GADDR15) */
803	pq3etsec_mc_setup(sc);
804
805	/* 9. Setup receive frame filer table (via RQFAR, RQFCR, and RQFPR) */
806	etsec_write(sc, MRBLR, MCLBYTES);
807
808	/* 10. Setup WWR, WOP, TOD bits in DMACTRL register */
809	sc->sc_dmactrl |= DMACTRL_DEFAULT;
810	etsec_write(sc, DMACTRL, sc->sc_dmactrl);
811
812	/* 11. Enable transmit queues in TQUEUE, and ensure that the transmit scheduling mode is correctly set in TCTRL. */
813	etsec_write(sc, TQUEUE, TQUEUE_EN0);
814	sc->sc_imask |= IEVENT_TXF|IEVENT_TXE|IEVENT_TXC;
815
816	etsec_write(sc, TCTRL, sc->sc_tctrl);	/* for TOE stuff */
817
818	/* 12. Enable receive queues in RQUEUE, */
819	etsec_write(sc, RQUEUE, RQUEUE_EN0|RQUEUE_EX0);
820	sc->sc_imask |= IEVENT_RXF|IEVENT_BSY|IEVENT_RXC;
821
822	/*     and optionally set TOE functionality in RCTRL. */
823	etsec_write(sc, RCTRL, sc->sc_rctrl);
824	sc->sc_rx_adjlen = __SHIFTOUT(sc->sc_rctrl, RCTRL_PAL);
825	if ((sc->sc_rctrl & RCTRL_PRSDEP) != RCTRL_PRSDEP_OFF)
826		sc->sc_rx_adjlen += sizeof(struct rxfcb);
827
828	/* 13. Clear THLT and TXF bits in TSTAT register by writing 1 to them */
829	etsec_write(sc, TSTAT, TSTAT_THLT | TSTAT_TXF);
830
831	/* 14. Clear QHLT and RXF bits in RSTAT register by writing 1 to them.*/
832	etsec_write(sc, RSTAT, RSTAT_QHLT | RSTAT_RXF);
833
834	/* 15. Clear GRS/GTS bits in DMACTRL (do not change other bits) */
835	sc->sc_dmactrl &= ~(DMACTRL_GRS|DMACTRL_GTS);
836	etsec_write(sc, DMACTRL, sc->sc_dmactrl);
837
838	/* 16. Enable Tx_EN/Rx_EN in MACCFG1 register */
839	etsec_write(sc, MACCFG1, sc->sc_maccfg1 | MACCFG1_TX_EN|MACCFG1_RX_EN);
840	etsec_write(sc, MACCFG1, sc->sc_maccfg1 | MACCFG1_TX_EN|MACCFG1_RX_EN);
841
842	sc->sc_soft_flags = 0;
843
844	etsec_write(sc, IMASK, sc->sc_imask);
845
846	ifp->if_flags |= IFF_RUNNING;
847
848	return error;
849}
850
851static void
852pq3etsec_ifstop(struct ifnet *ifp, int disable)
853{
854	struct pq3etsec_softc * const sc = ifp->if_softc;
855
856	KASSERT(!cpu_intr_p());
857	const uint32_t imask_gsc_mask = IEVENT_GTSC|IEVENT_GRSC;
858	/*
859	 * Clear the GTSC and GRSC from the interrupt mask until
860	 * we are ready for them.  Then clear them from IEVENT,
861	 * request the graceful shutdown, and then enable the
862	 * GTSC and GRSC bits in the mask.  This should cause the
863	 * error interrupt to fire which will issue a wakeup to
864	 * allow us to resume.
865	 */
866
867	/*
868	 * 1. Set GRS/GTS bits in DMACTRL register
869	 */
870	sc->sc_dmactrl |= DMACTRL_GRS|DMACTRL_GTS;
871	etsec_write(sc, IMASK, sc->sc_imask & ~imask_gsc_mask);
872	etsec_write(sc, IEVENT, imask_gsc_mask);
873	etsec_write(sc, DMACTRL, sc->sc_dmactrl);
874
875	if (etsec_read(sc, MACCFG1) & (MACCFG1_TX_EN|MACCFG1_RX_EN)) {
876		/*
877		 * 2. Poll GRSC/GTSC bits in IEVENT register until both are set
878		 */
879		etsec_write(sc, IMASK, sc->sc_imask | imask_gsc_mask);
880
881		u_int timo = 1000;
882		uint32_t ievent = etsec_read(sc, IEVENT);
883		while ((ievent & imask_gsc_mask) != imask_gsc_mask) {
884			if (--timo == 0) {
885				aprint_error_dev(sc->sc_dev,
886				    "WARNING: "
887				    "request to stop failed (IEVENT=%#x)\n",
888				    ievent);
889				break;
890			}
891			delay(10);
892			ievent = etsec_read(sc, IEVENT);
893		}
894	}
895
896	/*
897	 * Now reset the controller.
898	 *
899	 * 3. Set SOFT_RESET bit in MACCFG1 register
900	 * 4. Clear SOFT_RESET bit in MACCFG1 register
901	 */
902	etsec_write(sc, MACCFG1, MACCFG1_SOFT_RESET);
903	etsec_write(sc, MACCFG1, 0);
904	etsec_write(sc, IMASK, 0);
905	etsec_write(sc, IEVENT, ~0);
906	sc->sc_imask = 0;
907	ifp->if_flags &= ~IFF_RUNNING;
908
909	uint32_t tbipa = etsec_read(sc, TBIPA);
910	if (tbipa == sc->sc_phy_addr) {
911		aprint_normal_dev(sc->sc_dev, "relocating TBI\n");
912		etsec_write(sc, TBIPA, 0x1f);
913	}
914	uint32_t miimcfg = etsec_read(sc, MIIMCFG);
915	etsec_write(sc, MIIMCFG, MIIMCFG_RESET);
916	etsec_write(sc, MIIMCFG, miimcfg);
917
918	/*
919	 * Let's consume any remaing transmitted packets.  And if we are
920	 * disabling the interface, purge ourselves of any untransmitted
921	 * packets.  But don't consume any received packets, just drop them.
922	 * If we aren't disabling the interface, save the mbufs in the
923	 * receive queue for reuse.
924	 */
925	pq3etsec_rxq_purge(sc, &sc->sc_rxq, disable);
926	pq3etsec_txq_consume(sc, &sc->sc_txq);
927	if (disable) {
928		pq3etsec_txq_purge(sc, &sc->sc_txq);
929		IF_PURGE(&ifp->if_snd);
930	}
931}
932
933static void
934pq3etsec_ifwatchdog(struct ifnet *ifp)
935{
936}
937
938static void
939pq3etsec_mc_setup(
940	struct pq3etsec_softc *sc)
941{
942	struct ethercom * const ec = &sc->sc_ec;
943	struct ifnet * const ifp = &sc->sc_if;
944	struct ether_multi *enm;
945	struct ether_multistep step;
946	uint32_t *gaddr = sc->sc_gaddr + ((sc->sc_rctrl & RCTRL_GHTX) ? 0 : 8);
947	const uint32_t crc_shift = 32 - ((sc->sc_rctrl & RCTRL_GHTX) ? 9 : 8);
948
949	memset(sc->sc_gaddr, 0, sizeof(sc->sc_gaddr));
950	memset(sc->sc_macaddrs, 0, sizeof(sc->sc_macaddrs));
951
952	ifp->if_flags &= ~IFF_ALLMULTI;
953
954	ETHER_FIRST_MULTI(step, ec, enm);
955	for (u_int i = 0; enm != NULL; ) {
956		const char *addr = enm->enm_addrlo;
957		if (memcmp(addr, enm->enm_addrhi, ETHER_ADDR_LEN) != 0) {
958			ifp->if_flags |= IFF_ALLMULTI;
959			memset(gaddr, 0xff, 32 << (crc_shift & 1));
960			memset(sc->sc_macaddrs, 0, sizeof(sc->sc_macaddrs));
961			break;
962		}
963		if ((sc->sc_rctrl & RCTRL_EMEN)
964		    && i < __arraycount(sc->sc_macaddrs)) {
965			sc->sc_macaddrs[i++] = pq3etsec_macaddr_create(addr);
966		} else {
967			uint32_t crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
968#if 0
969			printf("%s: %s: crc=%#x: %#x: [%u,%u]=%#x\n", __func__,
970			    ether_sprintf(addr), crc,
971			    crc >> crc_shift,
972			    crc >> (crc_shift + 5),
973			    (crc >> crc_shift) & 31,
974			    1 << (((crc >> crc_shift) & 31) ^ 31));
975#endif
976			/*
977			 * The documentation doesn't completely follow PowerPC
978			 * bit order.  The BE crc32 (H) for 01:00:5E:00:00:01
979			 * is 0x7fa32d9b.  By empirical testing, the
980			 * corresponding hash bit is word 3, bit 31 (ppc bit
981			 * order).  Since 3 << 31 | 31 is 0x7f, we deduce
982			 * H[0:2] selects the register while H[3:7] selects
983			 * the bit (ppc bit order).
984			 */
985			crc >>= crc_shift;
986			gaddr[crc / 32] |= 1 << ((crc & 31) ^ 31);
987		}
988		ETHER_NEXT_MULTI(step, enm);
989	}
990	for (u_int i = 0; i < 8; i++) {
991		etsec_write(sc, IGADDR(i), sc->sc_gaddr[i]);
992		etsec_write(sc, GADDR(i), sc->sc_gaddr[i+8]);
993#if 0
994		if (sc->sc_gaddr[i] || sc->sc_gaddr[i+8])
995		printf("%s: IGADDR%u(%#x)=%#x GADDR%u(%#x)=%#x\n", __func__,
996		    i, IGADDR(i), etsec_read(sc, IGADDR(i)),
997		    i, GADDR(i), etsec_read(sc, GADDR(i)));
998#endif
999	}
1000	for (u_int i = 0; i < __arraycount(sc->sc_macaddrs); i++) {
1001		uint64_t macaddr = sc->sc_macaddrs[i];
1002		etsec_write(sc, MACnADDR1(i), (uint32_t)(macaddr >> 32));
1003		etsec_write(sc, MACnADDR2(i), (uint32_t)(macaddr >>  0));
1004#if 0
1005		if (macaddr)
1006		printf("%s: MAC%02uADDR2(%08x)=%#x MAC%02uADDR2(%#x)=%08x\n", __func__,
1007		    i+1, MACnADDR1(i), etsec_read(sc, MACnADDR1(i)),
1008		    i+1, MACnADDR2(i), etsec_read(sc, MACnADDR2(i)));
1009#endif
1010	}
1011}
1012
1013static int
1014pq3etsec_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
1015{
1016	struct pq3etsec_softc *sc  = ifp->if_softc;
1017	struct ifreq * const ifr = data;
1018	const int s = splnet();
1019	int error;
1020
1021	switch (cmd) {
1022	case SIOCSIFMEDIA:
1023	case SIOCGIFMEDIA:
1024		/* Flow control requires full-duplex mode. */
1025		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1026		    (ifr->ifr_media & IFM_FDX) == 0)
1027			ifr->ifr_media &= ~IFM_ETH_FMASK;
1028		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1029			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1030				/* We can do both TXPAUSE and RXPAUSE. */
1031				ifr->ifr_media |=
1032				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1033			}
1034		}
1035		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1036		break;
1037
1038	default:
1039		error = ether_ioctl(ifp, cmd, data);
1040		if (error != ENETRESET)
1041			break;
1042
1043		if (cmd == SIOCADDMULTI || cmd == SIOCDELMULTI) {
1044			error = 0;
1045			if (ifp->if_flags & IFF_RUNNING)
1046				pq3etsec_mc_setup(sc);
1047			break;
1048		}
1049		error = pq3etsec_ifinit(ifp);
1050		break;
1051	}
1052
1053	splx(s);
1054	return error;
1055}
1056
1057static void
1058pq3etsec_rxq_desc_presync(
1059	struct pq3etsec_softc *sc,
1060	struct pq3etsec_rxqueue *rxq,
1061	volatile struct rxbd *rxbd,
1062	size_t count)
1063{
1064	bus_dmamap_sync(sc->sc_dmat, rxq->rxq_descmap,
1065	    (rxbd - rxq->rxq_first) * sizeof(*rxbd), count * sizeof(*rxbd),
1066	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1067}
1068
1069static void
1070pq3etsec_rxq_desc_postsync(
1071	struct pq3etsec_softc *sc,
1072	struct pq3etsec_rxqueue *rxq,
1073	volatile struct rxbd *rxbd,
1074	size_t count)
1075{
1076	bus_dmamap_sync(sc->sc_dmat, rxq->rxq_descmap,
1077	    (rxbd - rxq->rxq_first) * sizeof(*rxbd), count * sizeof(*rxbd),
1078	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1079}
1080
1081static void
1082pq3etsec_txq_desc_presync(
1083	struct pq3etsec_softc *sc,
1084	struct pq3etsec_txqueue *txq,
1085	volatile struct txbd *txbd,
1086	size_t count)
1087{
1088	bus_dmamap_sync(sc->sc_dmat, txq->txq_descmap,
1089	    (txbd - txq->txq_first) * sizeof(*txbd), count * sizeof(*txbd),
1090	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1091}
1092
1093static void
1094pq3etsec_txq_desc_postsync(
1095	struct pq3etsec_softc *sc,
1096	struct pq3etsec_txqueue *txq,
1097	volatile struct txbd *txbd,
1098	size_t count)
1099{
1100	bus_dmamap_sync(sc->sc_dmat, txq->txq_descmap,
1101	    (txbd - txq->txq_first) * sizeof(*txbd), count * sizeof(*txbd),
1102	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1103}
1104
1105static bus_dmamap_t
1106pq3etsec_mapcache_get(
1107	struct pq3etsec_softc *sc,
1108	struct pq3etsec_mapcache *dmc)
1109{
1110	KASSERT(dmc->dmc_nmaps > 0);
1111	KASSERT(dmc->dmc_maps[dmc->dmc_nmaps-1] != NULL);
1112	return dmc->dmc_maps[--dmc->dmc_nmaps];
1113}
1114
1115static void
1116pq3etsec_mapcache_put(
1117	struct pq3etsec_softc *sc,
1118	struct pq3etsec_mapcache *dmc,
1119	bus_dmamap_t map)
1120{
1121	KASSERT(map != NULL);
1122	KASSERT(dmc->dmc_nmaps < dmc->dmc_maxmaps);
1123	dmc->dmc_maps[dmc->dmc_nmaps++] = map;
1124}
1125
1126static void
1127pq3etsec_mapcache_destroy(
1128	struct pq3etsec_softc *sc,
1129	struct pq3etsec_mapcache *dmc)
1130{
1131	const size_t dmc_size =
1132	    offsetof(struct pq3etsec_mapcache, dmc_maps[dmc->dmc_maxmaps]);
1133
1134	for (u_int i = 0; i < dmc->dmc_maxmaps; i++) {
1135		bus_dmamap_destroy(sc->sc_dmat, dmc->dmc_maps[i]);
1136	}
1137	kmem_free(dmc, dmc_size);
1138}
1139
1140static int
1141pq3etsec_mapcache_create(
1142	struct pq3etsec_softc *sc,
1143	struct pq3etsec_mapcache **dmc_p,
1144	size_t maxmaps,
1145	size_t maxmapsize,
1146	size_t maxseg)
1147{
1148	const size_t dmc_size =
1149	    offsetof(struct pq3etsec_mapcache, dmc_maps[maxmaps]);
1150	struct pq3etsec_mapcache * const dmc = kmem_zalloc(dmc_size, KM_SLEEP);
1151
1152	dmc->dmc_maxmaps = maxmaps;
1153	dmc->dmc_nmaps = maxmaps;
1154	dmc->dmc_maxmapsize = maxmapsize;
1155	dmc->dmc_maxseg = maxseg;
1156
1157	for (u_int i = 0; i < maxmaps; i++) {
1158		int error = bus_dmamap_create(sc->sc_dmat, dmc->dmc_maxmapsize,
1159		     dmc->dmc_maxseg, dmc->dmc_maxmapsize, 0,
1160		     BUS_DMA_WAITOK|BUS_DMA_ALLOCNOW, &dmc->dmc_maps[i]);
1161		if (error) {
1162			aprint_error_dev(sc->sc_dev,
1163			    "failed to creat dma map cache "
1164			    "entry %u of %zu: %d\n",
1165			    i, maxmaps, error);
1166			while (i-- > 0) {
1167				bus_dmamap_destroy(sc->sc_dmat,
1168				    dmc->dmc_maps[i]);
1169			}
1170			kmem_free(dmc, dmc_size);
1171			return error;
1172		}
1173		KASSERT(dmc->dmc_maps[i] != NULL);
1174	}
1175
1176	*dmc_p = dmc;
1177
1178	return 0;
1179}
1180
1181#if 0
1182static void
1183pq3etsec_dmamem_free(
1184	bus_dma_tag_t dmat,
1185	size_t map_size,
1186	bus_dma_segment_t *seg,
1187	bus_dmamap_t map,
1188	void *kvap)
1189{
1190	bus_dmamap_destroy(dmat, map);
1191	bus_dmamem_unmap(dmat, kvap, map_size);
1192	bus_dmamem_free(dmat, seg, 1);
1193}
1194#endif
1195
1196static int
1197pq3etsec_dmamem_alloc(
1198	bus_dma_tag_t dmat,
1199	size_t map_size,
1200	bus_dma_segment_t *seg,
1201	bus_dmamap_t *map,
1202	void **kvap)
1203{
1204	int error;
1205	int nseg;
1206
1207	*kvap = NULL;
1208	*map = NULL;
1209
1210	error = bus_dmamem_alloc(dmat, map_size, PAGE_SIZE, 0,
1211	   seg, 1, &nseg, 0);
1212	if (error)
1213		return error;
1214
1215	KASSERT(nseg == 1);
1216
1217	error = bus_dmamem_map(dmat, seg, nseg, map_size, (void **)kvap,
1218	    BUS_DMA_COHERENT);
1219	if (error == 0) {
1220		error = bus_dmamap_create(dmat, map_size, 1, map_size, 0, 0,
1221		    map);
1222		if (error == 0) {
1223			error = bus_dmamap_load(dmat, *map, *kvap, map_size,
1224			    NULL, 0);
1225			if (error == 0)
1226				return 0;
1227			bus_dmamap_destroy(dmat, *map);
1228			*map = NULL;
1229		}
1230		bus_dmamem_unmap(dmat, *kvap, map_size);
1231		*kvap = NULL;
1232	}
1233	bus_dmamem_free(dmat, seg, nseg);
1234	return 0;
1235}
1236
1237static struct mbuf *
1238pq3etsec_rx_buf_alloc(
1239	struct pq3etsec_softc *sc)
1240{
1241	struct mbuf *m = m_gethdr(M_DONTWAIT, MT_DATA);
1242	if (m == NULL) {
1243		printf("%s:%d: %s\n", __func__, __LINE__, "m_gethdr");
1244		return NULL;
1245	}
1246	MCLGET(m, M_DONTWAIT);
1247	if ((m->m_flags & M_EXT) == 0) {
1248		printf("%s:%d: %s\n", __func__, __LINE__, "MCLGET");
1249		m_freem(m);
1250		return NULL;
1251	}
1252	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
1253
1254	bus_dmamap_t map = pq3etsec_mapcache_get(sc, sc->sc_rx_mapcache);
1255	if (map == NULL) {
1256		printf("%s:%d: %s\n", __func__, __LINE__, "map get");
1257		m_freem(m);
1258		return NULL;
1259	}
1260	M_SETCTX(m, map);
1261	m->m_len = m->m_pkthdr.len = MCLBYTES;
1262	int error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1263	    BUS_DMA_READ|BUS_DMA_NOWAIT);
1264	if (error) {
1265		aprint_error_dev(sc->sc_dev, "fail to load rx dmamap: %d\n",
1266		    error);
1267		M_SETCTX(m, NULL);
1268		m_freem(m);
1269		pq3etsec_mapcache_put(sc, sc->sc_rx_mapcache, map);
1270		return NULL;
1271	}
1272	KASSERT(map->dm_mapsize == MCLBYTES);
1273	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1274	    BUS_DMASYNC_PREREAD);
1275
1276	return m;
1277}
1278
1279static void
1280pq3etsec_rx_map_unload(
1281	struct pq3etsec_softc *sc,
1282	struct mbuf *m)
1283{
1284	KASSERT(m);
1285	for (; m != NULL; m = m->m_next) {
1286		bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1287		KASSERT(map);
1288		KASSERT(map->dm_mapsize == MCLBYTES);
1289		bus_dmamap_sync(sc->sc_dmat, map, 0, m->m_len,
1290		    BUS_DMASYNC_POSTREAD);
1291		bus_dmamap_unload(sc->sc_dmat, map);
1292		pq3etsec_mapcache_put(sc, sc->sc_rx_mapcache, map);
1293		M_SETCTX(m, NULL);
1294	}
1295}
1296
1297static bool
1298pq3etsec_rxq_produce(
1299	struct pq3etsec_softc *sc,
1300	struct pq3etsec_rxqueue *rxq)
1301{
1302	volatile struct rxbd *producer = rxq->rxq_producer;
1303#if 0
1304	size_t inuse = rxq->rxq_inuse;
1305#endif
1306	while (rxq->rxq_inuse < rxq->rxq_threshold) {
1307		struct mbuf *m;
1308		IF_DEQUEUE(&sc->sc_rx_bufcache, m);
1309		if (m == NULL) {
1310			m = pq3etsec_rx_buf_alloc(sc);
1311			if (m == NULL) {
1312				printf("%s: pq3etsec_rx_buf_alloc failed\n", __func__);
1313				break;
1314			}
1315		}
1316		bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1317		KASSERT(map);
1318
1319#ifdef ETSEC_DEBUG
1320		KASSERT(rxq->rxq_mbufs[producer-rxq->rxq_first] == NULL);
1321		rxq->rxq_mbufs[producer-rxq->rxq_first] = m;
1322#endif
1323
1324		/* rxbd_len is write-only by the ETSEC */
1325		producer->rxbd_bufptr = map->dm_segs[0].ds_addr;
1326		membar_producer();
1327		producer->rxbd_flags |= RXBD_E;
1328		if (__predict_false(rxq->rxq_mhead == NULL)) {
1329			KASSERT(producer == rxq->rxq_consumer);
1330			rxq->rxq_mconsumer = m;
1331		}
1332		*rxq->rxq_mtail = m;
1333		rxq->rxq_mtail = &m->m_next;
1334		m->m_len = MCLBYTES;
1335		m->m_next = NULL;
1336		rxq->rxq_inuse++;
1337		if (++producer == rxq->rxq_last) {
1338			membar_producer();
1339			pq3etsec_rxq_desc_presync(sc, rxq, rxq->rxq_producer,
1340			    rxq->rxq_last - rxq->rxq_producer);
1341			producer = rxq->rxq_producer = rxq->rxq_first;
1342		}
1343	}
1344	if (producer != rxq->rxq_producer) {
1345		membar_producer();
1346		pq3etsec_rxq_desc_presync(sc, rxq, rxq->rxq_producer,
1347		    producer - rxq->rxq_producer);
1348		rxq->rxq_producer = producer;
1349	}
1350	uint32_t qhlt = etsec_read(sc, RSTAT) & RSTAT_QHLT;
1351	if (qhlt) {
1352		KASSERT(qhlt & rxq->rxq_qmask);
1353		sc->sc_ev_rx_stall.ev_count++;
1354		etsec_write(sc, RSTAT, RSTAT_QHLT & rxq->rxq_qmask);
1355	}
1356#if 0
1357	aprint_normal_dev(sc->sc_dev,
1358	    "%s: buffers inuse went from %zu to %zu\n",
1359	    __func__, inuse, rxq->rxq_inuse);
1360#endif
1361	return true;
1362}
1363
1364static bool
1365pq3etsec_rx_offload(
1366	struct pq3etsec_softc *sc,
1367	struct mbuf *m,
1368	const struct rxfcb *fcb)
1369{
1370	if (fcb->rxfcb_flags & RXFCB_VLN) {
1371		VLAN_INPUT_TAG(&sc->sc_if, m, fcb->rxfcb_vlctl,
1372		    m_freem(m); return false);
1373	}
1374	if ((fcb->rxfcb_flags & RXFCB_IP) == 0
1375	    || (fcb->rxfcb_flags & (RXFCB_CIP|RXFCB_CTU)) == 0)
1376		return true;
1377	int csum_flags = 0;
1378	if ((fcb->rxfcb_flags & (RXFCB_IP6|RXFCB_CIP)) == RXFCB_CIP) {
1379		csum_flags |= M_CSUM_IPv4;
1380		if (fcb->rxfcb_flags & RXFCB_EIP)
1381			csum_flags |= M_CSUM_IPv4_BAD;
1382	}
1383	if ((fcb->rxfcb_flags & RXFCB_CTU) == RXFCB_CTU) {
1384		int ipv_flags;
1385		if (fcb->rxfcb_flags & RXFCB_IP6)
1386			ipv_flags = M_CSUM_TCPv6|M_CSUM_UDPv6;
1387		else
1388			ipv_flags = M_CSUM_TCPv4|M_CSUM_UDPv4;
1389		if (fcb->rxfcb_pro == IPPROTO_TCP) {
1390			csum_flags |= (M_CSUM_TCPv4|M_CSUM_TCPv6) & ipv_flags;
1391		} else {
1392			csum_flags |= (M_CSUM_UDPv4|M_CSUM_UDPv6) & ipv_flags;
1393		}
1394		if (fcb->rxfcb_flags & RXFCB_ETU)
1395			csum_flags |= M_CSUM_TCP_UDP_BAD;
1396	}
1397
1398	m->m_pkthdr.csum_flags = csum_flags;
1399	return true;
1400}
1401
1402static void
1403pq3etsec_rx_input(
1404	struct pq3etsec_softc *sc,
1405	struct mbuf *m,
1406	uint16_t rxbd_flags)
1407{
1408	struct ifnet * const ifp = &sc->sc_if;
1409
1410	pq3etsec_rx_map_unload(sc, m);
1411
1412	if ((sc->sc_rctrl & RCTRL_PRSDEP) != RCTRL_PRSDEP_OFF) {
1413		struct rxfcb fcb = *mtod(m, struct rxfcb *);
1414		if (!pq3etsec_rx_offload(sc, m, &fcb))
1415			return;
1416	}
1417	m_adj(m, sc->sc_rx_adjlen);
1418
1419	if (rxbd_flags & RXBD_M)
1420		m->m_flags |= M_PROMISC;
1421	if (rxbd_flags & RXBD_BC)
1422		m->m_flags |= M_BCAST;
1423	if (rxbd_flags & RXBD_MC)
1424		m->m_flags |= M_MCAST;
1425	m->m_flags |= M_HASFCS;
1426	m->m_pkthdr.rcvif = &sc->sc_if;
1427
1428	ifp->if_ipackets++;
1429	ifp->if_ibytes += m->m_pkthdr.len;
1430
1431	/*
1432	 * Let's give it to the network subsystm to deal with.
1433	 */
1434	int s = splnet();
1435	bpf_mtap(ifp, m);
1436	(*ifp->if_input)(ifp, m);
1437	splx(s);
1438}
1439
1440static void
1441pq3etsec_rxq_consume(
1442	struct pq3etsec_softc *sc,
1443	struct pq3etsec_rxqueue *rxq)
1444{
1445	struct ifnet * const ifp = &sc->sc_if;
1446	volatile struct rxbd *consumer = rxq->rxq_consumer;
1447	size_t rxconsumed = 0;
1448
1449	etsec_write(sc, RSTAT, RSTAT_RXF & rxq->rxq_qmask);
1450
1451	for (;;) {
1452		if (consumer == rxq->rxq_producer) {
1453			rxq->rxq_consumer = consumer;
1454			rxq->rxq_inuse -= rxconsumed;
1455			KASSERT(rxq->rxq_inuse == 0);
1456			return;
1457		}
1458		pq3etsec_rxq_desc_postsync(sc, rxq, consumer, 1);
1459		const uint16_t rxbd_flags = consumer->rxbd_flags;
1460		if (rxbd_flags & RXBD_E) {
1461			rxq->rxq_consumer = consumer;
1462			rxq->rxq_inuse -= rxconsumed;
1463			return;
1464		}
1465		KASSERT(rxq->rxq_mconsumer != NULL);
1466#ifdef ETSEC_DEBUG
1467		KASSERT(rxq->rxq_mbufs[consumer - rxq->rxq_first] == rxq->rxq_mconsumer);
1468#endif
1469#if 0
1470		printf("%s: rxdb[%u]: flags=%#x len=%#x: %08x %08x %08x %08x\n",
1471		    __func__,
1472		    consumer - rxq->rxq_first, rxbd_flags, consumer->rxbd_len,
1473		    mtod(rxq->rxq_mconsumer, int *)[0],
1474		    mtod(rxq->rxq_mconsumer, int *)[1],
1475		    mtod(rxq->rxq_mconsumer, int *)[2],
1476		    mtod(rxq->rxq_mconsumer, int *)[3]);
1477#endif
1478		/*
1479		 * We own this packet again.  Clear all flags except wrap.
1480		 */
1481		rxconsumed++;
1482		consumer->rxbd_flags = rxbd_flags & (RXBD_W|RXBD_I);
1483
1484		/*
1485		 * If this descriptor has the LAST bit set and no errors,
1486		 * it's a valid input packet.
1487		 */
1488		if ((rxbd_flags & (RXBD_L|RXBD_ERRORS)) == RXBD_L) {
1489			size_t rxbd_len = consumer->rxbd_len;
1490			struct mbuf *m = rxq->rxq_mhead;
1491			struct mbuf *m_last = rxq->rxq_mconsumer;
1492			if ((rxq->rxq_mhead = m_last->m_next) == NULL)
1493				rxq->rxq_mtail = &rxq->rxq_mhead;
1494			rxq->rxq_mconsumer = rxq->rxq_mhead;
1495			m_last->m_next = NULL;
1496			m_last->m_len = rxbd_len & (MCLBYTES - 1);
1497			m->m_pkthdr.len = rxbd_len;
1498			pq3etsec_rx_input(sc, m, rxbd_flags);
1499		} else if (rxbd_flags & RXBD_L) {
1500			KASSERT(rxbd_flags & RXBD_ERRORS);
1501			struct mbuf *m;
1502			/*
1503			 * We encountered an error, take the mbufs and add
1504			 * then to the rx bufcache so we can reuse them.
1505			 */
1506			ifp->if_ierrors++;
1507			for (m = rxq->rxq_mhead;
1508			     m != rxq->rxq_mconsumer;
1509			     m = m->m_next) {
1510				IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1511			}
1512			m = rxq->rxq_mconsumer;
1513			if ((rxq->rxq_mhead = m->m_next) == NULL)
1514				rxq->rxq_mtail = &rxq->rxq_mhead;
1515			rxq->rxq_mconsumer = m->m_next;
1516			IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1517		} else {
1518			rxq->rxq_mconsumer = rxq->rxq_mconsumer->m_next;
1519		}
1520#ifdef ETSEC_DEBUG
1521		rxq->rxq_mbufs[consumer - rxq->rxq_first] = NULL;
1522#endif
1523
1524		/*
1525		 * Wrap at the last entry!
1526		 */
1527		if (rxbd_flags & RXBD_W) {
1528			KASSERT(consumer + 1 == rxq->rxq_last);
1529			consumer = rxq->rxq_first;
1530		} else {
1531			consumer++;
1532		}
1533#ifdef ETSEC_DEBUG
1534		KASSERT(rxq->rxq_mbufs[consumer - rxq->rxq_first] == rxq->rxq_mconsumer);
1535#endif
1536	}
1537}
1538
1539static void
1540pq3etsec_rxq_purge(
1541	struct pq3etsec_softc *sc,
1542	struct pq3etsec_rxqueue *rxq,
1543	bool discard)
1544{
1545	struct mbuf *m;
1546
1547	if ((m = rxq->rxq_mhead) != NULL) {
1548#ifdef ETSEC_DEBUG
1549		memset(rxq->rxq_mbufs, 0, sizeof(rxq->rxq_mbufs));
1550#endif
1551
1552		if (discard) {
1553			pq3etsec_rx_map_unload(sc, m);
1554			m_freem(m);
1555		} else {
1556			while (m != NULL) {
1557				struct mbuf *m0 = m->m_next;
1558				m->m_next = NULL;
1559				IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1560				m = m0;
1561			}
1562		}
1563
1564	}
1565
1566	rxq->rxq_mconsumer = NULL;
1567	rxq->rxq_mhead = NULL;
1568	rxq->rxq_mtail = &rxq->rxq_mhead;
1569	rxq->rxq_inuse = 0;
1570}
1571
1572static void
1573pq3etsec_rxq_reset(
1574	struct pq3etsec_softc *sc,
1575	struct pq3etsec_rxqueue *rxq)
1576{
1577	/*
1578	 * sync all the descriptors
1579	 */
1580	pq3etsec_rxq_desc_postsync(sc, rxq, rxq->rxq_first,
1581	    rxq->rxq_last - rxq->rxq_first);
1582
1583	/*
1584	 * Make sure we own all descriptors in the ring.
1585	 */
1586	volatile struct rxbd *rxbd;
1587	for (rxbd = rxq->rxq_first; rxbd < rxq->rxq_last - 1; rxbd++) {
1588		rxbd->rxbd_flags = RXBD_I;
1589	}
1590
1591	/*
1592	 * Last descriptor has the wrap flag.
1593	 */
1594	rxbd->rxbd_flags = RXBD_W|RXBD_I;
1595
1596	/*
1597	 * Reset the producer consumer indexes.
1598	 */
1599	rxq->rxq_consumer = rxq->rxq_first;
1600	rxq->rxq_producer = rxq->rxq_first;
1601	rxq->rxq_inuse = 0;
1602	if (rxq->rxq_threshold < ETSEC_MINRXMBUFS)
1603		rxq->rxq_threshold = ETSEC_MINRXMBUFS;
1604
1605	sc->sc_imask |= IEVENT_RXF|IEVENT_BSY;
1606
1607	/*
1608	 * Restart the transmit at the first descriptor
1609	 */
1610	etsec_write(sc, rxq->rxq_reg_rbase, rxq->rxq_descmap->dm_segs->ds_addr);
1611}
1612
1613static int
1614pq3etsec_rxq_attach(
1615	struct pq3etsec_softc *sc,
1616	struct pq3etsec_rxqueue *rxq,
1617	u_int qno)
1618{
1619	size_t map_size = PAGE_SIZE;
1620	size_t desc_count = map_size / sizeof(struct rxbd);
1621	int error;
1622	void *descs;
1623
1624	error = pq3etsec_dmamem_alloc(sc->sc_dmat, map_size,
1625	   &rxq->rxq_descmap_seg, &rxq->rxq_descmap, &descs);
1626	if (error)
1627		return error;
1628
1629	memset(descs, 0, map_size);
1630	rxq->rxq_first = descs;
1631	rxq->rxq_last = rxq->rxq_first + desc_count;
1632	rxq->rxq_consumer = descs;
1633	rxq->rxq_producer = descs;
1634
1635	pq3etsec_rxq_purge(sc, rxq, true);
1636	pq3etsec_rxq_reset(sc, rxq);
1637
1638	rxq->rxq_reg_rbase = RBASEn(qno);
1639	rxq->rxq_qmask = RSTAT_QHLTn(qno) | RSTAT_RXFn(qno);
1640
1641	return 0;
1642}
1643
1644static bool
1645pq3etsec_txq_active_p(
1646	struct pq3etsec_softc * const sc,
1647	struct pq3etsec_txqueue *txq)
1648{
1649	return !IF_IS_EMPTY(&txq->txq_mbufs);
1650}
1651
1652static bool
1653pq3etsec_txq_fillable_p(
1654	struct pq3etsec_softc * const sc,
1655	struct pq3etsec_txqueue *txq)
1656{
1657	return txq->txq_free >= txq->txq_threshold;
1658}
1659
1660static int
1661pq3etsec_txq_attach(
1662	struct pq3etsec_softc *sc,
1663	struct pq3etsec_txqueue *txq,
1664	u_int qno)
1665{
1666	size_t map_size = PAGE_SIZE;
1667	size_t desc_count = map_size / sizeof(struct txbd);
1668	int error;
1669	void *descs;
1670
1671	error = pq3etsec_dmamem_alloc(sc->sc_dmat, map_size,
1672	   &txq->txq_descmap_seg, &txq->txq_descmap, &descs);
1673	if (error)
1674		return error;
1675
1676	memset(descs, 0, map_size);
1677	txq->txq_first = descs;
1678	txq->txq_last = txq->txq_first + desc_count;
1679	txq->txq_consumer = descs;
1680	txq->txq_producer = descs;
1681
1682	IFQ_SET_MAXLEN(&txq->txq_mbufs, ETSEC_MAXTXMBUFS);
1683
1684	txq->txq_reg_tbase = TBASEn(qno);
1685	txq->txq_qmask = TSTAT_THLTn(qno) | TSTAT_TXFn(qno);
1686
1687	pq3etsec_txq_reset(sc, txq);
1688
1689	return 0;
1690}
1691
1692static int
1693pq3etsec_txq_map_load(
1694	struct pq3etsec_softc *sc,
1695	struct pq3etsec_txqueue *txq,
1696	struct mbuf *m)
1697{
1698	bus_dmamap_t map;
1699	int error;
1700
1701	map = M_GETCTX(m, bus_dmamap_t);
1702	if (map != NULL)
1703		return 0;
1704
1705	map = pq3etsec_mapcache_get(sc, sc->sc_tx_mapcache);
1706	if (map == NULL)
1707		return ENOMEM;
1708
1709	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1710	    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1711	if (error)
1712		return error;
1713
1714	bus_dmamap_sync(sc->sc_dmat, map, 0, m->m_pkthdr.len,
1715	    BUS_DMASYNC_PREWRITE);
1716	M_SETCTX(m, map);
1717	return 0;
1718}
1719
1720static void
1721pq3etsec_txq_map_unload(
1722	struct pq3etsec_softc *sc,
1723	struct pq3etsec_txqueue *txq,
1724	struct mbuf *m)
1725{
1726	KASSERT(m);
1727	bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1728	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1729	    BUS_DMASYNC_POSTWRITE);
1730	bus_dmamap_unload(sc->sc_dmat, map);
1731	pq3etsec_mapcache_put(sc, sc->sc_tx_mapcache, map);
1732}
1733
1734static bool
1735pq3etsec_txq_produce(
1736	struct pq3etsec_softc *sc,
1737	struct pq3etsec_txqueue *txq,
1738	struct mbuf *m)
1739{
1740	bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1741
1742	if (map->dm_nsegs > txq->txq_free)
1743		return false;
1744
1745	/*
1746	 * TCP Offload flag must be set in the first descriptor.
1747	 */
1748	volatile struct txbd *producer = txq->txq_producer;
1749	uint16_t last_flags = TXBD_L;
1750	uint16_t first_flags = TXBD_R
1751	    | ((m->m_flags & M_HASFCB) ? TXBD_TOE : 0);
1752
1753	/*
1754	 * If we've produced enough descriptors without consuming any
1755	 * we need to ask for an interrupt to reclaim some.
1756	 */
1757	txq->txq_lastintr += map->dm_nsegs;
1758	if (txq->txq_lastintr >= txq->txq_threshold
1759	    || txq->txq_mbufs.ifq_len + 1 == txq->txq_mbufs.ifq_maxlen) {
1760		txq->txq_lastintr = 0;
1761		last_flags |= TXBD_I;
1762	}
1763
1764#ifdef ETSEC_DEBUG
1765	KASSERT(txq->txq_lmbufs[producer - txq->txq_first] == NULL);
1766#endif
1767	KASSERT(producer != txq->txq_last);
1768	producer->txbd_bufptr = map->dm_segs[0].ds_addr;
1769	producer->txbd_len = map->dm_segs[0].ds_len;
1770
1771	if (map->dm_nsegs > 1) {
1772		volatile struct txbd *start = producer + 1;
1773		size_t count = map->dm_nsegs - 1;
1774		for (u_int i = 1; i < map->dm_nsegs; i++) {
1775			if (__predict_false(++producer == txq->txq_last)) {
1776				producer = txq->txq_first;
1777				if (start < txq->txq_last) {
1778					pq3etsec_txq_desc_presync(sc, txq,
1779					    start, txq->txq_last - start);
1780					count -= txq->txq_last - start;
1781				}
1782				start = txq->txq_first;
1783			}
1784#ifdef ETSEC_DEBUG
1785			KASSERT(txq->txq_lmbufs[producer - txq->txq_first] == NULL);
1786#endif
1787			producer->txbd_bufptr = map->dm_segs[i].ds_addr;
1788			producer->txbd_len = map->dm_segs[i].ds_len;
1789			producer->txbd_flags = TXBD_R
1790			    | (producer->txbd_flags & TXBD_W)
1791			    | (i == map->dm_nsegs - 1 ? last_flags : 0);
1792#if 0
1793			printf("%s: txbd[%u]=%#x/%u/%#x\n", __func__, producer - txq->txq_first,
1794			    producer->txbd_flags, producer->txbd_len, producer->txbd_bufptr);
1795#endif
1796		}
1797		pq3etsec_txq_desc_presync(sc, txq, start, count);
1798	} else {
1799		first_flags |= last_flags;
1800	}
1801
1802	membar_producer();
1803	txq->txq_producer->txbd_flags =
1804	    first_flags | (txq->txq_producer->txbd_flags & TXBD_W);
1805#if 0
1806	printf("%s: txbd[%u]=%#x/%u/%#x\n", __func__,
1807	    txq->txq_producer - txq->txq_first, txq->txq_producer->txbd_flags,
1808	    txq->txq_producer->txbd_len, txq->txq_producer->txbd_bufptr);
1809#endif
1810	pq3etsec_txq_desc_presync(sc, txq, txq->txq_producer, 1);
1811
1812	/*
1813	 * Reduce free count by the number of segments we consumed.
1814	 */
1815	txq->txq_free -= map->dm_nsegs;
1816	KASSERT(map->dm_nsegs == 1 || txq->txq_producer != producer);
1817	KASSERT(map->dm_nsegs == 1 || (txq->txq_producer->txbd_flags & TXBD_L) == 0);
1818	KASSERT(producer->txbd_flags & TXBD_L);
1819#ifdef ETSEC_DEBUG
1820	txq->txq_lmbufs[producer - txq->txq_first] = m;
1821#endif
1822
1823#if 0
1824	printf("%s: mbuf %p: produced a %u byte packet in %u segments (%u..%u)\n",
1825	    __func__, m, m->m_pkthdr.len, map->dm_nsegs,
1826	    txq->txq_producer - txq->txq_first, producer - txq->txq_first);
1827#endif
1828
1829	if (++producer == txq->txq_last)
1830		txq->txq_producer = txq->txq_first;
1831	else
1832		txq->txq_producer = producer;
1833	IF_ENQUEUE(&txq->txq_mbufs, m);
1834
1835	/*
1836	 * Restart the transmitter.
1837	 */
1838	etsec_write(sc, TSTAT, txq->txq_qmask & TSTAT_THLT);	/* W1C */
1839
1840	return true;
1841}
1842
1843static void
1844pq3etsec_tx_offload(
1845	struct pq3etsec_softc *sc,
1846	struct pq3etsec_txqueue *txq,
1847	struct mbuf **mp)
1848{
1849	struct mbuf *m = *mp;
1850	u_int csum_flags = m->m_pkthdr.csum_flags;
1851	struct m_tag *vtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m);
1852
1853	KASSERT(m->m_flags & M_PKTHDR);
1854
1855	/*
1856	 * Let see if we are doing any offload first.
1857	 */
1858	if (csum_flags == 0 && vtag == 0) {
1859		m->m_flags &= ~M_HASFCB;
1860		return;
1861	}
1862
1863	uint16_t flags = 0;
1864	if (csum_flags & M_CSUM_IP) {
1865		flags |= TXFCB_IP
1866		    | ((csum_flags & M_CSUM_IP6) ? TXFCB_IP6 : 0)
1867		    | ((csum_flags & M_CSUM_TUP) ? TXFCB_TUP : 0)
1868		    | ((csum_flags & M_CSUM_UDP) ? TXFCB_UDP : 0)
1869		    | ((csum_flags & M_CSUM_CIP) ? TXFCB_CIP : 0)
1870		    | ((csum_flags & M_CSUM_CTU) ? TXFCB_CTU : 0);
1871	}
1872	if (vtag) {
1873		flags |= TXFCB_VLN;
1874	}
1875	if (flags == 0) {
1876		m->m_flags &= ~M_HASFCB;
1877		return;
1878	}
1879
1880	struct txfcb fcb;
1881	fcb.txfcb_flags = flags;
1882	if (csum_flags & M_CSUM_IPv4)
1883		fcb.txfcb_l4os = M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
1884	else
1885		fcb.txfcb_l4os = M_CSUM_DATA_IPv6_HL(m->m_pkthdr.csum_data);
1886	fcb.txfcb_l3os = ETHER_HDR_LEN;
1887	fcb.txfcb_phcs = 0;
1888	fcb.txfcb_vlctl = vtag ? VLAN_TAG_VALUE(vtag) & 0xffff : 0;
1889
1890#if 0
1891	printf("%s: csum_flags=%#x: txfcb flags=%#x lsos=%u l4os=%u phcs=%u vlctl=%#x\n",
1892	    __func__, csum_flags, fcb.txfcb_flags, fcb.txfcb_l3os, fcb.txfcb_l4os,
1893	    fcb.txfcb_phcs, fcb.txfcb_vlctl);
1894#endif
1895
1896	if (M_LEADINGSPACE(m) >= sizeof(fcb)) {
1897		m->m_data -= sizeof(fcb);
1898		m->m_len += sizeof(fcb);
1899	} else if (!(m->m_flags & M_EXT) && MHLEN - m->m_len >= sizeof(fcb)) {
1900		memmove(m->m_pktdat + sizeof(fcb), m->m_data, m->m_len);
1901		m->m_data = m->m_pktdat;
1902		m->m_len += sizeof(fcb);
1903	} else {
1904		struct mbuf *mn;
1905		MGET(mn, M_DONTWAIT, m->m_type);
1906		if (mn == NULL) {
1907			if (csum_flags & M_CSUM_IP4) {
1908#ifdef INET
1909				ip_undefer_csum(m, ETHER_HDR_LEN,
1910				    csum_flags & M_CSUM_IP4);
1911#else
1912				panic("%s: impossible M_CSUM flags %#x",
1913				    device_xname(sc->sc_dev), csum_flags);
1914#endif
1915			} else if (csum_flags & M_CSUM_IP6) {
1916#ifdef INET6
1917				ip6_undefer_csum(m, ETHER_HDR_LEN,
1918				    csum_flags & M_CSUM_IP6);
1919#else
1920				panic("%s: impossible M_CSUM flags %#x",
1921				    device_xname(sc->sc_dev), csum_flags);
1922#endif
1923			} else if (vtag) {
1924			}
1925
1926			m->m_flags &= ~M_HASFCB;
1927			return;
1928		}
1929
1930		M_MOVE_PKTHDR(mn, m);
1931		mn->m_next = m;
1932		m = mn;
1933		MH_ALIGN(m, sizeof(fcb));
1934		m->m_len = sizeof(fcb);
1935		*mp = m;
1936	}
1937	m->m_pkthdr.len += sizeof(fcb);
1938	m->m_flags |= M_HASFCB;
1939	*mtod(m, struct txfcb *) = fcb;
1940	return;
1941}
1942
1943static bool
1944pq3etsec_txq_enqueue(
1945	struct pq3etsec_softc *sc,
1946	struct pq3etsec_txqueue *txq)
1947{
1948	for (;;) {
1949		if (IF_QFULL(&txq->txq_mbufs))
1950			return false;
1951		struct mbuf *m = txq->txq_next;
1952		if (m == NULL) {
1953			int s = splnet();
1954			IF_DEQUEUE(&sc->sc_if.if_snd, m);
1955			splx(s);
1956			if (m == NULL)
1957				return true;
1958			M_SETCTX(m, NULL);
1959			pq3etsec_tx_offload(sc, txq, &m);
1960		} else {
1961			txq->txq_next = NULL;
1962		}
1963		int error = pq3etsec_txq_map_load(sc, txq, m);
1964		if (error) {
1965			aprint_error_dev(sc->sc_dev,
1966			    "discarded packet due to "
1967			    "dmamap load failure: %d\n", error);
1968			m_freem(m);
1969			continue;
1970		}
1971		KASSERT(txq->txq_next == NULL);
1972		if (!pq3etsec_txq_produce(sc, txq, m)) {
1973			txq->txq_next = m;
1974			return false;
1975		}
1976		KASSERT(txq->txq_next == NULL);
1977	}
1978}
1979
1980static bool
1981pq3etsec_txq_consume(
1982	struct pq3etsec_softc *sc,
1983	struct pq3etsec_txqueue *txq)
1984{
1985	struct ifnet * const ifp = &sc->sc_if;
1986	volatile struct txbd *consumer = txq->txq_consumer;
1987	size_t txfree = 0;
1988
1989#if 0
1990	printf("%s: entry: free=%zu\n", __func__, txq->txq_free);
1991#endif
1992	etsec_write(sc, TSTAT, TSTAT_TXF & txq->txq_qmask);
1993
1994	for (;;) {
1995		if (consumer == txq->txq_producer) {
1996			txq->txq_consumer = consumer;
1997			txq->txq_free += txfree;
1998			txq->txq_lastintr -= min(txq->txq_lastintr, txfree);
1999#if 0
2000			printf("%s: empty: freed %zu descriptors going form %zu to %zu\n",
2001			    __func__, txfree, txq->txq_free - txfree, txq->txq_free);
2002#endif
2003			KASSERT(txq->txq_lastintr == 0);
2004			KASSERT(txq->txq_free == txq->txq_last - txq->txq_first - 1);
2005			return true;
2006		}
2007		pq3etsec_txq_desc_postsync(sc, txq, consumer, 1);
2008		const uint16_t txbd_flags = consumer->txbd_flags;
2009		if (txbd_flags & TXBD_R) {
2010			txq->txq_consumer = consumer;
2011			txq->txq_free += txfree;
2012			txq->txq_lastintr -= min(txq->txq_lastintr, txfree);
2013#if 0
2014			printf("%s: freed %zu descriptors\n",
2015			    __func__, txfree);
2016#endif
2017			return pq3etsec_txq_fillable_p(sc, txq);
2018		}
2019
2020		/*
2021		 * If this is the last descriptor in the chain, get the
2022		 * mbuf, free its dmamap, and free the mbuf chain itself.
2023		 */
2024		if (txbd_flags & TXBD_L) {
2025			struct mbuf *m;
2026
2027			IF_DEQUEUE(&txq->txq_mbufs, m);
2028#ifdef ETSEC_DEBUG
2029			KASSERTMSG(
2030			    m == txq->txq_lmbufs[consumer-txq->txq_first],
2031			    "%s: %p [%u]: flags %#x m (%p) != %p (%p)",
2032			    __func__, consumer, consumer - txq->txq_first,
2033			    txbd_flags, m,
2034			    &txq->txq_lmbufs[consumer-txq->txq_first],
2035			    txq->txq_lmbufs[consumer-txq->txq_first]);
2036#endif
2037			KASSERT(m);
2038			pq3etsec_txq_map_unload(sc, txq, m);
2039#if 0
2040			printf("%s: mbuf %p: consumed a %u byte packet\n",
2041			    __func__, m, m->m_pkthdr.len);
2042#endif
2043			if (m->m_flags & M_HASFCB)
2044				m_adj(m, sizeof(struct txfcb));
2045			ifp->if_opackets++;
2046			ifp->if_obytes += m->m_pkthdr.len;
2047			if (m->m_flags & M_MCAST)
2048				ifp->if_omcasts++;
2049			if (txbd_flags & TXBD_ERRORS)
2050				ifp->if_oerrors++;
2051			m_freem(m);
2052#ifdef ETSEC_DEBUG
2053			txq->txq_lmbufs[consumer - txq->txq_first] = NULL;
2054#endif
2055		} else {
2056#ifdef ETSEC_DEBUG
2057			KASSERT(txq->txq_lmbufs[consumer-txq->txq_first] == NULL);
2058#endif
2059		}
2060
2061		/*
2062		 * We own this packet again.  Clear all flags except wrap.
2063		 */
2064		txfree++;
2065		//consumer->txbd_flags = txbd_flags & TXBD_W;
2066
2067		/*
2068		 * Wrap at the last entry!
2069		 */
2070		if (txbd_flags & TXBD_W) {
2071			KASSERT(consumer + 1 == txq->txq_last);
2072			consumer = txq->txq_first;
2073		} else {
2074			consumer++;
2075			KASSERT(consumer < txq->txq_last);
2076		}
2077	}
2078}
2079
2080static void
2081pq3etsec_txq_purge(
2082	struct pq3etsec_softc *sc,
2083	struct pq3etsec_txqueue *txq)
2084{
2085	struct mbuf *m;
2086	KASSERT((etsec_read(sc, MACCFG1) & MACCFG1_TX_EN) == 0);
2087
2088	for (;;) {
2089		IF_DEQUEUE(&txq->txq_mbufs, m);
2090		if (m == NULL)
2091			break;
2092		pq3etsec_txq_map_unload(sc, txq, m);
2093		m_freem(m);
2094	}
2095	if ((m = txq->txq_next) != NULL) {
2096		txq->txq_next = NULL;
2097		pq3etsec_txq_map_unload(sc, txq, m);
2098		m_freem(m);
2099	}
2100#ifdef ETSEC_DEBUG
2101	memset(txq->txq_lmbufs, 0, sizeof(txq->txq_lmbufs));
2102#endif
2103}
2104
2105static void
2106pq3etsec_txq_reset(
2107	struct pq3etsec_softc *sc,
2108	struct pq3etsec_txqueue *txq)
2109{
2110	/*
2111	 * sync all the descriptors
2112	 */
2113	pq3etsec_txq_desc_postsync(sc, txq, txq->txq_first,
2114	    txq->txq_last - txq->txq_first);
2115
2116	/*
2117	 * Make sure we own all descriptors in the ring.
2118	 */
2119	volatile struct txbd *txbd;
2120	for (txbd = txq->txq_first; txbd < txq->txq_last - 1; txbd++) {
2121		txbd->txbd_flags = 0;
2122	}
2123
2124	/*
2125	 * Last descriptor has the wrap flag.
2126	 */
2127	txbd->txbd_flags = TXBD_W;
2128
2129	/*
2130	 * Reset the producer consumer indexes.
2131	 */
2132	txq->txq_consumer = txq->txq_first;
2133	txq->txq_producer = txq->txq_first;
2134	txq->txq_free = txq->txq_last - txq->txq_first - 1;
2135	txq->txq_threshold = txq->txq_free / 2;
2136	txq->txq_lastintr = 0;
2137
2138	/*
2139	 * What do we want to get interrupted on?
2140	 */
2141	sc->sc_imask |= IEVENT_TXF|IEVENT_TXE;
2142
2143	/*
2144	 * Restart the transmit at the first descriptor
2145	 */
2146	etsec_write(sc, txq->txq_reg_tbase, txq->txq_descmap->dm_segs->ds_addr);
2147}
2148
2149static void
2150pq3etsec_ifstart(struct ifnet *ifp)
2151{
2152	struct pq3etsec_softc * const sc = ifp->if_softc;
2153
2154	atomic_or_uint(&sc->sc_soft_flags, SOFT_TXINTR);
2155	softint_schedule(sc->sc_soft_ih);
2156}
2157
2158static void
2159pq3etsec_tx_error(
2160	struct pq3etsec_softc * const sc)
2161{
2162	struct pq3etsec_txqueue * const txq = &sc->sc_txq;
2163
2164	pq3etsec_txq_consume(sc, txq);
2165
2166	if (pq3etsec_txq_fillable_p(sc, txq))
2167		sc->sc_if.if_flags &= ~IFF_OACTIVE;
2168	if (sc->sc_txerrors & (IEVENT_LC|IEVENT_CRL|IEVENT_XFUN|IEVENT_BABT)) {
2169	} else if (sc->sc_txerrors & IEVENT_EBERR) {
2170	}
2171
2172	if (pq3etsec_txq_active_p(sc, txq))
2173		etsec_write(sc, TSTAT, TSTAT_THLT & txq->txq_qmask);
2174	if (!pq3etsec_txq_enqueue(sc, txq)) {
2175		sc->sc_ev_tx_stall.ev_count++;
2176		sc->sc_if.if_flags |= IFF_OACTIVE;
2177	}
2178
2179	sc->sc_txerrors = 0;
2180}
2181
2182int
2183pq3etsec_tx_intr(void *arg)
2184{
2185	struct pq3etsec_softc * const sc = arg;
2186
2187	sc->sc_ev_tx_intr.ev_count++;
2188
2189	uint32_t ievent = etsec_read(sc, IEVENT);
2190	ievent &= IEVENT_TXF|IEVENT_TXB;
2191	etsec_write(sc, IEVENT, ievent);	/* write 1 to clear */
2192
2193#if 0
2194	aprint_normal_dev(sc->sc_dev, "%s: ievent=%#x imask=%#x\n",
2195	    __func__, ievent, etsec_read(sc, IMASK));
2196#endif
2197
2198	if (ievent == 0)
2199		return 0;
2200
2201	sc->sc_imask &= ~(IEVENT_TXF|IEVENT_TXB);
2202	atomic_or_uint(&sc->sc_soft_flags, SOFT_TXINTR);
2203	etsec_write(sc, IMASK, sc->sc_imask);
2204	softint_schedule(sc->sc_soft_ih);
2205	return 1;
2206}
2207
2208int
2209pq3etsec_rx_intr(void *arg)
2210{
2211	struct pq3etsec_softc * const sc = arg;
2212
2213	sc->sc_ev_rx_intr.ev_count++;
2214
2215	uint32_t ievent = etsec_read(sc, IEVENT);
2216	ievent &= IEVENT_RXF|IEVENT_RXB;
2217	etsec_write(sc, IEVENT, ievent);	/* write 1 to clear */
2218	if (ievent == 0)
2219		return 0;
2220
2221#if 0
2222	aprint_normal_dev(sc->sc_dev, "%s: ievent=%#x\n", __func__, ievent);
2223#endif
2224
2225	sc->sc_imask &= ~(IEVENT_RXF|IEVENT_RXB);
2226	atomic_or_uint(&sc->sc_soft_flags, SOFT_RXINTR);
2227	etsec_write(sc, IMASK, sc->sc_imask);
2228	softint_schedule(sc->sc_soft_ih);
2229	return 1;
2230}
2231
2232int
2233pq3etsec_error_intr(void *arg)
2234{
2235	struct pq3etsec_softc * const sc = arg;
2236
2237	sc->sc_ev_error_intr.ev_count++;
2238
2239	for (int rv = 0, soft_flags = 0;; rv = 1) {
2240		uint32_t ievent = etsec_read(sc, IEVENT);
2241		ievent &= ~(IEVENT_RXF|IEVENT_RXB|IEVENT_TXF|IEVENT_TXB);
2242		etsec_write(sc, IEVENT, ievent);	/* write 1 to clear */
2243		if (ievent == 0) {
2244			if (soft_flags) {
2245				atomic_or_uint(&sc->sc_soft_flags, soft_flags);
2246				softint_schedule(sc->sc_soft_ih);
2247			}
2248			return rv;
2249		}
2250#if 0
2251		aprint_normal_dev(sc->sc_dev, "%s: ievent=%#x imask=%#x\n",
2252		    __func__, ievent, etsec_read(sc, IMASK));
2253#endif
2254
2255		if (ievent & (IEVENT_GRSC|IEVENT_GTSC)) {
2256			sc->sc_imask &= ~(IEVENT_GRSC|IEVENT_GTSC);
2257			etsec_write(sc, IMASK, sc->sc_imask);
2258			wakeup(sc);
2259		}
2260		if (ievent & (IEVENT_MMRD|IEVENT_MMWR)) {
2261			sc->sc_imask &= ~(IEVENT_MMRD|IEVENT_MMWR);
2262			etsec_write(sc, IMASK, sc->sc_imask);
2263			wakeup(&sc->sc_mii);
2264		}
2265		if (ievent & IEVENT_BSY) {
2266			soft_flags |= SOFT_RXBSY;
2267			sc->sc_imask &= ~IEVENT_BSY;
2268			etsec_write(sc, IMASK, sc->sc_imask);
2269		}
2270		if (ievent & IEVENT_TXE) {
2271			soft_flags |= SOFT_TXERROR;
2272			sc->sc_imask &= ~IEVENT_TXE;
2273			sc->sc_txerrors |= ievent;
2274		}
2275		if (ievent & IEVENT_TXC) {
2276			sc->sc_ev_tx_pause.ev_count++;
2277		}
2278		if (ievent & IEVENT_RXC) {
2279			sc->sc_ev_rx_pause.ev_count++;
2280		}
2281		if (ievent & IEVENT_DPE) {
2282			soft_flags |= SOFT_RESET;
2283			sc->sc_imask &= ~IEVENT_DPE;
2284			etsec_write(sc, IMASK, sc->sc_imask);
2285		}
2286	}
2287}
2288
2289void
2290pq3etsec_soft_intr(void *arg)
2291{
2292	struct pq3etsec_softc * const sc = arg;
2293	struct ifnet * const ifp = &sc->sc_if;
2294
2295	mutex_enter(sc->sc_lock);
2296
2297	u_int soft_flags = atomic_swap_uint(&sc->sc_soft_flags, 0);
2298
2299	sc->sc_ev_soft_intr.ev_count++;
2300
2301	if (soft_flags & SOFT_RESET) {
2302		int s = splnet();
2303		pq3etsec_ifinit(ifp);
2304		splx(s);
2305		soft_flags = 0;
2306	}
2307
2308	if (soft_flags & SOFT_RXBSY) {
2309		struct pq3etsec_rxqueue * const rxq = &sc->sc_rxq;
2310		size_t threshold = 5 * rxq->rxq_threshold / 4;
2311		if (threshold >= rxq->rxq_last - rxq->rxq_first) {
2312			threshold = rxq->rxq_last - rxq->rxq_first - 1;
2313		} else {
2314			sc->sc_imask |= IEVENT_BSY;
2315		}
2316		aprint_normal_dev(sc->sc_dev,
2317		    "increasing receive buffers from %zu to %zu\n",
2318		    rxq->rxq_threshold, threshold);
2319		rxq->rxq_threshold = threshold;
2320	}
2321
2322	if ((soft_flags & SOFT_TXINTR)
2323	    || pq3etsec_txq_active_p(sc, &sc->sc_txq)) {
2324		/*
2325		 * Let's do what we came here for.  Consume transmitted
2326		 * packets off the the transmit ring.
2327		 */
2328		if (!pq3etsec_txq_consume(sc, &sc->sc_txq)
2329		    || !pq3etsec_txq_enqueue(sc, &sc->sc_txq)) {
2330			sc->sc_ev_tx_stall.ev_count++;
2331			ifp->if_flags |= IFF_OACTIVE;
2332		} else {
2333			ifp->if_flags &= ~IFF_OACTIVE;
2334		}
2335		sc->sc_imask |= IEVENT_TXF;
2336	}
2337
2338	if (soft_flags & (SOFT_RXINTR|SOFT_RXBSY)) {
2339		/*
2340		 * Let's consume
2341		 */
2342		pq3etsec_rxq_consume(sc, &sc->sc_rxq);
2343		sc->sc_imask |= IEVENT_RXF;
2344	}
2345
2346	if (soft_flags & SOFT_TXERROR) {
2347		pq3etsec_tx_error(sc);
2348		sc->sc_imask |= IEVENT_TXE;
2349	}
2350
2351	if (ifp->if_flags & IFF_RUNNING) {
2352		pq3etsec_rxq_produce(sc, &sc->sc_rxq);
2353		etsec_write(sc, IMASK, sc->sc_imask);
2354	} else {
2355		KASSERT((soft_flags & SOFT_RXBSY) == 0);
2356	}
2357
2358	mutex_exit(sc->sc_lock);
2359}
2360
2361static void
2362pq3etsec_mii_tick(void *arg)
2363{
2364	struct pq3etsec_softc * const sc = arg;
2365	mutex_enter(sc->sc_lock);
2366	callout_ack(&sc->sc_mii_callout);
2367	sc->sc_ev_mii_ticks.ev_count++;
2368#ifdef DEBUG
2369	uint64_t now = mftb();
2370	if (now - sc->sc_mii_last_tick < cpu_timebase - 5000) {
2371		aprint_debug_dev(sc->sc_dev, "%s: diff=%"PRIu64"\n",
2372		    __func__, now - sc->sc_mii_last_tick);
2373		callout_stop(&sc->sc_mii_callout);
2374	}
2375#endif
2376	mii_tick(&sc->sc_mii);
2377	int s = splnet();
2378	if (sc->sc_soft_flags & SOFT_RESET)
2379		softint_schedule(sc->sc_soft_ih);
2380	splx(s);
2381	callout_schedule(&sc->sc_mii_callout, hz);
2382#ifdef DEBUG
2383	sc->sc_mii_last_tick = now;
2384#endif
2385	mutex_exit(sc->sc_lock);
2386}
2387