1// Map implementation -*- C++ -*-
2
3// Copyright (C) 2001, 2002, 2004, 2005 Free Software Foundation, Inc.
4//
5// This file is part of the GNU ISO C++ Library.  This library is free
6// software; you can redistribute it and/or modify it under the
7// terms of the GNU General Public License as published by the
8// Free Software Foundation; either version 2, or (at your option)
9// any later version.
10
11// This library is distributed in the hope that it will be useful,
12// but WITHOUT ANY WARRANTY; without even the implied warranty of
13// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14// GNU General Public License for more details.
15
16// You should have received a copy of the GNU General Public License along
17// with this library; see the file COPYING.  If not, write to the Free
18// Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
19// USA.
20
21// As a special exception, you may use this file as part of a free software
22// library without restriction.  Specifically, if other files instantiate
23// templates or use macros or inline functions from this file, or you compile
24// this file and link it with other files to produce an executable, this
25// file does not by itself cause the resulting executable to be covered by
26// the GNU General Public License.  This exception does not however
27// invalidate any other reasons why the executable file might be covered by
28// the GNU General Public License.
29
30/*
31 *
32 * Copyright (c) 1994
33 * Hewlett-Packard Company
34 *
35 * Permission to use, copy, modify, distribute and sell this software
36 * and its documentation for any purpose is hereby granted without fee,
37 * provided that the above copyright notice appear in all copies and
38 * that both that copyright notice and this permission notice appear
39 * in supporting documentation.  Hewlett-Packard Company makes no
40 * representations about the suitability of this software for any
41 * purpose.  It is provided "as is" without express or implied warranty.
42 *
43 *
44 * Copyright (c) 1996,1997
45 * Silicon Graphics Computer Systems, Inc.
46 *
47 * Permission to use, copy, modify, distribute and sell this software
48 * and its documentation for any purpose is hereby granted without fee,
49 * provided that the above copyright notice appear in all copies and
50 * that both that copyright notice and this permission notice appear
51 * in supporting documentation.  Silicon Graphics makes no
52 * representations about the suitability of this software for any
53 * purpose.  It is provided "as is" without express or implied warranty.
54 */
55
56/** @file stl_map.h
57 *  This is an internal header file, included by other library headers.
58 *  You should not attempt to use it directly.
59 */
60
61#ifndef _MAP_H
62#define _MAP_H 1
63
64#include <bits/functexcept.h>
65#include <bits/concept_check.h>
66
67namespace _GLIBCXX_STD
68{
69  /**
70   *  @brief A standard container made up of (key,value) pairs, which can be
71   *  retrieved based on a key, in logarithmic time.
72   *
73   *  @ingroup Containers
74   *  @ingroup Assoc_containers
75   *
76   *  Meets the requirements of a <a href="tables.html#65">container</a>, a
77   *  <a href="tables.html#66">reversible container</a>, and an
78   *  <a href="tables.html#69">associative container</a> (using unique keys).
79   *  For a @c map<Key,T> the key_type is Key, the mapped_type is T, and the
80   *  value_type is std::pair<const Key,T>.
81   *
82   *  Maps support bidirectional iterators.
83   *
84   *  @if maint
85   *  The private tree data is declared exactly the same way for map and
86   *  multimap; the distinction is made entirely in how the tree functions are
87   *  called (*_unique versus *_equal, same as the standard).
88   *  @endif
89  */
90  template <typename _Key, typename _Tp, typename _Compare = std::less<_Key>,
91            typename _Alloc = std::allocator<std::pair<const _Key, _Tp> > >
92    class map
93    {
94    public:
95      typedef _Key                                          key_type;
96      typedef _Tp                                           mapped_type;
97      typedef std::pair<const _Key, _Tp>                    value_type;
98      typedef _Compare                                      key_compare;
99      typedef _Alloc                                        allocator_type;
100
101    private:
102      // concept requirements
103      typedef typename _Alloc::value_type                   _Alloc_value_type;
104      __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
105      __glibcxx_class_requires4(_Compare, bool, _Key, _Key,
106				_BinaryFunctionConcept)
107      __glibcxx_class_requires2(value_type, _Alloc_value_type, _SameTypeConcept)
108
109    public:
110      class value_compare
111      : public std::binary_function<value_type, value_type, bool>
112      {
113	friend class map<_Key, _Tp, _Compare, _Alloc>;
114      protected:
115	_Compare comp;
116
117	value_compare(_Compare __c)
118	: comp(__c) { }
119
120      public:
121	bool operator()(const value_type& __x, const value_type& __y) const
122	{ return comp(__x.first, __y.first); }
123      };
124
125    private:
126      /// @if maint  This turns a red-black tree into a [multi]map.  @endif
127      typedef typename _Alloc::template rebind<value_type>::other
128        _Pair_alloc_type;
129
130      typedef _Rb_tree<key_type, value_type, _Select1st<value_type>,
131		       key_compare, _Pair_alloc_type> _Rep_type;
132
133      /// @if maint  The actual tree structure.  @endif
134      _Rep_type _M_t;
135
136    public:
137      // many of these are specified differently in ISO, but the following are
138      // "functionally equivalent"
139      typedef typename _Pair_alloc_type::pointer         pointer;
140      typedef typename _Pair_alloc_type::const_pointer   const_pointer;
141      typedef typename _Pair_alloc_type::reference       reference;
142      typedef typename _Pair_alloc_type::const_reference const_reference;
143      typedef typename _Rep_type::iterator               iterator;
144      typedef typename _Rep_type::const_iterator         const_iterator;
145      typedef typename _Rep_type::size_type              size_type;
146      typedef typename _Rep_type::difference_type        difference_type;
147      typedef typename _Rep_type::reverse_iterator       reverse_iterator;
148      typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator;
149
150      // [23.3.1.1] construct/copy/destroy
151      // (get_allocator() is normally listed in this section, but seems to have
152      // been accidentally omitted in the printed standard)
153      /**
154       *  @brief  Default constructor creates no elements.
155       */
156      map()
157      : _M_t(_Compare(), allocator_type()) { }
158
159      // for some reason this was made a separate function
160      /**
161       *  @brief  Default constructor creates no elements.
162       */
163      explicit
164      map(const _Compare& __comp, const allocator_type& __a = allocator_type())
165      : _M_t(__comp, __a) { }
166
167      /**
168       *  @brief  Map copy constructor.
169       *  @param  x  A %map of identical element and allocator types.
170       *
171       *  The newly-created %map uses a copy of the allocation object used
172       *  by @a x.
173       */
174      map(const map& __x)
175      : _M_t(__x._M_t) { }
176
177      /**
178       *  @brief  Builds a %map from a range.
179       *  @param  first  An input iterator.
180       *  @param  last  An input iterator.
181       *
182       *  Create a %map consisting of copies of the elements from [first,last).
183       *  This is linear in N if the range is already sorted, and NlogN
184       *  otherwise (where N is distance(first,last)).
185       */
186      template <typename _InputIterator>
187        map(_InputIterator __first, _InputIterator __last)
188	: _M_t(_Compare(), allocator_type())
189        { _M_t.insert_unique(__first, __last); }
190
191      /**
192       *  @brief  Builds a %map from a range.
193       *  @param  first  An input iterator.
194       *  @param  last  An input iterator.
195       *  @param  comp  A comparison functor.
196       *  @param  a  An allocator object.
197       *
198       *  Create a %map consisting of copies of the elements from [first,last).
199       *  This is linear in N if the range is already sorted, and NlogN
200       *  otherwise (where N is distance(first,last)).
201       */
202      template <typename _InputIterator>
203        map(_InputIterator __first, _InputIterator __last,
204	    const _Compare& __comp, const allocator_type& __a = allocator_type())
205	: _M_t(__comp, __a)
206        { _M_t.insert_unique(__first, __last); }
207
208      // FIXME There is no dtor declared, but we should have something generated
209      // by Doxygen.  I don't know what tags to add to this paragraph to make
210      // that happen:
211      /**
212       *  The dtor only erases the elements, and note that if the elements
213       *  themselves are pointers, the pointed-to memory is not touched in any
214       *  way.  Managing the pointer is the user's responsibilty.
215       */
216
217      /**
218       *  @brief  Map assignment operator.
219       *  @param  x  A %map of identical element and allocator types.
220       *
221       *  All the elements of @a x are copied, but unlike the copy constructor,
222       *  the allocator object is not copied.
223       */
224      map&
225      operator=(const map& __x)
226      {
227	_M_t = __x._M_t;
228	return *this;
229      }
230
231      /// Get a copy of the memory allocation object.
232      allocator_type
233      get_allocator() const
234      { return _M_t.get_allocator(); }
235
236      // iterators
237      /**
238       *  Returns a read/write iterator that points to the first pair in the
239       *  %map.
240       *  Iteration is done in ascending order according to the keys.
241       */
242      iterator
243      begin()
244      { return _M_t.begin(); }
245
246      /**
247       *  Returns a read-only (constant) iterator that points to the first pair
248       *  in the %map.  Iteration is done in ascending order according to the
249       *  keys.
250       */
251      const_iterator
252      begin() const
253      { return _M_t.begin(); }
254
255      /**
256       *  Returns a read/write iterator that points one past the last pair in
257       *  the %map.  Iteration is done in ascending order according to the keys.
258       */
259      iterator
260      end()
261      { return _M_t.end(); }
262
263      /**
264       *  Returns a read-only (constant) iterator that points one past the last
265       *  pair in the %map.  Iteration is done in ascending order according to
266       *  the keys.
267       */
268      const_iterator
269      end() const
270      { return _M_t.end(); }
271
272      /**
273       *  Returns a read/write reverse iterator that points to the last pair in
274       *  the %map.  Iteration is done in descending order according to the
275       *  keys.
276       */
277      reverse_iterator
278      rbegin()
279      { return _M_t.rbegin(); }
280
281      /**
282       *  Returns a read-only (constant) reverse iterator that points to the
283       *  last pair in the %map.  Iteration is done in descending order
284       *  according to the keys.
285       */
286      const_reverse_iterator
287      rbegin() const
288      { return _M_t.rbegin(); }
289
290      /**
291       *  Returns a read/write reverse iterator that points to one before the
292       *  first pair in the %map.  Iteration is done in descending order
293       *  according to the keys.
294       */
295      reverse_iterator
296      rend()
297      { return _M_t.rend(); }
298
299      /**
300       *  Returns a read-only (constant) reverse iterator that points to one
301       *  before the first pair in the %map.  Iteration is done in descending
302       *  order according to the keys.
303       */
304      const_reverse_iterator
305      rend() const
306      { return _M_t.rend(); }
307
308      // capacity
309      /** Returns true if the %map is empty.  (Thus begin() would equal
310       *  end().)
311      */
312      bool
313      empty() const
314      { return _M_t.empty(); }
315
316      /** Returns the size of the %map.  */
317      size_type
318      size() const
319      { return _M_t.size(); }
320
321      /** Returns the maximum size of the %map.  */
322      size_type
323      max_size() const
324      { return _M_t.max_size(); }
325
326      // [23.3.1.2] element access
327      /**
328       *  @brief  Subscript ( @c [] ) access to %map data.
329       *  @param  k  The key for which data should be retrieved.
330       *  @return  A reference to the data of the (key,data) %pair.
331       *
332       *  Allows for easy lookup with the subscript ( @c [] ) operator.  Returns
333       *  data associated with the key specified in subscript.  If the key does
334       *  not exist, a pair with that key is created using default values, which
335       *  is then returned.
336       *
337       *  Lookup requires logarithmic time.
338       */
339      mapped_type&
340      operator[](const key_type& __k)
341      {
342	// concept requirements
343	__glibcxx_function_requires(_DefaultConstructibleConcept<mapped_type>)
344
345	iterator __i = lower_bound(__k);
346	// __i->first is greater than or equivalent to __k.
347	if (__i == end() || key_comp()(__k, (*__i).first))
348          __i = insert(__i, value_type(__k, mapped_type()));
349	return (*__i).second;
350      }
351
352      // _GLIBCXX_RESOLVE_LIB_DEFECTS
353      // DR 464. Suggestion for new member functions in standard containers.
354      /**
355       *  @brief  Access to %map data.
356       *  @param  k  The key for which data should be retrieved.
357       *  @return  A reference to the data whose key is equivalent to @a k, if
358       *           such a data is present in the %map.
359       *  @throw  std::out_of_range  If no such data is present.
360       */
361      mapped_type&
362      at(const key_type& __k)
363      {
364	iterator __i = lower_bound(__k);
365	if (__i == end() || key_comp()(__k, (*__i).first))
366	  __throw_out_of_range(__N("map::at"));
367	return (*__i).second;
368      }
369
370      const mapped_type&
371      at(const key_type& __k) const
372      {
373	const_iterator __i = lower_bound(__k);
374	if (__i == end() || key_comp()(__k, (*__i).first))
375	  __throw_out_of_range(__N("map::at"));
376	return (*__i).second;
377      }
378
379      // modifiers
380      /**
381       *  @brief Attempts to insert a std::pair into the %map.
382       *  @param  x  Pair to be inserted (see std::make_pair for easy creation of
383       *             pairs).
384       *  @return  A pair, of which the first element is an iterator that points
385       *           to the possibly inserted pair, and the second is a bool that
386       *           is true if the pair was actually inserted.
387       *
388       *  This function attempts to insert a (key, value) %pair into the %map.
389       *  A %map relies on unique keys and thus a %pair is only inserted if its
390       *  first element (the key) is not already present in the %map.
391       *
392       *  Insertion requires logarithmic time.
393       */
394      std::pair<iterator,bool>
395      insert(const value_type& __x)
396      { return _M_t.insert_unique(__x); }
397
398      /**
399       *  @brief Attempts to insert a std::pair into the %map.
400       *  @param  position  An iterator that serves as a hint as to where the
401       *                    pair should be inserted.
402       *  @param  x  Pair to be inserted (see std::make_pair for easy creation of
403       *             pairs).
404       *  @return  An iterator that points to the element with key of @a x (may
405       *           or may not be the %pair passed in).
406       *
407       *  This function is not concerned about whether the insertion took place,
408       *  and thus does not return a boolean like the single-argument
409       *  insert() does.  Note that the first parameter is only a hint and can
410       *  potentially improve the performance of the insertion process.  A bad
411       *  hint would cause no gains in efficiency.
412       *
413       *  See http://gcc.gnu.org/onlinedocs/libstdc++/23_containers/howto.html#4
414       *  for more on "hinting".
415       *
416       *  Insertion requires logarithmic time (if the hint is not taken).
417       */
418      iterator
419      insert(iterator position, const value_type& __x)
420      { return _M_t.insert_unique(position, __x); }
421
422      /**
423       *  @brief A template function that attemps to insert a range of elements.
424       *  @param  first  Iterator pointing to the start of the range to be
425       *                 inserted.
426       *  @param  last  Iterator pointing to the end of the range.
427       *
428       *  Complexity similar to that of the range constructor.
429       */
430      template <typename _InputIterator>
431        void
432        insert(_InputIterator __first, _InputIterator __last)
433        { _M_t.insert_unique(__first, __last); }
434
435      /**
436       *  @brief Erases an element from a %map.
437       *  @param  position  An iterator pointing to the element to be erased.
438       *
439       *  This function erases an element, pointed to by the given iterator,
440       *  from a %map.  Note that this function only erases the element, and
441       *  that if the element is itself a pointer, the pointed-to memory is not
442       *  touched in any way.  Managing the pointer is the user's responsibilty.
443       */
444      void
445      erase(iterator __position)
446      { _M_t.erase(__position); }
447
448      /**
449       *  @brief Erases elements according to the provided key.
450       *  @param  x  Key of element to be erased.
451       *  @return  The number of elements erased.
452       *
453       *  This function erases all the elements located by the given key from
454       *  a %map.
455       *  Note that this function only erases the element, and that if
456       *  the element is itself a pointer, the pointed-to memory is not touched
457       *  in any way.  Managing the pointer is the user's responsibilty.
458       */
459      size_type
460      erase(const key_type& __x)
461      { return _M_t.erase(__x); }
462
463      /**
464       *  @brief Erases a [first,last) range of elements from a %map.
465       *  @param  first  Iterator pointing to the start of the range to be
466       *                 erased.
467       *  @param  last  Iterator pointing to the end of the range to be erased.
468       *
469       *  This function erases a sequence of elements from a %map.
470       *  Note that this function only erases the element, and that if
471       *  the element is itself a pointer, the pointed-to memory is not touched
472       *  in any way.  Managing the pointer is the user's responsibilty.
473       */
474      void
475      erase(iterator __first, iterator __last)
476      { _M_t.erase(__first, __last); }
477
478      /**
479       *  @brief  Swaps data with another %map.
480       *  @param  x  A %map of the same element and allocator types.
481       *
482       *  This exchanges the elements between two maps in constant time.
483       *  (It is only swapping a pointer, an integer, and an instance of
484       *  the @c Compare type (which itself is often stateless and empty), so it
485       *  should be quite fast.)
486       *  Note that the global std::swap() function is specialized such that
487       *  std::swap(m1,m2) will feed to this function.
488       */
489      void
490      swap(map& __x)
491      { _M_t.swap(__x._M_t); }
492
493      /**
494       *  Erases all elements in a %map.  Note that this function only erases
495       *  the elements, and that if the elements themselves are pointers, the
496       *  pointed-to memory is not touched in any way.  Managing the pointer is
497       *  the user's responsibilty.
498       */
499      void
500      clear()
501      { _M_t.clear(); }
502
503      // observers
504      /**
505       *  Returns the key comparison object out of which the %map was
506       *  constructed.
507       */
508      key_compare
509      key_comp() const
510      { return _M_t.key_comp(); }
511
512      /**
513       *  Returns a value comparison object, built from the key comparison
514       *  object out of which the %map was constructed.
515       */
516      value_compare
517      value_comp() const
518      { return value_compare(_M_t.key_comp()); }
519
520      // [23.3.1.3] map operations
521      /**
522       *  @brief Tries to locate an element in a %map.
523       *  @param  x  Key of (key, value) %pair to be located.
524       *  @return  Iterator pointing to sought-after element, or end() if not
525       *           found.
526       *
527       *  This function takes a key and tries to locate the element with which
528       *  the key matches.  If successful the function returns an iterator
529       *  pointing to the sought after %pair.  If unsuccessful it returns the
530       *  past-the-end ( @c end() ) iterator.
531       */
532      iterator
533      find(const key_type& __x)
534      { return _M_t.find(__x); }
535
536      /**
537       *  @brief Tries to locate an element in a %map.
538       *  @param  x  Key of (key, value) %pair to be located.
539       *  @return  Read-only (constant) iterator pointing to sought-after
540       *           element, or end() if not found.
541       *
542       *  This function takes a key and tries to locate the element with which
543       *  the key matches.  If successful the function returns a constant
544       *  iterator pointing to the sought after %pair. If unsuccessful it
545       *  returns the past-the-end ( @c end() ) iterator.
546       */
547      const_iterator
548      find(const key_type& __x) const
549      { return _M_t.find(__x); }
550
551      /**
552       *  @brief  Finds the number of elements with given key.
553       *  @param  x  Key of (key, value) pairs to be located.
554       *  @return  Number of elements with specified key.
555       *
556       *  This function only makes sense for multimaps; for map the result will
557       *  either be 0 (not present) or 1 (present).
558       */
559      size_type
560      count(const key_type& __x) const
561      { return _M_t.find(__x) == _M_t.end() ? 0 : 1; }
562
563      /**
564       *  @brief Finds the beginning of a subsequence matching given key.
565       *  @param  x  Key of (key, value) pair to be located.
566       *  @return  Iterator pointing to first element equal to or greater
567       *           than key, or end().
568       *
569       *  This function returns the first element of a subsequence of elements
570       *  that matches the given key.  If unsuccessful it returns an iterator
571       *  pointing to the first element that has a greater value than given key
572       *  or end() if no such element exists.
573       */
574      iterator
575      lower_bound(const key_type& __x)
576      { return _M_t.lower_bound(__x); }
577
578      /**
579       *  @brief Finds the beginning of a subsequence matching given key.
580       *  @param  x  Key of (key, value) pair to be located.
581       *  @return  Read-only (constant) iterator pointing to first element
582       *           equal to or greater than key, or end().
583       *
584       *  This function returns the first element of a subsequence of elements
585       *  that matches the given key.  If unsuccessful it returns an iterator
586       *  pointing to the first element that has a greater value than given key
587       *  or end() if no such element exists.
588       */
589      const_iterator
590      lower_bound(const key_type& __x) const
591      { return _M_t.lower_bound(__x); }
592
593      /**
594       *  @brief Finds the end of a subsequence matching given key.
595       *  @param  x  Key of (key, value) pair to be located.
596       *  @return Iterator pointing to the first element
597       *          greater than key, or end().
598       */
599      iterator
600      upper_bound(const key_type& __x)
601      { return _M_t.upper_bound(__x); }
602
603      /**
604       *  @brief Finds the end of a subsequence matching given key.
605       *  @param  x  Key of (key, value) pair to be located.
606       *  @return  Read-only (constant) iterator pointing to first iterator
607       *           greater than key, or end().
608       */
609      const_iterator
610      upper_bound(const key_type& __x) const
611      { return _M_t.upper_bound(__x); }
612
613      /**
614       *  @brief Finds a subsequence matching given key.
615       *  @param  x  Key of (key, value) pairs to be located.
616       *  @return  Pair of iterators that possibly points to the subsequence
617       *           matching given key.
618       *
619       *  This function is equivalent to
620       *  @code
621       *    std::make_pair(c.lower_bound(val),
622       *                   c.upper_bound(val))
623       *  @endcode
624       *  (but is faster than making the calls separately).
625       *
626       *  This function probably only makes sense for multimaps.
627       */
628      std::pair<iterator, iterator>
629      equal_range(const key_type& __x)
630      { return _M_t.equal_range(__x); }
631
632      /**
633       *  @brief Finds a subsequence matching given key.
634       *  @param  x  Key of (key, value) pairs to be located.
635       *  @return  Pair of read-only (constant) iterators that possibly points
636       *           to the subsequence matching given key.
637       *
638       *  This function is equivalent to
639       *  @code
640       *    std::make_pair(c.lower_bound(val),
641       *                   c.upper_bound(val))
642       *  @endcode
643       *  (but is faster than making the calls separately).
644       *
645       *  This function probably only makes sense for multimaps.
646       */
647      std::pair<const_iterator, const_iterator>
648      equal_range(const key_type& __x) const
649      { return _M_t.equal_range(__x); }
650
651      template <typename _K1, typename _T1, typename _C1, typename _A1>
652        friend bool
653        operator== (const map<_K1, _T1, _C1, _A1>&,
654		    const map<_K1, _T1, _C1, _A1>&);
655
656      template <typename _K1, typename _T1, typename _C1, typename _A1>
657        friend bool
658        operator< (const map<_K1, _T1, _C1, _A1>&,
659		   const map<_K1, _T1, _C1, _A1>&);
660    };
661
662  /**
663   *  @brief  Map equality comparison.
664   *  @param  x  A %map.
665   *  @param  y  A %map of the same type as @a x.
666   *  @return  True iff the size and elements of the maps are equal.
667   *
668   *  This is an equivalence relation.  It is linear in the size of the
669   *  maps.  Maps are considered equivalent if their sizes are equal,
670   *  and if corresponding elements compare equal.
671  */
672  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
673    inline bool
674    operator==(const map<_Key, _Tp, _Compare, _Alloc>& __x,
675               const map<_Key, _Tp, _Compare, _Alloc>& __y)
676    { return __x._M_t == __y._M_t; }
677
678  /**
679   *  @brief  Map ordering relation.
680   *  @param  x  A %map.
681   *  @param  y  A %map of the same type as @a x.
682   *  @return  True iff @a x is lexicographically less than @a y.
683   *
684   *  This is a total ordering relation.  It is linear in the size of the
685   *  maps.  The elements must be comparable with @c <.
686   *
687   *  See std::lexicographical_compare() for how the determination is made.
688  */
689  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
690    inline bool
691    operator<(const map<_Key, _Tp, _Compare, _Alloc>& __x,
692              const map<_Key, _Tp, _Compare, _Alloc>& __y)
693    { return __x._M_t < __y._M_t; }
694
695  /// Based on operator==
696  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
697    inline bool
698    operator!=(const map<_Key, _Tp, _Compare, _Alloc>& __x,
699               const map<_Key, _Tp, _Compare, _Alloc>& __y)
700    { return !(__x == __y); }
701
702  /// Based on operator<
703  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
704    inline bool
705    operator>(const map<_Key, _Tp, _Compare, _Alloc>& __x,
706              const map<_Key, _Tp, _Compare, _Alloc>& __y)
707    { return __y < __x; }
708
709  /// Based on operator<
710  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
711    inline bool
712    operator<=(const map<_Key, _Tp, _Compare, _Alloc>& __x,
713               const map<_Key, _Tp, _Compare, _Alloc>& __y)
714    { return !(__y < __x); }
715
716  /// Based on operator<
717  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
718    inline bool
719    operator>=(const map<_Key, _Tp, _Compare, _Alloc>& __x,
720               const map<_Key, _Tp, _Compare, _Alloc>& __y)
721    { return !(__x < __y); }
722
723  /// See std::map::swap().
724  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
725    inline void
726    swap(map<_Key, _Tp, _Compare, _Alloc>& __x,
727	 map<_Key, _Tp, _Compare, _Alloc>& __y)
728    { __x.swap(__y); }
729} // namespace std
730
731#endif /* _MAP_H */
732