1/*	$NetBSD: viper_machdep.c,v 1.18 2011/06/30 20:09:28 wiz Exp $ */
2
3/*
4 * Startup routines for the Arcom Viper.  Below you can trace the
5 * impressive lineage ;)
6 *
7 * Modified for the Viper by Antti Kantee <pooka@netbsd.org>
8 */
9
10/*
11 * Copyright (c) 2002, 2003, 2005  Genetec Corporation.  All rights reserved.
12 * Written by Hiroyuki Bessho for Genetec Corporation.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 *    notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 *    notice, this list of conditions and the following disclaimer in the
21 *    documentation and/or other materials provided with the distribution.
22 * 3. The name of Genetec Corporation may not be used to endorse or
23 *    promote products derived from this software without specific prior
24 *    written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL GENETEC CORPORATION
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 *
38 * Machine dependent functions for kernel setup for
39 * Intel DBPXA250 evaluation board (a.k.a. Lubbock).
40 * Based on iq80310_machhdep.c
41 */
42/*
43 * Copyright (c) 2001 Wasabi Systems, Inc.
44 * All rights reserved.
45 *
46 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
47 *
48 * Redistribution and use in source and binary forms, with or without
49 * modification, are permitted provided that the following conditions
50 * are met:
51 * 1. Redistributions of source code must retain the above copyright
52 *    notice, this list of conditions and the following disclaimer.
53 * 2. Redistributions in binary form must reproduce the above copyright
54 *    notice, this list of conditions and the following disclaimer in the
55 *    documentation and/or other materials provided with the distribution.
56 * 3. All advertising materials mentioning features or use of this software
57 *    must display the following acknowledgement:
58 *	This product includes software developed for the NetBSD Project by
59 *	Wasabi Systems, Inc.
60 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
61 *    or promote products derived from this software without specific prior
62 *    written permission.
63 *
64 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
65 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
66 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
67 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
68 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
69 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
70 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
71 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
72 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
73 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
74 * POSSIBILITY OF SUCH DAMAGE.
75 */
76
77/*
78 * Copyright (c) 1997,1998 Mark Brinicombe.
79 * Copyright (c) 1997,1998 Causality Limited.
80 * All rights reserved.
81 *
82 * Redistribution and use in source and binary forms, with or without
83 * modification, are permitted provided that the following conditions
84 * are met:
85 * 1. Redistributions of source code must retain the above copyright
86 *    notice, this list of conditions and the following disclaimer.
87 * 2. Redistributions in binary form must reproduce the above copyright
88 *    notice, this list of conditions and the following disclaimer in the
89 *    documentation and/or other materials provided with the distribution.
90 * 3. All advertising materials mentioning features or use of this software
91 *    must display the following acknowledgement:
92 *	This product includes software developed by Mark Brinicombe
93 *	for the NetBSD Project.
94 * 4. The name of the company nor the name of the author may be used to
95 *    endorse or promote products derived from this software without specific
96 *    prior written permission.
97 *
98 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
99 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
100 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
101 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
102 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
103 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
104 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
105 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
106 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
107 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
108 * SUCH DAMAGE.
109 *
110 * Machine dependent functions for kernel setup for Intel IQ80310 evaluation
111 * boards using RedBoot firmware.
112 */
113
114#include <sys/cdefs.h>
115__KERNEL_RCSID(0, "$NetBSD: viper_machdep.c,v 1.18 2011/06/30 20:09:28 wiz Exp $");
116
117#include "opt_ddb.h"
118#include "opt_kgdb.h"
119#include "opt_pmap_debug.h"
120#include "opt_md.h"
121#include "opt_com.h"
122#include "lcd.h"
123
124#include <sys/param.h>
125#include <sys/device.h>
126#include <sys/systm.h>
127#include <sys/kernel.h>
128#include <sys/exec.h>
129#include <sys/proc.h>
130#include <sys/msgbuf.h>
131#include <sys/reboot.h>
132#include <sys/termios.h>
133#include <sys/ksyms.h>
134
135#include <uvm/uvm_extern.h>
136
137#include <sys/conf.h>
138#include <dev/cons.h>
139#include <dev/md.h>
140#include <dev/ic/smc91cxxreg.h>
141
142#include <machine/db_machdep.h>
143#include <ddb/db_sym.h>
144#include <ddb/db_extern.h>
145#ifdef KGDB
146#include <sys/kgdb.h>
147#endif
148
149#include <machine/bootconfig.h>
150#include <sys/bus.h>
151#include <machine/cpu.h>
152#include <machine/frame.h>
153#include <arm/undefined.h>
154
155#include <arm/arm32/machdep.h>
156
157#include <arm/xscale/pxa2x0reg.h>
158#include <arm/xscale/pxa2x0var.h>
159#include <arm/xscale/pxa2x0_gpio.h>
160#include <arm/sa11x0/sa1111_reg.h>
161#include <evbarm/viper/viper_reg.h>
162
163/* Kernel text starts 2MB in from the bottom of the kernel address space. */
164#define	KERNEL_TEXT_BASE	(KERNEL_BASE + 0x00200000)
165#define	KERNEL_VM_BASE		(KERNEL_BASE + 0x01000000)
166
167/*
168 * The range 0xc1000000 - 0xccffffff is available for kernel VM space
169 * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff
170 */
171#define KERNEL_VM_SIZE		0x0C000000
172
173
174/*
175 * Address to call from cpu_reset() to reset the machine.
176 * This is machine architecture dependent as it varies depending
177 * on where the ROM appears when you turn the MMU off.
178 */
179
180u_int cpu_reset_address = 0;
181
182/* Define various stack sizes in pages */
183#define IRQ_STACK_SIZE	1
184#define ABT_STACK_SIZE	1
185#define UND_STACK_SIZE	1
186
187BootConfig bootconfig;		/* Boot config storage */
188char *boot_args = NULL;
189char *boot_file = NULL;
190
191vm_offset_t physical_start;
192vm_offset_t physical_freestart;
193vm_offset_t physical_freeend;
194vm_offset_t physical_end;
195u_int free_pages;
196
197/*int debug_flags;*/
198#ifndef PMAP_STATIC_L1S
199int max_processes = 64;			/* Default number */
200#endif	/* !PMAP_STATIC_L1S */
201
202/* Physical and virtual addresses for some global pages */
203pv_addr_t irqstack;
204pv_addr_t undstack;
205pv_addr_t abtstack;
206pv_addr_t kernelstack;
207pv_addr_t minidataclean;
208
209vm_offset_t msgbufphys;
210
211extern u_int data_abort_handler_address;
212extern u_int prefetch_abort_handler_address;
213extern u_int undefined_handler_address;
214
215#ifdef PMAP_DEBUG
216extern int pmap_debug_level;
217#endif
218
219#define KERNEL_PT_SYS		0	/* Page table for mapping proc0 zero page */
220#define KERNEL_PT_KERNEL	1	/* Page table for mapping kernel */
221#define	KERNEL_PT_KERNEL_NUM	4
222#define KERNEL_PT_VMDATA	(KERNEL_PT_KERNEL+KERNEL_PT_KERNEL_NUM)
223				        /* Page tables for mapping kernel VM */
224#define	KERNEL_PT_VMDATA_NUM	4	/* start with 16MB of KVM */
225#define NUM_KERNEL_PTS		(KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
226
227pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
228
229/* Prototypes */
230
231#if 0
232void	process_kernel_args(char *);
233#endif
234
235void	consinit(void);
236void	kgdb_port_init(void);
237void	change_clock(uint32_t v);
238
239bs_protos(bs_notimpl);
240
241#include "com.h"
242#if NCOM > 0
243#include <dev/ic/comreg.h>
244#include <dev/ic/comvar.h>
245#endif
246
247#ifndef CONSPEED
248#define CONSPEED B115200	/* What RedBoot uses */
249#endif
250#ifndef CONMODE
251#define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
252#endif
253
254int comcnspeed = CONSPEED;
255int comcnmode = CONMODE;
256
257static struct pxa2x0_gpioconf boarddep_gpioconf[] = {
258	{ 44, GPIO_ALT_FN_1_IN },	/* BTCST */
259	{ 45, GPIO_ALT_FN_2_OUT },	/* BTRST */
260
261	{ -1 }
262};
263static struct pxa2x0_gpioconf *viper_gpioconf[] = {
264	pxa25x_com_btuart_gpioconf,
265	pxa25x_com_ffuart_gpioconf,
266	pxa25x_com_stuart_gpioconf,
267	boarddep_gpioconf,
268	NULL
269};
270
271/*
272 * void cpu_reboot(int howto, char *bootstr)
273 *
274 * Reboots the system
275 *
276 * Deal with any syncing, unmounting, dumping and shutdown hooks,
277 * then reset the CPU.
278 */
279void
280cpu_reboot(int howto, char *bootstr)
281{
282#ifdef DIAGNOSTIC
283	/* info */
284	printf("boot: howto=%08x curproc=%p\n", howto, curproc);
285#endif
286
287	/*
288	 * If we are still cold then hit the air brakes
289	 * and crash to earth fast
290	 */
291	if (cold) {
292		doshutdownhooks();
293		pmf_system_shutdown(boothowto);
294		printf("The operating system has halted.\n");
295		printf("Please press any key to reboot.\n\n");
296		cngetc();
297		printf("rebooting...\n");
298		cpu_reset();
299		/*NOTREACHED*/
300	}
301
302	/* Disable console buffering */
303/*	cnpollc(1);*/
304
305	/*
306	 * If RB_NOSYNC was not specified sync the discs.
307	 * Note: Unless cold is set to 1 here, syslogd will die during the
308	 * unmount.  It looks like syslogd is getting woken up only to find
309	 * that it cannot page part of the binary in as the filesystem has
310	 * been unmounted.
311	 */
312	if (!(howto & RB_NOSYNC))
313		bootsync();
314
315	/* Say NO to interrupts */
316	splhigh();
317
318	/* Do a dump if requested. */
319	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
320		dumpsys();
321
322	/* Run any shutdown hooks */
323	doshutdownhooks();
324
325	pmf_system_shutdown(boothowto);
326
327	/* Make sure IRQ's are disabled */
328	IRQdisable;
329
330	if (howto & RB_HALT) {
331		printf("The operating system has halted.\n");
332		printf("Please press any key to reboot.\n\n");
333		cngetc();
334	}
335
336	printf("rebooting...\n");
337	cpu_reset();
338	/*NOTREACHED*/
339}
340
341/*
342 * Static device mappings. These peripheral registers are mapped at
343 * fixed virtual addresses very early in viper_start() so that we
344 * can use them while booting the kernel, and stay at the same address
345 * throughout whole kernel's life time.
346 *
347 * We use this table twice; once with bootstrap page table, and once
348 * with kernel's page table which we build up in initarm().
349 */
350
351static const struct pmap_devmap viper_devmap[] = {
352    {
353	    VIPER_GPIO_VBASE,
354	    PXA2X0_GPIO_BASE,
355	    L1_S_SIZE,
356	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
357    },
358    {
359	    VIPER_CLKMAN_VBASE,
360	    PXA2X0_CLKMAN_BASE,
361	    L1_S_SIZE,
362	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
363    },
364    {
365	    VIPER_INTCTL_VBASE,
366	    PXA2X0_INTCTL_BASE,
367	    L1_S_SIZE,
368	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
369    },
370    {
371	    VIPER_FFUART_VBASE,
372	    PXA2X0_FFUART_BASE,
373	    L1_S_SIZE,
374	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
375    },
376    {
377	    VIPER_BTUART_VBASE,
378	    PXA2X0_BTUART_BASE,
379	    L1_S_SIZE,
380	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
381    },
382
383    {0, 0, 0, 0,}
384};
385
386#ifndef MEMSTART
387#define MEMSTART 0xa0000000
388#endif
389#ifndef MEMSIZE
390#define MEMSIZE 0x4000000
391#endif
392
393/*
394 * u_int initarm(...)
395 *
396 * Initial entry point on startup. This gets called before main() is
397 * entered.
398 * It should be responsible for setting up everything that must be
399 * in place when main is called.
400 * This includes
401 *   Taking a copy of the boot configuration structure.
402 *   Initialising the physical console so characters can be printed.
403 *   Setting up page tables for the kernel
404 *   Relocating the kernel to the bottom of physical memory
405 */
406u_int
407initarm(void *arg)
408{
409	extern vaddr_t xscale_cache_clean_addr;
410	int loop;
411	int loop1;
412	u_int l1pagetable;
413#ifdef DIAGNOSTIC
414	extern vsize_t xscale_minidata_clean_size; /* used in KASSERT */
415#endif
416
417	/* Register devmap for devices we mapped in start */
418	pmap_devmap_register(viper_devmap);
419
420	/* start 32.768 kHz OSC */
421	ioreg_write(VIPER_CLKMAN_VBASE + 0x08, 2);
422	/* Get ready for splfoo() */
423	pxa2x0_intr_bootstrap(VIPER_INTCTL_VBASE);
424
425	/*
426	 * Heads up ... Setup the CPU / MMU / TLB functions
427	 */
428	if (set_cpufuncs())
429		panic("cpu not recognized!");
430
431#if 0
432	/* Calibrate the delay loop. */
433#endif
434
435	/* setup GPIO for BTUART, in case bootloader doesn't take care of it */
436	pxa2x0_gpio_bootstrap(VIPER_GPIO_VBASE);
437	pxa2x0_gpio_config(viper_gpioconf);
438
439	/* turn on clock to UART block.
440	   XXX: this should not be done here. */
441	ioreg_write(VIPER_CLKMAN_VBASE+CLKMAN_CKEN, CKEN_FFUART|CKEN_BTUART |
442	    ioreg_read(VIPER_CLKMAN_VBASE+CLKMAN_CKEN));
443
444	consinit();
445#ifdef KGDB
446	kgdb_port_init();
447#endif
448	/* Talk to the user */
449	printf("\nNetBSD/evbarm (viper) booting ...\n");
450
451#if 0
452	/*
453	 * Examine the boot args string for options we need to know about
454	 * now.
455	 */
456	process_kernel_args((char *)nwbootinfo.bt_args);
457#endif
458
459	printf("initarm: Configuring system ...\n");
460
461	/* Fake bootconfig structure for the benefit of pmap.c */
462	/* XXX must make the memory description h/w independent */
463	bootconfig.dramblocks = 1;
464	bootconfig.dram[0].address = MEMSTART;
465	bootconfig.dram[0].pages = MEMSIZE / PAGE_SIZE;
466
467	/*
468	 * Set up the variables that define the availablilty of
469	 * physical memory.  For now, we're going to set
470	 * physical_freestart to 0xa0200000 (where the kernel
471	 * was loaded), and allocate the memory we need downwards.
472	 * If we get too close to the page tables that RedBoot
473	 * set up, we will panic.  We will update physical_freestart
474	 * and physical_freeend later to reflect what pmap_bootstrap()
475	 * wants to see.
476	 *
477	 * XXX pmap_bootstrap() needs an enema.
478	 * (now that would be truly hardcore XXX)
479	 */
480	physical_start = bootconfig.dram[0].address;
481	physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE);
482
483	physical_freestart = 0xa0009000UL;
484	physical_freeend = 0xa0200000UL;
485
486	physmem = (physical_end - physical_start) / PAGE_SIZE;
487
488#ifdef VERBOSE_INIT_ARM
489	/* Tell the user about the memory */
490	printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
491	    physical_start, physical_end - 1);
492#endif
493
494	/*
495	 * Okay, the kernel starts 2MB in from the bottom of physical
496	 * memory.  We are going to allocate our bootstrap pages downwards
497	 * from there.
498	 *
499	 * We need to allocate some fixed page tables to get the kernel
500	 * going.  We allocate one page directory and a number of page
501	 * tables and store the physical addresses in the kernel_pt_table
502	 * array.
503	 *
504	 * The kernel page directory must be on a 16K boundary.  The page
505	 * tables must be on 4K boundaries.  What we do is allocate the
506	 * page directory on the first 16K boundary that we encounter, and
507	 * the page tables on 4K boundaries otherwise.  Since we allocate
508	 * at least 3 L2 page tables, we are guaranteed to encounter at
509	 * least one 16K aligned region.
510	 */
511
512#ifdef VERBOSE_INIT_ARM
513	printf("Allocating page tables\n");
514#endif
515
516	free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
517
518#ifdef VERBOSE_INIT_ARM
519	printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
520	       physical_freestart, free_pages, free_pages);
521#endif
522
523	/* Define a macro to simplify memory allocation */
524#define	valloc_pages(var, np)				\
525	alloc_pages((var).pv_pa, (np));			\
526	(var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
527
528#define alloc_pages(var, np)				\
529	physical_freeend -= ((np) * PAGE_SIZE);		\
530	if (physical_freeend < physical_freestart)	\
531		panic("initarm: out of memory");	\
532	(var) = physical_freeend;			\
533	free_pages -= (np);				\
534	memset((char *)(var), 0, ((np) * PAGE_SIZE));
535
536	loop1 = 0;
537	for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
538		/* Are we 16KB aligned for an L1 ? */
539		if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
540		    && kernel_l1pt.pv_pa == 0) {
541			valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
542		} else {
543			valloc_pages(kernel_pt_table[loop1],
544			    L2_TABLE_SIZE / PAGE_SIZE);
545			++loop1;
546		}
547	}
548
549	/* This should never be able to happen but better confirm that. */
550	if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
551		panic("initarm: Failed to align the kernel page directory");
552
553	/*
554	 * Allocate a page for the system page mapped to V0x00000000
555	 * This page will just contain the system vectors and can be
556	 * shared by all processes.
557	 */
558	alloc_pages(systempage.pv_pa, 1);
559
560	/* Allocate stacks for all modes */
561	valloc_pages(irqstack, IRQ_STACK_SIZE);
562	valloc_pages(abtstack, ABT_STACK_SIZE);
563	valloc_pages(undstack, UND_STACK_SIZE);
564	valloc_pages(kernelstack, UPAGES);
565
566	/* Allocate enough pages for cleaning the Mini-Data cache. */
567	KASSERT(xscale_minidata_clean_size <= PAGE_SIZE);
568	valloc_pages(minidataclean, 1);
569
570#ifdef VERBOSE_INIT_ARM
571	printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
572	    irqstack.pv_va);
573	printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
574	    abtstack.pv_va);
575	printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
576	    undstack.pv_va);
577	printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
578	    kernelstack.pv_va);
579#endif
580
581	/*
582	 * XXX Defer this to later so that we can reclaim the memory
583	 * XXX used by the RedBoot page tables.
584	 */
585	alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
586
587	/*
588	 * Ok we have allocated physical pages for the primary kernel
589	 * page tables
590	 */
591
592#ifdef VERBOSE_INIT_ARM
593	printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
594#endif
595
596	/*
597	 * Now we start construction of the L1 page table
598	 * We start by mapping the L2 page tables into the L1.
599	 * This means that we can replace L1 mappings later on if necessary
600	 */
601	l1pagetable = kernel_l1pt.pv_pa;
602
603	/* Map the L2 pages tables in the L1 page table */
604	pmap_link_l2pt(l1pagetable, 0x00000000,
605	    &kernel_pt_table[KERNEL_PT_SYS]);
606	for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
607		pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
608		    &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
609	for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
610		pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
611		    &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
612
613	/* update the top of the kernel VM */
614	pmap_curmaxkvaddr =
615	    KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
616
617#ifdef VERBOSE_INIT_ARM
618	printf("Mapping kernel\n");
619#endif
620
621	/* Now we fill in the L2 pagetable for the kernel static code/data */
622	{
623		extern char etext[], _end[];
624		size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE;
625		size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE;
626		u_int logical;
627
628		textsize = (textsize + PGOFSET) & ~PGOFSET;
629		totalsize = (totalsize + PGOFSET) & ~PGOFSET;
630
631		logical = 0x00200000;	/* offset of kernel in RAM */
632
633		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
634		    physical_start + logical, textsize,
635		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
636		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
637		    physical_start + logical, totalsize - textsize,
638		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
639	}
640
641#ifdef VERBOSE_INIT_ARM
642	printf("Constructing L2 page tables\n");
643#endif
644
645	/* Map the stack pages */
646	pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
647	    IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
648	pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
649	    ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
650	pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
651	    UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
652	pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
653	    UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
654
655	pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
656	    L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE);
657
658	for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
659		pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
660		    kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
661		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
662	}
663
664	/* Map the Mini-Data cache clean area. */
665	xscale_setup_minidata(l1pagetable, minidataclean.pv_va,
666	    minidataclean.pv_pa);
667
668	/* Map the vector page. */
669#if 1
670	/* MULTI-ICE requires that page 0 is NC/NB so that it can download the
671	 * cache-clean code there.  */
672	pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
673	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
674#else
675	pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
676	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
677#endif
678
679	/*
680	 * map integrated peripherals at same address in l1pagetable
681	 * so that we can continue to use console.
682	 */
683	pmap_devmap_bootstrap(l1pagetable, viper_devmap);
684
685	/*
686	 * Give the XScale global cache clean code an appropriately
687	 * sized chunk of unmapped VA space starting at 0xff000000
688	 * (our device mappings end before this address).
689	 */
690	xscale_cache_clean_addr = 0xff000000U;
691
692	/*
693	 * Now we have the real page tables in place so we can switch to them.
694	 * Once this is done we will be running with the REAL kernel page
695	 * tables.
696	 */
697
698	/*
699	 * Update the physical_freestart/physical_freeend/free_pages
700	 * variables.
701	 */
702	{
703		extern char _end[];
704
705		physical_freestart = physical_start +
706		    (((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) -
707		     KERNEL_BASE);
708		physical_freeend = physical_end;
709		free_pages =
710		    (physical_freeend - physical_freestart) / PAGE_SIZE;
711	}
712
713	/* Switch tables */
714#ifdef VERBOSE_INIT_ARM
715	printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
716	       physical_freestart, free_pages, free_pages);
717	printf("switching to new L1 page table  @%#lx...", kernel_l1pt.pv_pa);
718#endif
719
720	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
721	cpu_setttb(kernel_l1pt.pv_pa);
722	cpu_tlb_flushID();
723	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
724
725	/*
726	 * Moved from cpu_startup() as data_abort_handler() references
727	 * this during uvm init
728	 */
729	uvm_lwp_setuarea(&lwp0, kernelstack.pv_va);
730
731#ifdef VERBOSE_INIT_ARM
732	printf("bootstrap done.\n");
733#endif
734
735	arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);
736
737	/*
738	 * Pages were allocated during the secondary bootstrap for the
739	 * stacks for different CPU modes.
740	 * We must now set the r13 registers in the different CPU modes to
741	 * point to these stacks.
742	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
743	 * of the stack memory.
744	 */
745	printf("init subsystems: stacks ");
746
747	set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
748	set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
749	set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
750
751	/*
752	 * Well we should set a data abort handler.
753	 * Once things get going this will change as we will need a proper
754	 * handler.
755	 * Until then we will use a handler that just panics but tells us
756	 * why.
757	 * Initialisation of the vectors will just panic on a data abort.
758	 * This just fills in a slightly better one.
759	 */
760	printf("vectors ");
761	data_abort_handler_address = (u_int)data_abort_handler;
762	prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
763	undefined_handler_address = (u_int)undefinedinstruction_bounce;
764
765	/* Initialise the undefined instruction handlers */
766	printf("undefined ");
767	undefined_init();
768
769	/* Load memory into UVM. */
770	printf("page ");
771	uvm_setpagesize();        /* initialize PAGE_SIZE-dependent variables */
772	uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
773	    atop(physical_freestart), atop(physical_freeend),
774	    VM_FREELIST_DEFAULT);
775
776	/* Boot strap pmap telling it where the kernel page table is */
777	printf("pmap ");
778	pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
779
780#ifdef __HAVE_MEMORY_DISK__
781	md_root_setconf(memory_disk, sizeof memory_disk);
782#endif
783
784#ifdef KGDB
785	if (boothowto & RB_KDB) {
786		kgdb_debug_init = 1;
787		kgdb_connect(1);
788	}
789#endif
790
791#ifdef DDB
792	db_machine_init();
793
794	/* Firmware doesn't load symbols. */
795	ddb_init(0, NULL, NULL);
796
797	if (boothowto & RB_KDB)
798		Debugger();
799#endif
800
801	/* We return the new stack pointer address */
802	return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
803}
804
805#if 0
806void
807process_kernel_args(char *args)
808{
809
810	boothowto = 0;
811
812	/* Make a local copy of the bootargs */
813	strncpy(bootargs, args, MAX_BOOT_STRING);
814
815	args = bootargs;
816	boot_file = bootargs;
817
818	/* Skip the kernel image filename */
819	while (*args != ' ' && *args != 0)
820		++args;
821
822	if (*args != 0)
823		*args++ = 0;
824
825	while (*args == ' ')
826		++args;
827
828	boot_args = args;
829
830	printf("bootfile: %s\n", boot_file);
831	printf("bootargs: %s\n", boot_args);
832
833	parse_mi_bootargs(boot_args);
834}
835#endif
836
837#ifdef KGDB
838#ifndef KGDB_DEVNAME
839#define KGDB_DEVNAME "ffuart"
840#endif
841const char kgdb_devname[] = KGDB_DEVNAME;
842
843#if (NCOM > 0)
844#ifndef KGDB_DEVMODE
845#define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
846#endif
847int comkgdbmode = KGDB_DEVMODE;
848#endif /* NCOM */
849
850#endif /* KGDB */
851
852
853void
854consinit(void)
855{
856	static int consinit_called = 0;
857	uint32_t ckenreg = ioreg_read(VIPER_CLKMAN_VBASE+CLKMAN_CKEN);
858#if 0
859	char *console = CONSDEVNAME;
860#endif
861
862	if (consinit_called != 0)
863		return;
864	consinit_called = 1;
865
866#if NCOM > 0
867
868#ifdef FFUARTCONSOLE
869#ifdef KGDB
870	if (0 == strcmp(kgdb_devname, "ffuart")) {
871		/* port is reserved for kgdb */
872	} else
873#endif
874	if (0 == comcnattach(&pxa2x0_a4x_bs_tag, PXA2X0_FFUART_BASE,
875		     comcnspeed, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comcnmode)) {
876
877#if 0
878		/* XXX: can't call pxa2x0_clkman_config yet */
879		pxa2x0_clkman_config(CKEN_FFUART, 1);
880#else
881		ioreg_write(VIPER_CLKMAN_VBASE+CLKMAN_CKEN,
882		    ckenreg|CKEN_FFUART);
883#endif
884
885		return;
886	}
887
888#endif /* FFUARTCONSOLE */
889
890#ifdef BTUARTCONSOLE
891#ifdef KGDB
892	if (0 == strcmp(kgdb_devname, "btuart")) {
893		/* port is reserved for kgdb */
894	} else
895#endif
896	if (0 == comcnattach(&pxa2x0_a4x_bs_tag, PXA2X0_BTUART_BASE,
897		comcnspeed, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comcnmode)) {
898		ioreg_write(VIPER_CLKMAN_VBASE+CLKMAN_CKEN,
899		    ckenreg|CKEN_BTUART);
900		return;
901	}
902#endif /* BTUARTCONSOLE */
903
904	/* no console, guess we're flying blind */
905
906#endif /* NCOM */
907
908}
909
910#ifdef KGDB
911void
912kgdb_port_init(void)
913{
914#if (NCOM > 0) && defined(COM_PXA2X0)
915	paddr_t paddr = 0;
916	uint32_t ckenreg = ioreg_read(VIPER_CLKMAN_VBASE+CLKMAN_CKEN);
917
918	if (0 == strcmp(kgdb_devname, "ffuart")) {
919		paddr = PXA2X0_FFUART_BASE;
920		ckenreg |= CKEN_FFUART;
921	}
922	else if (0 == strcmp(kgdb_devname, "btuart")) {
923		paddr = PXA2X0_BTUART_BASE;
924		ckenreg |= CKEN_BTUART;
925	}
926
927	if (paddr &&
928	    0 == com_kgdb_attach(&pxa2x0_a4x_bs_tag, paddr,
929		kgdb_rate, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comkgdbmode)) {
930
931		ioreg_write(VIPER_CLKMAN_VBASE+CLKMAN_CKEN, ckenreg);
932	}
933#endif
934}
935#endif
936