1/*	$NetBSD: radix.c,v 1.12 2002/12/06 02:18:37 thorpej Exp $	*/
2
3/*
4 * Copyright (c) 1988, 1989, 1993
5 *	The Regents of the University of California.  All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 *    must display the following acknowledgment:
17 *	This product includes software developed by the University of
18 *	California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 *    may be used to endorse or promote products derived from this software
21 *    without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 *	@(#)radix.c	8.4 (Berkeley) 11/2/94
36 */
37
38/*
39 * Routines to build and maintain radix trees for routing lookups.
40 */
41
42#include "defs.h"
43
44#ifdef __NetBSD__
45__RCSID("$NetBSD: radix.c,v 1.12 2002/12/06 02:18:37 thorpej Exp $");
46#elif defined(__FreeBSD__)
47__RCSID("$FreeBSD$");
48#else
49__RCSID("Revision: 2.23 ");
50#ident "Revision: 2.23 "
51#endif
52
53#define log(x, msg) syslog(x, msg)
54#define panic(s) {log(LOG_ERR,s); exit(1);}
55#define min(a,b) (((a)<(b))?(a):(b))
56
57int	max_keylen;
58struct radix_mask *rn_mkfreelist;
59struct radix_node_head *mask_rnhead;
60static char *addmask_key;
61static char normal_chars[] = {0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, -1};
62static char *rn_zeros, *rn_ones;
63
64#define rn_masktop (mask_rnhead->rnh_treetop)
65#undef Bcmp
66#define Bcmp(a, b, l) (l == 0 ? 0 \
67		       : memcmp((caddr_t)(a), (caddr_t)(b), (size_t)l))
68
69static int rn_satisfies_leaf(char *, struct radix_node *, int);
70
71/*
72 * The data structure for the keys is a radix tree with one way
73 * branching removed.  The index rn_b at an internal node n represents a bit
74 * position to be tested.  The tree is arranged so that all descendants
75 * of a node n have keys whose bits all agree up to position rn_b - 1.
76 * (We say the index of n is rn_b.)
77 *
78 * There is at least one descendant which has a one bit at position rn_b,
79 * and at least one with a zero there.
80 *
81 * A route is determined by a pair of key and mask.  We require that the
82 * bit-wise logical and of the key and mask to be the key.
83 * We define the index of a route to associated with the mask to be
84 * the first bit number in the mask where 0 occurs (with bit number 0
85 * representing the highest order bit).
86 *
87 * We say a mask is normal if every bit is 0, past the index of the mask.
88 * If a node n has a descendant (k, m) with index(m) == index(n) == rn_b,
89 * and m is a normal mask, then the route applies to every descendant of n.
90 * If the index(m) < rn_b, this implies the trailing last few bits of k
91 * before bit b are all 0, (and hence consequently true of every descendant
92 * of n), so the route applies to all descendants of the node as well.
93 *
94 * Similar logic shows that a non-normal mask m such that
95 * index(m) <= index(n) could potentially apply to many children of n.
96 * Thus, for each non-host route, we attach its mask to a list at an internal
97 * node as high in the tree as we can go.
98 *
99 * The present version of the code makes use of normal routes in short-
100 * circuiting an explicit mask and compare operation when testing whether
101 * a key satisfies a normal route, and also in remembering the unique leaf
102 * that governs a subtree.
103 */
104
105struct radix_node *
106rn_search(void *v_arg,
107	  struct radix_node *head)
108{
109	struct radix_node *x;
110	caddr_t v;
111
112	for (x = head, v = v_arg; x->rn_b >= 0;) {
113		if (x->rn_bmask & v[x->rn_off])
114			x = x->rn_r;
115		else
116			x = x->rn_l;
117	}
118	return (x);
119}
120
121struct radix_node *
122rn_search_m(void *v_arg,
123	    struct radix_node *head,
124	    void *m_arg)
125{
126	struct radix_node *x;
127	caddr_t v = v_arg, m = m_arg;
128
129	for (x = head; x->rn_b >= 0;) {
130		if ((x->rn_bmask & m[x->rn_off]) &&
131		    (x->rn_bmask & v[x->rn_off]))
132			x = x->rn_r;
133		else
134			x = x->rn_l;
135	}
136	return x;
137}
138
139int
140rn_refines(void* m_arg, void *n_arg)
141{
142	caddr_t m = m_arg, n = n_arg;
143	caddr_t lim, lim2 = lim = n + *(u_char *)n;
144	int longer = (*(u_char *)n++) - (int)(*(u_char *)m++);
145	int masks_are_equal = 1;
146
147	if (longer > 0)
148		lim -= longer;
149	while (n < lim) {
150		if (*n & ~(*m))
151			return 0;
152		if (*n++ != *m++)
153			masks_are_equal = 0;
154	}
155	while (n < lim2)
156		if (*n++)
157			return 0;
158	if (masks_are_equal && (longer < 0))
159		for (lim2 = m - longer; m < lim2; )
160			if (*m++)
161				return 1;
162	return (!masks_are_equal);
163}
164
165struct radix_node *
166rn_lookup(void *v_arg, void *m_arg, struct radix_node_head *head)
167{
168	struct radix_node *x;
169	caddr_t netmask = 0;
170
171	if (m_arg) {
172		if ((x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_off)) == 0)
173			return (0);
174		netmask = x->rn_key;
175	}
176	x = rn_match(v_arg, head);
177	if (x && netmask) {
178		while (x && x->rn_mask != netmask)
179			x = x->rn_dupedkey;
180	}
181	return x;
182}
183
184static int
185rn_satisfies_leaf(char *trial,
186		  struct radix_node *leaf,
187		  int skip)
188{
189	char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask;
190	char *cplim;
191	int length = min(*(u_char *)cp, *(u_char *)cp2);
192
193	if (cp3 == 0)
194		cp3 = rn_ones;
195	else
196		length = min(length, *(u_char *)cp3);
197	cplim = cp + length; cp3 += skip; cp2 += skip;
198	for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
199		if ((*cp ^ *cp2) & *cp3)
200			return 0;
201	return 1;
202}
203
204struct radix_node *
205rn_match(void *v_arg,
206	 struct radix_node_head *head)
207{
208	caddr_t v = v_arg;
209	struct radix_node *t = head->rnh_treetop, *x;
210	caddr_t cp = v, cp2;
211	caddr_t cplim;
212	struct radix_node *saved_t, *top = t;
213	int off = t->rn_off, vlen = *(u_char *)cp, matched_off;
214	int test, b, rn_b;
215
216	/*
217	 * Open code rn_search(v, top) to avoid overhead of extra
218	 * subroutine call.
219	 */
220	for (; t->rn_b >= 0; ) {
221		if (t->rn_bmask & cp[t->rn_off])
222			t = t->rn_r;
223		else
224			t = t->rn_l;
225	}
226	/*
227	 * See if we match exactly as a host destination
228	 * or at least learn how many bits match, for normal mask finesse.
229	 *
230	 * It doesn't hurt us to limit how many bytes to check
231	 * to the length of the mask, since if it matches we had a genuine
232	 * match and the leaf we have is the most specific one anyway;
233	 * if it didn't match with a shorter length it would fail
234	 * with a long one.  This wins big for class B&C netmasks which
235	 * are probably the most common case...
236	 */
237	if (t->rn_mask)
238		vlen = *(u_char *)t->rn_mask;
239	cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
240	for (; cp < cplim; cp++, cp2++)
241		if (*cp != *cp2)
242			goto on1;
243	/*
244	 * This extra grot is in case we are explicitly asked
245	 * to look up the default.  Ugh!
246	 * Or 255.255.255.255
247	 *
248	 * In this case, we have a complete match of the key.  Unless
249	 * the node is one of the roots, we are finished.
250	 * If it is the zeros root, then take what we have, prefering
251	 * any real data.
252	 * If it is the ones root, then pretend the target key was followed
253	 * by a byte of zeros.
254	 */
255	if (!(t->rn_flags & RNF_ROOT))
256		return t;		/* not a root */
257	if (t->rn_dupedkey) {
258		t = t->rn_dupedkey;
259		return t;		/* have some real data */
260	}
261	if (*(cp-1) == 0)
262		return t;		/* not the ones root */
263	b = 0;				/* fake a zero after 255.255.255.255 */
264	goto on2;
265on1:
266	test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
267	for (b = 7; (test >>= 1) > 0;)
268		b--;
269on2:
270	matched_off = cp - v;
271	b += matched_off << 3;
272	rn_b = -1 - b;
273	/*
274	 * If there is a host route in a duped-key chain, it will be first.
275	 */
276	if ((saved_t = t)->rn_mask == 0)
277		t = t->rn_dupedkey;
278	for (; t; t = t->rn_dupedkey) {
279		/*
280		 * Even if we don't match exactly as a host,
281		 * we may match if the leaf we wound up at is
282		 * a route to a net.
283		 */
284		if (t->rn_flags & RNF_NORMAL) {
285			if (rn_b <= t->rn_b)
286				return t;
287		} else if (rn_satisfies_leaf(v, t, matched_off)) {
288			return t;
289		}
290	}
291	t = saved_t;
292	/* start searching up the tree */
293	do {
294		struct radix_mask *m;
295		t = t->rn_p;
296		if ((m = t->rn_mklist)) {
297			/*
298			 * If non-contiguous masks ever become important
299			 * we can restore the masking and open coding of
300			 * the search and satisfaction test and put the
301			 * calculation of "off" back before the "do".
302			 */
303			do {
304				if (m->rm_flags & RNF_NORMAL) {
305					if (rn_b <= m->rm_b)
306						return (m->rm_leaf);
307				} else {
308					off = min(t->rn_off, matched_off);
309					x = rn_search_m(v, t, m->rm_mask);
310					while (x && x->rn_mask != m->rm_mask)
311						x = x->rn_dupedkey;
312					if (x && rn_satisfies_leaf(v, x, off))
313						    return x;
314				}
315			} while ((m = m->rm_mklist));
316		}
317	} while (t != top);
318	return 0;
319}
320
321#ifdef RN_DEBUG
322int	rn_nodenum;
323struct	radix_node *rn_clist;
324int	rn_saveinfo;
325int	rn_debug =  1;
326#endif
327
328struct radix_node *
329rn_newpair(void *v, int b, struct radix_node nodes[2])
330{
331	struct radix_node *tt = nodes, *t = tt + 1;
332	t->rn_b = b; t->rn_bmask = 0x80 >> (b & 7);
333	t->rn_l = tt; t->rn_off = b >> 3;
334	tt->rn_b = -1; tt->rn_key = (caddr_t)v; tt->rn_p = t;
335	tt->rn_flags = t->rn_flags = RNF_ACTIVE;
336#ifdef RN_DEBUG
337	tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
338	tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
339#endif
340	return t;
341}
342
343struct radix_node *
344rn_insert(void* v_arg,
345	  struct radix_node_head *head,
346	  int *dupentry,
347	  struct radix_node nodes[2])
348{
349	caddr_t v = v_arg;
350	struct radix_node *top = head->rnh_treetop;
351	int head_off = top->rn_off, vlen = (int)*((u_char *)v);
352	struct radix_node *t = rn_search(v_arg, top);
353	caddr_t cp = v + head_off;
354	int b;
355	struct radix_node *tt;
356
357	/*
358	 * Find first bit at which v and t->rn_key differ
359	 */
360    {
361		caddr_t cp2 = t->rn_key + head_off;
362		int cmp_res;
363	caddr_t cplim = v + vlen;
364
365	while (cp < cplim)
366		if (*cp2++ != *cp++)
367			goto on1;
368	/* handle adding 255.255.255.255 */
369	if (!(t->rn_flags & RNF_ROOT) || *(cp2-1) == 0) {
370		*dupentry = 1;
371		return t;
372	}
373on1:
374	*dupentry = 0;
375	cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
376	for (b = (cp - v) << 3; cmp_res; b--)
377		cmp_res >>= 1;
378    }
379    {
380	    struct radix_node *p, *x = top;
381	cp = v;
382	do {
383		p = x;
384		if (cp[x->rn_off] & x->rn_bmask)
385			x = x->rn_r;
386		else x = x->rn_l;
387	} while ((unsigned)b > (unsigned)x->rn_b);
388#ifdef RN_DEBUG
389	if (rn_debug)
390		log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p);
391#endif
392	t = rn_newpair(v_arg, b, nodes); tt = t->rn_l;
393	if ((cp[p->rn_off] & p->rn_bmask) == 0)
394		p->rn_l = t;
395	else
396		p->rn_r = t;
397	x->rn_p = t; t->rn_p = p; /* frees x, p as temp vars below */
398	if ((cp[t->rn_off] & t->rn_bmask) == 0) {
399		t->rn_r = x;
400	} else {
401		t->rn_r = tt; t->rn_l = x;
402	}
403#ifdef RN_DEBUG
404	if (rn_debug)
405		log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p);
406#endif
407    }
408	return (tt);
409}
410
411struct radix_node *
412rn_addmask(void *n_arg, int search, int skip)
413{
414	caddr_t netmask = (caddr_t)n_arg;
415	struct radix_node *x;
416	caddr_t cp, cplim;
417	int b = 0, mlen, j;
418	int maskduplicated, m0, isnormal;
419	struct radix_node *saved_x;
420	static int last_zeroed = 0;
421
422	if ((mlen = *(u_char *)netmask) > max_keylen)
423		mlen = max_keylen;
424	if (skip == 0)
425		skip = 1;
426	if (mlen <= skip)
427		return (mask_rnhead->rnh_nodes);
428	if (skip > 1)
429		Bcopy(rn_ones + 1, addmask_key + 1, skip - 1);
430	if ((m0 = mlen) > skip)
431		Bcopy(netmask + skip, addmask_key + skip, mlen - skip);
432	/*
433	 * Trim trailing zeroes.
434	 */
435	for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
436		cp--;
437	mlen = cp - addmask_key;
438	if (mlen <= skip) {
439		if (m0 >= last_zeroed)
440			last_zeroed = mlen;
441		return (mask_rnhead->rnh_nodes);
442	}
443	if (m0 < last_zeroed)
444		Bzero(addmask_key + m0, last_zeroed - m0);
445	*addmask_key = last_zeroed = mlen;
446	x = rn_search(addmask_key, rn_masktop);
447	if (Bcmp(addmask_key, x->rn_key, mlen) != 0)
448		x = 0;
449	if (x || search)
450		return (x);
451	x = (struct radix_node *)rtmalloc(max_keylen + 2*sizeof(*x),
452					  "rn_addmask");
453	saved_x = x;
454	Bzero(x, max_keylen + 2 * sizeof (*x));
455	netmask = cp = (caddr_t)(x + 2);
456	Bcopy(addmask_key, cp, mlen);
457	x = rn_insert(cp, mask_rnhead, &maskduplicated, x);
458	if (maskduplicated) {
459		log(LOG_ERR, "rn_addmask: mask impossibly already in tree");
460		Free(saved_x);
461		return (x);
462	}
463	/*
464	 * Calculate index of mask, and check for normalcy.
465	 */
466	cplim = netmask + mlen; isnormal = 1;
467	for (cp = netmask + skip; (cp < cplim) && *(u_char *)cp == 0xff;)
468		cp++;
469	if (cp != cplim) {
470		for (j = 0x80; (j & *cp) != 0; j >>= 1)
471			b++;
472		if (*cp != normal_chars[b] || cp != (cplim - 1))
473			isnormal = 0;
474	}
475	b += (cp - netmask) << 3;
476	x->rn_b = -1 - b;
477	if (isnormal)
478		x->rn_flags |= RNF_NORMAL;
479	return (x);
480}
481
482static int	/* XXX: arbitrary ordering for non-contiguous masks */
483rn_lexobetter(void *m_arg, void *n_arg)
484{
485	u_char *mp = m_arg, *np = n_arg, *lim;
486
487	if (*mp > *np)
488		return 1;  /* not really, but need to check longer one first */
489	if (*mp == *np)
490		for (lim = mp + *mp; mp < lim;)
491			if (*mp++ > *np++)
492				return 1;
493	return 0;
494}
495
496static struct radix_mask *
497rn_new_radix_mask(struct radix_node *tt,
498		  struct radix_mask *next)
499{
500	struct radix_mask *m;
501
502	MKGet(m);
503	if (m == 0) {
504		log(LOG_ERR, "Mask for route not entered\n");
505		return (0);
506	}
507	Bzero(m, sizeof *m);
508	m->rm_b = tt->rn_b;
509	m->rm_flags = tt->rn_flags;
510	if (tt->rn_flags & RNF_NORMAL)
511		m->rm_leaf = tt;
512	else
513		m->rm_mask = tt->rn_mask;
514	m->rm_mklist = next;
515	tt->rn_mklist = m;
516	return m;
517}
518
519struct radix_node *
520rn_addroute(void *v_arg,
521	    void *n_arg,
522	    struct radix_node_head *head,
523	    struct radix_node treenodes[2])
524{
525	caddr_t v = (caddr_t)v_arg, netmask = (caddr_t)n_arg;
526	struct radix_node *t, *x = 0, *tt;
527	struct radix_node *saved_tt, *top = head->rnh_treetop;
528	short b = 0, b_leaf = 0;
529	int keyduplicated;
530	caddr_t mmask;
531	struct radix_mask *m, **mp;
532
533	/*
534	 * In dealing with non-contiguous masks, there may be
535	 * many different routes which have the same mask.
536	 * We will find it useful to have a unique pointer to
537	 * the mask to speed avoiding duplicate references at
538	 * nodes and possibly save time in calculating indices.
539	 */
540	if (netmask)  {
541		if ((x = rn_addmask(netmask, 0, top->rn_off)) == 0)
542			return (0);
543		b_leaf = x->rn_b;
544		b = -1 - x->rn_b;
545		netmask = x->rn_key;
546	}
547	/*
548	 * Deal with duplicated keys: attach node to previous instance
549	 */
550	saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
551	if (keyduplicated) {
552		for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
553			if (tt->rn_mask == netmask)
554				return (0);
555			if (netmask == 0 ||
556			    (tt->rn_mask &&
557			     ((b_leaf < tt->rn_b) || /* index(netmask) > node */
558			       rn_refines(netmask, tt->rn_mask) ||
559			       rn_lexobetter(netmask, tt->rn_mask))))
560				break;
561		}
562		/*
563		 * If the mask is not duplicated, we wouldn't
564		 * find it among possible duplicate key entries
565		 * anyway, so the above test doesn't hurt.
566		 *
567		 * We sort the masks for a duplicated key the same way as
568		 * in a masklist -- most specific to least specific.
569		 * This may require the unfortunate nuisance of relocating
570		 * the head of the list.
571		 */
572		if (tt == saved_tt) {
573			struct	radix_node *xx = x;
574			/* link in at head of list */
575			(tt = treenodes)->rn_dupedkey = t;
576			tt->rn_flags = t->rn_flags;
577			tt->rn_p = x = t->rn_p;
578			if (x->rn_l == t) x->rn_l = tt; else x->rn_r = tt;
579			saved_tt = tt; x = xx;
580		} else {
581			(tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
582			t->rn_dupedkey = tt;
583		}
584#ifdef RN_DEBUG
585		t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
586		tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
587#endif
588		tt->rn_key = (caddr_t) v;
589		tt->rn_b = -1;
590		tt->rn_flags = RNF_ACTIVE;
591	}
592	/*
593	 * Put mask in tree.
594	 */
595	if (netmask) {
596		tt->rn_mask = netmask;
597		tt->rn_b = x->rn_b;
598		tt->rn_flags |= x->rn_flags & RNF_NORMAL;
599	}
600	t = saved_tt->rn_p;
601	if (keyduplicated)
602		goto on2;
603	b_leaf = -1 - t->rn_b;
604	if (t->rn_r == saved_tt) x = t->rn_l; else x = t->rn_r;
605	/* Promote general routes from below */
606	if (x->rn_b < 0) {
607	    for (mp = &t->rn_mklist; x; x = x->rn_dupedkey)
608		if (x->rn_mask && (x->rn_b >= b_leaf) && x->rn_mklist == 0) {
609			if ((*mp = m = rn_new_radix_mask(x, 0)))
610				mp = &m->rm_mklist;
611		}
612	} else if (x->rn_mklist) {
613		/*
614		 * Skip over masks whose index is > that of new node
615		 */
616		for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
617			if (m->rm_b >= b_leaf)
618				break;
619		t->rn_mklist = m; *mp = 0;
620	}
621on2:
622	/* Add new route to highest possible ancestor's list */
623	if ((netmask == 0) || (b > t->rn_b ))
624		return tt; /* can't lift at all */
625	b_leaf = tt->rn_b;
626	do {
627		x = t;
628		t = t->rn_p;
629	} while (b <= t->rn_b && x != top);
630	/*
631	 * Search through routes associated with node to
632	 * insert new route according to index.
633	 * Need same criteria as when sorting dupedkeys to avoid
634	 * double loop on deletion.
635	 */
636	for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) {
637		if (m->rm_b < b_leaf)
638			continue;
639		if (m->rm_b > b_leaf)
640			break;
641		if (m->rm_flags & RNF_NORMAL) {
642			mmask = m->rm_leaf->rn_mask;
643			if (tt->rn_flags & RNF_NORMAL) {
644				log(LOG_ERR,
645				   "Non-unique normal route, mask not entered");
646				return tt;
647			}
648		} else
649			mmask = m->rm_mask;
650		if (mmask == netmask) {
651			m->rm_refs++;
652			tt->rn_mklist = m;
653			return tt;
654		}
655		if (rn_refines(netmask, mmask) || rn_lexobetter(netmask, mmask))
656			break;
657	}
658	*mp = rn_new_radix_mask(tt, *mp);
659	return tt;
660}
661
662struct radix_node *
663rn_delete(void *v_arg,
664	  void *netmask_arg,
665	  struct radix_node_head *head)
666{
667	struct radix_node *t, *p, *x, *tt;
668	struct radix_mask *m, *saved_m, **mp;
669	struct radix_node *dupedkey, *saved_tt, *top;
670	caddr_t v, netmask;
671	int b, head_off, vlen;
672
673	v = v_arg;
674	netmask = netmask_arg;
675	x = head->rnh_treetop;
676	tt = rn_search(v, x);
677	head_off = x->rn_off;
678	vlen =  *(u_char *)v;
679	saved_tt = tt;
680	top = x;
681	if (tt == 0 ||
682	    Bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off))
683		return (0);
684	/*
685	 * Delete our route from mask lists.
686	 */
687	if (netmask) {
688		if ((x = rn_addmask(netmask, 1, head_off)) == 0)
689			return (0);
690		netmask = x->rn_key;
691		while (tt->rn_mask != netmask)
692			if ((tt = tt->rn_dupedkey) == 0)
693				return (0);
694	}
695	if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == 0)
696		goto on1;
697	if (tt->rn_flags & RNF_NORMAL) {
698		if (m->rm_leaf != tt || m->rm_refs > 0) {
699			log(LOG_ERR, "rn_delete: inconsistent annotation\n");
700			return 0;  /* dangling ref could cause disaster */
701		}
702	} else {
703		if (m->rm_mask != tt->rn_mask) {
704			log(LOG_ERR, "rn_delete: inconsistent annotation\n");
705			goto on1;
706		}
707		if (--m->rm_refs >= 0)
708			goto on1;
709	}
710	b = -1 - tt->rn_b;
711	t = saved_tt->rn_p;
712	if (b > t->rn_b)
713		goto on1; /* Wasn't lifted at all */
714	do {
715		x = t;
716		t = t->rn_p;
717	} while (b <= t->rn_b && x != top);
718	for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
719		if (m == saved_m) {
720			*mp = m->rm_mklist;
721			MKFree(m);
722			break;
723		}
724	if (m == 0) {
725		log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
726		if (tt->rn_flags & RNF_NORMAL)
727			return (0); /* Dangling ref to us */
728	}
729on1:
730	/*
731	 * Eliminate us from tree
732	 */
733	if (tt->rn_flags & RNF_ROOT)
734		return (0);
735#ifdef RN_DEBUG
736	/* Get us out of the creation list */
737	for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {}
738	if (t) t->rn_ybro = tt->rn_ybro;
739#endif
740	t = tt->rn_p;
741	if ((dupedkey = saved_tt->rn_dupedkey)) {
742		if (tt == saved_tt) {
743			x = dupedkey; x->rn_p = t;
744			if (t->rn_l == tt) t->rn_l = x; else t->rn_r = x;
745		} else {
746			for (x = p = saved_tt; p && p->rn_dupedkey != tt;)
747				p = p->rn_dupedkey;
748			if (p) p->rn_dupedkey = tt->rn_dupedkey;
749			else log(LOG_ERR, "rn_delete: couldn't find us\n");
750		}
751		t = tt + 1;
752		if  (t->rn_flags & RNF_ACTIVE) {
753#ifndef RN_DEBUG
754			*++x = *t; p = t->rn_p;
755#else
756			b = t->rn_info; *++x = *t; t->rn_info = b; p = t->rn_p;
757#endif
758			if (p->rn_l == t) p->rn_l = x; else p->rn_r = x;
759			x->rn_l->rn_p = x; x->rn_r->rn_p = x;
760		}
761		goto out;
762	}
763	if (t->rn_l == tt) x = t->rn_r; else x = t->rn_l;
764	p = t->rn_p;
765	if (p->rn_r == t) p->rn_r = x; else p->rn_l = x;
766	x->rn_p = p;
767	/*
768	 * Demote routes attached to us.
769	 */
770	if (t->rn_mklist) {
771		if (x->rn_b >= 0) {
772			for (mp = &x->rn_mklist; (m = *mp);)
773				mp = &m->rm_mklist;
774			*mp = t->rn_mklist;
775		} else {
776			/* If there are any key,mask pairs in a sibling
777			   duped-key chain, some subset will appear sorted
778			   in the same order attached to our mklist */
779			for (m = t->rn_mklist; m && x; x = x->rn_dupedkey)
780				if (m == x->rn_mklist) {
781					struct radix_mask *mm = m->rm_mklist;
782					x->rn_mklist = 0;
783					if (--(m->rm_refs) < 0)
784						MKFree(m);
785					m = mm;
786				}
787			if (m)
788				syslog(LOG_ERR, "%s 0x%lx at 0x%lx\n",
789				       "rn_delete: Orphaned Mask",
790				       (unsigned long)m,
791				       (unsigned long)x);
792		}
793	}
794	/*
795	 * We may be holding an active internal node in the tree.
796	 */
797	x = tt + 1;
798	if (t != x) {
799#ifndef RN_DEBUG
800		*t = *x;
801#else
802		b = t->rn_info; *t = *x; t->rn_info = b;
803#endif
804		t->rn_l->rn_p = t; t->rn_r->rn_p = t;
805		p = x->rn_p;
806		if (p->rn_l == x) p->rn_l = t; else p->rn_r = t;
807	}
808out:
809	tt->rn_flags &= ~RNF_ACTIVE;
810	tt[1].rn_flags &= ~RNF_ACTIVE;
811	return (tt);
812}
813
814int
815rn_walktree(struct radix_node_head *h,
816	    int (*f)(struct radix_node *, struct walkarg *),
817	    struct walkarg *w)
818{
819	int error;
820	struct radix_node *base, *next;
821	struct radix_node *rn = h->rnh_treetop;
822	/*
823	 * This gets complicated because we may delete the node
824	 * while applying the function f to it, so we need to calculate
825	 * the successor node in advance.
826	 */
827	/* First time through node, go left */
828	while (rn->rn_b >= 0)
829		rn = rn->rn_l;
830	for (;;) {
831		base = rn;
832		/* If at right child go back up, otherwise, go right */
833		while (rn->rn_p->rn_r == rn && (rn->rn_flags & RNF_ROOT) == 0)
834			rn = rn->rn_p;
835		/* Find the next *leaf* since next node might vanish, too */
836		for (rn = rn->rn_p->rn_r; rn->rn_b >= 0;)
837			rn = rn->rn_l;
838		next = rn;
839		/* Process leaves */
840		while ((rn = base)) {
841			base = rn->rn_dupedkey;
842			if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w)))
843				return (error);
844		}
845		rn = next;
846		if (rn->rn_flags & RNF_ROOT)
847			return (0);
848	}
849	/* NOTREACHED */
850}
851
852int
853rn_inithead(void **head, int off)
854{
855	struct radix_node_head *rnh;
856	struct radix_node *t, *tt, *ttt;
857	if (*head)
858		return (1);
859	rnh = (struct radix_node_head *)rtmalloc(sizeof(*rnh), "rn_inithead");
860	Bzero(rnh, sizeof (*rnh));
861	*head = rnh;
862	t = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
863	ttt = rnh->rnh_nodes + 2;
864	t->rn_r = ttt;
865	t->rn_p = t;
866	tt = t->rn_l;
867	tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
868	tt->rn_b = -1 - off;
869	*ttt = *tt;
870	ttt->rn_key = rn_ones;
871	rnh->rnh_addaddr = rn_addroute;
872	rnh->rnh_deladdr = rn_delete;
873	rnh->rnh_matchaddr = rn_match;
874	rnh->rnh_lookup = rn_lookup;
875	rnh->rnh_walktree = rn_walktree;
876	rnh->rnh_treetop = t;
877	return (1);
878}
879
880void
881rn_init(void)
882{
883	char *cp, *cplim;
884	if (max_keylen == 0) {
885		printf("rn_init: radix functions require max_keylen be set\n");
886		return;
887	}
888	rn_zeros = (char *)rtmalloc(3 * max_keylen, "rn_init");
889	Bzero(rn_zeros, 3 * max_keylen);
890	rn_ones = cp = rn_zeros + max_keylen;
891	addmask_key = cplim = rn_ones + max_keylen;
892	while (cp < cplim)
893		*cp++ = -1;
894	if (rn_inithead((void *)&mask_rnhead, 0) == 0)
895		panic("rn_init 2");
896}
897
898