1274958Sdim/*	$NetBSD: fpu_div.c,v 1.5 2005/12/11 12:17:52 christos Exp $ */
2274958Sdim
3353358Sdim/*
4353358Sdim * Copyright (c) 1992, 1993
5353358Sdim *	The Regents of the University of California.  All rights reserved.
6274958Sdim *
7274958Sdim * This software was developed by the Computer Systems Engineering group
8274958Sdim * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9274958Sdim * contributed to Berkeley.
10274958Sdim *
11274958Sdim * All advertising materials mentioning features or use of this software
12274958Sdim * must display the following acknowledgement:
13274958Sdim *	This product includes software developed by the University of
14344779Sdim *	California, Lawrence Berkeley Laboratory.
15274958Sdim *
16274958Sdim * Redistribution and use in source and binary forms, with or without
17274958Sdim * modification, are permitted provided that the following conditions
18274958Sdim * are met:
19274958Sdim * 1. Redistributions of source code must retain the above copyright
20274958Sdim *    notice, this list of conditions and the following disclaimer.
21274958Sdim * 2. Redistributions in binary form must reproduce the above copyright
22274958Sdim *    notice, this list of conditions and the following disclaimer in the
23274958Sdim *    documentation and/or other materials provided with the distribution.
24274958Sdim * 3. Neither the name of the University nor the names of its contributors
25274958Sdim *    may be used to endorse or promote products derived from this software
26274958Sdim *    without specific prior written permission.
27274958Sdim *
28274958Sdim * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29274958Sdim * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30274958Sdim * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31274958Sdim * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32274958Sdim * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33274958Sdim * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34274958Sdim * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35274958Sdim * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36274958Sdim * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37274958Sdim * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38274958Sdim * SUCH DAMAGE.
39274958Sdim *
40274958Sdim *	@(#)fpu_div.c	8.1 (Berkeley) 6/11/93
41274958Sdim */
42274958Sdim
43274958Sdim/*
44274958Sdim * Perform an FPU divide (return x / y).
45274958Sdim */
46274958Sdim
47274958Sdim#include <sys/cdefs.h>
48274958Sdim__KERNEL_RCSID(0, "$NetBSD: fpu_div.c,v 1.5 2005/12/11 12:17:52 christos Exp $");
49274958Sdim
50274958Sdim#include <sys/types.h>
51274958Sdim
52274958Sdim#include <machine/reg.h>
53274958Sdim
54274958Sdim#include "fpu_arith.h"
55274958Sdim#include "fpu_emulate.h"
56274958Sdim
57341825Sdim/*
58274958Sdim * Division of normal numbers is done as follows:
59274958Sdim *
60274958Sdim * x and y are floating point numbers, i.e., in the form 1.bbbb * 2^e.
61274958Sdim * If X and Y are the mantissas (1.bbbb's), the quotient is then:
62274958Sdim *
63274958Sdim *	q = (X / Y) * 2^((x exponent) - (y exponent))
64274958Sdim *
65274958Sdim * Since X and Y are both in [1.0,2.0), the quotient's mantissa (X / Y)
66274958Sdim * will be in [0.5,2.0).  Moreover, it will be less than 1.0 if and only
67274958Sdim * if X < Y.  In that case, it will have to be shifted left one bit to
68274958Sdim * become a normal number, and the exponent decremented.  Thus, the
69274958Sdim * desired exponent is:
70274958Sdim *
71274958Sdim *	left_shift = x->fp_mant < y->fp_mant;
72360784Sdim *	result_exp = x->fp_exp - y->fp_exp - left_shift;
73360784Sdim *
74360784Sdim * The quotient mantissa X/Y can then be computed one bit at a time
75274958Sdim * using the following algorithm:
76274958Sdim *
77274958Sdim *	Q = 0;			-- Initial quotient.
78274958Sdim *	R = X;			-- Initial remainder,
79274958Sdim *	if (left_shift)		--   but fixed up in advance.
80274958Sdim *		R *= 2;
81274958Sdim *	for (bit = FP_NMANT; --bit >= 0; R *= 2) {
82274958Sdim *		if (R >= Y) {
83274958Sdim *			Q |= 1 << bit;
84274958Sdim *			R -= Y;
85274958Sdim *		}
86341825Sdim *	}
87274958Sdim *
88274958Sdim * The subtraction R -= Y always removes the uppermost bit from R (and
89274958Sdim * can sometimes remove additional lower-order 1 bits); this proof is
90274958Sdim * left to the reader.
91274958Sdim *
92274958Sdim * This loop correctly calculates the guard and round bits since they are
93274958Sdim * included in the expanded internal representation.  The sticky bit
94274958Sdim * is to be set if and only if any other bits beyond guard and round
95360784Sdim * would be set.  From the above it is obvious that this is true if and
96360784Sdim * only if the remainder R is nonzero when the loop terminates.
97360784Sdim *
98274958Sdim * Examining the loop above, we can see that the quotient Q is built
99274958Sdim * one bit at a time ``from the top down''.  This means that we can
100274958Sdim * dispense with the multi-word arithmetic and just build it one word
101274958Sdim * at a time, writing each result word when it is done.
102274958Sdim *
103274958Sdim * Furthermore, since X and Y are both in [1.0,2.0), we know that,
104274958Sdim * initially, R >= Y.  (Recall that, if X < Y, R is set to X * 2 and
105274958Sdim * is therefore at in [2.0,4.0).)  Thus Q is sure to have bit FP_NMANT-1
106274958Sdim * set, and R can be set initially to either X - Y (when X >= Y) or
107274958Sdim * 2X - Y (when X < Y).  In addition, comparing R and Y is difficult,
108274958Sdim * so we will simply calculate R - Y and see if that underflows.
109274958Sdim * This leads to the following revised version of the algorithm:
110274958Sdim *
111274958Sdim *	R = X;
112274958Sdim *	bit = FP_1;
113274958Sdim *	D = R - Y;
114274958Sdim *	if (D >= 0) {
115341825Sdim *		result_exp = x->fp_exp - y->fp_exp;
116274958Sdim *		R = D;
117274958Sdim *		q = bit;
118274958Sdim *		bit >>= 1;
119274958Sdim *	} else {
120274958Sdim *		result_exp = x->fp_exp - y->fp_exp - 1;
121274958Sdim *		q = 0;
122274958Sdim *	}
123274958Sdim *	R <<= 1;
124274958Sdim *	do  {
125274958Sdim *		D = R - Y;
126274958Sdim *		if (D >= 0) {
127314564Sdim *			q |= bit;
128274958Sdim *			R = D;
129274958Sdim *		}
130274958Sdim *		R <<= 1;
131274958Sdim *	} while ((bit >>= 1) != 0);
132274958Sdim *	Q[0] = q;
133274958Sdim *	for (i = 1; i < 4; i++) {
134274958Sdim *		q = 0, bit = 1 << 31;
135274958Sdim *		do {
136274958Sdim *			D = R - Y;
137274958Sdim *			if (D >= 0) {
138274958Sdim *				q |= bit;
139274958Sdim *				R = D;
140274958Sdim *			}
141274958Sdim *			R <<= 1;
142274958Sdim *		} while ((bit >>= 1) != 0);
143274958Sdim *		Q[i] = q;
144274958Sdim *	}
145274958Sdim *
146274958Sdim * This can be refined just a bit further by moving the `R <<= 1'
147274958Sdim * calculations to the front of the do-loops and eliding the first one.
148274958Sdim * The process can be terminated immediately whenever R becomes 0, but
149274958Sdim * this is relatively rare, and we do not bother.
150274958Sdim */
151274958Sdim
152274958Sdimstruct fpn *
153274958Sdimfpu_div(register struct fpemu *fe)
154274958Sdim{
155274958Sdim	register struct fpn *x = &fe->fe_f1, *y = &fe->fe_f2;
156274958Sdim	register u_int q, bit;
157274958Sdim	register u_int r0, r1, r2, d0, d1, d2, y0, y1, y2;
158274958Sdim	FPU_DECL_CARRY
159274958Sdim
160274958Sdim	fe->fe_fpsr &= ~FPSR_EXCP; /* clear all exceptions */
161274958Sdim
162274958Sdim	/*
163274958Sdim	 * Since divide is not commutative, we cannot just use ORDER.
164274958Sdim	 * Check either operand for NaN first; if there is at least one,
165274958Sdim	 * order the signalling one (if only one) onto the right, then
166296417Sdim	 * return it.  Otherwise we have the following cases:
167274958Sdim	 *
168274958Sdim	 *	Inf / Inf = NaN, plus NV exception
169274958Sdim	 *	Inf / num = Inf [i.e., return x]
170360784Sdim	 *	Inf / 0   = Inf [i.e., return x]
171288943Sdim	 *	0 / Inf = 0 [i.e., return x]
172288943Sdim	 *	0 / num = 0 [i.e., return x]
173288943Sdim	 *	0 / 0   = NaN, plus NV exception
174274958Sdim	 *	num / Inf = 0
175360784Sdim	 *	num / num = num (do the divide)
176280031Sdim	 *	num / 0   = Inf, plus DZ exception
177288943Sdim	 */
178274958Sdim	if (ISNAN(x) || ISNAN(y)) {
179274958Sdim		ORDER(x, y);
180274958Sdim		return (y);
181344779Sdim	}
182341825Sdim	if (ISINF(x) || ISZERO(x)) {
183274958Sdim		if (x->fp_class == y->fp_class)
184274958Sdim			return (fpu_newnan(fe));
185274958Sdim		return (x);
186274958Sdim	}
187274958Sdim
188274958Sdim	/* all results at this point use XOR of operand signs */
189274958Sdim	x->fp_sign ^= y->fp_sign;
190274958Sdim	if (ISINF(y)) {
191274958Sdim		x->fp_class = FPC_ZERO;
192274958Sdim		return (x);
193274958Sdim	}
194274958Sdim	if (ISZERO(y)) {
195274958Sdim		fe->fe_fpsr |= FPSR_DZ;
196274958Sdim		x->fp_class = FPC_INF;
197274958Sdim		return (x);
198274958Sdim	}
199274958Sdim
200274958Sdim	/*
201274958Sdim	 * Macros for the divide.  See comments at top for algorithm.
202274958Sdim	 * Note that we expand R, D, and Y here.
203274958Sdim	 */
204274958Sdim
205274958Sdim#define	SUBTRACT		/* D = R - Y */ \
206274958Sdim	FPU_SUBS(d2, r2, y2); \
207274958Sdim	FPU_SUBCS(d1, r1, y1); FPU_SUBC(d0, r0, y0)
208274958Sdim
209274958Sdim#define	NONNEGATIVE		/* D >= 0 */ \
210274958Sdim	((int)d0 >= 0)
211274958Sdim
212274958Sdim#ifdef FPU_SHL1_BY_ADD
213274958Sdim#define	SHL1			/* R <<= 1 */ \
214274958Sdim	FPU_ADDS(r2, r2, r2); \
215274958Sdim	FPU_ADDCS(r1, r1, r1); FPU_ADDC(r0, r0, r0)
216274958Sdim#else
217274958Sdim#define	SHL1 \
218274958Sdim	r0 = (r0 << 1) | (r1 >> 31), r1 = (r1 << 1) | (r2 >> 31), \
219274958Sdim	r2 <<= 1
220274958Sdim#endif
221274958Sdim
222274958Sdim#define	LOOP			/* do ... while (bit >>= 1) */ \
223274958Sdim	do { \
224274958Sdim		SHL1; \
225274958Sdim		SUBTRACT; \
226274958Sdim		if (NONNEGATIVE) { \
227274958Sdim			q |= bit; \
228274958Sdim			r0 = d0, r1 = d1, r2 = d2; \
229274958Sdim		} \
230274958Sdim	} while ((bit >>= 1) != 0)
231274958Sdim
232274958Sdim#define	WORD(r, i)			/* calculate r->fp_mant[i] */ \
233274958Sdim	q = 0; \
234274958Sdim	bit = 1 << 31; \
235274958Sdim	LOOP; \
236274958Sdim	(x)->fp_mant[i] = q
237274958Sdim
238274958Sdim	/* Setup.  Note that we put our result in x. */
239274958Sdim	r0 = x->fp_mant[0];
240274958Sdim	r1 = x->fp_mant[1];
241274958Sdim	r2 = x->fp_mant[2];
242274958Sdim	y0 = y->fp_mant[0];
243274958Sdim	y1 = y->fp_mant[1];
244274958Sdim	y2 = y->fp_mant[2];
245274958Sdim
246274958Sdim	bit = FP_1;
247274958Sdim	SUBTRACT;
248274958Sdim	if (NONNEGATIVE) {
249274958Sdim		x->fp_exp -= y->fp_exp;
250274958Sdim		r0 = d0, r1 = d1, r2 = d2;
251274958Sdim		q = bit;
252274958Sdim		bit >>= 1;
253274958Sdim	} else {
254274958Sdim		x->fp_exp -= y->fp_exp + 1;
255274958Sdim		q = 0;
256274958Sdim	}
257274958Sdim	LOOP;
258274958Sdim	x->fp_mant[0] = q;
259274958Sdim	WORD(x, 1);
260274958Sdim	WORD(x, 2);
261274958Sdim	x->fp_sticky = r0 | r1 | r2;
262274958Sdim
263353358Sdim	return (x);
264353358Sdim}
265353358Sdim