1/* Generic SSA value propagation engine.
2   Copyright (C) 2004, 2005 Free Software Foundation, Inc.
3   Contributed by Diego Novillo <dnovillo@redhat.com>
4
5   This file is part of GCC.
6
7   GCC is free software; you can redistribute it and/or modify it
8   under the terms of the GNU General Public License as published by the
9   Free Software Foundation; either version 2, or (at your option) any
10   later version.
11
12   GCC is distributed in the hope that it will be useful, but WITHOUT
13   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15   for more details.
16
17   You should have received a copy of the GNU General Public License
18   along with GCC; see the file COPYING.  If not, write to the Free
19   Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20   02110-1301, USA.  */
21
22#include "config.h"
23#include "system.h"
24#include "coretypes.h"
25#include "tm.h"
26#include "tree.h"
27#include "flags.h"
28#include "rtl.h"
29#include "tm_p.h"
30#include "ggc.h"
31#include "basic-block.h"
32#include "output.h"
33#include "expr.h"
34#include "function.h"
35#include "diagnostic.h"
36#include "timevar.h"
37#include "tree-dump.h"
38#include "tree-flow.h"
39#include "tree-pass.h"
40#include "tree-ssa-propagate.h"
41#include "langhooks.h"
42#include "varray.h"
43#include "vec.h"
44
45/* This file implements a generic value propagation engine based on
46   the same propagation used by the SSA-CCP algorithm [1].
47
48   Propagation is performed by simulating the execution of every
49   statement that produces the value being propagated.  Simulation
50   proceeds as follows:
51
52   1- Initially, all edges of the CFG are marked not executable and
53      the CFG worklist is seeded with all the statements in the entry
54      basic block (block 0).
55
56   2- Every statement S is simulated with a call to the call-back
57      function SSA_PROP_VISIT_STMT.  This evaluation may produce 3
58      results:
59
60      	SSA_PROP_NOT_INTERESTING: Statement S produces nothing of
61	    interest and does not affect any of the work lists.
62
63	SSA_PROP_VARYING: The value produced by S cannot be determined
64	    at compile time.  Further simulation of S is not required.
65	    If S is a conditional jump, all the outgoing edges for the
66	    block are considered executable and added to the work
67	    list.
68
69	SSA_PROP_INTERESTING: S produces a value that can be computed
70	    at compile time.  Its result can be propagated into the
71	    statements that feed from S.  Furthermore, if S is a
72	    conditional jump, only the edge known to be taken is added
73	    to the work list.  Edges that are known not to execute are
74	    never simulated.
75
76   3- PHI nodes are simulated with a call to SSA_PROP_VISIT_PHI.  The
77      return value from SSA_PROP_VISIT_PHI has the same semantics as
78      described in #2.
79
80   4- Three work lists are kept.  Statements are only added to these
81      lists if they produce one of SSA_PROP_INTERESTING or
82      SSA_PROP_VARYING.
83
84   	CFG_BLOCKS contains the list of blocks to be simulated.
85	    Blocks are added to this list if their incoming edges are
86	    found executable.
87
88	VARYING_SSA_EDGES contains the list of statements that feed
89	    from statements that produce an SSA_PROP_VARYING result.
90	    These are simulated first to speed up processing.
91
92	INTERESTING_SSA_EDGES contains the list of statements that
93	    feed from statements that produce an SSA_PROP_INTERESTING
94	    result.
95
96   5- Simulation terminates when all three work lists are drained.
97
98   Before calling ssa_propagate, it is important to clear
99   DONT_SIMULATE_AGAIN for all the statements in the program that
100   should be simulated.  This initialization allows an implementation
101   to specify which statements should never be simulated.
102
103   It is also important to compute def-use information before calling
104   ssa_propagate.
105
106   References:
107
108     [1] Constant propagation with conditional branches,
109         Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
110
111     [2] Building an Optimizing Compiler,
112	 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
113
114     [3] Advanced Compiler Design and Implementation,
115	 Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6  */
116
117/* Function pointers used to parameterize the propagation engine.  */
118static ssa_prop_visit_stmt_fn ssa_prop_visit_stmt;
119static ssa_prop_visit_phi_fn ssa_prop_visit_phi;
120
121/* Use the TREE_DEPRECATED bitflag to mark statements that have been
122   added to one of the SSA edges worklists.  This flag is used to
123   avoid visiting statements unnecessarily when draining an SSA edge
124   worklist.  If while simulating a basic block, we find a statement with
125   STMT_IN_SSA_EDGE_WORKLIST set, we clear it to prevent SSA edge
126   processing from visiting it again.  */
127#define STMT_IN_SSA_EDGE_WORKLIST(T)	TREE_DEPRECATED (T)
128
129/* A bitmap to keep track of executable blocks in the CFG.  */
130static sbitmap executable_blocks;
131
132/* Array of control flow edges on the worklist.  */
133static GTY(()) varray_type cfg_blocks = NULL;
134
135static unsigned int cfg_blocks_num = 0;
136static int cfg_blocks_tail;
137static int cfg_blocks_head;
138
139static sbitmap bb_in_list;
140
141/* Worklist of SSA edges which will need reexamination as their
142   definition has changed.  SSA edges are def-use edges in the SSA
143   web.  For each D-U edge, we store the target statement or PHI node
144   U.  */
145static GTY(()) VEC(tree,gc) *interesting_ssa_edges;
146
147/* Identical to INTERESTING_SSA_EDGES.  For performance reasons, the
148   list of SSA edges is split into two.  One contains all SSA edges
149   who need to be reexamined because their lattice value changed to
150   varying (this worklist), and the other contains all other SSA edges
151   to be reexamined (INTERESTING_SSA_EDGES).
152
153   Since most values in the program are VARYING, the ideal situation
154   is to move them to that lattice value as quickly as possible.
155   Thus, it doesn't make sense to process any other type of lattice
156   value until all VARYING values are propagated fully, which is one
157   thing using the VARYING worklist achieves.  In addition, if we
158   don't use a separate worklist for VARYING edges, we end up with
159   situations where lattice values move from
160   UNDEFINED->INTERESTING->VARYING instead of UNDEFINED->VARYING.  */
161static GTY(()) VEC(tree,gc) *varying_ssa_edges;
162
163
164/* Return true if the block worklist empty.  */
165
166static inline bool
167cfg_blocks_empty_p (void)
168{
169  return (cfg_blocks_num == 0);
170}
171
172
173/* Add a basic block to the worklist.  The block must not be already
174   in the worklist, and it must not be the ENTRY or EXIT block.  */
175
176static void
177cfg_blocks_add (basic_block bb)
178{
179  gcc_assert (bb != ENTRY_BLOCK_PTR && bb != EXIT_BLOCK_PTR);
180  gcc_assert (!TEST_BIT (bb_in_list, bb->index));
181
182  if (cfg_blocks_empty_p ())
183    {
184      cfg_blocks_tail = cfg_blocks_head = 0;
185      cfg_blocks_num = 1;
186    }
187  else
188    {
189      cfg_blocks_num++;
190      if (cfg_blocks_num > VARRAY_SIZE (cfg_blocks))
191	{
192	  /* We have to grow the array now.  Adjust to queue to occupy the
193	     full space of the original array.  */
194	  cfg_blocks_tail = VARRAY_SIZE (cfg_blocks);
195	  cfg_blocks_head = 0;
196	  VARRAY_GROW (cfg_blocks, 2 * VARRAY_SIZE (cfg_blocks));
197	}
198      else
199	cfg_blocks_tail = (cfg_blocks_tail + 1) % VARRAY_SIZE (cfg_blocks);
200    }
201
202  VARRAY_BB (cfg_blocks, cfg_blocks_tail) = bb;
203  SET_BIT (bb_in_list, bb->index);
204}
205
206
207/* Remove a block from the worklist.  */
208
209static basic_block
210cfg_blocks_get (void)
211{
212  basic_block bb;
213
214  bb = VARRAY_BB (cfg_blocks, cfg_blocks_head);
215
216  gcc_assert (!cfg_blocks_empty_p ());
217  gcc_assert (bb);
218
219  cfg_blocks_head = (cfg_blocks_head + 1) % VARRAY_SIZE (cfg_blocks);
220  --cfg_blocks_num;
221  RESET_BIT (bb_in_list, bb->index);
222
223  return bb;
224}
225
226
227/* We have just defined a new value for VAR.  If IS_VARYING is true,
228   add all immediate uses of VAR to VARYING_SSA_EDGES, otherwise add
229   them to INTERESTING_SSA_EDGES.  */
230
231static void
232add_ssa_edge (tree var, bool is_varying)
233{
234  imm_use_iterator iter;
235  use_operand_p use_p;
236
237  FOR_EACH_IMM_USE_FAST (use_p, iter, var)
238    {
239      tree use_stmt = USE_STMT (use_p);
240
241      if (!DONT_SIMULATE_AGAIN (use_stmt)
242	  && !STMT_IN_SSA_EDGE_WORKLIST (use_stmt))
243	{
244	  STMT_IN_SSA_EDGE_WORKLIST (use_stmt) = 1;
245	  if (is_varying)
246	    VEC_safe_push (tree, gc, varying_ssa_edges, use_stmt);
247	  else
248	    VEC_safe_push (tree, gc, interesting_ssa_edges, use_stmt);
249	}
250    }
251}
252
253
254/* Add edge E to the control flow worklist.  */
255
256static void
257add_control_edge (edge e)
258{
259  basic_block bb = e->dest;
260  if (bb == EXIT_BLOCK_PTR)
261    return;
262
263  /* If the edge had already been executed, skip it.  */
264  if (e->flags & EDGE_EXECUTABLE)
265    return;
266
267  e->flags |= EDGE_EXECUTABLE;
268
269  /* If the block is already in the list, we're done.  */
270  if (TEST_BIT (bb_in_list, bb->index))
271    return;
272
273  cfg_blocks_add (bb);
274
275  if (dump_file && (dump_flags & TDF_DETAILS))
276    fprintf (dump_file, "Adding Destination of edge (%d -> %d) to worklist\n\n",
277	e->src->index, e->dest->index);
278}
279
280
281/* Simulate the execution of STMT and update the work lists accordingly.  */
282
283static void
284simulate_stmt (tree stmt)
285{
286  enum ssa_prop_result val = SSA_PROP_NOT_INTERESTING;
287  edge taken_edge = NULL;
288  tree output_name = NULL_TREE;
289
290  /* Don't bother visiting statements that are already
291     considered varying by the propagator.  */
292  if (DONT_SIMULATE_AGAIN (stmt))
293    return;
294
295  if (TREE_CODE (stmt) == PHI_NODE)
296    {
297      val = ssa_prop_visit_phi (stmt);
298      output_name = PHI_RESULT (stmt);
299    }
300  else
301    val = ssa_prop_visit_stmt (stmt, &taken_edge, &output_name);
302
303  if (val == SSA_PROP_VARYING)
304    {
305      DONT_SIMULATE_AGAIN (stmt) = 1;
306
307      /* If the statement produced a new varying value, add the SSA
308	 edges coming out of OUTPUT_NAME.  */
309      if (output_name)
310	add_ssa_edge (output_name, true);
311
312      /* If STMT transfers control out of its basic block, add
313	 all outgoing edges to the work list.  */
314      if (stmt_ends_bb_p (stmt))
315	{
316	  edge e;
317	  edge_iterator ei;
318	  basic_block bb = bb_for_stmt (stmt);
319	  FOR_EACH_EDGE (e, ei, bb->succs)
320	    add_control_edge (e);
321	}
322    }
323  else if (val == SSA_PROP_INTERESTING)
324    {
325      /* If the statement produced new value, add the SSA edges coming
326	 out of OUTPUT_NAME.  */
327      if (output_name)
328	add_ssa_edge (output_name, false);
329
330      /* If we know which edge is going to be taken out of this block,
331	 add it to the CFG work list.  */
332      if (taken_edge)
333	add_control_edge (taken_edge);
334    }
335}
336
337/* Process an SSA edge worklist.  WORKLIST is the SSA edge worklist to
338   drain.  This pops statements off the given WORKLIST and processes
339   them until there are no more statements on WORKLIST.
340   We take a pointer to WORKLIST because it may be reallocated when an
341   SSA edge is added to it in simulate_stmt.  */
342
343static void
344process_ssa_edge_worklist (VEC(tree,gc) **worklist)
345{
346  /* Drain the entire worklist.  */
347  while (VEC_length (tree, *worklist) > 0)
348    {
349      basic_block bb;
350
351      /* Pull the statement to simulate off the worklist.  */
352      tree stmt = VEC_pop (tree, *worklist);
353
354      /* If this statement was already visited by simulate_block, then
355	 we don't need to visit it again here.  */
356      if (!STMT_IN_SSA_EDGE_WORKLIST (stmt))
357	continue;
358
359      /* STMT is no longer in a worklist.  */
360      STMT_IN_SSA_EDGE_WORKLIST (stmt) = 0;
361
362      if (dump_file && (dump_flags & TDF_DETAILS))
363	{
364	  fprintf (dump_file, "\nSimulating statement (from ssa_edges): ");
365	  print_generic_stmt (dump_file, stmt, dump_flags);
366	}
367
368      bb = bb_for_stmt (stmt);
369
370      /* PHI nodes are always visited, regardless of whether or not
371	 the destination block is executable.  Otherwise, visit the
372	 statement only if its block is marked executable.  */
373      if (TREE_CODE (stmt) == PHI_NODE
374	  || TEST_BIT (executable_blocks, bb->index))
375	simulate_stmt (stmt);
376    }
377}
378
379
380/* Simulate the execution of BLOCK.  Evaluate the statement associated
381   with each variable reference inside the block.  */
382
383static void
384simulate_block (basic_block block)
385{
386  tree phi;
387
388  /* There is nothing to do for the exit block.  */
389  if (block == EXIT_BLOCK_PTR)
390    return;
391
392  if (dump_file && (dump_flags & TDF_DETAILS))
393    fprintf (dump_file, "\nSimulating block %d\n", block->index);
394
395  /* Always simulate PHI nodes, even if we have simulated this block
396     before.  */
397  for (phi = phi_nodes (block); phi; phi = PHI_CHAIN (phi))
398    simulate_stmt (phi);
399
400  /* If this is the first time we've simulated this block, then we
401     must simulate each of its statements.  */
402  if (!TEST_BIT (executable_blocks, block->index))
403    {
404      block_stmt_iterator j;
405      unsigned int normal_edge_count;
406      edge e, normal_edge;
407      edge_iterator ei;
408
409      /* Note that we have simulated this block.  */
410      SET_BIT (executable_blocks, block->index);
411
412      for (j = bsi_start (block); !bsi_end_p (j); bsi_next (&j))
413	{
414	  tree stmt = bsi_stmt (j);
415
416	  /* If this statement is already in the worklist then
417	     "cancel" it.  The reevaluation implied by the worklist
418	     entry will produce the same value we generate here and
419	     thus reevaluating it again from the worklist is
420	     pointless.  */
421	  if (STMT_IN_SSA_EDGE_WORKLIST (stmt))
422	    STMT_IN_SSA_EDGE_WORKLIST (stmt) = 0;
423
424	  simulate_stmt (stmt);
425	}
426
427      /* We can not predict when abnormal edges will be executed, so
428	 once a block is considered executable, we consider any
429	 outgoing abnormal edges as executable.
430
431	 At the same time, if this block has only one successor that is
432	 reached by non-abnormal edges, then add that successor to the
433	 worklist.  */
434      normal_edge_count = 0;
435      normal_edge = NULL;
436      FOR_EACH_EDGE (e, ei, block->succs)
437	{
438	  if (e->flags & EDGE_ABNORMAL)
439	    add_control_edge (e);
440	  else
441	    {
442	      normal_edge_count++;
443	      normal_edge = e;
444	    }
445	}
446
447      if (normal_edge_count == 1)
448	add_control_edge (normal_edge);
449    }
450}
451
452
453/* Initialize local data structures and work lists.  */
454
455static void
456ssa_prop_init (void)
457{
458  edge e;
459  edge_iterator ei;
460  basic_block bb;
461  size_t i;
462
463  /* Worklists of SSA edges.  */
464  interesting_ssa_edges = VEC_alloc (tree, gc, 20);
465  varying_ssa_edges = VEC_alloc (tree, gc, 20);
466
467  executable_blocks = sbitmap_alloc (last_basic_block);
468  sbitmap_zero (executable_blocks);
469
470  bb_in_list = sbitmap_alloc (last_basic_block);
471  sbitmap_zero (bb_in_list);
472
473  if (dump_file && (dump_flags & TDF_DETAILS))
474    dump_immediate_uses (dump_file);
475
476  VARRAY_BB_INIT (cfg_blocks, 20, "cfg_blocks");
477
478  /* Initialize the values for every SSA_NAME.  */
479  for (i = 1; i < num_ssa_names; i++)
480    if (ssa_name (i))
481      SSA_NAME_VALUE (ssa_name (i)) = NULL_TREE;
482
483  /* Initially assume that every edge in the CFG is not executable.
484     (including the edges coming out of ENTRY_BLOCK_PTR).  */
485  FOR_ALL_BB (bb)
486    {
487      block_stmt_iterator si;
488
489      for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
490	STMT_IN_SSA_EDGE_WORKLIST (bsi_stmt (si)) = 0;
491
492      FOR_EACH_EDGE (e, ei, bb->succs)
493	e->flags &= ~EDGE_EXECUTABLE;
494    }
495
496  /* Seed the algorithm by adding the successors of the entry block to the
497     edge worklist.  */
498  FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
499    add_control_edge (e);
500}
501
502
503/* Free allocated storage.  */
504
505static void
506ssa_prop_fini (void)
507{
508  VEC_free (tree, gc, interesting_ssa_edges);
509  VEC_free (tree, gc, varying_ssa_edges);
510  cfg_blocks = NULL;
511  sbitmap_free (bb_in_list);
512  sbitmap_free (executable_blocks);
513}
514
515
516/* Get the main expression from statement STMT.  */
517
518tree
519get_rhs (tree stmt)
520{
521  enum tree_code code = TREE_CODE (stmt);
522
523  switch (code)
524    {
525    case RETURN_EXPR:
526      stmt = TREE_OPERAND (stmt, 0);
527      if (!stmt || TREE_CODE (stmt) != MODIFY_EXPR)
528	return stmt;
529      /* FALLTHRU */
530
531    case MODIFY_EXPR:
532      stmt = TREE_OPERAND (stmt, 1);
533      if (TREE_CODE (stmt) == WITH_SIZE_EXPR)
534	return TREE_OPERAND (stmt, 0);
535      else
536	return stmt;
537
538    case COND_EXPR:
539      return COND_EXPR_COND (stmt);
540    case SWITCH_EXPR:
541      return SWITCH_COND (stmt);
542    case GOTO_EXPR:
543      return GOTO_DESTINATION (stmt);
544    case LABEL_EXPR:
545      return LABEL_EXPR_LABEL (stmt);
546
547    default:
548      return stmt;
549    }
550}
551
552
553/* Set the main expression of *STMT_P to EXPR.  If EXPR is not a valid
554   GIMPLE expression no changes are done and the function returns
555   false.  */
556
557bool
558set_rhs (tree *stmt_p, tree expr)
559{
560  tree stmt = *stmt_p, op;
561  enum tree_code code = TREE_CODE (expr);
562  stmt_ann_t ann;
563  tree var;
564  ssa_op_iter iter;
565
566  /* Verify the constant folded result is valid gimple.  */
567  if (TREE_CODE_CLASS (code) == tcc_binary)
568    {
569      if (!is_gimple_val (TREE_OPERAND (expr, 0))
570	  || !is_gimple_val (TREE_OPERAND (expr, 1)))
571	return false;
572    }
573  else if (TREE_CODE_CLASS (code) == tcc_unary)
574    {
575      if (!is_gimple_val (TREE_OPERAND (expr, 0)))
576	return false;
577    }
578  else if (code == ADDR_EXPR)
579    {
580      if (TREE_CODE (TREE_OPERAND (expr, 0)) == ARRAY_REF
581	  && !is_gimple_val (TREE_OPERAND (TREE_OPERAND (expr, 0), 1)))
582	return false;
583    }
584  else if (code == COMPOUND_EXPR)
585    return false;
586
587  switch (TREE_CODE (stmt))
588    {
589    case RETURN_EXPR:
590      op = TREE_OPERAND (stmt, 0);
591      if (TREE_CODE (op) != MODIFY_EXPR)
592	{
593	  TREE_OPERAND (stmt, 0) = expr;
594	  break;
595	}
596      stmt = op;
597      /* FALLTHRU */
598
599    case MODIFY_EXPR:
600      op = TREE_OPERAND (stmt, 1);
601      if (TREE_CODE (op) == WITH_SIZE_EXPR)
602	stmt = op;
603      TREE_OPERAND (stmt, 1) = expr;
604      break;
605
606    case COND_EXPR:
607      if (!is_gimple_condexpr (expr))
608        return false;
609      COND_EXPR_COND (stmt) = expr;
610      break;
611    case SWITCH_EXPR:
612      SWITCH_COND (stmt) = expr;
613      break;
614    case GOTO_EXPR:
615      GOTO_DESTINATION (stmt) = expr;
616      break;
617    case LABEL_EXPR:
618      LABEL_EXPR_LABEL (stmt) = expr;
619      break;
620
621    default:
622      /* Replace the whole statement with EXPR.  If EXPR has no side
623	 effects, then replace *STMT_P with an empty statement.  */
624      ann = stmt_ann (stmt);
625      *stmt_p = TREE_SIDE_EFFECTS (expr) ? expr : build_empty_stmt ();
626      (*stmt_p)->common.ann = (tree_ann_t) ann;
627
628      if (in_ssa_p
629	  && TREE_SIDE_EFFECTS (expr))
630	{
631	  /* Fix all the SSA_NAMEs created by *STMT_P to point to its new
632	     replacement.  */
633	  FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_ALL_DEFS)
634	    {
635	      if (TREE_CODE (var) == SSA_NAME)
636		SSA_NAME_DEF_STMT (var) = *stmt_p;
637	    }
638	}
639      break;
640    }
641
642  return true;
643}
644
645
646/* Entry point to the propagation engine.
647
648   VISIT_STMT is called for every statement visited.
649   VISIT_PHI is called for every PHI node visited.  */
650
651void
652ssa_propagate (ssa_prop_visit_stmt_fn visit_stmt,
653	       ssa_prop_visit_phi_fn visit_phi)
654{
655  ssa_prop_visit_stmt = visit_stmt;
656  ssa_prop_visit_phi = visit_phi;
657
658  ssa_prop_init ();
659
660  /* Iterate until the worklists are empty.  */
661  while (!cfg_blocks_empty_p ()
662	 || VEC_length (tree, interesting_ssa_edges) > 0
663	 || VEC_length (tree, varying_ssa_edges) > 0)
664    {
665      if (!cfg_blocks_empty_p ())
666	{
667	  /* Pull the next block to simulate off the worklist.  */
668	  basic_block dest_block = cfg_blocks_get ();
669	  simulate_block (dest_block);
670	}
671
672      /* In order to move things to varying as quickly as
673	 possible,process the VARYING_SSA_EDGES worklist first.  */
674      process_ssa_edge_worklist (&varying_ssa_edges);
675
676      /* Now process the INTERESTING_SSA_EDGES worklist.  */
677      process_ssa_edge_worklist (&interesting_ssa_edges);
678    }
679
680  ssa_prop_fini ();
681}
682
683
684/* Return the first V_MAY_DEF or V_MUST_DEF operand for STMT.  */
685
686tree
687first_vdef (tree stmt)
688{
689  ssa_op_iter iter;
690  tree op;
691
692  /* Simply return the first operand we arrive at.  */
693  FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_VIRTUAL_DEFS)
694    return (op);
695
696  gcc_unreachable ();
697}
698
699
700/* Return true if STMT is of the form 'LHS = mem_ref', where 'mem_ref'
701   is a non-volatile pointer dereference, a structure reference or a
702   reference to a single _DECL.  Ignore volatile memory references
703   because they are not interesting for the optimizers.  */
704
705bool
706stmt_makes_single_load (tree stmt)
707{
708  tree rhs;
709
710  if (TREE_CODE (stmt) != MODIFY_EXPR)
711    return false;
712
713  if (ZERO_SSA_OPERANDS (stmt, SSA_OP_VMAYDEF|SSA_OP_VUSE))
714    return false;
715
716  rhs = TREE_OPERAND (stmt, 1);
717  STRIP_NOPS (rhs);
718
719  return (!TREE_THIS_VOLATILE (rhs)
720	  && (DECL_P (rhs)
721	      || REFERENCE_CLASS_P (rhs)));
722}
723
724
725/* Return true if STMT is of the form 'mem_ref = RHS', where 'mem_ref'
726   is a non-volatile pointer dereference, a structure reference or a
727   reference to a single _DECL.  Ignore volatile memory references
728   because they are not interesting for the optimizers.  */
729
730bool
731stmt_makes_single_store (tree stmt)
732{
733  tree lhs;
734
735  if (TREE_CODE (stmt) != MODIFY_EXPR)
736    return false;
737
738  if (ZERO_SSA_OPERANDS (stmt, SSA_OP_VMAYDEF|SSA_OP_VMUSTDEF))
739    return false;
740
741  lhs = TREE_OPERAND (stmt, 0);
742  STRIP_NOPS (lhs);
743
744  return (!TREE_THIS_VOLATILE (lhs)
745          && (DECL_P (lhs)
746	      || REFERENCE_CLASS_P (lhs)));
747}
748
749
750/* If STMT makes a single memory load and all the virtual use operands
751   have the same value in array VALUES, return it.  Otherwise, return
752   NULL.  */
753
754prop_value_t *
755get_value_loaded_by (tree stmt, prop_value_t *values)
756{
757  ssa_op_iter i;
758  tree vuse;
759  prop_value_t *prev_val = NULL;
760  prop_value_t *val = NULL;
761
762  FOR_EACH_SSA_TREE_OPERAND (vuse, stmt, i, SSA_OP_VIRTUAL_USES)
763    {
764      val = &values[SSA_NAME_VERSION (vuse)];
765      if (prev_val && prev_val->value != val->value)
766	return NULL;
767      prev_val = val;
768    }
769
770  return val;
771}
772
773
774/* Propagation statistics.  */
775struct prop_stats_d
776{
777  long num_const_prop;
778  long num_copy_prop;
779  long num_pred_folded;
780};
781
782static struct prop_stats_d prop_stats;
783
784/* Replace USE references in statement STMT with the values stored in
785   PROP_VALUE. Return true if at least one reference was replaced.  If
786   REPLACED_ADDRESSES_P is given, it will be set to true if an address
787   constant was replaced.  */
788
789bool
790replace_uses_in (tree stmt, bool *replaced_addresses_p,
791		 prop_value_t *prop_value)
792{
793  bool replaced = false;
794  use_operand_p use;
795  ssa_op_iter iter;
796
797  FOR_EACH_SSA_USE_OPERAND (use, stmt, iter, SSA_OP_USE)
798    {
799      tree tuse = USE_FROM_PTR (use);
800      tree val = prop_value[SSA_NAME_VERSION (tuse)].value;
801
802      if (val == tuse || val == NULL_TREE)
803	continue;
804
805      if (TREE_CODE (stmt) == ASM_EXPR
806	  && !may_propagate_copy_into_asm (tuse))
807	continue;
808
809      if (!may_propagate_copy (tuse, val))
810	continue;
811
812      if (TREE_CODE (val) != SSA_NAME)
813	prop_stats.num_const_prop++;
814      else
815	prop_stats.num_copy_prop++;
816
817      propagate_value (use, val);
818
819      replaced = true;
820      if (POINTER_TYPE_P (TREE_TYPE (tuse)) && replaced_addresses_p)
821	*replaced_addresses_p = true;
822    }
823
824  return replaced;
825}
826
827
828/* Replace the VUSE references in statement STMT with the values
829   stored in PROP_VALUE.  Return true if a reference was replaced.  If
830   REPLACED_ADDRESSES_P is given, it will be set to true if an address
831   constant was replaced.
832
833   Replacing VUSE operands is slightly more complex than replacing
834   regular USEs.  We are only interested in two types of replacements
835   here:
836
837   1- If the value to be replaced is a constant or an SSA name for a
838      GIMPLE register, then we are making a copy/constant propagation
839      from a memory store.  For instance,
840
841      	# a_3 = V_MAY_DEF <a_2>
842	a.b = x_1;
843	...
844 	# VUSE <a_3>
845	y_4 = a.b;
846
847      This replacement is only possible iff STMT is an assignment
848      whose RHS is identical to the LHS of the statement that created
849      the VUSE(s) that we are replacing.  Otherwise, we may do the
850      wrong replacement:
851
852      	# a_3 = V_MAY_DEF <a_2>
853	# b_5 = V_MAY_DEF <b_4>
854	*p = 10;
855	...
856	# VUSE <b_5>
857	x_8 = b;
858
859      Even though 'b_5' acquires the value '10' during propagation,
860      there is no way for the propagator to tell whether the
861      replacement is correct in every reached use, because values are
862      computed at definition sites.  Therefore, when doing final
863      substitution of propagated values, we have to check each use
864      site.  Since the RHS of STMT ('b') is different from the LHS of
865      the originating statement ('*p'), we cannot replace 'b' with
866      '10'.
867
868      Similarly, when merging values from PHI node arguments,
869      propagators need to take care not to merge the same values
870      stored in different locations:
871
872     		if (...)
873		  # a_3 = V_MAY_DEF <a_2>
874		  a.b = 3;
875		else
876		  # a_4 = V_MAY_DEF <a_2>
877		  a.c = 3;
878		# a_5 = PHI <a_3, a_4>
879
880      It would be wrong to propagate '3' into 'a_5' because that
881      operation merges two stores to different memory locations.
882
883
884   2- If the value to be replaced is an SSA name for a virtual
885      register, then we simply replace each VUSE operand with its
886      value from PROP_VALUE.  This is the same replacement done by
887      replace_uses_in.  */
888
889static bool
890replace_vuses_in (tree stmt, bool *replaced_addresses_p,
891                  prop_value_t *prop_value)
892{
893  bool replaced = false;
894  ssa_op_iter iter;
895  use_operand_p vuse;
896
897  if (stmt_makes_single_load (stmt))
898    {
899      /* If STMT is an assignment whose RHS is a single memory load,
900	 see if we are trying to propagate a constant or a GIMPLE
901	 register (case #1 above).  */
902      prop_value_t *val = get_value_loaded_by (stmt, prop_value);
903      tree rhs = TREE_OPERAND (stmt, 1);
904
905      if (val
906	  && val->value
907	  && (is_gimple_reg (val->value)
908	      || is_gimple_min_invariant (val->value))
909	  && simple_cst_equal (rhs, val->mem_ref) == 1)
910
911	{
912	  /* If we are replacing a constant address, inform our
913	     caller.  */
914	  if (TREE_CODE (val->value) != SSA_NAME
915	      && POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (stmt, 1)))
916	      && replaced_addresses_p)
917	    *replaced_addresses_p = true;
918
919	  /* We can only perform the substitution if the load is done
920	     from the same memory location as the original store.
921	     Since we already know that there are no intervening
922	     stores between DEF_STMT and STMT, we only need to check
923	     that the RHS of STMT is the same as the memory reference
924	     propagated together with the value.  */
925	  TREE_OPERAND (stmt, 1) = val->value;
926
927	  if (TREE_CODE (val->value) != SSA_NAME)
928	    prop_stats.num_const_prop++;
929	  else
930	    prop_stats.num_copy_prop++;
931
932	  /* Since we have replaced the whole RHS of STMT, there
933	     is no point in checking the other VUSEs, as they will
934	     all have the same value.  */
935	  return true;
936	}
937    }
938
939  /* Otherwise, the values for every VUSE operand must be other
940     SSA_NAMEs that can be propagated into STMT.  */
941  FOR_EACH_SSA_USE_OPERAND (vuse, stmt, iter, SSA_OP_VIRTUAL_USES)
942    {
943      tree var = USE_FROM_PTR (vuse);
944      tree val = prop_value[SSA_NAME_VERSION (var)].value;
945
946      if (val == NULL_TREE || var == val)
947	continue;
948
949      /* Constants and copies propagated between real and virtual
950	 operands are only possible in the cases handled above.  They
951	 should be ignored in any other context.  */
952      if (is_gimple_min_invariant (val) || is_gimple_reg (val))
953	continue;
954
955      propagate_value (vuse, val);
956      prop_stats.num_copy_prop++;
957      replaced = true;
958    }
959
960  return replaced;
961}
962
963
964/* Replace propagated values into all the arguments for PHI using the
965   values from PROP_VALUE.  */
966
967static void
968replace_phi_args_in (tree phi, prop_value_t *prop_value)
969{
970  int i;
971  bool replaced = false;
972  tree prev_phi = NULL;
973
974  if (dump_file && (dump_flags & TDF_DETAILS))
975    prev_phi = unshare_expr (phi);
976
977  for (i = 0; i < PHI_NUM_ARGS (phi); i++)
978    {
979      tree arg = PHI_ARG_DEF (phi, i);
980
981      if (TREE_CODE (arg) == SSA_NAME)
982	{
983	  tree val = prop_value[SSA_NAME_VERSION (arg)].value;
984
985	  if (val && val != arg && may_propagate_copy (arg, val))
986	    {
987	      if (TREE_CODE (val) != SSA_NAME)
988		prop_stats.num_const_prop++;
989	      else
990		prop_stats.num_copy_prop++;
991
992	      propagate_value (PHI_ARG_DEF_PTR (phi, i), val);
993	      replaced = true;
994
995	      /* If we propagated a copy and this argument flows
996		 through an abnormal edge, update the replacement
997		 accordingly.  */
998	      if (TREE_CODE (val) == SSA_NAME
999		  && PHI_ARG_EDGE (phi, i)->flags & EDGE_ABNORMAL)
1000		SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1001	    }
1002	}
1003    }
1004
1005  if (replaced && dump_file && (dump_flags & TDF_DETAILS))
1006    {
1007      fprintf (dump_file, "Folded PHI node: ");
1008      print_generic_stmt (dump_file, prev_phi, TDF_SLIM);
1009      fprintf (dump_file, "           into: ");
1010      print_generic_stmt (dump_file, phi, TDF_SLIM);
1011      fprintf (dump_file, "\n");
1012    }
1013}
1014
1015
1016/* If STMT has a predicate whose value can be computed using the value
1017   range information computed by VRP, compute its value and return true.
1018   Otherwise, return false.  */
1019
1020static bool
1021fold_predicate_in (tree stmt)
1022{
1023  tree *pred_p = NULL;
1024  bool modify_expr_p = false;
1025  tree val;
1026
1027  if (TREE_CODE (stmt) == MODIFY_EXPR
1028      && COMPARISON_CLASS_P (TREE_OPERAND (stmt, 1)))
1029    {
1030      modify_expr_p = true;
1031      pred_p = &TREE_OPERAND (stmt, 1);
1032    }
1033  else if (TREE_CODE (stmt) == COND_EXPR)
1034    pred_p = &COND_EXPR_COND (stmt);
1035  else
1036    return false;
1037
1038  val = vrp_evaluate_conditional (*pred_p, true);
1039  if (val)
1040    {
1041      if (modify_expr_p)
1042        val = fold_convert (TREE_TYPE (*pred_p), val);
1043
1044      if (dump_file)
1045	{
1046	  fprintf (dump_file, "Folding predicate ");
1047	  print_generic_expr (dump_file, *pred_p, 0);
1048	  fprintf (dump_file, " to ");
1049	  print_generic_expr (dump_file, val, 0);
1050	  fprintf (dump_file, "\n");
1051	}
1052
1053      prop_stats.num_pred_folded++;
1054      *pred_p = val;
1055      return true;
1056    }
1057
1058  return false;
1059}
1060
1061
1062/* Perform final substitution and folding of propagated values.
1063
1064   PROP_VALUE[I] contains the single value that should be substituted
1065   at every use of SSA name N_I.  If PROP_VALUE is NULL, no values are
1066   substituted.
1067
1068   If USE_RANGES_P is true, statements that contain predicate
1069   expressions are evaluated with a call to vrp_evaluate_conditional.
1070   This will only give meaningful results when called from tree-vrp.c
1071   (the information used by vrp_evaluate_conditional is built by the
1072   VRP pass).  */
1073
1074void
1075substitute_and_fold (prop_value_t *prop_value, bool use_ranges_p)
1076{
1077  basic_block bb;
1078
1079  if (prop_value == NULL && !use_ranges_p)
1080    return;
1081
1082  if (dump_file && (dump_flags & TDF_DETAILS))
1083    fprintf (dump_file, "\nSubstituing values and folding statements\n\n");
1084
1085  memset (&prop_stats, 0, sizeof (prop_stats));
1086
1087  /* Substitute values in every statement of every basic block.  */
1088  FOR_EACH_BB (bb)
1089    {
1090      block_stmt_iterator i;
1091      tree phi;
1092
1093      /* Propagate known values into PHI nodes.  */
1094      if (prop_value)
1095	for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
1096	  replace_phi_args_in (phi, prop_value);
1097
1098      for (i = bsi_start (bb); !bsi_end_p (i); bsi_next (&i))
1099	{
1100          bool replaced_address, did_replace;
1101	  tree prev_stmt = NULL;
1102	  tree stmt = bsi_stmt (i);
1103
1104	  /* Ignore ASSERT_EXPRs.  They are used by VRP to generate
1105	     range information for names and they are discarded
1106	     afterwards.  */
1107	  if (TREE_CODE (stmt) == MODIFY_EXPR
1108	      && TREE_CODE (TREE_OPERAND (stmt, 1)) == ASSERT_EXPR)
1109	    continue;
1110
1111	  /* Replace the statement with its folded version and mark it
1112	     folded.  */
1113	  did_replace = false;
1114	  replaced_address = false;
1115	  if (dump_file && (dump_flags & TDF_DETAILS))
1116	    prev_stmt = unshare_expr (stmt);
1117
1118	  /* If we have range information, see if we can fold
1119	     predicate expressions.  */
1120	  if (use_ranges_p)
1121	    {
1122	      did_replace = fold_predicate_in (stmt);
1123
1124	      /* Some statements may be simplified using ranges.  For
1125		 example, division may be replaced by shifts, modulo
1126		 replaced with bitwise and, etc.  */
1127	      simplify_stmt_using_ranges (stmt);
1128	    }
1129
1130	  if (prop_value)
1131	    {
1132	      /* Only replace real uses if we couldn't fold the
1133		 statement using value range information (value range
1134		 information is not collected on virtuals, so we only
1135		 need to check this for real uses).  */
1136	      if (!did_replace)
1137		did_replace |= replace_uses_in (stmt, &replaced_address,
1138		                                prop_value);
1139
1140	      did_replace |= replace_vuses_in (stmt, &replaced_address,
1141		                               prop_value);
1142	    }
1143
1144	  /* If we made a replacement, fold and cleanup the statement.  */
1145	  if (did_replace)
1146	    {
1147	      tree old_stmt = stmt;
1148	      tree rhs;
1149
1150	      fold_stmt (bsi_stmt_ptr (i));
1151	      stmt = bsi_stmt (i);
1152
1153	      /* If we folded a builtin function, we'll likely
1154		 need to rename VDEFs.  */
1155	      mark_new_vars_to_rename (stmt);
1156
1157              /* If we cleaned up EH information from the statement,
1158                 remove EH edges.  */
1159	      if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
1160		tree_purge_dead_eh_edges (bb);
1161
1162	      rhs = get_rhs (stmt);
1163	      if (TREE_CODE (rhs) == ADDR_EXPR)
1164		recompute_tree_invarant_for_addr_expr (rhs);
1165
1166	      if (dump_file && (dump_flags & TDF_DETAILS))
1167		{
1168		  fprintf (dump_file, "Folded statement: ");
1169		  print_generic_stmt (dump_file, prev_stmt, TDF_SLIM);
1170		  fprintf (dump_file, "            into: ");
1171		  print_generic_stmt (dump_file, stmt, TDF_SLIM);
1172		  fprintf (dump_file, "\n");
1173		}
1174	    }
1175	}
1176    }
1177
1178  if (dump_file && (dump_flags & TDF_STATS))
1179    {
1180      fprintf (dump_file, "Constants propagated: %6ld\n",
1181	       prop_stats.num_const_prop);
1182      fprintf (dump_file, "Copies propagated:    %6ld\n",
1183	       prop_stats.num_copy_prop);
1184      fprintf (dump_file, "Predicates folded:    %6ld\n",
1185	       prop_stats.num_pred_folded);
1186    }
1187}
1188
1189#include "gt-tree-ssa-propagate.h"
1190