1/* Allocate registers within a basic block, for GNU compiler.
2   Copyright (C) 1987, 1988, 1991, 1993, 1994, 1995, 1996, 1997, 1998,
3   1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 2, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING.  If not, write to the Free
19Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
2002110-1301, USA.  */
21
22/* Allocation of hard register numbers to pseudo registers is done in
23   two passes.  In this pass we consider only regs that are born and
24   die once within one basic block.  We do this one basic block at a
25   time.  Then the next pass allocates the registers that remain.
26   Two passes are used because this pass uses methods that work only
27   on linear code, but that do a better job than the general methods
28   used in global_alloc, and more quickly too.
29
30   The assignments made are recorded in the vector reg_renumber
31   whose space is allocated here.  The rtl code itself is not altered.
32
33   We assign each instruction in the basic block a number
34   which is its order from the beginning of the block.
35   Then we can represent the lifetime of a pseudo register with
36   a pair of numbers, and check for conflicts easily.
37   We can record the availability of hard registers with a
38   HARD_REG_SET for each instruction.  The HARD_REG_SET
39   contains 0 or 1 for each hard reg.
40
41   To avoid register shuffling, we tie registers together when one
42   dies by being copied into another, or dies in an instruction that
43   does arithmetic to produce another.  The tied registers are
44   allocated as one.  Registers with different reg class preferences
45   can never be tied unless the class preferred by one is a subclass
46   of the one preferred by the other.
47
48   Tying is represented with "quantity numbers".
49   A non-tied register is given a new quantity number.
50   Tied registers have the same quantity number.
51
52   We have provision to exempt registers, even when they are contained
53   within the block, that can be tied to others that are not contained in it.
54   This is so that global_alloc could process them both and tie them then.
55   But this is currently disabled since tying in global_alloc is not
56   yet implemented.  */
57
58/* Pseudos allocated here can be reallocated by global.c if the hard register
59   is used as a spill register.  Currently we don't allocate such pseudos
60   here if their preferred class is likely to be used by spills.  */
61
62#include "config.h"
63#include "system.h"
64#include "coretypes.h"
65#include "tm.h"
66#include "hard-reg-set.h"
67#include "rtl.h"
68#include "tm_p.h"
69#include "flags.h"
70#include "regs.h"
71#include "function.h"
72#include "insn-config.h"
73#include "insn-attr.h"
74#include "recog.h"
75#include "output.h"
76#include "toplev.h"
77#include "except.h"
78#include "integrate.h"
79#include "reload.h"
80#include "ggc.h"
81#include "timevar.h"
82#include "tree-pass.h"
83
84/* Next quantity number available for allocation.  */
85
86static int next_qty;
87
88/* Information we maintain about each quantity.  */
89struct qty
90{
91  /* The number of refs to quantity Q.  */
92
93  int n_refs;
94
95  /* The frequency of uses of quantity Q.  */
96
97  int freq;
98
99  /* Insn number (counting from head of basic block)
100     where quantity Q was born.  -1 if birth has not been recorded.  */
101
102  int birth;
103
104  /* Insn number (counting from head of basic block)
105     where given quantity died.  Due to the way tying is done,
106     and the fact that we consider in this pass only regs that die but once,
107     a quantity can die only once.  Each quantity's life span
108     is a set of consecutive insns.  -1 if death has not been recorded.  */
109
110  int death;
111
112  /* Number of words needed to hold the data in given quantity.
113     This depends on its machine mode.  It is used for these purposes:
114     1. It is used in computing the relative importance of qtys,
115	which determines the order in which we look for regs for them.
116     2. It is used in rules that prevent tying several registers of
117	different sizes in a way that is geometrically impossible
118	(see combine_regs).  */
119
120  int size;
121
122  /* Number of times a reg tied to given qty lives across a CALL_INSN.  */
123
124  int n_calls_crossed;
125
126  /* Number of times a reg tied to given qty lives across a CALL_INSN
127     that might throw.  */
128
129  int n_throwing_calls_crossed;
130
131  /* The register number of one pseudo register whose reg_qty value is Q.
132     This register should be the head of the chain
133     maintained in reg_next_in_qty.  */
134
135  int first_reg;
136
137  /* Reg class contained in (smaller than) the preferred classes of all
138     the pseudo regs that are tied in given quantity.
139     This is the preferred class for allocating that quantity.  */
140
141  enum reg_class min_class;
142
143  /* Register class within which we allocate given qty if we can't get
144     its preferred class.  */
145
146  enum reg_class alternate_class;
147
148  /* This holds the mode of the registers that are tied to given qty,
149     or VOIDmode if registers with differing modes are tied together.  */
150
151  enum machine_mode mode;
152
153  /* the hard reg number chosen for given quantity,
154     or -1 if none was found.  */
155
156  short phys_reg;
157};
158
159static struct qty *qty;
160
161/* These fields are kept separately to speedup their clearing.  */
162
163/* We maintain two hard register sets that indicate suggested hard registers
164   for each quantity.  The first, phys_copy_sugg, contains hard registers
165   that are tied to the quantity by a simple copy.  The second contains all
166   hard registers that are tied to the quantity via an arithmetic operation.
167
168   The former register set is given priority for allocation.  This tends to
169   eliminate copy insns.  */
170
171/* Element Q is a set of hard registers that are suggested for quantity Q by
172   copy insns.  */
173
174static HARD_REG_SET *qty_phys_copy_sugg;
175
176/* Element Q is a set of hard registers that are suggested for quantity Q by
177   arithmetic insns.  */
178
179static HARD_REG_SET *qty_phys_sugg;
180
181/* Element Q is the number of suggested registers in qty_phys_copy_sugg.  */
182
183static short *qty_phys_num_copy_sugg;
184
185/* Element Q is the number of suggested registers in qty_phys_sugg.  */
186
187static short *qty_phys_num_sugg;
188
189/* If (REG N) has been assigned a quantity number, is a register number
190   of another register assigned the same quantity number, or -1 for the
191   end of the chain.  qty->first_reg point to the head of this chain.  */
192
193static int *reg_next_in_qty;
194
195/* reg_qty[N] (where N is a pseudo reg number) is the qty number of that reg
196   if it is >= 0,
197   of -1 if this register cannot be allocated by local-alloc,
198   or -2 if not known yet.
199
200   Note that if we see a use or death of pseudo register N with
201   reg_qty[N] == -2, register N must be local to the current block.  If
202   it were used in more than one block, we would have reg_qty[N] == -1.
203   This relies on the fact that if reg_basic_block[N] is >= 0, register N
204   will not appear in any other block.  We save a considerable number of
205   tests by exploiting this.
206
207   If N is < FIRST_PSEUDO_REGISTER, reg_qty[N] is undefined and should not
208   be referenced.  */
209
210static int *reg_qty;
211
212/* The offset (in words) of register N within its quantity.
213   This can be nonzero if register N is SImode, and has been tied
214   to a subreg of a DImode register.  */
215
216static char *reg_offset;
217
218/* Vector of substitutions of register numbers,
219   used to map pseudo regs into hardware regs.
220   This is set up as a result of register allocation.
221   Element N is the hard reg assigned to pseudo reg N,
222   or is -1 if no hard reg was assigned.
223   If N is a hard reg number, element N is N.  */
224
225short *reg_renumber;
226
227/* Set of hard registers live at the current point in the scan
228   of the instructions in a basic block.  */
229
230static HARD_REG_SET regs_live;
231
232/* Each set of hard registers indicates registers live at a particular
233   point in the basic block.  For N even, regs_live_at[N] says which
234   hard registers are needed *after* insn N/2 (i.e., they may not
235   conflict with the outputs of insn N/2 or the inputs of insn N/2 + 1.
236
237   If an object is to conflict with the inputs of insn J but not the
238   outputs of insn J + 1, we say it is born at index J*2 - 1.  Similarly,
239   if it is to conflict with the outputs of insn J but not the inputs of
240   insn J + 1, it is said to die at index J*2 + 1.  */
241
242static HARD_REG_SET *regs_live_at;
243
244/* Communicate local vars `insn_number' and `insn'
245   from `block_alloc' to `reg_is_set', `wipe_dead_reg', and `alloc_qty'.  */
246static int this_insn_number;
247static rtx this_insn;
248
249struct equivalence
250{
251  /* Set when an attempt should be made to replace a register
252     with the associated src_p entry.  */
253
254  char replace;
255
256  /* Set when a REG_EQUIV note is found or created.  Use to
257     keep track of what memory accesses might be created later,
258     e.g. by reload.  */
259
260  rtx replacement;
261
262  rtx *src_p;
263
264  /* Loop depth is used to recognize equivalences which appear
265     to be present within the same loop (or in an inner loop).  */
266
267  int loop_depth;
268
269  /* The list of each instruction which initializes this register.  */
270
271  rtx init_insns;
272
273  /* Nonzero if this had a preexisting REG_EQUIV note.  */
274
275  int is_arg_equivalence;
276};
277
278/* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
279   structure for that register.  */
280
281static struct equivalence *reg_equiv;
282
283/* Nonzero if we recorded an equivalence for a LABEL_REF.  */
284static int recorded_label_ref;
285
286static void alloc_qty (int, enum machine_mode, int, int);
287static void validate_equiv_mem_from_store (rtx, rtx, void *);
288static int validate_equiv_mem (rtx, rtx, rtx);
289static int equiv_init_varies_p (rtx);
290static int equiv_init_movable_p (rtx, int);
291static int contains_replace_regs (rtx);
292static int memref_referenced_p (rtx, rtx);
293static int memref_used_between_p (rtx, rtx, rtx);
294static void update_equiv_regs (void);
295static void no_equiv (rtx, rtx, void *);
296static void block_alloc (int);
297static int qty_sugg_compare (int, int);
298static int qty_sugg_compare_1 (const void *, const void *);
299static int qty_compare (int, int);
300static int qty_compare_1 (const void *, const void *);
301static int combine_regs (rtx, rtx, int, int, rtx, int);
302static int reg_meets_class_p (int, enum reg_class);
303static void update_qty_class (int, int);
304static void reg_is_set (rtx, rtx, void *);
305static void reg_is_born (rtx, int);
306static void wipe_dead_reg (rtx, int);
307static int find_free_reg (enum reg_class, enum machine_mode, int, int, int,
308			  int, int);
309static void mark_life (int, enum machine_mode, int);
310static void post_mark_life (int, enum machine_mode, int, int, int);
311static int no_conflict_p (rtx, rtx, rtx);
312static int requires_inout (const char *);
313
314/* Allocate a new quantity (new within current basic block)
315   for register number REGNO which is born at index BIRTH
316   within the block.  MODE and SIZE are info on reg REGNO.  */
317
318static void
319alloc_qty (int regno, enum machine_mode mode, int size, int birth)
320{
321  int qtyno = next_qty++;
322
323  reg_qty[regno] = qtyno;
324  reg_offset[regno] = 0;
325  reg_next_in_qty[regno] = -1;
326
327  qty[qtyno].first_reg = regno;
328  qty[qtyno].size = size;
329  qty[qtyno].mode = mode;
330  qty[qtyno].birth = birth;
331  qty[qtyno].n_calls_crossed = REG_N_CALLS_CROSSED (regno);
332  qty[qtyno].n_throwing_calls_crossed = REG_N_THROWING_CALLS_CROSSED (regno);
333  qty[qtyno].min_class = reg_preferred_class (regno);
334  qty[qtyno].alternate_class = reg_alternate_class (regno);
335  qty[qtyno].n_refs = REG_N_REFS (regno);
336  qty[qtyno].freq = REG_FREQ (regno);
337}
338
339/* Main entry point of this file.  */
340
341int
342local_alloc (void)
343{
344  int i;
345  int max_qty;
346  basic_block b;
347
348  /* We need to keep track of whether or not we recorded a LABEL_REF so
349     that we know if the jump optimizer needs to be rerun.  */
350  recorded_label_ref = 0;
351
352  /* Leaf functions and non-leaf functions have different needs.
353     If defined, let the machine say what kind of ordering we
354     should use.  */
355#ifdef ORDER_REGS_FOR_LOCAL_ALLOC
356  ORDER_REGS_FOR_LOCAL_ALLOC;
357#endif
358
359  /* Promote REG_EQUAL notes to REG_EQUIV notes and adjust status of affected
360     registers.  */
361  update_equiv_regs ();
362
363  /* This sets the maximum number of quantities we can have.  Quantity
364     numbers start at zero and we can have one for each pseudo.  */
365  max_qty = (max_regno - FIRST_PSEUDO_REGISTER);
366
367  /* Allocate vectors of temporary data.
368     See the declarations of these variables, above,
369     for what they mean.  */
370
371  qty = xmalloc (max_qty * sizeof (struct qty));
372  qty_phys_copy_sugg = xmalloc (max_qty * sizeof (HARD_REG_SET));
373  qty_phys_num_copy_sugg = xmalloc (max_qty * sizeof (short));
374  qty_phys_sugg = xmalloc (max_qty * sizeof (HARD_REG_SET));
375  qty_phys_num_sugg = xmalloc (max_qty * sizeof (short));
376
377  reg_qty = xmalloc (max_regno * sizeof (int));
378  reg_offset = xmalloc (max_regno * sizeof (char));
379  reg_next_in_qty = xmalloc (max_regno * sizeof (int));
380
381  /* Determine which pseudo-registers can be allocated by local-alloc.
382     In general, these are the registers used only in a single block and
383     which only die once.
384
385     We need not be concerned with which block actually uses the register
386     since we will never see it outside that block.  */
387
388  for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
389    {
390      if (REG_BASIC_BLOCK (i) >= 0 && REG_N_DEATHS (i) == 1)
391	reg_qty[i] = -2;
392      else
393	reg_qty[i] = -1;
394    }
395
396  /* Force loop below to initialize entire quantity array.  */
397  next_qty = max_qty;
398
399  /* Allocate each block's local registers, block by block.  */
400
401  FOR_EACH_BB (b)
402    {
403      /* NEXT_QTY indicates which elements of the `qty_...'
404	 vectors might need to be initialized because they were used
405	 for the previous block; it is set to the entire array before
406	 block 0.  Initialize those, with explicit loop if there are few,
407	 else with bzero and bcopy.  Do not initialize vectors that are
408	 explicit set by `alloc_qty'.  */
409
410      if (next_qty < 6)
411	{
412	  for (i = 0; i < next_qty; i++)
413	    {
414	      CLEAR_HARD_REG_SET (qty_phys_copy_sugg[i]);
415	      qty_phys_num_copy_sugg[i] = 0;
416	      CLEAR_HARD_REG_SET (qty_phys_sugg[i]);
417	      qty_phys_num_sugg[i] = 0;
418	    }
419	}
420      else
421	{
422#define CLEAR(vector)  \
423	  memset ((vector), 0, (sizeof (*(vector))) * next_qty);
424
425	  CLEAR (qty_phys_copy_sugg);
426	  CLEAR (qty_phys_num_copy_sugg);
427	  CLEAR (qty_phys_sugg);
428	  CLEAR (qty_phys_num_sugg);
429	}
430
431      next_qty = 0;
432
433      block_alloc (b->index);
434    }
435
436  free (qty);
437  free (qty_phys_copy_sugg);
438  free (qty_phys_num_copy_sugg);
439  free (qty_phys_sugg);
440  free (qty_phys_num_sugg);
441
442  free (reg_qty);
443  free (reg_offset);
444  free (reg_next_in_qty);
445
446  return recorded_label_ref;
447}
448
449/* Used for communication between the following two functions: contains
450   a MEM that we wish to ensure remains unchanged.  */
451static rtx equiv_mem;
452
453/* Set nonzero if EQUIV_MEM is modified.  */
454static int equiv_mem_modified;
455
456/* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
457   Called via note_stores.  */
458
459static void
460validate_equiv_mem_from_store (rtx dest, rtx set ATTRIBUTE_UNUSED,
461			       void *data ATTRIBUTE_UNUSED)
462{
463  if ((REG_P (dest)
464       && reg_overlap_mentioned_p (dest, equiv_mem))
465      || (MEM_P (dest)
466	  && true_dependence (dest, VOIDmode, equiv_mem, rtx_varies_p)))
467    equiv_mem_modified = 1;
468}
469
470/* Verify that no store between START and the death of REG invalidates
471   MEMREF.  MEMREF is invalidated by modifying a register used in MEMREF,
472   by storing into an overlapping memory location, or with a non-const
473   CALL_INSN.
474
475   Return 1 if MEMREF remains valid.  */
476
477static int
478validate_equiv_mem (rtx start, rtx reg, rtx memref)
479{
480  rtx insn;
481  rtx note;
482
483  equiv_mem = memref;
484  equiv_mem_modified = 0;
485
486  /* If the memory reference has side effects or is volatile, it isn't a
487     valid equivalence.  */
488  if (side_effects_p (memref))
489    return 0;
490
491  for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
492    {
493      if (! INSN_P (insn))
494	continue;
495
496      if (find_reg_note (insn, REG_DEAD, reg))
497	return 1;
498
499      if (CALL_P (insn) && ! MEM_READONLY_P (memref)
500	  && ! CONST_OR_PURE_CALL_P (insn))
501	return 0;
502
503      note_stores (PATTERN (insn), validate_equiv_mem_from_store, NULL);
504
505      /* If a register mentioned in MEMREF is modified via an
506	 auto-increment, we lose the equivalence.  Do the same if one
507	 dies; although we could extend the life, it doesn't seem worth
508	 the trouble.  */
509
510      for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
511	if ((REG_NOTE_KIND (note) == REG_INC
512	     || REG_NOTE_KIND (note) == REG_DEAD)
513	    && REG_P (XEXP (note, 0))
514	    && reg_overlap_mentioned_p (XEXP (note, 0), memref))
515	  return 0;
516    }
517
518  return 0;
519}
520
521/* Returns zero if X is known to be invariant.  */
522
523static int
524equiv_init_varies_p (rtx x)
525{
526  RTX_CODE code = GET_CODE (x);
527  int i;
528  const char *fmt;
529
530  switch (code)
531    {
532    case MEM:
533      return !MEM_READONLY_P (x) || equiv_init_varies_p (XEXP (x, 0));
534
535    case CONST:
536    case CONST_INT:
537    case CONST_DOUBLE:
538    case CONST_VECTOR:
539    case SYMBOL_REF:
540    case LABEL_REF:
541      return 0;
542
543    case REG:
544      return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
545
546    case ASM_OPERANDS:
547      if (MEM_VOLATILE_P (x))
548	return 1;
549
550      /* Fall through.  */
551
552    default:
553      break;
554    }
555
556  fmt = GET_RTX_FORMAT (code);
557  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
558    if (fmt[i] == 'e')
559      {
560	if (equiv_init_varies_p (XEXP (x, i)))
561	  return 1;
562      }
563    else if (fmt[i] == 'E')
564      {
565	int j;
566	for (j = 0; j < XVECLEN (x, i); j++)
567	  if (equiv_init_varies_p (XVECEXP (x, i, j)))
568	    return 1;
569      }
570
571  return 0;
572}
573
574/* Returns nonzero if X (used to initialize register REGNO) is movable.
575   X is only movable if the registers it uses have equivalent initializations
576   which appear to be within the same loop (or in an inner loop) and movable
577   or if they are not candidates for local_alloc and don't vary.  */
578
579static int
580equiv_init_movable_p (rtx x, int regno)
581{
582  int i, j;
583  const char *fmt;
584  enum rtx_code code = GET_CODE (x);
585
586  switch (code)
587    {
588    case SET:
589      return equiv_init_movable_p (SET_SRC (x), regno);
590
591    case CC0:
592    case CLOBBER:
593      return 0;
594
595    case PRE_INC:
596    case PRE_DEC:
597    case POST_INC:
598    case POST_DEC:
599    case PRE_MODIFY:
600    case POST_MODIFY:
601      return 0;
602
603    case REG:
604      return (reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
605	      && reg_equiv[REGNO (x)].replace)
606	     || (REG_BASIC_BLOCK (REGNO (x)) < 0 && ! rtx_varies_p (x, 0));
607
608    case UNSPEC_VOLATILE:
609      return 0;
610
611    case ASM_OPERANDS:
612      if (MEM_VOLATILE_P (x))
613	return 0;
614
615      /* Fall through.  */
616
617    default:
618      break;
619    }
620
621  fmt = GET_RTX_FORMAT (code);
622  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
623    switch (fmt[i])
624      {
625      case 'e':
626	if (! equiv_init_movable_p (XEXP (x, i), regno))
627	  return 0;
628	break;
629      case 'E':
630	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
631	  if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
632	    return 0;
633	break;
634      }
635
636  return 1;
637}
638
639/* TRUE if X uses any registers for which reg_equiv[REGNO].replace is true.  */
640
641static int
642contains_replace_regs (rtx x)
643{
644  int i, j;
645  const char *fmt;
646  enum rtx_code code = GET_CODE (x);
647
648  switch (code)
649    {
650    case CONST_INT:
651    case CONST:
652    case LABEL_REF:
653    case SYMBOL_REF:
654    case CONST_DOUBLE:
655    case CONST_VECTOR:
656    case PC:
657    case CC0:
658    case HIGH:
659      return 0;
660
661    case REG:
662      return reg_equiv[REGNO (x)].replace;
663
664    default:
665      break;
666    }
667
668  fmt = GET_RTX_FORMAT (code);
669  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
670    switch (fmt[i])
671      {
672      case 'e':
673	if (contains_replace_regs (XEXP (x, i)))
674	  return 1;
675	break;
676      case 'E':
677	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
678	  if (contains_replace_regs (XVECEXP (x, i, j)))
679	    return 1;
680	break;
681      }
682
683  return 0;
684}
685
686/* TRUE if X references a memory location that would be affected by a store
687   to MEMREF.  */
688
689static int
690memref_referenced_p (rtx memref, rtx x)
691{
692  int i, j;
693  const char *fmt;
694  enum rtx_code code = GET_CODE (x);
695
696  switch (code)
697    {
698    case CONST_INT:
699    case CONST:
700    case LABEL_REF:
701    case SYMBOL_REF:
702    case CONST_DOUBLE:
703    case CONST_VECTOR:
704    case PC:
705    case CC0:
706    case HIGH:
707    case LO_SUM:
708      return 0;
709
710    case REG:
711      return (reg_equiv[REGNO (x)].replacement
712	      && memref_referenced_p (memref,
713				      reg_equiv[REGNO (x)].replacement));
714
715    case MEM:
716      if (true_dependence (memref, VOIDmode, x, rtx_varies_p))
717	return 1;
718      break;
719
720    case SET:
721      /* If we are setting a MEM, it doesn't count (its address does), but any
722	 other SET_DEST that has a MEM in it is referencing the MEM.  */
723      if (MEM_P (SET_DEST (x)))
724	{
725	  if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
726	    return 1;
727	}
728      else if (memref_referenced_p (memref, SET_DEST (x)))
729	return 1;
730
731      return memref_referenced_p (memref, SET_SRC (x));
732
733    default:
734      break;
735    }
736
737  fmt = GET_RTX_FORMAT (code);
738  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
739    switch (fmt[i])
740      {
741      case 'e':
742	if (memref_referenced_p (memref, XEXP (x, i)))
743	  return 1;
744	break;
745      case 'E':
746	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
747	  if (memref_referenced_p (memref, XVECEXP (x, i, j)))
748	    return 1;
749	break;
750      }
751
752  return 0;
753}
754
755/* TRUE if some insn in the range (START, END] references a memory location
756   that would be affected by a store to MEMREF.  */
757
758static int
759memref_used_between_p (rtx memref, rtx start, rtx end)
760{
761  rtx insn;
762
763  for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
764       insn = NEXT_INSN (insn))
765    {
766      if (!INSN_P (insn))
767	continue;
768
769      if (memref_referenced_p (memref, PATTERN (insn)))
770	return 1;
771
772      /* Nonconst functions may access memory.  */
773      if (CALL_P (insn)
774	  && (! CONST_OR_PURE_CALL_P (insn)
775	      || pure_call_p (insn)))
776	return 1;
777    }
778
779  return 0;
780}
781
782/* Find registers that are equivalent to a single value throughout the
783   compilation (either because they can be referenced in memory or are set once
784   from a single constant).  Lower their priority for a register.
785
786   If such a register is only referenced once, try substituting its value
787   into the using insn.  If it succeeds, we can eliminate the register
788   completely.
789
790   Initialize the REG_EQUIV_INIT array of initializing insns.  */
791
792static void
793update_equiv_regs (void)
794{
795  rtx insn;
796  basic_block bb;
797  int loop_depth;
798  regset_head cleared_regs;
799  int clear_regnos = 0;
800
801  reg_equiv = xcalloc (max_regno, sizeof *reg_equiv);
802  INIT_REG_SET (&cleared_regs);
803  reg_equiv_init = ggc_alloc_cleared (max_regno * sizeof (rtx));
804  reg_equiv_init_size = max_regno;
805
806  init_alias_analysis ();
807
808  /* Scan the insns and find which registers have equivalences.  Do this
809     in a separate scan of the insns because (due to -fcse-follow-jumps)
810     a register can be set below its use.  */
811  FOR_EACH_BB (bb)
812    {
813      loop_depth = bb->loop_depth;
814
815      for (insn = BB_HEAD (bb);
816	   insn != NEXT_INSN (BB_END (bb));
817	   insn = NEXT_INSN (insn))
818	{
819	  rtx note;
820	  rtx set;
821	  rtx dest, src;
822	  int regno;
823
824	  if (! INSN_P (insn))
825	    continue;
826
827	  for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
828	    if (REG_NOTE_KIND (note) == REG_INC)
829	      no_equiv (XEXP (note, 0), note, NULL);
830
831	  set = single_set (insn);
832
833	  /* If this insn contains more (or less) than a single SET,
834	     only mark all destinations as having no known equivalence.  */
835	  if (set == 0)
836	    {
837	      note_stores (PATTERN (insn), no_equiv, NULL);
838	      continue;
839	    }
840	  else if (GET_CODE (PATTERN (insn)) == PARALLEL)
841	    {
842	      int i;
843
844	      for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
845		{
846		  rtx part = XVECEXP (PATTERN (insn), 0, i);
847		  if (part != set)
848		    note_stores (part, no_equiv, NULL);
849		}
850	    }
851
852	  dest = SET_DEST (set);
853	  src = SET_SRC (set);
854
855	  /* See if this is setting up the equivalence between an argument
856	     register and its stack slot.  */
857	  note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
858	  if (note)
859	    {
860	      gcc_assert (REG_P (dest));
861	      regno = REGNO (dest);
862
863	      /* Note that we don't want to clear reg_equiv_init even if there
864		 are multiple sets of this register.  */
865	      reg_equiv[regno].is_arg_equivalence = 1;
866
867	      /* Record for reload that this is an equivalencing insn.  */
868	      if (rtx_equal_p (src, XEXP (note, 0)))
869		reg_equiv_init[regno]
870		  = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init[regno]);
871
872	      /* Continue normally in case this is a candidate for
873		 replacements.  */
874	    }
875
876	  if (!optimize)
877	    continue;
878
879	  /* We only handle the case of a pseudo register being set
880	     once, or always to the same value.  */
881	  /* ??? The mn10200 port breaks if we add equivalences for
882	     values that need an ADDRESS_REGS register and set them equivalent
883	     to a MEM of a pseudo.  The actual problem is in the over-conservative
884	     handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
885	     calculate_needs, but we traditionally work around this problem
886	     here by rejecting equivalences when the destination is in a register
887	     that's likely spilled.  This is fragile, of course, since the
888	     preferred class of a pseudo depends on all instructions that set
889	     or use it.  */
890
891	  if (!REG_P (dest)
892	      || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
893	      || reg_equiv[regno].init_insns == const0_rtx
894	      || (CLASS_LIKELY_SPILLED_P (reg_preferred_class (regno))
895		  && MEM_P (src) && ! reg_equiv[regno].is_arg_equivalence))
896	    {
897	      /* This might be setting a SUBREG of a pseudo, a pseudo that is
898		 also set somewhere else to a constant.  */
899	      note_stores (set, no_equiv, NULL);
900	      continue;
901	    }
902
903	  note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
904
905	  /* cse sometimes generates function invariants, but doesn't put a
906	     REG_EQUAL note on the insn.  Since this note would be redundant,
907	     there's no point creating it earlier than here.  */
908	  if (! note && ! rtx_varies_p (src, 0))
909	    note = set_unique_reg_note (insn, REG_EQUAL, src);
910
911	  /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
912	     since it represents a function call */
913	  if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
914	    note = NULL_RTX;
915
916	  if (REG_N_SETS (regno) != 1
917	      && (! note
918		  || rtx_varies_p (XEXP (note, 0), 0)
919		  || (reg_equiv[regno].replacement
920		      && ! rtx_equal_p (XEXP (note, 0),
921					reg_equiv[regno].replacement))))
922	    {
923	      no_equiv (dest, set, NULL);
924	      continue;
925	    }
926	  /* Record this insn as initializing this register.  */
927	  reg_equiv[regno].init_insns
928	    = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
929
930	  /* If this register is known to be equal to a constant, record that
931	     it is always equivalent to the constant.  */
932	  if (note && ! rtx_varies_p (XEXP (note, 0), 0))
933	    PUT_MODE (note, (enum machine_mode) REG_EQUIV);
934
935	  /* If this insn introduces a "constant" register, decrease the priority
936	     of that register.  Record this insn if the register is only used once
937	     more and the equivalence value is the same as our source.
938
939	     The latter condition is checked for two reasons:  First, it is an
940	     indication that it may be more efficient to actually emit the insn
941	     as written (if no registers are available, reload will substitute
942	     the equivalence).  Secondly, it avoids problems with any registers
943	     dying in this insn whose death notes would be missed.
944
945	     If we don't have a REG_EQUIV note, see if this insn is loading
946	     a register used only in one basic block from a MEM.  If so, and the
947	     MEM remains unchanged for the life of the register, add a REG_EQUIV
948	     note.  */
949
950	  note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
951
952	  if (note == 0 && REG_BASIC_BLOCK (regno) >= 0
953	      && MEM_P (SET_SRC (set))
954	      && validate_equiv_mem (insn, dest, SET_SRC (set)))
955	    REG_NOTES (insn) = note = gen_rtx_EXPR_LIST (REG_EQUIV, SET_SRC (set),
956							 REG_NOTES (insn));
957
958	  if (note)
959	    {
960	      int regno = REGNO (dest);
961	      rtx x = XEXP (note, 0);
962
963	      /* If we haven't done so, record for reload that this is an
964		 equivalencing insn.  */
965	      if (!reg_equiv[regno].is_arg_equivalence)
966		reg_equiv_init[regno]
967		  = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init[regno]);
968
969	      /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
970		 We might end up substituting the LABEL_REF for uses of the
971		 pseudo here or later.  That kind of transformation may turn an
972		 indirect jump into a direct jump, in which case we must rerun the
973		 jump optimizer to ensure that the JUMP_LABEL fields are valid.  */
974	      if (GET_CODE (x) == LABEL_REF
975		  || (GET_CODE (x) == CONST
976		      && GET_CODE (XEXP (x, 0)) == PLUS
977		      && (GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF)))
978		recorded_label_ref = 1;
979
980	      reg_equiv[regno].replacement = x;
981	      reg_equiv[regno].src_p = &SET_SRC (set);
982	      reg_equiv[regno].loop_depth = loop_depth;
983
984	      /* Don't mess with things live during setjmp.  */
985	      if (REG_LIVE_LENGTH (regno) >= 0 && optimize)
986		{
987		  /* Note that the statement below does not affect the priority
988		     in local-alloc!  */
989		  REG_LIVE_LENGTH (regno) *= 2;
990
991		  /* If the register is referenced exactly twice, meaning it is
992		     set once and used once, indicate that the reference may be
993		     replaced by the equivalence we computed above.  Do this
994		     even if the register is only used in one block so that
995		     dependencies can be handled where the last register is
996		     used in a different block (i.e. HIGH / LO_SUM sequences)
997		     and to reduce the number of registers alive across
998		     calls.  */
999
1000		  if (REG_N_REFS (regno) == 2
1001		      && (rtx_equal_p (x, src)
1002			  || ! equiv_init_varies_p (src))
1003		      && NONJUMP_INSN_P (insn)
1004		      && equiv_init_movable_p (PATTERN (insn), regno))
1005		    reg_equiv[regno].replace = 1;
1006		}
1007	    }
1008	}
1009    }
1010
1011  if (!optimize)
1012    goto out;
1013
1014  /* A second pass, to gather additional equivalences with memory.  This needs
1015     to be done after we know which registers we are going to replace.  */
1016
1017  for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1018    {
1019      rtx set, src, dest;
1020      unsigned regno;
1021
1022      if (! INSN_P (insn))
1023	continue;
1024
1025      set = single_set (insn);
1026      if (! set)
1027	continue;
1028
1029      dest = SET_DEST (set);
1030      src = SET_SRC (set);
1031
1032      /* If this sets a MEM to the contents of a REG that is only used
1033	 in a single basic block, see if the register is always equivalent
1034	 to that memory location and if moving the store from INSN to the
1035	 insn that set REG is safe.  If so, put a REG_EQUIV note on the
1036	 initializing insn.
1037
1038	 Don't add a REG_EQUIV note if the insn already has one.  The existing
1039	 REG_EQUIV is likely more useful than the one we are adding.
1040
1041	 If one of the regs in the address has reg_equiv[REGNO].replace set,
1042	 then we can't add this REG_EQUIV note.  The reg_equiv[REGNO].replace
1043	 optimization may move the set of this register immediately before
1044	 insn, which puts it after reg_equiv[REGNO].init_insns, and hence
1045	 the mention in the REG_EQUIV note would be to an uninitialized
1046	 pseudo.  */
1047
1048      if (MEM_P (dest) && REG_P (src)
1049	  && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
1050	  && REG_BASIC_BLOCK (regno) >= 0
1051	  && REG_N_SETS (regno) == 1
1052	  && reg_equiv[regno].init_insns != 0
1053	  && reg_equiv[regno].init_insns != const0_rtx
1054	  && ! find_reg_note (XEXP (reg_equiv[regno].init_insns, 0),
1055			      REG_EQUIV, NULL_RTX)
1056	  && ! contains_replace_regs (XEXP (dest, 0)))
1057	{
1058	  rtx init_insn = XEXP (reg_equiv[regno].init_insns, 0);
1059	  if (validate_equiv_mem (init_insn, src, dest)
1060	      && ! memref_used_between_p (dest, init_insn, insn))
1061	    {
1062	      REG_NOTES (init_insn)
1063		= gen_rtx_EXPR_LIST (REG_EQUIV, dest,
1064				     REG_NOTES (init_insn));
1065	      /* This insn makes the equivalence, not the one initializing
1066		 the register.  */
1067	      reg_equiv_init[regno]
1068		= gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
1069	    }
1070	}
1071    }
1072
1073  /* Now scan all regs killed in an insn to see if any of them are
1074     registers only used that once.  If so, see if we can replace the
1075     reference with the equivalent form.  If we can, delete the
1076     initializing reference and this register will go away.  If we
1077     can't replace the reference, and the initializing reference is
1078     within the same loop (or in an inner loop), then move the register
1079     initialization just before the use, so that they are in the same
1080     basic block.  */
1081  FOR_EACH_BB_REVERSE (bb)
1082    {
1083      loop_depth = bb->loop_depth;
1084      for (insn = BB_END (bb);
1085	   insn != PREV_INSN (BB_HEAD (bb));
1086	   insn = PREV_INSN (insn))
1087	{
1088	  rtx link;
1089
1090	  if (! INSN_P (insn))
1091	    continue;
1092
1093	  /* Don't substitute into a non-local goto, this confuses CFG.  */
1094	  if (JUMP_P (insn)
1095	      && find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
1096	    continue;
1097
1098	  for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1099	    {
1100	      if (REG_NOTE_KIND (link) == REG_DEAD
1101		  /* Make sure this insn still refers to the register.  */
1102		  && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
1103		{
1104		  int regno = REGNO (XEXP (link, 0));
1105		  rtx equiv_insn;
1106
1107		  if (! reg_equiv[regno].replace
1108		      || reg_equiv[regno].loop_depth < loop_depth)
1109		    continue;
1110
1111		  /* reg_equiv[REGNO].replace gets set only when
1112		     REG_N_REFS[REGNO] is 2, i.e. the register is set
1113		     once and used once.  (If it were only set, but not used,
1114		     flow would have deleted the setting insns.)  Hence
1115		     there can only be one insn in reg_equiv[REGNO].init_insns.  */
1116		  gcc_assert (reg_equiv[regno].init_insns
1117			      && !XEXP (reg_equiv[regno].init_insns, 1));
1118		  equiv_insn = XEXP (reg_equiv[regno].init_insns, 0);
1119
1120		  /* We may not move instructions that can throw, since
1121		     that changes basic block boundaries and we are not
1122		     prepared to adjust the CFG to match.  */
1123		  if (can_throw_internal (equiv_insn))
1124		    continue;
1125
1126		  if (asm_noperands (PATTERN (equiv_insn)) < 0
1127		      && validate_replace_rtx (regno_reg_rtx[regno],
1128					       *(reg_equiv[regno].src_p), insn))
1129		    {
1130		      rtx equiv_link;
1131		      rtx last_link;
1132		      rtx note;
1133
1134		      /* Find the last note.  */
1135		      for (last_link = link; XEXP (last_link, 1);
1136			   last_link = XEXP (last_link, 1))
1137			;
1138
1139		      /* Append the REG_DEAD notes from equiv_insn.  */
1140		      equiv_link = REG_NOTES (equiv_insn);
1141		      while (equiv_link)
1142			{
1143			  note = equiv_link;
1144			  equiv_link = XEXP (equiv_link, 1);
1145			  if (REG_NOTE_KIND (note) == REG_DEAD)
1146			    {
1147			      remove_note (equiv_insn, note);
1148			      XEXP (last_link, 1) = note;
1149			      XEXP (note, 1) = NULL_RTX;
1150			      last_link = note;
1151			    }
1152			}
1153
1154		      remove_death (regno, insn);
1155		      REG_N_REFS (regno) = 0;
1156		      REG_FREQ (regno) = 0;
1157		      delete_insn (equiv_insn);
1158
1159		      reg_equiv[regno].init_insns
1160			= XEXP (reg_equiv[regno].init_insns, 1);
1161
1162		      /* Remember to clear REGNO from all basic block's live
1163			 info.  */
1164		      SET_REGNO_REG_SET (&cleared_regs, regno);
1165		      clear_regnos++;
1166		      reg_equiv_init[regno] = NULL_RTX;
1167		    }
1168		  /* Move the initialization of the register to just before
1169		     INSN.  Update the flow information.  */
1170		  else if (PREV_INSN (insn) != equiv_insn)
1171		    {
1172		      rtx new_insn;
1173
1174		      new_insn = emit_insn_before (PATTERN (equiv_insn), insn);
1175		      REG_NOTES (new_insn) = REG_NOTES (equiv_insn);
1176		      REG_NOTES (equiv_insn) = 0;
1177
1178		      /* Make sure this insn is recognized before
1179			 reload begins, otherwise
1180			 eliminate_regs_in_insn will die.  */
1181		      INSN_CODE (new_insn) = INSN_CODE (equiv_insn);
1182
1183		      delete_insn (equiv_insn);
1184
1185		      XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
1186
1187		      REG_BASIC_BLOCK (regno) = bb->index;
1188		      REG_N_CALLS_CROSSED (regno) = 0;
1189		      REG_N_THROWING_CALLS_CROSSED (regno) = 0;
1190		      REG_LIVE_LENGTH (regno) = 2;
1191
1192		      if (insn == BB_HEAD (bb))
1193			BB_HEAD (bb) = PREV_INSN (insn);
1194
1195		      /* Remember to clear REGNO from all basic block's live
1196			 info.  */
1197		      SET_REGNO_REG_SET (&cleared_regs, regno);
1198		      clear_regnos++;
1199		      reg_equiv_init[regno]
1200			= gen_rtx_INSN_LIST (VOIDmode, new_insn, NULL_RTX);
1201		    }
1202		}
1203	    }
1204	}
1205    }
1206
1207  /* Clear all dead REGNOs from all basic block's live info.  */
1208  if (clear_regnos)
1209    {
1210      unsigned j;
1211
1212      if (clear_regnos > 8)
1213	{
1214	  FOR_EACH_BB (bb)
1215	    {
1216	      AND_COMPL_REG_SET (bb->il.rtl->global_live_at_start,
1217			         &cleared_regs);
1218	      AND_COMPL_REG_SET (bb->il.rtl->global_live_at_end,
1219			         &cleared_regs);
1220	    }
1221	}
1222      else
1223	{
1224	  reg_set_iterator rsi;
1225	  EXECUTE_IF_SET_IN_REG_SET (&cleared_regs, 0, j, rsi)
1226	    {
1227	      FOR_EACH_BB (bb)
1228		{
1229		  CLEAR_REGNO_REG_SET (bb->il.rtl->global_live_at_start, j);
1230		  CLEAR_REGNO_REG_SET (bb->il.rtl->global_live_at_end, j);
1231		}
1232	    }
1233	}
1234    }
1235
1236  out:
1237  /* Clean up.  */
1238  end_alias_analysis ();
1239  CLEAR_REG_SET (&cleared_regs);
1240  free (reg_equiv);
1241}
1242
1243/* Mark REG as having no known equivalence.
1244   Some instructions might have been processed before and furnished
1245   with REG_EQUIV notes for this register; these notes will have to be
1246   removed.
1247   STORE is the piece of RTL that does the non-constant / conflicting
1248   assignment - a SET, CLOBBER or REG_INC note.  It is currently not used,
1249   but needs to be there because this function is called from note_stores.  */
1250static void
1251no_equiv (rtx reg, rtx store ATTRIBUTE_UNUSED, void *data ATTRIBUTE_UNUSED)
1252{
1253  int regno;
1254  rtx list;
1255
1256  if (!REG_P (reg))
1257    return;
1258  regno = REGNO (reg);
1259  list = reg_equiv[regno].init_insns;
1260  if (list == const0_rtx)
1261    return;
1262  reg_equiv[regno].init_insns = const0_rtx;
1263  reg_equiv[regno].replacement = NULL_RTX;
1264  /* This doesn't matter for equivalences made for argument registers, we
1265     should keep their initialization insns.  */
1266  if (reg_equiv[regno].is_arg_equivalence)
1267    return;
1268  reg_equiv_init[regno] = NULL_RTX;
1269  for (; list; list =  XEXP (list, 1))
1270    {
1271      rtx insn = XEXP (list, 0);
1272      remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
1273    }
1274}
1275
1276/* Allocate hard regs to the pseudo regs used only within block number B.
1277   Only the pseudos that die but once can be handled.  */
1278
1279static void
1280block_alloc (int b)
1281{
1282  int i, q;
1283  rtx insn;
1284  rtx note, hard_reg;
1285  int insn_number = 0;
1286  int insn_count = 0;
1287  int max_uid = get_max_uid ();
1288  int *qty_order;
1289  int no_conflict_combined_regno = -1;
1290
1291  /* Count the instructions in the basic block.  */
1292
1293  insn = BB_END (BASIC_BLOCK (b));
1294  while (1)
1295    {
1296      if (!NOTE_P (insn))
1297	{
1298	  ++insn_count;
1299	  gcc_assert (insn_count <= max_uid);
1300	}
1301      if (insn == BB_HEAD (BASIC_BLOCK (b)))
1302	break;
1303      insn = PREV_INSN (insn);
1304    }
1305
1306  /* +2 to leave room for a post_mark_life at the last insn and for
1307     the birth of a CLOBBER in the first insn.  */
1308  regs_live_at = xcalloc ((2 * insn_count + 2), sizeof (HARD_REG_SET));
1309
1310  /* Initialize table of hardware registers currently live.  */
1311
1312  REG_SET_TO_HARD_REG_SET (regs_live,
1313		  	   BASIC_BLOCK (b)->il.rtl->global_live_at_start);
1314
1315  /* This loop scans the instructions of the basic block
1316     and assigns quantities to registers.
1317     It computes which registers to tie.  */
1318
1319  insn = BB_HEAD (BASIC_BLOCK (b));
1320  while (1)
1321    {
1322      if (!NOTE_P (insn))
1323	insn_number++;
1324
1325      if (INSN_P (insn))
1326	{
1327	  rtx link, set;
1328	  int win = 0;
1329	  rtx r0, r1 = NULL_RTX;
1330	  int combined_regno = -1;
1331	  int i;
1332
1333	  this_insn_number = insn_number;
1334	  this_insn = insn;
1335
1336	  extract_insn (insn);
1337	  which_alternative = -1;
1338
1339	  /* Is this insn suitable for tying two registers?
1340	     If so, try doing that.
1341	     Suitable insns are those with at least two operands and where
1342	     operand 0 is an output that is a register that is not
1343	     earlyclobber.
1344
1345	     We can tie operand 0 with some operand that dies in this insn.
1346	     First look for operands that are required to be in the same
1347	     register as operand 0.  If we find such, only try tying that
1348	     operand or one that can be put into that operand if the
1349	     operation is commutative.  If we don't find an operand
1350	     that is required to be in the same register as operand 0,
1351	     we can tie with any operand.
1352
1353	     Subregs in place of regs are also ok.
1354
1355	     If tying is done, WIN is set nonzero.  */
1356
1357	  if (optimize
1358	      && recog_data.n_operands > 1
1359	      && recog_data.constraints[0][0] == '='
1360	      && recog_data.constraints[0][1] != '&')
1361	    {
1362	      /* If non-negative, is an operand that must match operand 0.  */
1363	      int must_match_0 = -1;
1364	      /* Counts number of alternatives that require a match with
1365		 operand 0.  */
1366	      int n_matching_alts = 0;
1367
1368	      for (i = 1; i < recog_data.n_operands; i++)
1369		{
1370		  const char *p = recog_data.constraints[i];
1371		  int this_match = requires_inout (p);
1372
1373		  n_matching_alts += this_match;
1374		  if (this_match == recog_data.n_alternatives)
1375		    must_match_0 = i;
1376		}
1377
1378	      r0 = recog_data.operand[0];
1379	      for (i = 1; i < recog_data.n_operands; i++)
1380		{
1381		  /* Skip this operand if we found an operand that
1382		     must match operand 0 and this operand isn't it
1383		     and can't be made to be it by commutativity.  */
1384
1385		  if (must_match_0 >= 0 && i != must_match_0
1386		      && ! (i == must_match_0 + 1
1387			    && recog_data.constraints[i-1][0] == '%')
1388		      && ! (i == must_match_0 - 1
1389			    && recog_data.constraints[i][0] == '%'))
1390		    continue;
1391
1392		  /* Likewise if each alternative has some operand that
1393		     must match operand zero.  In that case, skip any
1394		     operand that doesn't list operand 0 since we know that
1395		     the operand always conflicts with operand 0.  We
1396		     ignore commutativity in this case to keep things simple.  */
1397		  if (n_matching_alts == recog_data.n_alternatives
1398		      && 0 == requires_inout (recog_data.constraints[i]))
1399		    continue;
1400
1401		  r1 = recog_data.operand[i];
1402
1403		  /* If the operand is an address, find a register in it.
1404		     There may be more than one register, but we only try one
1405		     of them.  */
1406		  if (recog_data.constraints[i][0] == 'p'
1407		      || EXTRA_ADDRESS_CONSTRAINT (recog_data.constraints[i][0],
1408						   recog_data.constraints[i]))
1409		    while (GET_CODE (r1) == PLUS || GET_CODE (r1) == MULT)
1410		      r1 = XEXP (r1, 0);
1411
1412		  /* Avoid making a call-saved register unnecessarily
1413                     clobbered.  */
1414		  hard_reg = get_hard_reg_initial_reg (cfun, r1);
1415		  if (hard_reg != NULL_RTX)
1416		    {
1417		      if (REG_P (hard_reg)
1418			  && REGNO (hard_reg) < FIRST_PSEUDO_REGISTER
1419			  && !call_used_regs[REGNO (hard_reg)])
1420			continue;
1421		    }
1422
1423		  if (REG_P (r0) || GET_CODE (r0) == SUBREG)
1424		    {
1425		      /* We have two priorities for hard register preferences.
1426			 If we have a move insn or an insn whose first input
1427			 can only be in the same register as the output, give
1428			 priority to an equivalence found from that insn.  */
1429		      int may_save_copy
1430			= (r1 == recog_data.operand[i] && must_match_0 >= 0);
1431
1432		      if (REG_P (r1) || GET_CODE (r1) == SUBREG)
1433			win = combine_regs (r1, r0, may_save_copy,
1434					    insn_number, insn, 0);
1435		    }
1436		  if (win)
1437		    break;
1438		}
1439	    }
1440
1441	  /* Recognize an insn sequence with an ultimate result
1442	     which can safely overlap one of the inputs.
1443	     The sequence begins with a CLOBBER of its result,
1444	     and ends with an insn that copies the result to itself
1445	     and has a REG_EQUAL note for an equivalent formula.
1446	     That note indicates what the inputs are.
1447	     The result and the input can overlap if each insn in
1448	     the sequence either doesn't mention the input
1449	     or has a REG_NO_CONFLICT note to inhibit the conflict.
1450
1451	     We do the combining test at the CLOBBER so that the
1452	     destination register won't have had a quantity number
1453	     assigned, since that would prevent combining.  */
1454
1455	  if (optimize
1456	      && GET_CODE (PATTERN (insn)) == CLOBBER
1457	      && (r0 = XEXP (PATTERN (insn), 0),
1458		  REG_P (r0))
1459	      && (link = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0
1460	      && XEXP (link, 0) != 0
1461	      && NONJUMP_INSN_P (XEXP (link, 0))
1462	      && (set = single_set (XEXP (link, 0))) != 0
1463	      && SET_DEST (set) == r0 && SET_SRC (set) == r0
1464	      && (note = find_reg_note (XEXP (link, 0), REG_EQUAL,
1465					NULL_RTX)) != 0)
1466	    {
1467	      if (r1 = XEXP (note, 0), REG_P (r1)
1468		  /* Check that we have such a sequence.  */
1469		  && no_conflict_p (insn, r0, r1))
1470		win = combine_regs (r1, r0, 1, insn_number, insn, 1);
1471	      else if (GET_RTX_FORMAT (GET_CODE (XEXP (note, 0)))[0] == 'e'
1472		       && (r1 = XEXP (XEXP (note, 0), 0),
1473			   REG_P (r1) || GET_CODE (r1) == SUBREG)
1474		       && no_conflict_p (insn, r0, r1))
1475		win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1476
1477	      /* Here we care if the operation to be computed is
1478		 commutative.  */
1479	      else if (COMMUTATIVE_P (XEXP (note, 0))
1480		       && (r1 = XEXP (XEXP (note, 0), 1),
1481			   (REG_P (r1) || GET_CODE (r1) == SUBREG))
1482		       && no_conflict_p (insn, r0, r1))
1483		win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1484
1485	      /* If we did combine something, show the register number
1486		 in question so that we know to ignore its death.  */
1487	      if (win)
1488		no_conflict_combined_regno = REGNO (r1);
1489	    }
1490
1491	  /* If registers were just tied, set COMBINED_REGNO
1492	     to the number of the register used in this insn
1493	     that was tied to the register set in this insn.
1494	     This register's qty should not be "killed".  */
1495
1496	  if (win)
1497	    {
1498	      while (GET_CODE (r1) == SUBREG)
1499		r1 = SUBREG_REG (r1);
1500	      combined_regno = REGNO (r1);
1501	    }
1502
1503	  /* Mark the death of everything that dies in this instruction,
1504	     except for anything that was just combined.  */
1505
1506	  for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1507	    if (REG_NOTE_KIND (link) == REG_DEAD
1508		&& REG_P (XEXP (link, 0))
1509		&& combined_regno != (int) REGNO (XEXP (link, 0))
1510		&& (no_conflict_combined_regno != (int) REGNO (XEXP (link, 0))
1511		    || ! find_reg_note (insn, REG_NO_CONFLICT,
1512					XEXP (link, 0))))
1513	      wipe_dead_reg (XEXP (link, 0), 0);
1514
1515	  /* Allocate qty numbers for all registers local to this block
1516	     that are born (set) in this instruction.
1517	     A pseudo that already has a qty is not changed.  */
1518
1519	  note_stores (PATTERN (insn), reg_is_set, NULL);
1520
1521	  /* If anything is set in this insn and then unused, mark it as dying
1522	     after this insn, so it will conflict with our outputs.  This
1523	     can't match with something that combined, and it doesn't matter
1524	     if it did.  Do this after the calls to reg_is_set since these
1525	     die after, not during, the current insn.  */
1526
1527	  for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1528	    if (REG_NOTE_KIND (link) == REG_UNUSED
1529		&& REG_P (XEXP (link, 0)))
1530	      wipe_dead_reg (XEXP (link, 0), 1);
1531
1532	  /* If this is an insn that has a REG_RETVAL note pointing at a
1533	     CLOBBER insn, we have reached the end of a REG_NO_CONFLICT
1534	     block, so clear any register number that combined within it.  */
1535	  if ((note = find_reg_note (insn, REG_RETVAL, NULL_RTX)) != 0
1536	      && NONJUMP_INSN_P (XEXP (note, 0))
1537	      && GET_CODE (PATTERN (XEXP (note, 0))) == CLOBBER)
1538	    no_conflict_combined_regno = -1;
1539	}
1540
1541      /* Set the registers live after INSN_NUMBER.  Note that we never
1542	 record the registers live before the block's first insn, since no
1543	 pseudos we care about are live before that insn.  */
1544
1545      IOR_HARD_REG_SET (regs_live_at[2 * insn_number], regs_live);
1546      IOR_HARD_REG_SET (regs_live_at[2 * insn_number + 1], regs_live);
1547
1548      if (insn == BB_END (BASIC_BLOCK (b)))
1549	break;
1550
1551      insn = NEXT_INSN (insn);
1552    }
1553
1554  /* Now every register that is local to this basic block
1555     should have been given a quantity, or else -1 meaning ignore it.
1556     Every quantity should have a known birth and death.
1557
1558     Order the qtys so we assign them registers in order of the
1559     number of suggested registers they need so we allocate those with
1560     the most restrictive needs first.  */
1561
1562  qty_order = xmalloc (next_qty * sizeof (int));
1563  for (i = 0; i < next_qty; i++)
1564    qty_order[i] = i;
1565
1566#define EXCHANGE(I1, I2)  \
1567  { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1568
1569  switch (next_qty)
1570    {
1571    case 3:
1572      /* Make qty_order[2] be the one to allocate last.  */
1573      if (qty_sugg_compare (0, 1) > 0)
1574	EXCHANGE (0, 1);
1575      if (qty_sugg_compare (1, 2) > 0)
1576	EXCHANGE (2, 1);
1577
1578      /* ... Fall through ...  */
1579    case 2:
1580      /* Put the best one to allocate in qty_order[0].  */
1581      if (qty_sugg_compare (0, 1) > 0)
1582	EXCHANGE (0, 1);
1583
1584      /* ... Fall through ...  */
1585
1586    case 1:
1587    case 0:
1588      /* Nothing to do here.  */
1589      break;
1590
1591    default:
1592      qsort (qty_order, next_qty, sizeof (int), qty_sugg_compare_1);
1593    }
1594
1595  /* Try to put each quantity in a suggested physical register, if it has one.
1596     This may cause registers to be allocated that otherwise wouldn't be, but
1597     this seems acceptable in local allocation (unlike global allocation).  */
1598  for (i = 0; i < next_qty; i++)
1599    {
1600      q = qty_order[i];
1601      if (qty_phys_num_sugg[q] != 0 || qty_phys_num_copy_sugg[q] != 0)
1602	qty[q].phys_reg = find_free_reg (qty[q].min_class, qty[q].mode, q,
1603					 0, 1, qty[q].birth, qty[q].death);
1604      else
1605	qty[q].phys_reg = -1;
1606    }
1607
1608  /* Order the qtys so we assign them registers in order of
1609     decreasing length of life.  Normally call qsort, but if we
1610     have only a very small number of quantities, sort them ourselves.  */
1611
1612  for (i = 0; i < next_qty; i++)
1613    qty_order[i] = i;
1614
1615#define EXCHANGE(I1, I2)  \
1616  { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1617
1618  switch (next_qty)
1619    {
1620    case 3:
1621      /* Make qty_order[2] be the one to allocate last.  */
1622      if (qty_compare (0, 1) > 0)
1623	EXCHANGE (0, 1);
1624      if (qty_compare (1, 2) > 0)
1625	EXCHANGE (2, 1);
1626
1627      /* ... Fall through ...  */
1628    case 2:
1629      /* Put the best one to allocate in qty_order[0].  */
1630      if (qty_compare (0, 1) > 0)
1631	EXCHANGE (0, 1);
1632
1633      /* ... Fall through ...  */
1634
1635    case 1:
1636    case 0:
1637      /* Nothing to do here.  */
1638      break;
1639
1640    default:
1641      qsort (qty_order, next_qty, sizeof (int), qty_compare_1);
1642    }
1643
1644  /* Now for each qty that is not a hardware register,
1645     look for a hardware register to put it in.
1646     First try the register class that is cheapest for this qty,
1647     if there is more than one class.  */
1648
1649  for (i = 0; i < next_qty; i++)
1650    {
1651      q = qty_order[i];
1652      if (qty[q].phys_reg < 0)
1653	{
1654#ifdef INSN_SCHEDULING
1655	  /* These values represent the adjusted lifetime of a qty so
1656	     that it conflicts with qtys which appear near the start/end
1657	     of this qty's lifetime.
1658
1659	     The purpose behind extending the lifetime of this qty is to
1660	     discourage the register allocator from creating false
1661	     dependencies.
1662
1663	     The adjustment value is chosen to indicate that this qty
1664	     conflicts with all the qtys in the instructions immediately
1665	     before and after the lifetime of this qty.
1666
1667	     Experiments have shown that higher values tend to hurt
1668	     overall code performance.
1669
1670	     If allocation using the extended lifetime fails we will try
1671	     again with the qty's unadjusted lifetime.  */
1672	  int fake_birth = MAX (0, qty[q].birth - 2 + qty[q].birth % 2);
1673	  int fake_death = MIN (insn_number * 2 + 1,
1674				qty[q].death + 2 - qty[q].death % 2);
1675#endif
1676
1677	  if (N_REG_CLASSES > 1)
1678	    {
1679#ifdef INSN_SCHEDULING
1680	      /* We try to avoid using hard registers allocated to qtys which
1681		 are born immediately after this qty or die immediately before
1682		 this qty.
1683
1684		 This optimization is only appropriate when we will run
1685		 a scheduling pass after reload and we are not optimizing
1686		 for code size.  */
1687	      if (flag_schedule_insns_after_reload
1688		  && !optimize_size
1689		  && !SMALL_REGISTER_CLASSES)
1690		{
1691		  qty[q].phys_reg = find_free_reg (qty[q].min_class,
1692						   qty[q].mode, q, 0, 0,
1693						   fake_birth, fake_death);
1694		  if (qty[q].phys_reg >= 0)
1695		    continue;
1696		}
1697#endif
1698	      qty[q].phys_reg = find_free_reg (qty[q].min_class,
1699					       qty[q].mode, q, 0, 0,
1700					       qty[q].birth, qty[q].death);
1701	      if (qty[q].phys_reg >= 0)
1702		continue;
1703	    }
1704
1705#ifdef INSN_SCHEDULING
1706	  /* Similarly, avoid false dependencies.  */
1707	  if (flag_schedule_insns_after_reload
1708	      && !optimize_size
1709	      && !SMALL_REGISTER_CLASSES
1710	      && qty[q].alternate_class != NO_REGS)
1711	    qty[q].phys_reg = find_free_reg (qty[q].alternate_class,
1712					     qty[q].mode, q, 0, 0,
1713					     fake_birth, fake_death);
1714#endif
1715	  if (qty[q].alternate_class != NO_REGS)
1716	    qty[q].phys_reg = find_free_reg (qty[q].alternate_class,
1717					     qty[q].mode, q, 0, 0,
1718					     qty[q].birth, qty[q].death);
1719	}
1720    }
1721
1722  /* Now propagate the register assignments
1723     to the pseudo regs belonging to the qtys.  */
1724
1725  for (q = 0; q < next_qty; q++)
1726    if (qty[q].phys_reg >= 0)
1727      {
1728	for (i = qty[q].first_reg; i >= 0; i = reg_next_in_qty[i])
1729	  reg_renumber[i] = qty[q].phys_reg + reg_offset[i];
1730      }
1731
1732  /* Clean up.  */
1733  free (regs_live_at);
1734  free (qty_order);
1735}
1736
1737/* Compare two quantities' priority for getting real registers.
1738   We give shorter-lived quantities higher priority.
1739   Quantities with more references are also preferred, as are quantities that
1740   require multiple registers.  This is the identical prioritization as
1741   done by global-alloc.
1742
1743   We used to give preference to registers with *longer* lives, but using
1744   the same algorithm in both local- and global-alloc can speed up execution
1745   of some programs by as much as a factor of three!  */
1746
1747/* Note that the quotient will never be bigger than
1748   the value of floor_log2 times the maximum number of
1749   times a register can occur in one insn (surely less than 100)
1750   weighted by frequency (max REG_FREQ_MAX).
1751   Multiplying this by 10000/REG_FREQ_MAX can't overflow.
1752   QTY_CMP_PRI is also used by qty_sugg_compare.  */
1753
1754#define QTY_CMP_PRI(q)		\
1755  ((int) (((double) (floor_log2 (qty[q].n_refs) * qty[q].freq * qty[q].size) \
1756	  / (qty[q].death - qty[q].birth)) * (10000 / REG_FREQ_MAX)))
1757
1758static int
1759qty_compare (int q1, int q2)
1760{
1761  return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1762}
1763
1764static int
1765qty_compare_1 (const void *q1p, const void *q2p)
1766{
1767  int q1 = *(const int *) q1p, q2 = *(const int *) q2p;
1768  int tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1769
1770  if (tem != 0)
1771    return tem;
1772
1773  /* If qtys are equally good, sort by qty number,
1774     so that the results of qsort leave nothing to chance.  */
1775  return q1 - q2;
1776}
1777
1778/* Compare two quantities' priority for getting real registers.  This version
1779   is called for quantities that have suggested hard registers.  First priority
1780   goes to quantities that have copy preferences, then to those that have
1781   normal preferences.  Within those groups, quantities with the lower
1782   number of preferences have the highest priority.  Of those, we use the same
1783   algorithm as above.  */
1784
1785#define QTY_CMP_SUGG(q)		\
1786  (qty_phys_num_copy_sugg[q]		\
1787    ? qty_phys_num_copy_sugg[q]	\
1788    : qty_phys_num_sugg[q] * FIRST_PSEUDO_REGISTER)
1789
1790static int
1791qty_sugg_compare (int q1, int q2)
1792{
1793  int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1794
1795  if (tem != 0)
1796    return tem;
1797
1798  return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1799}
1800
1801static int
1802qty_sugg_compare_1 (const void *q1p, const void *q2p)
1803{
1804  int q1 = *(const int *) q1p, q2 = *(const int *) q2p;
1805  int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1806
1807  if (tem != 0)
1808    return tem;
1809
1810  tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1811  if (tem != 0)
1812    return tem;
1813
1814  /* If qtys are equally good, sort by qty number,
1815     so that the results of qsort leave nothing to chance.  */
1816  return q1 - q2;
1817}
1818
1819#undef QTY_CMP_SUGG
1820#undef QTY_CMP_PRI
1821
1822/* Attempt to combine the two registers (rtx's) USEDREG and SETREG.
1823   Returns 1 if have done so, or 0 if cannot.
1824
1825   Combining registers means marking them as having the same quantity
1826   and adjusting the offsets within the quantity if either of
1827   them is a SUBREG.
1828
1829   We don't actually combine a hard reg with a pseudo; instead
1830   we just record the hard reg as the suggestion for the pseudo's quantity.
1831   If we really combined them, we could lose if the pseudo lives
1832   across an insn that clobbers the hard reg (eg, movmem).
1833
1834   ALREADY_DEAD is nonzero if USEDREG is known to be dead even though
1835   there is no REG_DEAD note on INSN.  This occurs during the processing
1836   of REG_NO_CONFLICT blocks.
1837
1838   MAY_SAVE_COPY is nonzero if this insn is simply copying USEDREG to
1839   SETREG or if the input and output must share a register.
1840   In that case, we record a hard reg suggestion in QTY_PHYS_COPY_SUGG.
1841
1842   There are elaborate checks for the validity of combining.  */
1843
1844static int
1845combine_regs (rtx usedreg, rtx setreg, int may_save_copy, int insn_number,
1846	      rtx insn, int already_dead)
1847{
1848  int ureg, sreg;
1849  int offset = 0;
1850  int usize, ssize;
1851  int sqty;
1852
1853  /* Determine the numbers and sizes of registers being used.  If a subreg
1854     is present that does not change the entire register, don't consider
1855     this a copy insn.  */
1856
1857  while (GET_CODE (usedreg) == SUBREG)
1858    {
1859      rtx subreg = SUBREG_REG (usedreg);
1860
1861      if (REG_P (subreg))
1862	{
1863	  if (GET_MODE_SIZE (GET_MODE (subreg)) > UNITS_PER_WORD)
1864	    may_save_copy = 0;
1865
1866	  if (REGNO (subreg) < FIRST_PSEUDO_REGISTER)
1867	    offset += subreg_regno_offset (REGNO (subreg),
1868					   GET_MODE (subreg),
1869					   SUBREG_BYTE (usedreg),
1870					   GET_MODE (usedreg));
1871	  else
1872	    offset += (SUBREG_BYTE (usedreg)
1873		      / REGMODE_NATURAL_SIZE (GET_MODE (usedreg)));
1874	}
1875
1876      usedreg = subreg;
1877    }
1878
1879  if (!REG_P (usedreg))
1880    return 0;
1881
1882  ureg = REGNO (usedreg);
1883  if (ureg < FIRST_PSEUDO_REGISTER)
1884    usize = hard_regno_nregs[ureg][GET_MODE (usedreg)];
1885  else
1886    usize = ((GET_MODE_SIZE (GET_MODE (usedreg))
1887	      + (REGMODE_NATURAL_SIZE (GET_MODE (usedreg)) - 1))
1888	     / REGMODE_NATURAL_SIZE (GET_MODE (usedreg)));
1889
1890  while (GET_CODE (setreg) == SUBREG)
1891    {
1892      rtx subreg = SUBREG_REG (setreg);
1893
1894      if (REG_P (subreg))
1895	{
1896	  if (GET_MODE_SIZE (GET_MODE (subreg)) > UNITS_PER_WORD)
1897	    may_save_copy = 0;
1898
1899	  if (REGNO (subreg) < FIRST_PSEUDO_REGISTER)
1900	    offset -= subreg_regno_offset (REGNO (subreg),
1901					   GET_MODE (subreg),
1902					   SUBREG_BYTE (setreg),
1903					   GET_MODE (setreg));
1904	  else
1905	    offset -= (SUBREG_BYTE (setreg)
1906		      / REGMODE_NATURAL_SIZE (GET_MODE (setreg)));
1907	}
1908
1909      setreg = subreg;
1910    }
1911
1912  if (!REG_P (setreg))
1913    return 0;
1914
1915  sreg = REGNO (setreg);
1916  if (sreg < FIRST_PSEUDO_REGISTER)
1917    ssize = hard_regno_nregs[sreg][GET_MODE (setreg)];
1918  else
1919    ssize = ((GET_MODE_SIZE (GET_MODE (setreg))
1920	      + (REGMODE_NATURAL_SIZE (GET_MODE (setreg)) - 1))
1921	     / REGMODE_NATURAL_SIZE (GET_MODE (setreg)));
1922
1923  /* If UREG is a pseudo-register that hasn't already been assigned a
1924     quantity number, it means that it is not local to this block or dies
1925     more than once.  In either event, we can't do anything with it.  */
1926  if ((ureg >= FIRST_PSEUDO_REGISTER && reg_qty[ureg] < 0)
1927      /* Do not combine registers unless one fits within the other.  */
1928      || (offset > 0 && usize + offset > ssize)
1929      || (offset < 0 && usize + offset < ssize)
1930      /* Do not combine with a smaller already-assigned object
1931	 if that smaller object is already combined with something bigger.  */
1932      || (ssize > usize && ureg >= FIRST_PSEUDO_REGISTER
1933	  && usize < qty[reg_qty[ureg]].size)
1934      /* Can't combine if SREG is not a register we can allocate.  */
1935      || (sreg >= FIRST_PSEUDO_REGISTER && reg_qty[sreg] == -1)
1936      /* Don't combine with a pseudo mentioned in a REG_NO_CONFLICT note.
1937	 These have already been taken care of.  This probably wouldn't
1938	 combine anyway, but don't take any chances.  */
1939      || (ureg >= FIRST_PSEUDO_REGISTER
1940	  && find_reg_note (insn, REG_NO_CONFLICT, usedreg))
1941      /* Don't tie something to itself.  In most cases it would make no
1942	 difference, but it would screw up if the reg being tied to itself
1943	 also dies in this insn.  */
1944      || ureg == sreg
1945      /* Don't try to connect two different hardware registers.  */
1946      || (ureg < FIRST_PSEUDO_REGISTER && sreg < FIRST_PSEUDO_REGISTER)
1947      /* Don't connect two different machine modes if they have different
1948	 implications as to which registers may be used.  */
1949      || !MODES_TIEABLE_P (GET_MODE (usedreg), GET_MODE (setreg)))
1950    return 0;
1951
1952  /* Now, if UREG is a hard reg and SREG is a pseudo, record the hard reg in
1953     qty_phys_sugg for the pseudo instead of tying them.
1954
1955     Return "failure" so that the lifespan of UREG is terminated here;
1956     that way the two lifespans will be disjoint and nothing will prevent
1957     the pseudo reg from being given this hard reg.  */
1958
1959  if (ureg < FIRST_PSEUDO_REGISTER)
1960    {
1961      /* Allocate a quantity number so we have a place to put our
1962	 suggestions.  */
1963      if (reg_qty[sreg] == -2)
1964	reg_is_born (setreg, 2 * insn_number);
1965
1966      if (reg_qty[sreg] >= 0)
1967	{
1968	  if (may_save_copy
1969	      && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg))
1970	    {
1971	      SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg);
1972	      qty_phys_num_copy_sugg[reg_qty[sreg]]++;
1973	    }
1974	  else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg))
1975	    {
1976	      SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg);
1977	      qty_phys_num_sugg[reg_qty[sreg]]++;
1978	    }
1979	}
1980      return 0;
1981    }
1982
1983  /* Similarly for SREG a hard register and UREG a pseudo register.  */
1984
1985  if (sreg < FIRST_PSEUDO_REGISTER)
1986    {
1987      if (may_save_copy
1988	  && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg))
1989	{
1990	  SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg);
1991	  qty_phys_num_copy_sugg[reg_qty[ureg]]++;
1992	}
1993      else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg))
1994	{
1995	  SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg);
1996	  qty_phys_num_sugg[reg_qty[ureg]]++;
1997	}
1998      return 0;
1999    }
2000
2001  /* At this point we know that SREG and UREG are both pseudos.
2002     Do nothing if SREG already has a quantity or is a register that we
2003     don't allocate.  */
2004  if (reg_qty[sreg] >= -1
2005      /* If we are not going to let any regs live across calls,
2006	 don't tie a call-crossing reg to a non-call-crossing reg.  */
2007      || (current_function_has_nonlocal_label
2008	  && ((REG_N_CALLS_CROSSED (ureg) > 0)
2009	      != (REG_N_CALLS_CROSSED (sreg) > 0))))
2010    return 0;
2011
2012  /* We don't already know about SREG, so tie it to UREG
2013     if this is the last use of UREG, provided the classes they want
2014     are compatible.  */
2015
2016  if ((already_dead || find_regno_note (insn, REG_DEAD, ureg))
2017      && reg_meets_class_p (sreg, qty[reg_qty[ureg]].min_class))
2018    {
2019      /* Add SREG to UREG's quantity.  */
2020      sqty = reg_qty[ureg];
2021      reg_qty[sreg] = sqty;
2022      reg_offset[sreg] = reg_offset[ureg] + offset;
2023      reg_next_in_qty[sreg] = qty[sqty].first_reg;
2024      qty[sqty].first_reg = sreg;
2025
2026      /* If SREG's reg class is smaller, set qty[SQTY].min_class.  */
2027      update_qty_class (sqty, sreg);
2028
2029      /* Update info about quantity SQTY.  */
2030      qty[sqty].n_calls_crossed += REG_N_CALLS_CROSSED (sreg);
2031      qty[sqty].n_throwing_calls_crossed
2032	+= REG_N_THROWING_CALLS_CROSSED (sreg);
2033      qty[sqty].n_refs += REG_N_REFS (sreg);
2034      qty[sqty].freq += REG_FREQ (sreg);
2035      if (usize < ssize)
2036	{
2037	  int i;
2038
2039	  for (i = qty[sqty].first_reg; i >= 0; i = reg_next_in_qty[i])
2040	    reg_offset[i] -= offset;
2041
2042	  qty[sqty].size = ssize;
2043	  qty[sqty].mode = GET_MODE (setreg);
2044	}
2045    }
2046  else
2047    return 0;
2048
2049  return 1;
2050}
2051
2052/* Return 1 if the preferred class of REG allows it to be tied
2053   to a quantity or register whose class is CLASS.
2054   True if REG's reg class either contains or is contained in CLASS.  */
2055
2056static int
2057reg_meets_class_p (int reg, enum reg_class class)
2058{
2059  enum reg_class rclass = reg_preferred_class (reg);
2060  return (reg_class_subset_p (rclass, class)
2061	  || reg_class_subset_p (class, rclass));
2062}
2063
2064/* Update the class of QTYNO assuming that REG is being tied to it.  */
2065
2066static void
2067update_qty_class (int qtyno, int reg)
2068{
2069  enum reg_class rclass = reg_preferred_class (reg);
2070  if (reg_class_subset_p (rclass, qty[qtyno].min_class))
2071    qty[qtyno].min_class = rclass;
2072
2073  rclass = reg_alternate_class (reg);
2074  if (reg_class_subset_p (rclass, qty[qtyno].alternate_class))
2075    qty[qtyno].alternate_class = rclass;
2076}
2077
2078/* Handle something which alters the value of an rtx REG.
2079
2080   REG is whatever is set or clobbered.  SETTER is the rtx that
2081   is modifying the register.
2082
2083   If it is not really a register, we do nothing.
2084   The file-global variables `this_insn' and `this_insn_number'
2085   carry info from `block_alloc'.  */
2086
2087static void
2088reg_is_set (rtx reg, rtx setter, void *data ATTRIBUTE_UNUSED)
2089{
2090  /* Note that note_stores will only pass us a SUBREG if it is a SUBREG of
2091     a hard register.  These may actually not exist any more.  */
2092
2093  if (GET_CODE (reg) != SUBREG
2094      && !REG_P (reg))
2095    return;
2096
2097  /* Mark this register as being born.  If it is used in a CLOBBER, mark
2098     it as being born halfway between the previous insn and this insn so that
2099     it conflicts with our inputs but not the outputs of the previous insn.  */
2100
2101  reg_is_born (reg, 2 * this_insn_number - (GET_CODE (setter) == CLOBBER));
2102}
2103
2104/* Handle beginning of the life of register REG.
2105   BIRTH is the index at which this is happening.  */
2106
2107static void
2108reg_is_born (rtx reg, int birth)
2109{
2110  int regno;
2111
2112  if (GET_CODE (reg) == SUBREG)
2113    {
2114      regno = REGNO (SUBREG_REG (reg));
2115      if (regno < FIRST_PSEUDO_REGISTER)
2116	regno = subreg_regno (reg);
2117    }
2118  else
2119    regno = REGNO (reg);
2120
2121  if (regno < FIRST_PSEUDO_REGISTER)
2122    {
2123      mark_life (regno, GET_MODE (reg), 1);
2124
2125      /* If the register was to have been born earlier that the present
2126	 insn, mark it as live where it is actually born.  */
2127      if (birth < 2 * this_insn_number)
2128	post_mark_life (regno, GET_MODE (reg), 1, birth, 2 * this_insn_number);
2129    }
2130  else
2131    {
2132      if (reg_qty[regno] == -2)
2133	alloc_qty (regno, GET_MODE (reg), PSEUDO_REGNO_SIZE (regno), birth);
2134
2135      /* If this register has a quantity number, show that it isn't dead.  */
2136      if (reg_qty[regno] >= 0)
2137	qty[reg_qty[regno]].death = -1;
2138    }
2139}
2140
2141/* Record the death of REG in the current insn.  If OUTPUT_P is nonzero,
2142   REG is an output that is dying (i.e., it is never used), otherwise it
2143   is an input (the normal case).
2144   If OUTPUT_P is 1, then we extend the life past the end of this insn.  */
2145
2146static void
2147wipe_dead_reg (rtx reg, int output_p)
2148{
2149  int regno = REGNO (reg);
2150
2151  /* If this insn has multiple results,
2152     and the dead reg is used in one of the results,
2153     extend its life to after this insn,
2154     so it won't get allocated together with any other result of this insn.
2155
2156     It is unsafe to use !single_set here since it will ignore an unused
2157     output.  Just because an output is unused does not mean the compiler
2158     can assume the side effect will not occur.   Consider if REG appears
2159     in the address of an output and we reload the output.  If we allocate
2160     REG to the same hard register as an unused output we could set the hard
2161     register before the output reload insn.  */
2162  if (GET_CODE (PATTERN (this_insn)) == PARALLEL
2163      && multiple_sets (this_insn))
2164    {
2165      int i;
2166      for (i = XVECLEN (PATTERN (this_insn), 0) - 1; i >= 0; i--)
2167	{
2168	  rtx set = XVECEXP (PATTERN (this_insn), 0, i);
2169	  if (GET_CODE (set) == SET
2170	      && !REG_P (SET_DEST (set))
2171	      && !rtx_equal_p (reg, SET_DEST (set))
2172	      && reg_overlap_mentioned_p (reg, SET_DEST (set)))
2173	    output_p = 1;
2174	}
2175    }
2176
2177  /* If this register is used in an auto-increment address, then extend its
2178     life to after this insn, so that it won't get allocated together with
2179     the result of this insn.  */
2180  if (! output_p && find_regno_note (this_insn, REG_INC, regno))
2181    output_p = 1;
2182
2183  if (regno < FIRST_PSEUDO_REGISTER)
2184    {
2185      mark_life (regno, GET_MODE (reg), 0);
2186
2187      /* If a hard register is dying as an output, mark it as in use at
2188	 the beginning of this insn (the above statement would cause this
2189	 not to happen).  */
2190      if (output_p)
2191	post_mark_life (regno, GET_MODE (reg), 1,
2192			2 * this_insn_number, 2 * this_insn_number + 1);
2193    }
2194
2195  else if (reg_qty[regno] >= 0)
2196    qty[reg_qty[regno]].death = 2 * this_insn_number + output_p;
2197}
2198
2199/* Find a block of SIZE words of hard regs in reg_class CLASS
2200   that can hold something of machine-mode MODE
2201     (but actually we test only the first of the block for holding MODE)
2202   and still free between insn BORN_INDEX and insn DEAD_INDEX,
2203   and return the number of the first of them.
2204   Return -1 if such a block cannot be found.
2205   If QTYNO crosses calls, insist on a register preserved by calls,
2206   unless ACCEPT_CALL_CLOBBERED is nonzero.
2207
2208   If JUST_TRY_SUGGESTED is nonzero, only try to see if the suggested
2209   register is available.  If not, return -1.  */
2210
2211static int
2212find_free_reg (enum reg_class class, enum machine_mode mode, int qtyno,
2213	       int accept_call_clobbered, int just_try_suggested,
2214	       int born_index, int dead_index)
2215{
2216  int i, ins;
2217  HARD_REG_SET first_used, used;
2218#ifdef ELIMINABLE_REGS
2219  static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
2220#endif
2221
2222  /* Validate our parameters.  */
2223  gcc_assert (born_index >= 0 && born_index <= dead_index);
2224
2225  /* Don't let a pseudo live in a reg across a function call
2226     if we might get a nonlocal goto.  */
2227  if (current_function_has_nonlocal_label
2228      && qty[qtyno].n_calls_crossed > 0)
2229    return -1;
2230
2231  if (accept_call_clobbered)
2232    COPY_HARD_REG_SET (used, call_fixed_reg_set);
2233  else if (qty[qtyno].n_calls_crossed == 0)
2234    COPY_HARD_REG_SET (used, fixed_reg_set);
2235  else
2236    COPY_HARD_REG_SET (used, call_used_reg_set);
2237
2238  if (accept_call_clobbered)
2239    IOR_HARD_REG_SET (used, losing_caller_save_reg_set);
2240
2241  for (ins = born_index; ins < dead_index; ins++)
2242    IOR_HARD_REG_SET (used, regs_live_at[ins]);
2243
2244  IOR_COMPL_HARD_REG_SET (used, reg_class_contents[(int) class]);
2245
2246  /* Don't use the frame pointer reg in local-alloc even if
2247     we may omit the frame pointer, because if we do that and then we
2248     need a frame pointer, reload won't know how to move the pseudo
2249     to another hard reg.  It can move only regs made by global-alloc.
2250
2251     This is true of any register that can be eliminated.  */
2252#ifdef ELIMINABLE_REGS
2253  for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
2254    SET_HARD_REG_BIT (used, eliminables[i].from);
2255#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2256  /* If FRAME_POINTER_REGNUM is not a real register, then protect the one
2257     that it might be eliminated into.  */
2258  SET_HARD_REG_BIT (used, HARD_FRAME_POINTER_REGNUM);
2259#endif
2260#else
2261  SET_HARD_REG_BIT (used, FRAME_POINTER_REGNUM);
2262#endif
2263
2264#ifdef CANNOT_CHANGE_MODE_CLASS
2265  cannot_change_mode_set_regs (&used, mode, qty[qtyno].first_reg);
2266#endif
2267
2268  /* Normally, the registers that can be used for the first register in
2269     a multi-register quantity are the same as those that can be used for
2270     subsequent registers.  However, if just trying suggested registers,
2271     restrict our consideration to them.  If there are copy-suggested
2272     register, try them.  Otherwise, try the arithmetic-suggested
2273     registers.  */
2274  COPY_HARD_REG_SET (first_used, used);
2275
2276  if (just_try_suggested)
2277    {
2278      if (qty_phys_num_copy_sugg[qtyno] != 0)
2279	IOR_COMPL_HARD_REG_SET (first_used, qty_phys_copy_sugg[qtyno]);
2280      else
2281	IOR_COMPL_HARD_REG_SET (first_used, qty_phys_sugg[qtyno]);
2282    }
2283
2284  /* If all registers are excluded, we can't do anything.  */
2285  GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) ALL_REGS], first_used, fail);
2286
2287  /* If at least one would be suitable, test each hard reg.  */
2288
2289  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2290    {
2291#ifdef REG_ALLOC_ORDER
2292      int regno = reg_alloc_order[i];
2293#else
2294      int regno = i;
2295#endif
2296      if (! TEST_HARD_REG_BIT (first_used, regno)
2297	  && HARD_REGNO_MODE_OK (regno, mode)
2298	  && (qty[qtyno].n_calls_crossed == 0
2299	      || accept_call_clobbered
2300	      || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
2301	{
2302	  int j;
2303	  int size1 = hard_regno_nregs[regno][mode];
2304	  for (j = 1; j < size1 && ! TEST_HARD_REG_BIT (used, regno + j); j++);
2305	  if (j == size1)
2306	    {
2307	      /* Mark that this register is in use between its birth and death
2308		 insns.  */
2309	      post_mark_life (regno, mode, 1, born_index, dead_index);
2310	      return regno;
2311	    }
2312#ifndef REG_ALLOC_ORDER
2313	  /* Skip starting points we know will lose.  */
2314	  i += j;
2315#endif
2316	}
2317    }
2318
2319 fail:
2320  /* If we are just trying suggested register, we have just tried copy-
2321     suggested registers, and there are arithmetic-suggested registers,
2322     try them.  */
2323
2324  /* If it would be profitable to allocate a call-clobbered register
2325     and save and restore it around calls, do that.  */
2326  if (just_try_suggested && qty_phys_num_copy_sugg[qtyno] != 0
2327      && qty_phys_num_sugg[qtyno] != 0)
2328    {
2329      /* Don't try the copy-suggested regs again.  */
2330      qty_phys_num_copy_sugg[qtyno] = 0;
2331      return find_free_reg (class, mode, qtyno, accept_call_clobbered, 1,
2332			    born_index, dead_index);
2333    }
2334
2335  /* We need not check to see if the current function has nonlocal
2336     labels because we don't put any pseudos that are live over calls in
2337     registers in that case.  Avoid putting pseudos crossing calls that
2338     might throw into call used registers.  */
2339
2340  if (! accept_call_clobbered
2341      && flag_caller_saves
2342      && ! just_try_suggested
2343      && qty[qtyno].n_calls_crossed != 0
2344      && qty[qtyno].n_throwing_calls_crossed == 0
2345      && CALLER_SAVE_PROFITABLE (qty[qtyno].n_refs,
2346				 qty[qtyno].n_calls_crossed))
2347    {
2348      i = find_free_reg (class, mode, qtyno, 1, 0, born_index, dead_index);
2349      if (i >= 0)
2350	caller_save_needed = 1;
2351      return i;
2352    }
2353  return -1;
2354}
2355
2356/* Mark that REGNO with machine-mode MODE is live starting from the current
2357   insn (if LIFE is nonzero) or dead starting at the current insn (if LIFE
2358   is zero).  */
2359
2360static void
2361mark_life (int regno, enum machine_mode mode, int life)
2362{
2363  int j = hard_regno_nregs[regno][mode];
2364  if (life)
2365    while (--j >= 0)
2366      SET_HARD_REG_BIT (regs_live, regno + j);
2367  else
2368    while (--j >= 0)
2369      CLEAR_HARD_REG_BIT (regs_live, regno + j);
2370}
2371
2372/* Mark register number REGNO (with machine-mode MODE) as live (if LIFE
2373   is nonzero) or dead (if LIFE is zero) from insn number BIRTH (inclusive)
2374   to insn number DEATH (exclusive).  */
2375
2376static void
2377post_mark_life (int regno, enum machine_mode mode, int life, int birth,
2378		int death)
2379{
2380  int j = hard_regno_nregs[regno][mode];
2381  HARD_REG_SET this_reg;
2382
2383  CLEAR_HARD_REG_SET (this_reg);
2384  while (--j >= 0)
2385    SET_HARD_REG_BIT (this_reg, regno + j);
2386
2387  if (life)
2388    while (birth < death)
2389      {
2390	IOR_HARD_REG_SET (regs_live_at[birth], this_reg);
2391	birth++;
2392      }
2393  else
2394    while (birth < death)
2395      {
2396	AND_COMPL_HARD_REG_SET (regs_live_at[birth], this_reg);
2397	birth++;
2398      }
2399}
2400
2401/* INSN is the CLOBBER insn that starts a REG_NO_NOCONFLICT block, R0
2402   is the register being clobbered, and R1 is a register being used in
2403   the equivalent expression.
2404
2405   If R1 dies in the block and has a REG_NO_CONFLICT note on every insn
2406   in which it is used, return 1.
2407
2408   Otherwise, return 0.  */
2409
2410static int
2411no_conflict_p (rtx insn, rtx r0 ATTRIBUTE_UNUSED, rtx r1)
2412{
2413  int ok = 0;
2414  rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
2415  rtx p, last;
2416
2417  /* If R1 is a hard register, return 0 since we handle this case
2418     when we scan the insns that actually use it.  */
2419
2420  if (note == 0
2421      || (REG_P (r1) && REGNO (r1) < FIRST_PSEUDO_REGISTER)
2422      || (GET_CODE (r1) == SUBREG && REG_P (SUBREG_REG (r1))
2423	  && REGNO (SUBREG_REG (r1)) < FIRST_PSEUDO_REGISTER))
2424    return 0;
2425
2426  last = XEXP (note, 0);
2427
2428  for (p = NEXT_INSN (insn); p && p != last; p = NEXT_INSN (p))
2429    if (INSN_P (p))
2430      {
2431	if (find_reg_note (p, REG_DEAD, r1))
2432	  ok = 1;
2433
2434	/* There must be a REG_NO_CONFLICT note on every insn, otherwise
2435	   some earlier optimization pass has inserted instructions into
2436	   the sequence, and it is not safe to perform this optimization.
2437	   Note that emit_no_conflict_block always ensures that this is
2438	   true when these sequences are created.  */
2439	if (! find_reg_note (p, REG_NO_CONFLICT, r1))
2440	  return 0;
2441      }
2442
2443  return ok;
2444}
2445
2446/* Return the number of alternatives for which the constraint string P
2447   indicates that the operand must be equal to operand 0 and that no register
2448   is acceptable.  */
2449
2450static int
2451requires_inout (const char *p)
2452{
2453  char c;
2454  int found_zero = 0;
2455  int reg_allowed = 0;
2456  int num_matching_alts = 0;
2457  int len;
2458
2459  for ( ; (c = *p); p += len)
2460    {
2461      len = CONSTRAINT_LEN (c, p);
2462      switch (c)
2463	{
2464	case '=':  case '+':  case '?':
2465	case '#':  case '&':  case '!':
2466	case '*':  case '%':
2467	case 'm':  case '<':  case '>':  case 'V':  case 'o':
2468	case 'E':  case 'F':  case 'G':  case 'H':
2469	case 's':  case 'i':  case 'n':
2470	case 'I':  case 'J':  case 'K':  case 'L':
2471	case 'M':  case 'N':  case 'O':  case 'P':
2472	case 'X':
2473	  /* These don't say anything we care about.  */
2474	  break;
2475
2476	case ',':
2477	  if (found_zero && ! reg_allowed)
2478	    num_matching_alts++;
2479
2480	  found_zero = reg_allowed = 0;
2481	  break;
2482
2483	case '0':
2484	  found_zero = 1;
2485	  break;
2486
2487	case '1':  case '2':  case '3':  case '4': case '5':
2488	case '6':  case '7':  case '8':  case '9':
2489	  /* Skip the balance of the matching constraint.  */
2490	  do
2491	    p++;
2492	  while (ISDIGIT (*p));
2493	  len = 0;
2494	  break;
2495
2496	default:
2497	  if (REG_CLASS_FROM_CONSTRAINT (c, p) == NO_REGS
2498	      && !EXTRA_ADDRESS_CONSTRAINT (c, p))
2499	    break;
2500	  /* Fall through.  */
2501	case 'p':
2502	case 'g': case 'r':
2503	  reg_allowed = 1;
2504	  break;
2505	}
2506    }
2507
2508  if (found_zero && ! reg_allowed)
2509    num_matching_alts++;
2510
2511  return num_matching_alts;
2512}
2513
2514void
2515dump_local_alloc (FILE *file)
2516{
2517  int i;
2518  for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
2519    if (reg_renumber[i] != -1)
2520      fprintf (file, ";; Register %d in %d.\n", i, reg_renumber[i]);
2521}
2522
2523/* Run old register allocator.  Return TRUE if we must exit
2524   rest_of_compilation upon return.  */
2525static void
2526rest_of_handle_local_alloc (void)
2527{
2528  int rebuild_notes;
2529
2530  /* Determine if the current function is a leaf before running reload
2531     since this can impact optimizations done by the prologue and
2532     epilogue thus changing register elimination offsets.  */
2533  current_function_is_leaf = leaf_function_p ();
2534
2535  /* Allocate the reg_renumber array.  */
2536  allocate_reg_info (max_regno, FALSE, TRUE);
2537
2538  /* And the reg_equiv_memory_loc array.  */
2539  VARRAY_GROW (reg_equiv_memory_loc_varray, max_regno);
2540  reg_equiv_memory_loc = &VARRAY_RTX (reg_equiv_memory_loc_varray, 0);
2541
2542  allocate_initial_values (reg_equiv_memory_loc);
2543
2544  regclass (get_insns (), max_reg_num (), dump_file);
2545  rebuild_notes = local_alloc ();
2546
2547  /* Local allocation may have turned an indirect jump into a direct
2548     jump.  If so, we must rebuild the JUMP_LABEL fields of jumping
2549     instructions.  */
2550  if (rebuild_notes)
2551    {
2552      timevar_push (TV_JUMP);
2553
2554      rebuild_jump_labels (get_insns ());
2555      purge_all_dead_edges ();
2556      delete_unreachable_blocks ();
2557
2558      timevar_pop (TV_JUMP);
2559    }
2560
2561  if (dump_enabled_p (pass_local_alloc.static_pass_number))
2562    {
2563      timevar_push (TV_DUMP);
2564      dump_flow_info (dump_file);
2565      dump_local_alloc (dump_file);
2566      timevar_pop (TV_DUMP);
2567    }
2568}
2569
2570struct tree_opt_pass pass_local_alloc =
2571{
2572  "lreg",                               /* name */
2573  NULL,                                 /* gate */
2574  rest_of_handle_local_alloc,           /* execute */
2575  NULL,                                 /* sub */
2576  NULL,                                 /* next */
2577  0,                                    /* static_pass_number */
2578  TV_LOCAL_ALLOC,                       /* tv_id */
2579  0,                                    /* properties_required */
2580  0,                                    /* properties_provided */
2581  0,                                    /* properties_destroyed */
2582  0,                                    /* todo_flags_start */
2583  TODO_dump_func |
2584  TODO_ggc_collect,                     /* todo_flags_finish */
2585  'l'                                   /* letter */
2586};
2587
2588