1/* Compute register class preferences for pseudo-registers.
2   Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996
3   1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
4   Free Software Foundation, Inc.
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 2, or (at your option) any later
11version.
12
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16for more details.
17
18You should have received a copy of the GNU General Public License
19along with GCC; see the file COPYING.  If not, write to the Free
20Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
2102110-1301, USA.  */
22
23
24/* This file contains two passes of the compiler: reg_scan and reg_class.
25   It also defines some tables of information about the hardware registers
26   and a function init_reg_sets to initialize the tables.  */
27
28#include "config.h"
29#include "system.h"
30#include "coretypes.h"
31#include "tm.h"
32#include "hard-reg-set.h"
33#include "rtl.h"
34#include "expr.h"
35#include "tm_p.h"
36#include "flags.h"
37#include "basic-block.h"
38#include "regs.h"
39#include "function.h"
40#include "insn-config.h"
41#include "recog.h"
42#include "reload.h"
43#include "real.h"
44#include "toplev.h"
45#include "output.h"
46#include "ggc.h"
47#include "timevar.h"
48#include "hashtab.h"
49
50static void init_reg_sets_1 (void);
51static void init_reg_autoinc (void);
52
53/* If we have auto-increment or auto-decrement and we can have secondary
54   reloads, we are not allowed to use classes requiring secondary
55   reloads for pseudos auto-incremented since reload can't handle it.  */
56
57#ifdef AUTO_INC_DEC
58#if defined(SECONDARY_INPUT_RELOAD_CLASS) || defined(SECONDARY_OUTPUT_RELOAD_CLASS)
59#define FORBIDDEN_INC_DEC_CLASSES
60#endif
61#endif
62
63/* Register tables used by many passes.  */
64
65/* Indexed by hard register number, contains 1 for registers
66   that are fixed use (stack pointer, pc, frame pointer, etc.).
67   These are the registers that cannot be used to allocate
68   a pseudo reg for general use.  */
69
70char fixed_regs[FIRST_PSEUDO_REGISTER];
71
72/* Same info as a HARD_REG_SET.  */
73
74HARD_REG_SET fixed_reg_set;
75
76/* Data for initializing the above.  */
77
78static const char initial_fixed_regs[] = FIXED_REGISTERS;
79
80/* Indexed by hard register number, contains 1 for registers
81   that are fixed use or are clobbered by function calls.
82   These are the registers that cannot be used to allocate
83   a pseudo reg whose life crosses calls unless we are able
84   to save/restore them across the calls.  */
85
86char call_used_regs[FIRST_PSEUDO_REGISTER];
87
88/* Same info as a HARD_REG_SET.  */
89
90HARD_REG_SET call_used_reg_set;
91
92/* HARD_REG_SET of registers we want to avoid caller saving.  */
93HARD_REG_SET losing_caller_save_reg_set;
94
95/* Data for initializing the above.  */
96
97static const char initial_call_used_regs[] = CALL_USED_REGISTERS;
98
99/* This is much like call_used_regs, except it doesn't have to
100   be a superset of FIXED_REGISTERS. This vector indicates
101   what is really call clobbered, and is used when defining
102   regs_invalidated_by_call.  */
103
104#ifdef CALL_REALLY_USED_REGISTERS
105char call_really_used_regs[] = CALL_REALLY_USED_REGISTERS;
106#endif
107
108#ifdef CALL_REALLY_USED_REGISTERS
109#define CALL_REALLY_USED_REGNO_P(X)  call_really_used_regs[X]
110#else
111#define CALL_REALLY_USED_REGNO_P(X)  call_used_regs[X]
112#endif
113
114
115/* Indexed by hard register number, contains 1 for registers that are
116   fixed use or call used registers that cannot hold quantities across
117   calls even if we are willing to save and restore them.  call fixed
118   registers are a subset of call used registers.  */
119
120char call_fixed_regs[FIRST_PSEUDO_REGISTER];
121
122/* The same info as a HARD_REG_SET.  */
123
124HARD_REG_SET call_fixed_reg_set;
125
126/* Number of non-fixed registers.  */
127
128int n_non_fixed_regs;
129
130/* Indexed by hard register number, contains 1 for registers
131   that are being used for global register decls.
132   These must be exempt from ordinary flow analysis
133   and are also considered fixed.  */
134
135char global_regs[FIRST_PSEUDO_REGISTER];
136
137/* Contains 1 for registers that are set or clobbered by calls.  */
138/* ??? Ideally, this would be just call_used_regs plus global_regs, but
139   for someone's bright idea to have call_used_regs strictly include
140   fixed_regs.  Which leaves us guessing as to the set of fixed_regs
141   that are actually preserved.  We know for sure that those associated
142   with the local stack frame are safe, but scant others.  */
143
144HARD_REG_SET regs_invalidated_by_call;
145
146/* Table of register numbers in the order in which to try to use them.  */
147#ifdef REG_ALLOC_ORDER
148int reg_alloc_order[FIRST_PSEUDO_REGISTER] = REG_ALLOC_ORDER;
149
150/* The inverse of reg_alloc_order.  */
151int inv_reg_alloc_order[FIRST_PSEUDO_REGISTER];
152#endif
153
154/* For each reg class, a HARD_REG_SET saying which registers are in it.  */
155
156HARD_REG_SET reg_class_contents[N_REG_CLASSES];
157
158/* The same information, but as an array of unsigned ints.  We copy from
159   these unsigned ints to the table above.  We do this so the tm.h files
160   do not have to be aware of the wordsize for machines with <= 64 regs.
161   Note that we hard-code 32 here, not HOST_BITS_PER_INT.  */
162
163#define N_REG_INTS  \
164  ((FIRST_PSEUDO_REGISTER + (32 - 1)) / 32)
165
166static const unsigned int_reg_class_contents[N_REG_CLASSES][N_REG_INTS]
167  = REG_CLASS_CONTENTS;
168
169/* For each reg class, number of regs it contains.  */
170
171unsigned int reg_class_size[N_REG_CLASSES];
172
173/* For each reg class, table listing all the containing classes.  */
174
175static enum reg_class reg_class_superclasses[N_REG_CLASSES][N_REG_CLASSES];
176
177/* For each reg class, table listing all the classes contained in it.  */
178
179static enum reg_class reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
180
181/* For each pair of reg classes,
182   a largest reg class contained in their union.  */
183
184enum reg_class reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
185
186/* For each pair of reg classes,
187   the smallest reg class containing their union.  */
188
189enum reg_class reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
190
191/* Array containing all of the register names.  */
192
193const char * reg_names[] = REGISTER_NAMES;
194
195/* Array containing all of the register class names.  */
196
197const char * reg_class_names[] = REG_CLASS_NAMES;
198
199/* For each hard register, the widest mode object that it can contain.
200   This will be a MODE_INT mode if the register can hold integers.  Otherwise
201   it will be a MODE_FLOAT or a MODE_CC mode, whichever is valid for the
202   register.  */
203
204enum machine_mode reg_raw_mode[FIRST_PSEUDO_REGISTER];
205
206/* 1 if there is a register of given mode.  */
207
208bool have_regs_of_mode [MAX_MACHINE_MODE];
209
210/* 1 if class does contain register of given mode.  */
211
212static char contains_reg_of_mode [N_REG_CLASSES] [MAX_MACHINE_MODE];
213
214/* Maximum cost of moving from a register in one class to a register in
215   another class.  Based on REGISTER_MOVE_COST.  */
216
217static int move_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
218
219/* Similar, but here we don't have to move if the first index is a subset
220   of the second so in that case the cost is zero.  */
221
222static int may_move_in_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
223
224/* Similar, but here we don't have to move if the first index is a superset
225   of the second so in that case the cost is zero.  */
226
227static int may_move_out_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
228
229#ifdef FORBIDDEN_INC_DEC_CLASSES
230
231/* These are the classes that regs which are auto-incremented or decremented
232   cannot be put in.  */
233
234static int forbidden_inc_dec_class[N_REG_CLASSES];
235
236/* Indexed by n, is nonzero if (REG n) is used in an auto-inc or auto-dec
237   context.  */
238
239static char *in_inc_dec;
240
241#endif /* FORBIDDEN_INC_DEC_CLASSES */
242
243/* Sample MEM values for use by memory_move_secondary_cost.  */
244
245static GTY(()) rtx top_of_stack[MAX_MACHINE_MODE];
246
247/* Linked list of reg_info structures allocated for reg_n_info array.
248   Grouping all of the allocated structures together in one lump
249   means only one call to bzero to clear them, rather than n smaller
250   calls.  */
251struct reg_info_data {
252  struct reg_info_data *next;	/* next set of reg_info structures */
253  size_t min_index;		/* minimum index # */
254  size_t max_index;		/* maximum index # */
255  char used_p;			/* nonzero if this has been used previously */
256  reg_info data[1];		/* beginning of the reg_info data */
257};
258
259static struct reg_info_data *reg_info_head;
260
261/* No more global register variables may be declared; true once
262   regclass has been initialized.  */
263
264static int no_global_reg_vars = 0;
265
266/* Specify number of hard registers given machine mode occupy.  */
267unsigned char hard_regno_nregs[FIRST_PSEUDO_REGISTER][MAX_MACHINE_MODE];
268
269/* Function called only once to initialize the above data on reg usage.
270   Once this is done, various switches may override.  */
271
272void
273init_reg_sets (void)
274{
275  int i, j;
276
277  /* First copy the register information from the initial int form into
278     the regsets.  */
279
280  for (i = 0; i < N_REG_CLASSES; i++)
281    {
282      CLEAR_HARD_REG_SET (reg_class_contents[i]);
283
284      /* Note that we hard-code 32 here, not HOST_BITS_PER_INT.  */
285      for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
286	if (int_reg_class_contents[i][j / 32]
287	    & ((unsigned) 1 << (j % 32)))
288	  SET_HARD_REG_BIT (reg_class_contents[i], j);
289    }
290
291  /* Sanity check: make sure the target macros FIXED_REGISTERS and
292     CALL_USED_REGISTERS had the right number of initializers.  */
293  gcc_assert (sizeof fixed_regs == sizeof initial_fixed_regs);
294  gcc_assert (sizeof call_used_regs == sizeof initial_call_used_regs);
295
296  memcpy (fixed_regs, initial_fixed_regs, sizeof fixed_regs);
297  memcpy (call_used_regs, initial_call_used_regs, sizeof call_used_regs);
298  memset (global_regs, 0, sizeof global_regs);
299
300#ifdef REG_ALLOC_ORDER
301  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
302    inv_reg_alloc_order[reg_alloc_order[i]] = i;
303#endif
304}
305
306/* After switches have been processed, which perhaps alter
307   `fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs.  */
308
309static void
310init_reg_sets_1 (void)
311{
312  unsigned int i, j;
313  unsigned int /* enum machine_mode */ m;
314
315  /* This macro allows the fixed or call-used registers
316     and the register classes to depend on target flags.  */
317
318#ifdef CONDITIONAL_REGISTER_USAGE
319  CONDITIONAL_REGISTER_USAGE;
320#endif
321
322  /* Compute number of hard regs in each class.  */
323
324  memset (reg_class_size, 0, sizeof reg_class_size);
325  for (i = 0; i < N_REG_CLASSES; i++)
326    for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
327      if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
328	reg_class_size[i]++;
329
330  /* Initialize the table of subunions.
331     reg_class_subunion[I][J] gets the largest-numbered reg-class
332     that is contained in the union of classes I and J.  */
333
334  for (i = 0; i < N_REG_CLASSES; i++)
335    {
336      for (j = 0; j < N_REG_CLASSES; j++)
337	{
338	  HARD_REG_SET c;
339	  int k;
340
341	  COPY_HARD_REG_SET (c, reg_class_contents[i]);
342	  IOR_HARD_REG_SET (c, reg_class_contents[j]);
343	  for (k = 0; k < N_REG_CLASSES; k++)
344	    {
345	      GO_IF_HARD_REG_SUBSET (reg_class_contents[k], c,
346				     subclass1);
347	      continue;
348
349	    subclass1:
350	      /* Keep the largest subclass.  */		/* SPEE 900308 */
351	      GO_IF_HARD_REG_SUBSET (reg_class_contents[k],
352				     reg_class_contents[(int) reg_class_subunion[i][j]],
353				     subclass2);
354	      reg_class_subunion[i][j] = (enum reg_class) k;
355	    subclass2:
356	      ;
357	    }
358	}
359    }
360
361  /* Initialize the table of superunions.
362     reg_class_superunion[I][J] gets the smallest-numbered reg-class
363     containing the union of classes I and J.  */
364
365  for (i = 0; i < N_REG_CLASSES; i++)
366    {
367      for (j = 0; j < N_REG_CLASSES; j++)
368	{
369	  HARD_REG_SET c;
370	  int k;
371
372	  COPY_HARD_REG_SET (c, reg_class_contents[i]);
373	  IOR_HARD_REG_SET (c, reg_class_contents[j]);
374	  for (k = 0; k < N_REG_CLASSES; k++)
375	    GO_IF_HARD_REG_SUBSET (c, reg_class_contents[k], superclass);
376
377	superclass:
378	  reg_class_superunion[i][j] = (enum reg_class) k;
379	}
380    }
381
382  /* Initialize the tables of subclasses and superclasses of each reg class.
383     First clear the whole table, then add the elements as they are found.  */
384
385  for (i = 0; i < N_REG_CLASSES; i++)
386    {
387      for (j = 0; j < N_REG_CLASSES; j++)
388	{
389	  reg_class_superclasses[i][j] = LIM_REG_CLASSES;
390	  reg_class_subclasses[i][j] = LIM_REG_CLASSES;
391	}
392    }
393
394  for (i = 0; i < N_REG_CLASSES; i++)
395    {
396      if (i == (int) NO_REGS)
397	continue;
398
399      for (j = i + 1; j < N_REG_CLASSES; j++)
400	{
401	  enum reg_class *p;
402
403	  GO_IF_HARD_REG_SUBSET (reg_class_contents[i], reg_class_contents[j],
404				 subclass);
405	  continue;
406	subclass:
407	  /* Reg class I is a subclass of J.
408	     Add J to the table of superclasses of I.  */
409	  p = &reg_class_superclasses[i][0];
410	  while (*p != LIM_REG_CLASSES) p++;
411	  *p = (enum reg_class) j;
412	  /* Add I to the table of superclasses of J.  */
413	  p = &reg_class_subclasses[j][0];
414	  while (*p != LIM_REG_CLASSES) p++;
415	  *p = (enum reg_class) i;
416	}
417    }
418
419  /* Initialize "constant" tables.  */
420
421  CLEAR_HARD_REG_SET (fixed_reg_set);
422  CLEAR_HARD_REG_SET (call_used_reg_set);
423  CLEAR_HARD_REG_SET (call_fixed_reg_set);
424  CLEAR_HARD_REG_SET (regs_invalidated_by_call);
425
426  memcpy (call_fixed_regs, fixed_regs, sizeof call_fixed_regs);
427
428  n_non_fixed_regs = 0;
429
430  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
431    {
432      /* call_used_regs must include fixed_regs.  */
433      gcc_assert (!fixed_regs[i] || call_used_regs[i]);
434#ifdef CALL_REALLY_USED_REGISTERS
435      /* call_used_regs must include call_really_used_regs.  */
436      gcc_assert (!call_really_used_regs[i] || call_used_regs[i]);
437#endif
438
439      if (fixed_regs[i])
440	SET_HARD_REG_BIT (fixed_reg_set, i);
441      else
442	n_non_fixed_regs++;
443
444      if (call_used_regs[i])
445	SET_HARD_REG_BIT (call_used_reg_set, i);
446      if (call_fixed_regs[i])
447	SET_HARD_REG_BIT (call_fixed_reg_set, i);
448      if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (i)))
449	SET_HARD_REG_BIT (losing_caller_save_reg_set, i);
450
451      /* There are a couple of fixed registers that we know are safe to
452	 exclude from being clobbered by calls:
453
454	 The frame pointer is always preserved across calls.  The arg pointer
455	 is if it is fixed.  The stack pointer usually is, unless
456	 RETURN_POPS_ARGS, in which case an explicit CLOBBER will be present.
457	 If we are generating PIC code, the PIC offset table register is
458	 preserved across calls, though the target can override that.  */
459
460      if (i == STACK_POINTER_REGNUM)
461	;
462      else if (global_regs[i])
463	SET_HARD_REG_BIT (regs_invalidated_by_call, i);
464      else if (i == FRAME_POINTER_REGNUM)
465	;
466#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
467      else if (i == HARD_FRAME_POINTER_REGNUM)
468	;
469#endif
470#if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
471      else if (i == ARG_POINTER_REGNUM && fixed_regs[i])
472	;
473#endif
474#ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
475      else if (i == (unsigned) PIC_OFFSET_TABLE_REGNUM && fixed_regs[i])
476	;
477#endif
478      else if (CALL_REALLY_USED_REGNO_P (i))
479	SET_HARD_REG_BIT (regs_invalidated_by_call, i);
480    }
481
482  memset (have_regs_of_mode, 0, sizeof (have_regs_of_mode));
483  memset (contains_reg_of_mode, 0, sizeof (contains_reg_of_mode));
484  for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
485    for (i = 0; i < N_REG_CLASSES; i++)
486      if ((unsigned) CLASS_MAX_NREGS (i, m) <= reg_class_size[i])
487	for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
488	  if (!fixed_regs [j] && TEST_HARD_REG_BIT (reg_class_contents[i], j)
489	      && HARD_REGNO_MODE_OK (j, m))
490	     {
491	       contains_reg_of_mode [i][m] = 1;
492	       have_regs_of_mode [m] = 1;
493	       break;
494	     }
495
496  /* Initialize the move cost table.  Find every subset of each class
497     and take the maximum cost of moving any subset to any other.  */
498
499  for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
500    if (have_regs_of_mode [m])
501      {
502	for (i = 0; i < N_REG_CLASSES; i++)
503	  if (contains_reg_of_mode [i][m])
504	    for (j = 0; j < N_REG_CLASSES; j++)
505	      {
506		int cost;
507		enum reg_class *p1, *p2;
508
509		if (!contains_reg_of_mode [j][m])
510		  {
511		    move_cost[m][i][j] = 65536;
512		    may_move_in_cost[m][i][j] = 65536;
513		    may_move_out_cost[m][i][j] = 65536;
514		  }
515		else
516		  {
517		    cost = REGISTER_MOVE_COST (m, i, j);
518
519		    for (p2 = &reg_class_subclasses[j][0];
520			 *p2 != LIM_REG_CLASSES;
521			 p2++)
522		      if (*p2 != i && contains_reg_of_mode [*p2][m])
523			cost = MAX (cost, move_cost [m][i][*p2]);
524
525		    for (p1 = &reg_class_subclasses[i][0];
526			 *p1 != LIM_REG_CLASSES;
527			 p1++)
528		      if (*p1 != j && contains_reg_of_mode [*p1][m])
529			cost = MAX (cost, move_cost [m][*p1][j]);
530
531		    move_cost[m][i][j] = cost;
532
533		    if (reg_class_subset_p (i, j))
534		      may_move_in_cost[m][i][j] = 0;
535		    else
536		      may_move_in_cost[m][i][j] = cost;
537
538		    if (reg_class_subset_p (j, i))
539		      may_move_out_cost[m][i][j] = 0;
540		    else
541		      may_move_out_cost[m][i][j] = cost;
542		  }
543	      }
544	  else
545	    for (j = 0; j < N_REG_CLASSES; j++)
546	      {
547		move_cost[m][i][j] = 65536;
548		may_move_in_cost[m][i][j] = 65536;
549		may_move_out_cost[m][i][j] = 65536;
550	      }
551      }
552}
553
554/* Compute the table of register modes.
555   These values are used to record death information for individual registers
556   (as opposed to a multi-register mode).  */
557
558void
559init_reg_modes_once (void)
560{
561  int i, j;
562
563  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
564    for (j = 0; j < MAX_MACHINE_MODE; j++)
565      hard_regno_nregs[i][j] = HARD_REGNO_NREGS(i, (enum machine_mode)j);
566
567  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
568    {
569      reg_raw_mode[i] = choose_hard_reg_mode (i, 1, false);
570
571      /* If we couldn't find a valid mode, just use the previous mode.
572         ??? One situation in which we need to do this is on the mips where
573	 HARD_REGNO_NREGS (fpreg, [SD]Fmode) returns 2.  Ideally we'd like
574	 to use DF mode for the even registers and VOIDmode for the odd
575	 (for the cpu models where the odd ones are inaccessible).  */
576      if (reg_raw_mode[i] == VOIDmode)
577	reg_raw_mode[i] = i == 0 ? word_mode : reg_raw_mode[i-1];
578    }
579}
580
581/* Finish initializing the register sets and
582   initialize the register modes.  */
583
584void
585init_regs (void)
586{
587  /* This finishes what was started by init_reg_sets, but couldn't be done
588     until after register usage was specified.  */
589  init_reg_sets_1 ();
590
591  init_reg_autoinc ();
592}
593
594/* Initialize some fake stack-frame MEM references for use in
595   memory_move_secondary_cost.  */
596
597void
598init_fake_stack_mems (void)
599{
600#ifdef HAVE_SECONDARY_RELOADS
601  {
602    int i;
603
604    for (i = 0; i < MAX_MACHINE_MODE; i++)
605      top_of_stack[i] = gen_rtx_MEM (i, stack_pointer_rtx);
606  }
607#endif
608}
609
610#ifdef HAVE_SECONDARY_RELOADS
611
612/* Compute extra cost of moving registers to/from memory due to reloads.
613   Only needed if secondary reloads are required for memory moves.  */
614
615int
616memory_move_secondary_cost (enum machine_mode mode, enum reg_class class, int in)
617{
618  enum reg_class altclass;
619  int partial_cost = 0;
620  /* We need a memory reference to feed to SECONDARY... macros.  */
621  /* mem may be unused even if the SECONDARY_ macros are defined.  */
622  rtx mem ATTRIBUTE_UNUSED = top_of_stack[(int) mode];
623
624
625  if (in)
626    {
627#ifdef SECONDARY_INPUT_RELOAD_CLASS
628      altclass = SECONDARY_INPUT_RELOAD_CLASS (class, mode, mem);
629#else
630      altclass = NO_REGS;
631#endif
632    }
633  else
634    {
635#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
636      altclass = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, mem);
637#else
638      altclass = NO_REGS;
639#endif
640    }
641
642  if (altclass == NO_REGS)
643    return 0;
644
645  if (in)
646    partial_cost = REGISTER_MOVE_COST (mode, altclass, class);
647  else
648    partial_cost = REGISTER_MOVE_COST (mode, class, altclass);
649
650  if (class == altclass)
651    /* This isn't simply a copy-to-temporary situation.  Can't guess
652       what it is, so MEMORY_MOVE_COST really ought not to be calling
653       here in that case.
654
655       I'm tempted to put in an assert here, but returning this will
656       probably only give poor estimates, which is what we would've
657       had before this code anyways.  */
658    return partial_cost;
659
660  /* Check if the secondary reload register will also need a
661     secondary reload.  */
662  return memory_move_secondary_cost (mode, altclass, in) + partial_cost;
663}
664#endif
665
666/* Return a machine mode that is legitimate for hard reg REGNO and large
667   enough to save nregs.  If we can't find one, return VOIDmode.
668   If CALL_SAVED is true, only consider modes that are call saved.  */
669
670enum machine_mode
671choose_hard_reg_mode (unsigned int regno ATTRIBUTE_UNUSED,
672		      unsigned int nregs, bool call_saved)
673{
674  unsigned int /* enum machine_mode */ m;
675  enum machine_mode found_mode = VOIDmode, mode;
676
677  /* We first look for the largest integer mode that can be validly
678     held in REGNO.  If none, we look for the largest floating-point mode.
679     If we still didn't find a valid mode, try CCmode.  */
680
681  for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
682       mode != VOIDmode;
683       mode = GET_MODE_WIDER_MODE (mode))
684    if ((unsigned) hard_regno_nregs[regno][mode] == nregs
685	&& HARD_REGNO_MODE_OK (regno, mode)
686	&& (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
687      found_mode = mode;
688
689  if (found_mode != VOIDmode)
690    return found_mode;
691
692  for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
693       mode != VOIDmode;
694       mode = GET_MODE_WIDER_MODE (mode))
695    if ((unsigned) hard_regno_nregs[regno][mode] == nregs
696	&& HARD_REGNO_MODE_OK (regno, mode)
697	&& (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
698      found_mode = mode;
699
700  if (found_mode != VOIDmode)
701    return found_mode;
702
703  for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
704       mode != VOIDmode;
705       mode = GET_MODE_WIDER_MODE (mode))
706    if ((unsigned) hard_regno_nregs[regno][mode] == nregs
707	&& HARD_REGNO_MODE_OK (regno, mode)
708	&& (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
709      found_mode = mode;
710
711  if (found_mode != VOIDmode)
712    return found_mode;
713
714  for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
715       mode != VOIDmode;
716       mode = GET_MODE_WIDER_MODE (mode))
717    if ((unsigned) hard_regno_nregs[regno][mode] == nregs
718	&& HARD_REGNO_MODE_OK (regno, mode)
719	&& (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
720      found_mode = mode;
721
722  if (found_mode != VOIDmode)
723    return found_mode;
724
725  /* Iterate over all of the CCmodes.  */
726  for (m = (unsigned int) CCmode; m < (unsigned int) NUM_MACHINE_MODES; ++m)
727    {
728      mode = (enum machine_mode) m;
729      if ((unsigned) hard_regno_nregs[regno][mode] == nregs
730	  && HARD_REGNO_MODE_OK (regno, mode)
731	  && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
732	return mode;
733    }
734
735  /* We can't find a mode valid for this register.  */
736  return VOIDmode;
737}
738
739/* Specify the usage characteristics of the register named NAME.
740   It should be a fixed register if FIXED and a
741   call-used register if CALL_USED.  */
742
743void
744fix_register (const char *name, int fixed, int call_used)
745{
746  int i;
747
748  /* Decode the name and update the primary form of
749     the register info.  */
750
751  if ((i = decode_reg_name (name)) >= 0)
752    {
753      if ((i == STACK_POINTER_REGNUM
754#ifdef HARD_FRAME_POINTER_REGNUM
755	   || i == HARD_FRAME_POINTER_REGNUM
756#else
757	   || i == FRAME_POINTER_REGNUM
758#endif
759	   )
760	  && (fixed == 0 || call_used == 0))
761	{
762	  static const char * const what_option[2][2] = {
763	    { "call-saved", "call-used" },
764	    { "no-such-option", "fixed" }};
765
766	  error ("can't use '%s' as a %s register", name,
767		 what_option[fixed][call_used]);
768	}
769      else
770	{
771	  fixed_regs[i] = fixed;
772	  call_used_regs[i] = call_used;
773#ifdef CALL_REALLY_USED_REGISTERS
774	  if (fixed == 0)
775	    call_really_used_regs[i] = call_used;
776#endif
777	}
778    }
779  else
780    {
781      warning (0, "unknown register name: %s", name);
782    }
783}
784
785/* Mark register number I as global.  */
786
787void
788globalize_reg (int i)
789{
790  if (fixed_regs[i] == 0 && no_global_reg_vars)
791    error ("global register variable follows a function definition");
792
793  if (global_regs[i])
794    {
795      warning (0, "register used for two global register variables");
796      return;
797    }
798
799  if (call_used_regs[i] && ! fixed_regs[i])
800    warning (0, "call-clobbered register used for global register variable");
801
802  global_regs[i] = 1;
803
804  /* If we're globalizing the frame pointer, we need to set the
805     appropriate regs_invalidated_by_call bit, even if it's already
806     set in fixed_regs.  */
807  if (i != STACK_POINTER_REGNUM)
808    SET_HARD_REG_BIT (regs_invalidated_by_call, i);
809
810  /* If already fixed, nothing else to do.  */
811  if (fixed_regs[i])
812    return;
813
814  fixed_regs[i] = call_used_regs[i] = call_fixed_regs[i] = 1;
815#ifdef CALL_REALLY_USED_REGISTERS
816  call_really_used_regs[i] = 1;
817#endif
818  n_non_fixed_regs--;
819
820  SET_HARD_REG_BIT (fixed_reg_set, i);
821  SET_HARD_REG_BIT (call_used_reg_set, i);
822  SET_HARD_REG_BIT (call_fixed_reg_set, i);
823}
824
825/* Now the data and code for the `regclass' pass, which happens
826   just before local-alloc.  */
827
828/* The `costs' struct records the cost of using a hard register of each class
829   and of using memory for each pseudo.  We use this data to set up
830   register class preferences.  */
831
832struct costs
833{
834  int cost[N_REG_CLASSES];
835  int mem_cost;
836};
837
838/* Structure used to record preferences of given pseudo.  */
839struct reg_pref
840{
841  /* (enum reg_class) prefclass is the preferred class.  */
842  char prefclass;
843
844  /* altclass is a register class that we should use for allocating
845     pseudo if no register in the preferred class is available.
846     If no register in this class is available, memory is preferred.
847
848     It might appear to be more general to have a bitmask of classes here,
849     but since it is recommended that there be a class corresponding to the
850     union of most major pair of classes, that generality is not required.  */
851  char altclass;
852};
853
854/* Record the cost of each class for each pseudo.  */
855
856static struct costs *costs;
857
858/* Initialized once, and used to initialize cost values for each insn.  */
859
860static struct costs init_cost;
861
862/* Record preferences of each pseudo.
863   This is available after `regclass' is run.  */
864
865static struct reg_pref *reg_pref;
866
867/* Allocated buffers for reg_pref.  */
868
869static struct reg_pref *reg_pref_buffer;
870
871/* Frequency of executions of current insn.  */
872
873static int frequency;
874
875static rtx scan_one_insn (rtx, int);
876static void record_operand_costs (rtx, struct costs *, struct reg_pref *);
877static void dump_regclass (FILE *);
878static void record_reg_classes (int, int, rtx *, enum machine_mode *,
879				const char **, rtx, struct costs *,
880				struct reg_pref *);
881static int copy_cost (rtx, enum machine_mode, enum reg_class, int);
882static void record_address_regs (rtx, enum reg_class, int);
883#ifdef FORBIDDEN_INC_DEC_CLASSES
884static int auto_inc_dec_reg_p (rtx, enum machine_mode);
885#endif
886static void reg_scan_mark_refs (rtx, rtx, int, unsigned int);
887
888/* Return the reg_class in which pseudo reg number REGNO is best allocated.
889   This function is sometimes called before the info has been computed.
890   When that happens, just return GENERAL_REGS, which is innocuous.  */
891
892enum reg_class
893reg_preferred_class (int regno)
894{
895  if (reg_pref == 0)
896    return GENERAL_REGS;
897  return (enum reg_class) reg_pref[regno].prefclass;
898}
899
900enum reg_class
901reg_alternate_class (int regno)
902{
903  if (reg_pref == 0)
904    return ALL_REGS;
905
906  return (enum reg_class) reg_pref[regno].altclass;
907}
908
909/* Initialize some global data for this pass.  */
910
911void
912regclass_init (void)
913{
914  int i;
915
916  init_cost.mem_cost = 10000;
917  for (i = 0; i < N_REG_CLASSES; i++)
918    init_cost.cost[i] = 10000;
919
920  /* This prevents dump_flow_info from losing if called
921     before regclass is run.  */
922  reg_pref = NULL;
923
924  /* No more global register variables may be declared.  */
925  no_global_reg_vars = 1;
926}
927
928/* Dump register costs.  */
929static void
930dump_regclass (FILE *dump)
931{
932  int i;
933  for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
934    {
935      int /* enum reg_class */ class;
936      if (REG_N_REFS (i))
937	{
938	  fprintf (dump, "  Register %i costs:", i);
939	  for (class = 0; class < (int) N_REG_CLASSES; class++)
940	    if (contains_reg_of_mode [(enum reg_class) class][PSEUDO_REGNO_MODE (i)]
941#ifdef FORBIDDEN_INC_DEC_CLASSES
942		&& (!in_inc_dec[i]
943		    || !forbidden_inc_dec_class[(enum reg_class) class])
944#endif
945#ifdef CANNOT_CHANGE_MODE_CLASS
946		&& ! invalid_mode_change_p (i, (enum reg_class) class,
947					    PSEUDO_REGNO_MODE (i))
948#endif
949		)
950	    fprintf (dump, " %s:%i", reg_class_names[class],
951		     costs[i].cost[(enum reg_class) class]);
952	  fprintf (dump, " MEM:%i\n", costs[i].mem_cost);
953	}
954    }
955}
956
957
958/* Calculate the costs of insn operands.  */
959
960static void
961record_operand_costs (rtx insn, struct costs *op_costs,
962		      struct reg_pref *reg_pref)
963{
964  const char *constraints[MAX_RECOG_OPERANDS];
965  enum machine_mode modes[MAX_RECOG_OPERANDS];
966  int i;
967
968  for (i = 0; i < recog_data.n_operands; i++)
969    {
970      constraints[i] = recog_data.constraints[i];
971      modes[i] = recog_data.operand_mode[i];
972    }
973
974  /* If we get here, we are set up to record the costs of all the
975     operands for this insn.  Start by initializing the costs.
976     Then handle any address registers.  Finally record the desired
977     classes for any pseudos, doing it twice if some pair of
978     operands are commutative.  */
979
980  for (i = 0; i < recog_data.n_operands; i++)
981    {
982      op_costs[i] = init_cost;
983
984      if (GET_CODE (recog_data.operand[i]) == SUBREG)
985	recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
986
987      if (MEM_P (recog_data.operand[i]))
988	record_address_regs (XEXP (recog_data.operand[i], 0),
989			     MODE_BASE_REG_CLASS (modes[i]), frequency * 2);
990      else if (constraints[i][0] == 'p'
991	       || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0], constraints[i]))
992	record_address_regs (recog_data.operand[i],
993			     MODE_BASE_REG_CLASS (modes[i]), frequency * 2);
994    }
995
996  /* Check for commutative in a separate loop so everything will
997     have been initialized.  We must do this even if one operand
998     is a constant--see addsi3 in m68k.md.  */
999
1000  for (i = 0; i < (int) recog_data.n_operands - 1; i++)
1001    if (constraints[i][0] == '%')
1002      {
1003	const char *xconstraints[MAX_RECOG_OPERANDS];
1004	int j;
1005
1006	/* Handle commutative operands by swapping the constraints.
1007	   We assume the modes are the same.  */
1008
1009	for (j = 0; j < recog_data.n_operands; j++)
1010	  xconstraints[j] = constraints[j];
1011
1012	xconstraints[i] = constraints[i+1];
1013	xconstraints[i+1] = constraints[i];
1014	record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1015			    recog_data.operand, modes,
1016			    xconstraints, insn, op_costs, reg_pref);
1017      }
1018
1019  record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1020		      recog_data.operand, modes,
1021		      constraints, insn, op_costs, reg_pref);
1022}
1023
1024/* Subroutine of regclass, processes one insn INSN.  Scan it and record each
1025   time it would save code to put a certain register in a certain class.
1026   PASS, when nonzero, inhibits some optimizations which need only be done
1027   once.
1028   Return the last insn processed, so that the scan can be continued from
1029   there.  */
1030
1031static rtx
1032scan_one_insn (rtx insn, int pass)
1033{
1034  enum rtx_code pat_code;
1035  rtx set, note;
1036  int i, j;
1037  struct costs op_costs[MAX_RECOG_OPERANDS];
1038
1039  if (!INSN_P (insn))
1040    return insn;
1041
1042  pat_code = GET_CODE (PATTERN (insn));
1043  if (pat_code == USE
1044      || pat_code == CLOBBER
1045      || pat_code == ASM_INPUT
1046      || pat_code == ADDR_VEC
1047      || pat_code == ADDR_DIFF_VEC)
1048    return insn;
1049
1050  set = single_set (insn);
1051  extract_insn (insn);
1052
1053  /* If this insn loads a parameter from its stack slot, then
1054     it represents a savings, rather than a cost, if the
1055     parameter is stored in memory.  Record this fact.  */
1056
1057  if (set != 0 && REG_P (SET_DEST (set))
1058      && MEM_P (SET_SRC (set))
1059      && (note = find_reg_note (insn, REG_EQUIV,
1060				NULL_RTX)) != 0
1061      && MEM_P (XEXP (note, 0)))
1062    {
1063      costs[REGNO (SET_DEST (set))].mem_cost
1064	-= (MEMORY_MOVE_COST (GET_MODE (SET_DEST (set)),
1065			      GENERAL_REGS, 1)
1066	    * frequency);
1067      record_address_regs (XEXP (SET_SRC (set), 0),
1068			   MODE_BASE_REG_CLASS (VOIDmode), frequency * 2);
1069      return insn;
1070    }
1071
1072  /* Improve handling of two-address insns such as
1073     (set X (ashift CONST Y)) where CONST must be made to
1074     match X. Change it into two insns: (set X CONST)
1075     (set X (ashift X Y)).  If we left this for reloading, it
1076     would probably get three insns because X and Y might go
1077     in the same place. This prevents X and Y from receiving
1078     the same hard reg.
1079
1080     We can only do this if the modes of operands 0 and 1
1081     (which might not be the same) are tieable and we only need
1082     do this during our first pass.  */
1083
1084  if (pass == 0 && optimize
1085      && recog_data.n_operands >= 3
1086      && recog_data.constraints[1][0] == '0'
1087      && recog_data.constraints[1][1] == 0
1088      && CONSTANT_P (recog_data.operand[1])
1089      && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[1])
1090      && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[2])
1091      && REG_P (recog_data.operand[0])
1092      && MODES_TIEABLE_P (GET_MODE (recog_data.operand[0]),
1093			  recog_data.operand_mode[1]))
1094    {
1095      rtx previnsn = prev_real_insn (insn);
1096      rtx dest
1097	= gen_lowpart (recog_data.operand_mode[1],
1098		       recog_data.operand[0]);
1099      rtx newinsn
1100	= emit_insn_before (gen_move_insn (dest, recog_data.operand[1]), insn);
1101
1102      /* If this insn was the start of a basic block,
1103	 include the new insn in that block.
1104	 We need not check for code_label here;
1105	 while a basic block can start with a code_label,
1106	 INSN could not be at the beginning of that block.  */
1107      if (previnsn == 0 || JUMP_P (previnsn))
1108	{
1109	  basic_block b;
1110	  FOR_EACH_BB (b)
1111	    if (insn == BB_HEAD (b))
1112	      BB_HEAD (b) = newinsn;
1113	}
1114
1115      /* This makes one more setting of new insns's dest.  */
1116      REG_N_SETS (REGNO (recog_data.operand[0]))++;
1117      REG_N_REFS (REGNO (recog_data.operand[0]))++;
1118      REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1119
1120      *recog_data.operand_loc[1] = recog_data.operand[0];
1121      REG_N_REFS (REGNO (recog_data.operand[0]))++;
1122      REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1123      for (i = recog_data.n_dups - 1; i >= 0; i--)
1124	if (recog_data.dup_num[i] == 1)
1125	  {
1126	    *recog_data.dup_loc[i] = recog_data.operand[0];
1127	    REG_N_REFS (REGNO (recog_data.operand[0]))++;
1128	    REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1129	  }
1130
1131      return PREV_INSN (newinsn);
1132    }
1133
1134  record_operand_costs (insn, op_costs, reg_pref);
1135
1136  /* Now add the cost for each operand to the total costs for
1137     its register.  */
1138
1139  for (i = 0; i < recog_data.n_operands; i++)
1140    if (REG_P (recog_data.operand[i])
1141	&& REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER)
1142      {
1143	int regno = REGNO (recog_data.operand[i]);
1144	struct costs *p = &costs[regno], *q = &op_costs[i];
1145
1146	p->mem_cost += q->mem_cost * frequency;
1147	for (j = 0; j < N_REG_CLASSES; j++)
1148	  p->cost[j] += q->cost[j] * frequency;
1149      }
1150
1151  return insn;
1152}
1153
1154/* Initialize information about which register classes can be used for
1155   pseudos that are auto-incremented or auto-decremented.  */
1156
1157static void
1158init_reg_autoinc (void)
1159{
1160#ifdef FORBIDDEN_INC_DEC_CLASSES
1161  int i;
1162
1163  for (i = 0; i < N_REG_CLASSES; i++)
1164    {
1165      rtx r = gen_rtx_raw_REG (VOIDmode, 0);
1166      enum machine_mode m;
1167      int j;
1168
1169      for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1170	if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
1171	  {
1172	    REGNO (r) = j;
1173
1174	    for (m = VOIDmode; (int) m < (int) MAX_MACHINE_MODE;
1175		 m = (enum machine_mode) ((int) m + 1))
1176	      if (HARD_REGNO_MODE_OK (j, m))
1177		{
1178		  PUT_MODE (r, m);
1179
1180		  /* If a register is not directly suitable for an
1181		     auto-increment or decrement addressing mode and
1182		     requires secondary reloads, disallow its class from
1183		     being used in such addresses.  */
1184
1185		  if ((0
1186#ifdef SECONDARY_RELOAD_CLASS
1187		       || (SECONDARY_RELOAD_CLASS (MODE_BASE_REG_CLASS (VOIDmode), m, r)
1188			   != NO_REGS)
1189#else
1190#ifdef SECONDARY_INPUT_RELOAD_CLASS
1191		       || (SECONDARY_INPUT_RELOAD_CLASS (MODE_BASE_REG_CLASS (VOIDmode), m, r)
1192			   != NO_REGS)
1193#endif
1194#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1195		       || (SECONDARY_OUTPUT_RELOAD_CLASS (MODE_BASE_REG_CLASS (VOIDmode), m, r)
1196			   != NO_REGS)
1197#endif
1198#endif
1199		       )
1200		      && ! auto_inc_dec_reg_p (r, m))
1201		    forbidden_inc_dec_class[i] = 1;
1202		}
1203	  }
1204    }
1205#endif /* FORBIDDEN_INC_DEC_CLASSES */
1206}
1207
1208/* This is a pass of the compiler that scans all instructions
1209   and calculates the preferred class for each pseudo-register.
1210   This information can be accessed later by calling `reg_preferred_class'.
1211   This pass comes just before local register allocation.  */
1212
1213void
1214regclass (rtx f, int nregs, FILE *dump)
1215{
1216  rtx insn;
1217  int i;
1218  int pass;
1219
1220  init_recog ();
1221
1222  costs = xmalloc (nregs * sizeof (struct costs));
1223
1224#ifdef FORBIDDEN_INC_DEC_CLASSES
1225
1226  in_inc_dec = xmalloc (nregs);
1227
1228#endif /* FORBIDDEN_INC_DEC_CLASSES */
1229
1230  /* Normally we scan the insns once and determine the best class to use for
1231     each register.  However, if -fexpensive_optimizations are on, we do so
1232     twice, the second time using the tentative best classes to guide the
1233     selection.  */
1234
1235  for (pass = 0; pass <= flag_expensive_optimizations; pass++)
1236    {
1237      basic_block bb;
1238
1239      if (dump)
1240	fprintf (dump, "\n\nPass %i\n\n",pass);
1241      /* Zero out our accumulation of the cost of each class for each reg.  */
1242
1243      memset (costs, 0, nregs * sizeof (struct costs));
1244
1245#ifdef FORBIDDEN_INC_DEC_CLASSES
1246      memset (in_inc_dec, 0, nregs);
1247#endif
1248
1249      /* Scan the instructions and record each time it would
1250	 save code to put a certain register in a certain class.  */
1251
1252      if (!optimize)
1253	{
1254	  frequency = REG_FREQ_MAX;
1255	  for (insn = f; insn; insn = NEXT_INSN (insn))
1256	    insn = scan_one_insn (insn, pass);
1257	}
1258      else
1259	FOR_EACH_BB (bb)
1260	  {
1261	    /* Show that an insn inside a loop is likely to be executed three
1262	       times more than insns outside a loop.  This is much more
1263	       aggressive than the assumptions made elsewhere and is being
1264	       tried as an experiment.  */
1265	    frequency = REG_FREQ_FROM_BB (bb);
1266	    for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
1267	      {
1268		insn = scan_one_insn (insn, pass);
1269		if (insn == BB_END (bb))
1270		  break;
1271	      }
1272	  }
1273
1274      /* Now for each register look at how desirable each class is
1275	 and find which class is preferred.  Store that in
1276	 `prefclass'.  Record in `altclass' the largest register
1277	 class any of whose registers is better than memory.  */
1278
1279      if (pass == 0)
1280	reg_pref = reg_pref_buffer;
1281
1282      if (dump)
1283	{
1284	  dump_regclass (dump);
1285	  fprintf (dump,"\n");
1286	}
1287      for (i = FIRST_PSEUDO_REGISTER; i < nregs; i++)
1288	{
1289	  int best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1290	  enum reg_class best = ALL_REGS, alt = NO_REGS;
1291	  /* This is an enum reg_class, but we call it an int
1292	     to save lots of casts.  */
1293	  int class;
1294	  struct costs *p = &costs[i];
1295
1296	  /* In non-optimizing compilation REG_N_REFS is not initialized
1297	     yet.  */
1298	  if (optimize && !REG_N_REFS (i) && !REG_N_SETS (i))
1299	    continue;
1300
1301	  for (class = (int) ALL_REGS - 1; class > 0; class--)
1302	    {
1303	      /* Ignore classes that are too small for this operand or
1304		 invalid for an operand that was auto-incremented.  */
1305	      if (!contains_reg_of_mode [class][PSEUDO_REGNO_MODE (i)]
1306#ifdef FORBIDDEN_INC_DEC_CLASSES
1307		  || (in_inc_dec[i] && forbidden_inc_dec_class[class])
1308#endif
1309#ifdef CANNOT_CHANGE_MODE_CLASS
1310		  || invalid_mode_change_p (i, (enum reg_class) class,
1311					    PSEUDO_REGNO_MODE (i))
1312#endif
1313		  )
1314		;
1315	      else if (p->cost[class] < best_cost)
1316		{
1317		  best_cost = p->cost[class];
1318		  best = (enum reg_class) class;
1319		}
1320	      else if (p->cost[class] == best_cost)
1321		best = reg_class_subunion[(int) best][class];
1322	    }
1323
1324	  /* Record the alternate register class; i.e., a class for which
1325	     every register in it is better than using memory.  If adding a
1326	     class would make a smaller class (i.e., no union of just those
1327	     classes exists), skip that class.  The major unions of classes
1328	     should be provided as a register class.  Don't do this if we
1329	     will be doing it again later.  */
1330
1331	  if ((pass == 1  || dump) || ! flag_expensive_optimizations)
1332	    for (class = 0; class < N_REG_CLASSES; class++)
1333	      if (p->cost[class] < p->mem_cost
1334		  && (reg_class_size[(int) reg_class_subunion[(int) alt][class]]
1335		      > reg_class_size[(int) alt])
1336#ifdef FORBIDDEN_INC_DEC_CLASSES
1337		  && ! (in_inc_dec[i] && forbidden_inc_dec_class[class])
1338#endif
1339#ifdef CANNOT_CHANGE_MODE_CLASS
1340		  && ! invalid_mode_change_p (i, (enum reg_class) class,
1341					      PSEUDO_REGNO_MODE (i))
1342#endif
1343		  )
1344		alt = reg_class_subunion[(int) alt][class];
1345
1346	  /* If we don't add any classes, nothing to try.  */
1347	  if (alt == best)
1348	    alt = NO_REGS;
1349
1350	  if (dump
1351	      && (reg_pref[i].prefclass != (int) best
1352		  || reg_pref[i].altclass != (int) alt))
1353	    {
1354	      fprintf (dump, "  Register %i", i);
1355	      if (alt == ALL_REGS || best == ALL_REGS)
1356		fprintf (dump, " pref %s\n", reg_class_names[(int) best]);
1357	      else if (alt == NO_REGS)
1358		fprintf (dump, " pref %s or none\n", reg_class_names[(int) best]);
1359	      else
1360		fprintf (dump, " pref %s, else %s\n",
1361			 reg_class_names[(int) best],
1362			 reg_class_names[(int) alt]);
1363	    }
1364
1365	  /* We cast to (int) because (char) hits bugs in some compilers.  */
1366	  reg_pref[i].prefclass = (int) best;
1367	  reg_pref[i].altclass = (int) alt;
1368	}
1369    }
1370
1371#ifdef FORBIDDEN_INC_DEC_CLASSES
1372  free (in_inc_dec);
1373#endif
1374  free (costs);
1375}
1376
1377/* Record the cost of using memory or registers of various classes for
1378   the operands in INSN.
1379
1380   N_ALTS is the number of alternatives.
1381
1382   N_OPS is the number of operands.
1383
1384   OPS is an array of the operands.
1385
1386   MODES are the modes of the operands, in case any are VOIDmode.
1387
1388   CONSTRAINTS are the constraints to use for the operands.  This array
1389   is modified by this procedure.
1390
1391   This procedure works alternative by alternative.  For each alternative
1392   we assume that we will be able to allocate all pseudos to their ideal
1393   register class and calculate the cost of using that alternative.  Then
1394   we compute for each operand that is a pseudo-register, the cost of
1395   having the pseudo allocated to each register class and using it in that
1396   alternative.  To this cost is added the cost of the alternative.
1397
1398   The cost of each class for this insn is its lowest cost among all the
1399   alternatives.  */
1400
1401static void
1402record_reg_classes (int n_alts, int n_ops, rtx *ops,
1403		    enum machine_mode *modes, const char **constraints,
1404		    rtx insn, struct costs *op_costs,
1405		    struct reg_pref *reg_pref)
1406{
1407  int alt;
1408  int i, j;
1409  rtx set;
1410
1411  /* Process each alternative, each time minimizing an operand's cost with
1412     the cost for each operand in that alternative.  */
1413
1414  for (alt = 0; alt < n_alts; alt++)
1415    {
1416      struct costs this_op_costs[MAX_RECOG_OPERANDS];
1417      int alt_fail = 0;
1418      int alt_cost = 0;
1419      enum reg_class classes[MAX_RECOG_OPERANDS];
1420      int allows_mem[MAX_RECOG_OPERANDS];
1421      int class;
1422
1423      for (i = 0; i < n_ops; i++)
1424	{
1425	  const char *p = constraints[i];
1426	  rtx op = ops[i];
1427	  enum machine_mode mode = modes[i];
1428	  int allows_addr = 0;
1429	  int win = 0;
1430	  unsigned char c;
1431
1432	  /* Initially show we know nothing about the register class.  */
1433	  classes[i] = NO_REGS;
1434	  allows_mem[i] = 0;
1435
1436	  /* If this operand has no constraints at all, we can conclude
1437	     nothing about it since anything is valid.  */
1438
1439	  if (*p == 0)
1440	    {
1441	      if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1442		memset (&this_op_costs[i], 0, sizeof this_op_costs[i]);
1443
1444	      continue;
1445	    }
1446
1447	  /* If this alternative is only relevant when this operand
1448	     matches a previous operand, we do different things depending
1449	     on whether this operand is a pseudo-reg or not.  We must process
1450	     any modifiers for the operand before we can make this test.  */
1451
1452	  while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
1453	    p++;
1454
1455	  if (p[0] >= '0' && p[0] <= '0' + i && (p[1] == ',' || p[1] == 0))
1456	    {
1457	      /* Copy class and whether memory is allowed from the matching
1458		 alternative.  Then perform any needed cost computations
1459		 and/or adjustments.  */
1460	      j = p[0] - '0';
1461	      classes[i] = classes[j];
1462	      allows_mem[i] = allows_mem[j];
1463
1464	      if (!REG_P (op) || REGNO (op) < FIRST_PSEUDO_REGISTER)
1465		{
1466		  /* If this matches the other operand, we have no added
1467		     cost and we win.  */
1468		  if (rtx_equal_p (ops[j], op))
1469		    win = 1;
1470
1471		  /* If we can put the other operand into a register, add to
1472		     the cost of this alternative the cost to copy this
1473		     operand to the register used for the other operand.  */
1474
1475		  else if (classes[j] != NO_REGS)
1476		    alt_cost += copy_cost (op, mode, classes[j], 1), win = 1;
1477		}
1478	      else if (!REG_P (ops[j])
1479		       || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
1480		{
1481		  /* This op is a pseudo but the one it matches is not.  */
1482
1483		  /* If we can't put the other operand into a register, this
1484		     alternative can't be used.  */
1485
1486		  if (classes[j] == NO_REGS)
1487		    alt_fail = 1;
1488
1489		  /* Otherwise, add to the cost of this alternative the cost
1490		     to copy the other operand to the register used for this
1491		     operand.  */
1492
1493		  else
1494		    alt_cost += copy_cost (ops[j], mode, classes[j], 1);
1495		}
1496	      else
1497		{
1498		  /* The costs of this operand are not the same as the other
1499		     operand since move costs are not symmetric.  Moreover,
1500		     if we cannot tie them, this alternative needs to do a
1501		     copy, which is one instruction.  */
1502
1503		  struct costs *pp = &this_op_costs[i];
1504
1505		  for (class = 0; class < N_REG_CLASSES; class++)
1506		    pp->cost[class]
1507		      = ((recog_data.operand_type[i] != OP_OUT
1508			  ? may_move_in_cost[mode][class][(int) classes[i]]
1509			  : 0)
1510			 + (recog_data.operand_type[i] != OP_IN
1511			    ? may_move_out_cost[mode][(int) classes[i]][class]
1512			    : 0));
1513
1514		  /* If the alternative actually allows memory, make things
1515		     a bit cheaper since we won't need an extra insn to
1516		     load it.  */
1517
1518		  pp->mem_cost
1519		    = ((recog_data.operand_type[i] != OP_IN
1520		        ? MEMORY_MOVE_COST (mode, classes[i], 0)
1521			: 0)
1522		       + (recog_data.operand_type[i] != OP_OUT
1523			  ? MEMORY_MOVE_COST (mode, classes[i], 1)
1524			  : 0) - allows_mem[i]);
1525
1526		  /* If we have assigned a class to this register in our
1527		     first pass, add a cost to this alternative corresponding
1528		     to what we would add if this register were not in the
1529		     appropriate class.  */
1530
1531		  if (reg_pref)
1532		    alt_cost
1533		      += (may_move_in_cost[mode]
1534			  [(unsigned char) reg_pref[REGNO (op)].prefclass]
1535			  [(int) classes[i]]);
1536
1537		  if (REGNO (ops[i]) != REGNO (ops[j])
1538		      && ! find_reg_note (insn, REG_DEAD, op))
1539		    alt_cost += 2;
1540
1541		  /* This is in place of ordinary cost computation
1542		     for this operand, so skip to the end of the
1543		     alternative (should be just one character).  */
1544		  while (*p && *p++ != ',')
1545		    ;
1546
1547		  constraints[i] = p;
1548		  continue;
1549		}
1550	    }
1551
1552	  /* Scan all the constraint letters.  See if the operand matches
1553	     any of the constraints.  Collect the valid register classes
1554	     and see if this operand accepts memory.  */
1555
1556	  while ((c = *p))
1557	    {
1558	      switch (c)
1559		{
1560		case ',':
1561		  break;
1562		case '*':
1563		  /* Ignore the next letter for this pass.  */
1564		  c = *++p;
1565		  break;
1566
1567		case '?':
1568		  alt_cost += 2;
1569		case '!':  case '#':  case '&':
1570		case '0':  case '1':  case '2':  case '3':  case '4':
1571		case '5':  case '6':  case '7':  case '8':  case '9':
1572		  break;
1573
1574		case 'p':
1575		  allows_addr = 1;
1576		  win = address_operand (op, GET_MODE (op));
1577		  /* We know this operand is an address, so we want it to be
1578		     allocated to a register that can be the base of an
1579		     address, i.e. BASE_REG_CLASS.  */
1580		  classes[i]
1581		    = reg_class_subunion[(int) classes[i]]
1582		      [(int) MODE_BASE_REG_CLASS (VOIDmode)];
1583		  break;
1584
1585		case 'm':  case 'o':  case 'V':
1586		  /* It doesn't seem worth distinguishing between offsettable
1587		     and non-offsettable addresses here.  */
1588		  allows_mem[i] = 1;
1589		  if (MEM_P (op))
1590		    win = 1;
1591		  break;
1592
1593		case '<':
1594		  if (MEM_P (op)
1595		      && (GET_CODE (XEXP (op, 0)) == PRE_DEC
1596			  || GET_CODE (XEXP (op, 0)) == POST_DEC))
1597		    win = 1;
1598		  break;
1599
1600		case '>':
1601		  if (MEM_P (op)
1602		      && (GET_CODE (XEXP (op, 0)) == PRE_INC
1603			  || GET_CODE (XEXP (op, 0)) == POST_INC))
1604		    win = 1;
1605		  break;
1606
1607		case 'E':
1608		case 'F':
1609		  if (GET_CODE (op) == CONST_DOUBLE
1610		      || (GET_CODE (op) == CONST_VECTOR
1611			  && (GET_MODE_CLASS (GET_MODE (op))
1612			      == MODE_VECTOR_FLOAT)))
1613		    win = 1;
1614		  break;
1615
1616		case 'G':
1617		case 'H':
1618		  if (GET_CODE (op) == CONST_DOUBLE
1619		      && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, p))
1620		    win = 1;
1621		  break;
1622
1623		case 's':
1624		  if (GET_CODE (op) == CONST_INT
1625		      || (GET_CODE (op) == CONST_DOUBLE
1626			  && GET_MODE (op) == VOIDmode))
1627		    break;
1628		case 'i':
1629		  if (CONSTANT_P (op)
1630		      && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op)))
1631		    win = 1;
1632		  break;
1633
1634		case 'n':
1635		  if (GET_CODE (op) == CONST_INT
1636		      || (GET_CODE (op) == CONST_DOUBLE
1637			  && GET_MODE (op) == VOIDmode))
1638		    win = 1;
1639		  break;
1640
1641		case 'I':
1642		case 'J':
1643		case 'K':
1644		case 'L':
1645		case 'M':
1646		case 'N':
1647		case 'O':
1648		case 'P':
1649		  if (GET_CODE (op) == CONST_INT
1650		      && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, p))
1651		    win = 1;
1652		  break;
1653
1654		case 'X':
1655		  win = 1;
1656		  break;
1657
1658		case 'g':
1659		  if (MEM_P (op)
1660		      || (CONSTANT_P (op)
1661			  && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))))
1662		    win = 1;
1663		  allows_mem[i] = 1;
1664		case 'r':
1665		  classes[i]
1666		    = reg_class_subunion[(int) classes[i]][(int) GENERAL_REGS];
1667		  break;
1668
1669		default:
1670		  if (REG_CLASS_FROM_CONSTRAINT (c, p) != NO_REGS)
1671		    classes[i]
1672		      = reg_class_subunion[(int) classes[i]]
1673			[(int) REG_CLASS_FROM_CONSTRAINT (c, p)];
1674#ifdef EXTRA_CONSTRAINT_STR
1675		  else if (EXTRA_CONSTRAINT_STR (op, c, p))
1676		    win = 1;
1677
1678		  if (EXTRA_MEMORY_CONSTRAINT (c, p))
1679		    {
1680		      /* Every MEM can be reloaded to fit.  */
1681		      allows_mem[i] = 1;
1682		      if (MEM_P (op))
1683			win = 1;
1684		    }
1685		  if (EXTRA_ADDRESS_CONSTRAINT (c, p))
1686		    {
1687		      /* Every address can be reloaded to fit.  */
1688		      allows_addr = 1;
1689		      if (address_operand (op, GET_MODE (op)))
1690			win = 1;
1691		      /* We know this operand is an address, so we want it to
1692			 be allocated to a register that can be the base of an
1693			 address, i.e. BASE_REG_CLASS.  */
1694		      classes[i]
1695			= reg_class_subunion[(int) classes[i]]
1696			  [(int) MODE_BASE_REG_CLASS (VOIDmode)];
1697		    }
1698#endif
1699		  break;
1700		}
1701	      p += CONSTRAINT_LEN (c, p);
1702	      if (c == ',')
1703		break;
1704	    }
1705
1706	  constraints[i] = p;
1707
1708	  /* How we account for this operand now depends on whether it is  a
1709	     pseudo register or not.  If it is, we first check if any
1710	     register classes are valid.  If not, we ignore this alternative,
1711	     since we want to assume that all pseudos get allocated for
1712	     register preferencing.  If some register class is valid, compute
1713	     the costs of moving the pseudo into that class.  */
1714
1715	  if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1716	    {
1717	      if (classes[i] == NO_REGS)
1718		{
1719		  /* We must always fail if the operand is a REG, but
1720		     we did not find a suitable class.
1721
1722		     Otherwise we may perform an uninitialized read
1723		     from this_op_costs after the `continue' statement
1724		     below.  */
1725		  alt_fail = 1;
1726		}
1727	      else
1728		{
1729		  struct costs *pp = &this_op_costs[i];
1730
1731		  for (class = 0; class < N_REG_CLASSES; class++)
1732		    pp->cost[class]
1733		      = ((recog_data.operand_type[i] != OP_OUT
1734			  ? may_move_in_cost[mode][class][(int) classes[i]]
1735			  : 0)
1736			 + (recog_data.operand_type[i] != OP_IN
1737			    ? may_move_out_cost[mode][(int) classes[i]][class]
1738			    : 0));
1739
1740		  /* If the alternative actually allows memory, make things
1741		     a bit cheaper since we won't need an extra insn to
1742		     load it.  */
1743
1744		  pp->mem_cost
1745		    = ((recog_data.operand_type[i] != OP_IN
1746		        ? MEMORY_MOVE_COST (mode, classes[i], 0)
1747			: 0)
1748		       + (recog_data.operand_type[i] != OP_OUT
1749			  ? MEMORY_MOVE_COST (mode, classes[i], 1)
1750			  : 0) - allows_mem[i]);
1751
1752		  /* If we have assigned a class to this register in our
1753		     first pass, add a cost to this alternative corresponding
1754		     to what we would add if this register were not in the
1755		     appropriate class.  */
1756
1757		  if (reg_pref)
1758		    alt_cost
1759		      += (may_move_in_cost[mode]
1760			  [(unsigned char) reg_pref[REGNO (op)].prefclass]
1761			  [(int) classes[i]]);
1762		}
1763	    }
1764
1765	  /* Otherwise, if this alternative wins, either because we
1766	     have already determined that or if we have a hard register of
1767	     the proper class, there is no cost for this alternative.  */
1768
1769	  else if (win
1770		   || (REG_P (op)
1771		       && reg_fits_class_p (op, classes[i], 0, GET_MODE (op))))
1772	    ;
1773
1774	  /* If registers are valid, the cost of this alternative includes
1775	     copying the object to and/or from a register.  */
1776
1777	  else if (classes[i] != NO_REGS)
1778	    {
1779	      if (recog_data.operand_type[i] != OP_OUT)
1780		alt_cost += copy_cost (op, mode, classes[i], 1);
1781
1782	      if (recog_data.operand_type[i] != OP_IN)
1783		alt_cost += copy_cost (op, mode, classes[i], 0);
1784	    }
1785
1786	  /* The only other way this alternative can be used is if this is a
1787	     constant that could be placed into memory.  */
1788
1789	  else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
1790	    alt_cost += MEMORY_MOVE_COST (mode, classes[i], 1);
1791	  else
1792	    alt_fail = 1;
1793	}
1794
1795      if (alt_fail)
1796	continue;
1797
1798      /* Finally, update the costs with the information we've calculated
1799	 about this alternative.  */
1800
1801      for (i = 0; i < n_ops; i++)
1802	if (REG_P (ops[i])
1803	    && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1804	  {
1805	    struct costs *pp = &op_costs[i], *qq = &this_op_costs[i];
1806	    int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
1807
1808	    pp->mem_cost = MIN (pp->mem_cost,
1809				(qq->mem_cost + alt_cost) * scale);
1810
1811	    for (class = 0; class < N_REG_CLASSES; class++)
1812	      pp->cost[class] = MIN (pp->cost[class],
1813				     (qq->cost[class] + alt_cost) * scale);
1814	  }
1815    }
1816
1817  /* If this insn is a single set copying operand 1 to operand 0
1818     and one operand is a pseudo with the other a hard reg or a pseudo
1819     that prefers a register that is in its own register class then
1820     we may want to adjust the cost of that register class to -1.
1821
1822     Avoid the adjustment if the source does not die to avoid stressing of
1823     register allocator by preferrencing two colliding registers into single
1824     class.
1825
1826     Also avoid the adjustment if a copy between registers of the class
1827     is expensive (ten times the cost of a default copy is considered
1828     arbitrarily expensive).  This avoids losing when the preferred class
1829     is very expensive as the source of a copy instruction.  */
1830
1831  if ((set = single_set (insn)) != 0
1832      && ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set)
1833      && REG_P (ops[0]) && REG_P (ops[1])
1834      && find_regno_note (insn, REG_DEAD, REGNO (ops[1])))
1835    for (i = 0; i <= 1; i++)
1836      if (REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1837	{
1838	  unsigned int regno = REGNO (ops[!i]);
1839	  enum machine_mode mode = GET_MODE (ops[!i]);
1840	  int class;
1841	  unsigned int nr;
1842
1843	  if (regno >= FIRST_PSEUDO_REGISTER && reg_pref != 0)
1844	    {
1845	      enum reg_class pref = reg_pref[regno].prefclass;
1846
1847	      if ((reg_class_size[(unsigned char) pref]
1848		   == (unsigned) CLASS_MAX_NREGS (pref, mode))
1849		  && REGISTER_MOVE_COST (mode, pref, pref) < 10 * 2)
1850		op_costs[i].cost[(unsigned char) pref] = -1;
1851	    }
1852	  else if (regno < FIRST_PSEUDO_REGISTER)
1853	    for (class = 0; class < N_REG_CLASSES; class++)
1854	      if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
1855		  && reg_class_size[class] == (unsigned) CLASS_MAX_NREGS (class, mode))
1856		{
1857		  if (reg_class_size[class] == 1)
1858		    op_costs[i].cost[class] = -1;
1859		  else
1860		    {
1861		      for (nr = 0; nr < (unsigned) hard_regno_nregs[regno][mode]; nr++)
1862			{
1863			  if (! TEST_HARD_REG_BIT (reg_class_contents[class],
1864						   regno + nr))
1865			    break;
1866			}
1867
1868		      if (nr == (unsigned) hard_regno_nregs[regno][mode])
1869			op_costs[i].cost[class] = -1;
1870		    }
1871		}
1872	}
1873}
1874
1875/* Compute the cost of loading X into (if TO_P is nonzero) or from (if
1876   TO_P is zero) a register of class CLASS in mode MODE.
1877
1878   X must not be a pseudo.  */
1879
1880static int
1881copy_cost (rtx x, enum machine_mode mode ATTRIBUTE_UNUSED,
1882	   enum reg_class class, int to_p ATTRIBUTE_UNUSED)
1883{
1884#ifdef HAVE_SECONDARY_RELOADS
1885  enum reg_class secondary_class = NO_REGS;
1886#endif
1887
1888  /* If X is a SCRATCH, there is actually nothing to move since we are
1889     assuming optimal allocation.  */
1890
1891  if (GET_CODE (x) == SCRATCH)
1892    return 0;
1893
1894  /* Get the class we will actually use for a reload.  */
1895  class = PREFERRED_RELOAD_CLASS (x, class);
1896
1897#ifdef HAVE_SECONDARY_RELOADS
1898  /* If we need a secondary reload (we assume here that we are using
1899     the secondary reload as an intermediate, not a scratch register), the
1900     cost is that to load the input into the intermediate register, then
1901     to copy them.  We use a special value of TO_P to avoid recursion.  */
1902
1903#ifdef SECONDARY_INPUT_RELOAD_CLASS
1904  if (to_p == 1)
1905    secondary_class = SECONDARY_INPUT_RELOAD_CLASS (class, mode, x);
1906#endif
1907
1908#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1909  if (! to_p)
1910    secondary_class = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, x);
1911#endif
1912
1913  if (secondary_class != NO_REGS)
1914    return (move_cost[mode][(int) secondary_class][(int) class]
1915	    + copy_cost (x, mode, secondary_class, 2));
1916#endif  /* HAVE_SECONDARY_RELOADS */
1917
1918  /* For memory, use the memory move cost, for (hard) registers, use the
1919     cost to move between the register classes, and use 2 for everything
1920     else (constants).  */
1921
1922  if (MEM_P (x) || class == NO_REGS)
1923    return MEMORY_MOVE_COST (mode, class, to_p);
1924
1925  else if (REG_P (x))
1926    return move_cost[mode][(int) REGNO_REG_CLASS (REGNO (x))][(int) class];
1927
1928  else
1929    /* If this is a constant, we may eventually want to call rtx_cost here.  */
1930    return COSTS_N_INSNS (1);
1931}
1932
1933/* Record the pseudo registers we must reload into hard registers
1934   in a subexpression of a memory address, X.
1935
1936   CLASS is the class that the register needs to be in and is either
1937   BASE_REG_CLASS or INDEX_REG_CLASS.
1938
1939   SCALE is twice the amount to multiply the cost by (it is twice so we
1940   can represent half-cost adjustments).  */
1941
1942static void
1943record_address_regs (rtx x, enum reg_class class, int scale)
1944{
1945  enum rtx_code code = GET_CODE (x);
1946
1947  switch (code)
1948    {
1949    case CONST_INT:
1950    case CONST:
1951    case CC0:
1952    case PC:
1953    case SYMBOL_REF:
1954    case LABEL_REF:
1955      return;
1956
1957    case PLUS:
1958      /* When we have an address that is a sum,
1959	 we must determine whether registers are "base" or "index" regs.
1960	 If there is a sum of two registers, we must choose one to be
1961	 the "base".  Luckily, we can use the REG_POINTER to make a good
1962	 choice most of the time.  We only need to do this on machines
1963	 that can have two registers in an address and where the base
1964	 and index register classes are different.
1965
1966	 ??? This code used to set REGNO_POINTER_FLAG in some cases, but
1967	 that seems bogus since it should only be set when we are sure
1968	 the register is being used as a pointer.  */
1969
1970      {
1971	rtx arg0 = XEXP (x, 0);
1972	rtx arg1 = XEXP (x, 1);
1973	enum rtx_code code0 = GET_CODE (arg0);
1974	enum rtx_code code1 = GET_CODE (arg1);
1975
1976	/* Look inside subregs.  */
1977	if (code0 == SUBREG)
1978	  arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
1979	if (code1 == SUBREG)
1980	  arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1981
1982	/* If this machine only allows one register per address, it must
1983	   be in the first operand.  */
1984
1985	if (MAX_REGS_PER_ADDRESS == 1)
1986	  record_address_regs (arg0, class, scale);
1987
1988	/* If index and base registers are the same on this machine, just
1989	   record registers in any non-constant operands.  We assume here,
1990	   as well as in the tests below, that all addresses are in
1991	   canonical form.  */
1992
1993	else if (INDEX_REG_CLASS == MODE_BASE_REG_CLASS (VOIDmode))
1994	  {
1995	    record_address_regs (arg0, class, scale);
1996	    if (! CONSTANT_P (arg1))
1997	      record_address_regs (arg1, class, scale);
1998	  }
1999
2000	/* If the second operand is a constant integer, it doesn't change
2001	   what class the first operand must be.  */
2002
2003	else if (code1 == CONST_INT || code1 == CONST_DOUBLE)
2004	  record_address_regs (arg0, class, scale);
2005
2006	/* If the second operand is a symbolic constant, the first operand
2007	   must be an index register.  */
2008
2009	else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
2010	  record_address_regs (arg0, INDEX_REG_CLASS, scale);
2011
2012	/* If both operands are registers but one is already a hard register
2013	   of index or reg-base class, give the other the class that the
2014	   hard register is not.  */
2015
2016	else if (code0 == REG && code1 == REG
2017		 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
2018		 && (REG_MODE_OK_FOR_REG_BASE_P (arg0, VOIDmode)
2019		     || REG_OK_FOR_INDEX_P (arg0)))
2020	  record_address_regs (arg1,
2021			       REG_MODE_OK_FOR_REG_BASE_P (arg0, VOIDmode)
2022			       ? INDEX_REG_CLASS
2023			       : MODE_BASE_REG_REG_CLASS (VOIDmode),
2024			       scale);
2025	else if (code0 == REG && code1 == REG
2026		 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
2027		 && (REG_MODE_OK_FOR_REG_BASE_P (arg1, VOIDmode)
2028		     || REG_OK_FOR_INDEX_P (arg1)))
2029	  record_address_regs (arg0,
2030			       REG_MODE_OK_FOR_REG_BASE_P (arg1, VOIDmode)
2031			       ? INDEX_REG_CLASS
2032			       : MODE_BASE_REG_REG_CLASS (VOIDmode),
2033			       scale);
2034
2035	/* If one operand is known to be a pointer, it must be the base
2036	   with the other operand the index.  Likewise if the other operand
2037	   is a MULT.  */
2038
2039	else if ((code0 == REG && REG_POINTER (arg0))
2040		 || code1 == MULT)
2041	  {
2042	    record_address_regs (arg0, MODE_BASE_REG_REG_CLASS (VOIDmode),
2043				 scale);
2044	    record_address_regs (arg1, INDEX_REG_CLASS, scale);
2045	  }
2046	else if ((code1 == REG && REG_POINTER (arg1))
2047		 || code0 == MULT)
2048	  {
2049	    record_address_regs (arg0, INDEX_REG_CLASS, scale);
2050	    record_address_regs (arg1, MODE_BASE_REG_REG_CLASS (VOIDmode),
2051				 scale);
2052	  }
2053
2054	/* Otherwise, count equal chances that each might be a base
2055	   or index register.  This case should be rare.  */
2056
2057	else
2058	  {
2059	    record_address_regs (arg0, MODE_BASE_REG_REG_CLASS (VOIDmode),
2060				 scale / 2);
2061	    record_address_regs (arg0, INDEX_REG_CLASS, scale / 2);
2062	    record_address_regs (arg1, MODE_BASE_REG_REG_CLASS (VOIDmode),
2063				 scale / 2);
2064	    record_address_regs (arg1, INDEX_REG_CLASS, scale / 2);
2065	  }
2066      }
2067      break;
2068
2069      /* Double the importance of a pseudo register that is incremented
2070	 or decremented, since it would take two extra insns
2071	 if it ends up in the wrong place.  */
2072    case POST_MODIFY:
2073    case PRE_MODIFY:
2074      record_address_regs (XEXP (x, 0), MODE_BASE_REG_CLASS (VOIDmode),
2075			   2 * scale);
2076      if (REG_P (XEXP (XEXP (x, 1), 1)))
2077	record_address_regs (XEXP (XEXP (x, 1), 1),
2078			     INDEX_REG_CLASS, 2 * scale);
2079      break;
2080
2081    case POST_INC:
2082    case PRE_INC:
2083    case POST_DEC:
2084    case PRE_DEC:
2085      /* Double the importance of a pseudo register that is incremented
2086	 or decremented, since it would take two extra insns
2087	 if it ends up in the wrong place.  If the operand is a pseudo,
2088	 show it is being used in an INC_DEC context.  */
2089
2090#ifdef FORBIDDEN_INC_DEC_CLASSES
2091      if (REG_P (XEXP (x, 0))
2092	  && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER)
2093	in_inc_dec[REGNO (XEXP (x, 0))] = 1;
2094#endif
2095
2096      record_address_regs (XEXP (x, 0), class, 2 * scale);
2097      break;
2098
2099    case REG:
2100      {
2101	struct costs *pp = &costs[REGNO (x)];
2102	int i;
2103
2104	pp->mem_cost += (MEMORY_MOVE_COST (Pmode, class, 1) * scale) / 2;
2105
2106	for (i = 0; i < N_REG_CLASSES; i++)
2107	  pp->cost[i] += (may_move_in_cost[Pmode][i][(int) class] * scale) / 2;
2108      }
2109      break;
2110
2111    default:
2112      {
2113	const char *fmt = GET_RTX_FORMAT (code);
2114	int i;
2115	for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2116	  if (fmt[i] == 'e')
2117	    record_address_regs (XEXP (x, i), class, scale);
2118      }
2119    }
2120}
2121
2122#ifdef FORBIDDEN_INC_DEC_CLASSES
2123
2124/* Return 1 if REG is valid as an auto-increment memory reference
2125   to an object of MODE.  */
2126
2127static int
2128auto_inc_dec_reg_p (rtx reg, enum machine_mode mode)
2129{
2130  if (HAVE_POST_INCREMENT
2131      && memory_address_p (mode, gen_rtx_POST_INC (Pmode, reg)))
2132    return 1;
2133
2134  if (HAVE_POST_DECREMENT
2135      && memory_address_p (mode, gen_rtx_POST_DEC (Pmode, reg)))
2136    return 1;
2137
2138  if (HAVE_PRE_INCREMENT
2139      && memory_address_p (mode, gen_rtx_PRE_INC (Pmode, reg)))
2140    return 1;
2141
2142  if (HAVE_PRE_DECREMENT
2143      && memory_address_p (mode, gen_rtx_PRE_DEC (Pmode, reg)))
2144    return 1;
2145
2146  return 0;
2147}
2148#endif
2149
2150static short *renumber;
2151static size_t regno_allocated;
2152static unsigned int reg_n_max;
2153
2154/* Allocate enough space to hold NUM_REGS registers for the tables used for
2155   reg_scan and flow_analysis that are indexed by the register number.  If
2156   NEW_P is nonzero, initialize all of the registers, otherwise only
2157   initialize the new registers allocated.  The same table is kept from
2158   function to function, only reallocating it when we need more room.  If
2159   RENUMBER_P is nonzero, allocate the reg_renumber array also.  */
2160
2161void
2162allocate_reg_info (size_t num_regs, int new_p, int renumber_p)
2163{
2164  size_t size_info;
2165  size_t size_renumber;
2166  size_t min = (new_p) ? 0 : reg_n_max;
2167  struct reg_info_data *reg_data;
2168
2169  if (num_regs > regno_allocated)
2170    {
2171      size_t old_allocated = regno_allocated;
2172
2173      regno_allocated = num_regs + (num_regs / 20);	/* Add some slop space.  */
2174      size_renumber = regno_allocated * sizeof (short);
2175
2176      if (!reg_n_info)
2177	{
2178	  VARRAY_REG_INIT (reg_n_info, regno_allocated, "reg_n_info");
2179	  renumber = xmalloc (size_renumber);
2180	  reg_pref_buffer = xmalloc (regno_allocated
2181				     * sizeof (struct reg_pref));
2182	}
2183      else
2184	{
2185	  VARRAY_GROW (reg_n_info, regno_allocated);
2186
2187	  if (new_p)		/* If we're zapping everything, no need to realloc.  */
2188	    {
2189	      free ((char *) renumber);
2190	      free ((char *) reg_pref);
2191	      renumber = xmalloc (size_renumber);
2192	      reg_pref_buffer = xmalloc (regno_allocated
2193					 * sizeof (struct reg_pref));
2194	    }
2195
2196	  else
2197	    {
2198	      renumber = xrealloc (renumber, size_renumber);
2199	      reg_pref_buffer = xrealloc (reg_pref_buffer,
2200					  regno_allocated
2201					  * sizeof (struct reg_pref));
2202	    }
2203	}
2204
2205      size_info = (regno_allocated - old_allocated) * sizeof (reg_info)
2206	+ sizeof (struct reg_info_data) - sizeof (reg_info);
2207      reg_data = xcalloc (size_info, 1);
2208      reg_data->min_index = old_allocated;
2209      reg_data->max_index = regno_allocated - 1;
2210      reg_data->next = reg_info_head;
2211      reg_info_head = reg_data;
2212    }
2213
2214  reg_n_max = num_regs;
2215  if (min < num_regs)
2216    {
2217      /* Loop through each of the segments allocated for the actual
2218	 reg_info pages, and set up the pointers, zero the pages, etc.  */
2219      for (reg_data = reg_info_head;
2220	   reg_data && reg_data->max_index >= min;
2221	   reg_data = reg_data->next)
2222	{
2223	  size_t min_index = reg_data->min_index;
2224	  size_t max_index = reg_data->max_index;
2225	  size_t max = MIN (max_index, num_regs);
2226	  size_t local_min = min - min_index;
2227	  size_t i;
2228
2229	  if (reg_data->min_index > num_regs)
2230	    continue;
2231
2232	  if (min < min_index)
2233	    local_min = 0;
2234	  if (!reg_data->used_p)	/* page just allocated with calloc */
2235	    reg_data->used_p = 1;	/* no need to zero */
2236	  else
2237	    memset (&reg_data->data[local_min], 0,
2238		    sizeof (reg_info) * (max - min_index - local_min + 1));
2239
2240	  for (i = min_index+local_min; i <= max; i++)
2241	    {
2242	      VARRAY_REG (reg_n_info, i) = &reg_data->data[i-min_index];
2243	      REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
2244	      renumber[i] = -1;
2245	      reg_pref_buffer[i].prefclass = (char) NO_REGS;
2246	      reg_pref_buffer[i].altclass = (char) NO_REGS;
2247	    }
2248	}
2249    }
2250
2251  /* If {pref,alt}class have already been allocated, update the pointers to
2252     the newly realloced ones.  */
2253  if (reg_pref)
2254    reg_pref = reg_pref_buffer;
2255
2256  if (renumber_p)
2257    reg_renumber = renumber;
2258}
2259
2260/* Free up the space allocated by allocate_reg_info.  */
2261void
2262free_reg_info (void)
2263{
2264  if (reg_n_info)
2265    {
2266      struct reg_info_data *reg_data;
2267      struct reg_info_data *reg_next;
2268
2269      VARRAY_FREE (reg_n_info);
2270      for (reg_data = reg_info_head; reg_data; reg_data = reg_next)
2271	{
2272	  reg_next = reg_data->next;
2273	  free ((char *) reg_data);
2274	}
2275
2276      free (reg_pref_buffer);
2277      reg_pref_buffer = (struct reg_pref *) 0;
2278      reg_info_head = (struct reg_info_data *) 0;
2279      renumber = (short *) 0;
2280    }
2281  regno_allocated = 0;
2282  reg_n_max = 0;
2283}
2284
2285/* This is the `regscan' pass of the compiler, run just before cse
2286   and again just before loop.
2287
2288   It finds the first and last use of each pseudo-register
2289   and records them in the vectors regno_first_uid, regno_last_uid
2290   and counts the number of sets in the vector reg_n_sets.
2291
2292   REPEAT is nonzero the second time this is called.  */
2293
2294/* Maximum number of parallel sets and clobbers in any insn in this fn.
2295   Always at least 3, since the combiner could put that many together
2296   and we want this to remain correct for all the remaining passes.
2297   This corresponds to the maximum number of times note_stores will call
2298   a function for any insn.  */
2299
2300int max_parallel;
2301
2302/* Used as a temporary to record the largest number of registers in
2303   PARALLEL in a SET_DEST.  This is added to max_parallel.  */
2304
2305static int max_set_parallel;
2306
2307void
2308reg_scan (rtx f, unsigned int nregs)
2309{
2310  rtx insn;
2311
2312  timevar_push (TV_REG_SCAN);
2313
2314  allocate_reg_info (nregs, TRUE, FALSE);
2315  max_parallel = 3;
2316  max_set_parallel = 0;
2317
2318  for (insn = f; insn; insn = NEXT_INSN (insn))
2319    if (INSN_P (insn))
2320      {
2321	rtx pat = PATTERN (insn);
2322	if (GET_CODE (pat) == PARALLEL
2323	    && XVECLEN (pat, 0) > max_parallel)
2324	  max_parallel = XVECLEN (pat, 0);
2325	reg_scan_mark_refs (pat, insn, 0, 0);
2326
2327	if (REG_NOTES (insn))
2328	  reg_scan_mark_refs (REG_NOTES (insn), insn, 1, 0);
2329      }
2330
2331  max_parallel += max_set_parallel;
2332
2333  timevar_pop (TV_REG_SCAN);
2334}
2335
2336/* Update 'regscan' information by looking at the insns
2337   from FIRST to LAST.  Some new REGs have been created,
2338   and any REG with number greater than OLD_MAX_REGNO is
2339   such a REG.  We only update information for those.  */
2340
2341void
2342reg_scan_update (rtx first, rtx last, unsigned int old_max_regno)
2343{
2344  rtx insn;
2345
2346  allocate_reg_info (max_reg_num (), FALSE, FALSE);
2347
2348  for (insn = first; insn != last; insn = NEXT_INSN (insn))
2349    if (INSN_P (insn))
2350      {
2351	rtx pat = PATTERN (insn);
2352	if (GET_CODE (pat) == PARALLEL
2353	    && XVECLEN (pat, 0) > max_parallel)
2354	  max_parallel = XVECLEN (pat, 0);
2355	reg_scan_mark_refs (pat, insn, 0, old_max_regno);
2356
2357	if (REG_NOTES (insn))
2358	  reg_scan_mark_refs (REG_NOTES (insn), insn, 1, old_max_regno);
2359      }
2360}
2361
2362/* X is the expression to scan.  INSN is the insn it appears in.
2363   NOTE_FLAG is nonzero if X is from INSN's notes rather than its body.
2364   We should only record information for REGs with numbers
2365   greater than or equal to MIN_REGNO.  */
2366
2367static void
2368reg_scan_mark_refs (rtx x, rtx insn, int note_flag, unsigned int min_regno)
2369{
2370  enum rtx_code code;
2371  rtx dest;
2372  rtx note;
2373
2374  if (!x)
2375    return;
2376  code = GET_CODE (x);
2377  switch (code)
2378    {
2379    case CONST:
2380    case CONST_INT:
2381    case CONST_DOUBLE:
2382    case CONST_VECTOR:
2383    case CC0:
2384    case PC:
2385    case SYMBOL_REF:
2386    case LABEL_REF:
2387    case ADDR_VEC:
2388    case ADDR_DIFF_VEC:
2389      return;
2390
2391    case REG:
2392      {
2393	unsigned int regno = REGNO (x);
2394
2395	if (regno >= min_regno)
2396	  {
2397	    if (!note_flag)
2398	      REGNO_LAST_UID (regno) = INSN_UID (insn);
2399	    if (REGNO_FIRST_UID (regno) == 0)
2400	      REGNO_FIRST_UID (regno) = INSN_UID (insn);
2401	    /* If we are called by reg_scan_update() (indicated by min_regno
2402	       being set), we also need to update the reference count.  */
2403	    if (min_regno)
2404	      REG_N_REFS (regno)++;
2405	  }
2406      }
2407      break;
2408
2409    case EXPR_LIST:
2410      if (XEXP (x, 0))
2411	reg_scan_mark_refs (XEXP (x, 0), insn, note_flag, min_regno);
2412      if (XEXP (x, 1))
2413	reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
2414      break;
2415
2416    case INSN_LIST:
2417      if (XEXP (x, 1))
2418	reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
2419      break;
2420
2421    case CLOBBER:
2422      {
2423	rtx reg = XEXP (x, 0);
2424	if (REG_P (reg)
2425	    && REGNO (reg) >= min_regno)
2426	  {
2427	    REG_N_SETS (REGNO (reg))++;
2428	    REG_N_REFS (REGNO (reg))++;
2429	  }
2430	else if (MEM_P (reg))
2431	  reg_scan_mark_refs (XEXP (reg, 0), insn, note_flag, min_regno);
2432      }
2433      break;
2434
2435    case SET:
2436      /* Count a set of the destination if it is a register.  */
2437      for (dest = SET_DEST (x);
2438	   GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2439	   || GET_CODE (dest) == ZERO_EXTEND;
2440	   dest = XEXP (dest, 0))
2441	;
2442
2443      /* For a PARALLEL, record the number of things (less the usual one for a
2444	 SET) that are set.  */
2445      if (GET_CODE (dest) == PARALLEL)
2446	max_set_parallel = MAX (max_set_parallel, XVECLEN (dest, 0) - 1);
2447
2448      if (REG_P (dest)
2449	  && REGNO (dest) >= min_regno)
2450	{
2451	  REG_N_SETS (REGNO (dest))++;
2452	  REG_N_REFS (REGNO (dest))++;
2453	}
2454
2455      /* If this is setting a pseudo from another pseudo or the sum of a
2456	 pseudo and a constant integer and the other pseudo is known to be
2457	 a pointer, set the destination to be a pointer as well.
2458
2459	 Likewise if it is setting the destination from an address or from a
2460	 value equivalent to an address or to the sum of an address and
2461	 something else.
2462
2463	 But don't do any of this if the pseudo corresponds to a user
2464	 variable since it should have already been set as a pointer based
2465	 on the type.  */
2466
2467      if (REG_P (SET_DEST (x))
2468	  && REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER
2469	  && REGNO (SET_DEST (x)) >= min_regno
2470	  /* If the destination pseudo is set more than once, then other
2471	     sets might not be to a pointer value (consider access to a
2472	     union in two threads of control in the presence of global
2473	     optimizations).  So only set REG_POINTER on the destination
2474	     pseudo if this is the only set of that pseudo.  */
2475	  && REG_N_SETS (REGNO (SET_DEST (x))) == 1
2476	  && ! REG_USERVAR_P (SET_DEST (x))
2477	  && ! REG_POINTER (SET_DEST (x))
2478	  && ((REG_P (SET_SRC (x))
2479	       && REG_POINTER (SET_SRC (x)))
2480	      || ((GET_CODE (SET_SRC (x)) == PLUS
2481		   || GET_CODE (SET_SRC (x)) == LO_SUM)
2482		  && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
2483		  && REG_P (XEXP (SET_SRC (x), 0))
2484		  && REG_POINTER (XEXP (SET_SRC (x), 0)))
2485	      || GET_CODE (SET_SRC (x)) == CONST
2486	      || GET_CODE (SET_SRC (x)) == SYMBOL_REF
2487	      || GET_CODE (SET_SRC (x)) == LABEL_REF
2488	      || (GET_CODE (SET_SRC (x)) == HIGH
2489		  && (GET_CODE (XEXP (SET_SRC (x), 0)) == CONST
2490		      || GET_CODE (XEXP (SET_SRC (x), 0)) == SYMBOL_REF
2491		      || GET_CODE (XEXP (SET_SRC (x), 0)) == LABEL_REF))
2492	      || ((GET_CODE (SET_SRC (x)) == PLUS
2493		   || GET_CODE (SET_SRC (x)) == LO_SUM)
2494		  && (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST
2495		      || GET_CODE (XEXP (SET_SRC (x), 1)) == SYMBOL_REF
2496		      || GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF))
2497	      || ((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2498		  && (GET_CODE (XEXP (note, 0)) == CONST
2499		      || GET_CODE (XEXP (note, 0)) == SYMBOL_REF
2500		      || GET_CODE (XEXP (note, 0)) == LABEL_REF))))
2501	REG_POINTER (SET_DEST (x)) = 1;
2502
2503      /* If this is setting a register from a register or from a simple
2504	 conversion of a register, propagate REG_EXPR.  */
2505      if (REG_P (dest))
2506	{
2507	  rtx src = SET_SRC (x);
2508
2509	  while (GET_CODE (src) == SIGN_EXTEND
2510		 || GET_CODE (src) == ZERO_EXTEND
2511		 || GET_CODE (src) == TRUNCATE
2512		 || (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)))
2513	    src = XEXP (src, 0);
2514
2515	  if (!REG_ATTRS (dest) && REG_P (src))
2516	    REG_ATTRS (dest) = REG_ATTRS (src);
2517	  if (!REG_ATTRS (dest) && MEM_P (src))
2518	    set_reg_attrs_from_mem (dest, src);
2519	}
2520
2521      /* ... fall through ...  */
2522
2523    default:
2524      {
2525	const char *fmt = GET_RTX_FORMAT (code);
2526	int i;
2527	for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2528	  {
2529	    if (fmt[i] == 'e')
2530	      reg_scan_mark_refs (XEXP (x, i), insn, note_flag, min_regno);
2531	    else if (fmt[i] == 'E' && XVEC (x, i) != 0)
2532	      {
2533		int j;
2534		for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2535		  reg_scan_mark_refs (XVECEXP (x, i, j), insn, note_flag, min_regno);
2536	      }
2537	  }
2538      }
2539    }
2540}
2541
2542/* Return nonzero if C1 is a subset of C2, i.e., if every register in C1
2543   is also in C2.  */
2544
2545int
2546reg_class_subset_p (enum reg_class c1, enum reg_class c2)
2547{
2548  if (c1 == c2) return 1;
2549
2550  if (c2 == ALL_REGS)
2551  win:
2552    return 1;
2553  GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) c1],
2554			 reg_class_contents[(int) c2],
2555			 win);
2556  return 0;
2557}
2558
2559/* Return nonzero if there is a register that is in both C1 and C2.  */
2560
2561int
2562reg_classes_intersect_p (enum reg_class c1, enum reg_class c2)
2563{
2564  HARD_REG_SET c;
2565
2566  if (c1 == c2) return 1;
2567
2568  if (c1 == ALL_REGS || c2 == ALL_REGS)
2569    return 1;
2570
2571  COPY_HARD_REG_SET (c, reg_class_contents[(int) c1]);
2572  AND_HARD_REG_SET (c, reg_class_contents[(int) c2]);
2573
2574  GO_IF_HARD_REG_SUBSET (c, reg_class_contents[(int) NO_REGS], lose);
2575  return 1;
2576
2577 lose:
2578  return 0;
2579}
2580
2581#ifdef CANNOT_CHANGE_MODE_CLASS
2582
2583struct subregs_of_mode_node
2584{
2585  unsigned int block;
2586  unsigned char modes[MAX_MACHINE_MODE];
2587};
2588
2589static htab_t subregs_of_mode;
2590
2591static hashval_t
2592som_hash (const void *x)
2593{
2594  const struct subregs_of_mode_node *a = x;
2595  return a->block;
2596}
2597
2598static int
2599som_eq (const void *x, const void *y)
2600{
2601  const struct subregs_of_mode_node *a = x;
2602  const struct subregs_of_mode_node *b = y;
2603  return a->block == b->block;
2604}
2605
2606void
2607init_subregs_of_mode (void)
2608{
2609  if (subregs_of_mode)
2610    htab_empty (subregs_of_mode);
2611  else
2612    subregs_of_mode = htab_create (100, som_hash, som_eq, free);
2613}
2614
2615void
2616record_subregs_of_mode (rtx subreg)
2617{
2618  struct subregs_of_mode_node dummy, *node;
2619  enum machine_mode mode;
2620  unsigned int regno;
2621  void **slot;
2622
2623  if (!REG_P (SUBREG_REG (subreg)))
2624    return;
2625
2626  regno = REGNO (SUBREG_REG (subreg));
2627  mode = GET_MODE (subreg);
2628
2629  if (regno < FIRST_PSEUDO_REGISTER)
2630    return;
2631
2632  dummy.block = regno & -8;
2633  slot = htab_find_slot_with_hash (subregs_of_mode, &dummy,
2634				   dummy.block, INSERT);
2635  node = *slot;
2636  if (node == NULL)
2637    {
2638      node = xcalloc (1, sizeof (*node));
2639      node->block = regno & -8;
2640      *slot = node;
2641    }
2642
2643  node->modes[mode] |= 1 << (regno & 7);
2644}
2645
2646/* Set bits in *USED which correspond to registers which can't change
2647   their mode from FROM to any mode in which REGNO was encountered.  */
2648
2649void
2650cannot_change_mode_set_regs (HARD_REG_SET *used, enum machine_mode from,
2651			     unsigned int regno)
2652{
2653  struct subregs_of_mode_node dummy, *node;
2654  enum machine_mode to;
2655  unsigned char mask;
2656  unsigned int i;
2657
2658  dummy.block = regno & -8;
2659  node = htab_find_with_hash (subregs_of_mode, &dummy, dummy.block);
2660  if (node == NULL)
2661    return;
2662
2663  mask = 1 << (regno & 7);
2664  for (to = VOIDmode; to < NUM_MACHINE_MODES; to++)
2665    if (node->modes[to] & mask)
2666      for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2667	if (!TEST_HARD_REG_BIT (*used, i)
2668	    && REG_CANNOT_CHANGE_MODE_P (i, from, to))
2669	  SET_HARD_REG_BIT (*used, i);
2670}
2671
2672/* Return 1 if REGNO has had an invalid mode change in CLASS from FROM
2673   mode.  */
2674
2675bool
2676invalid_mode_change_p (unsigned int regno, enum reg_class class,
2677		       enum machine_mode from)
2678{
2679  struct subregs_of_mode_node dummy, *node;
2680  enum machine_mode to;
2681  unsigned char mask;
2682
2683  dummy.block = regno & -8;
2684  node = htab_find_with_hash (subregs_of_mode, &dummy, dummy.block);
2685  if (node == NULL)
2686    return false;
2687
2688  mask = 1 << (regno & 7);
2689  for (to = VOIDmode; to < NUM_MACHINE_MODES; to++)
2690    if (node->modes[to] & mask)
2691      if (CANNOT_CHANGE_MODE_CLASS (from, to, class))
2692	return true;
2693
2694  return false;
2695}
2696#endif /* CANNOT_CHANGE_MODE_CLASS */
2697
2698#include "gt-regclass.h"
2699