1/* Emit RTL for the GCC expander.
2   Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3   1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 2, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING.  If not, write to the Free
19Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
2002110-1301, USA.  */
21
22
23/* Middle-to-low level generation of rtx code and insns.
24
25   This file contains support functions for creating rtl expressions
26   and manipulating them in the doubly-linked chain of insns.
27
28   The patterns of the insns are created by machine-dependent
29   routines in insn-emit.c, which is generated automatically from
30   the machine description.  These routines make the individual rtx's
31   of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
32   which are automatically generated from rtl.def; what is machine
33   dependent is the kind of rtx's they make and what arguments they
34   use.  */
35
36#include "config.h"
37#include "system.h"
38#include "coretypes.h"
39#include "tm.h"
40#include "toplev.h"
41#include "rtl.h"
42#include "tree.h"
43#include "tm_p.h"
44#include "flags.h"
45#include "function.h"
46#include "expr.h"
47#include "regs.h"
48#include "hard-reg-set.h"
49#include "hashtab.h"
50#include "insn-config.h"
51#include "recog.h"
52#include "real.h"
53#include "bitmap.h"
54#include "basic-block.h"
55#include "ggc.h"
56#include "debug.h"
57#include "langhooks.h"
58#include "tree-pass.h"
59
60/* Commonly used modes.  */
61
62enum machine_mode byte_mode;	/* Mode whose width is BITS_PER_UNIT.  */
63enum machine_mode word_mode;	/* Mode whose width is BITS_PER_WORD.  */
64enum machine_mode double_mode;	/* Mode whose width is DOUBLE_TYPE_SIZE.  */
65enum machine_mode ptr_mode;	/* Mode whose width is POINTER_SIZE.  */
66
67
68/* This is *not* reset after each function.  It gives each CODE_LABEL
69   in the entire compilation a unique label number.  */
70
71static GTY(()) int label_num = 1;
72
73/* Nonzero means do not generate NOTEs for source line numbers.  */
74
75static int no_line_numbers;
76
77/* Commonly used rtx's, so that we only need space for one copy.
78   These are initialized once for the entire compilation.
79   All of these are unique; no other rtx-object will be equal to any
80   of these.  */
81
82rtx global_rtl[GR_MAX];
83
84/* Commonly used RTL for hard registers.  These objects are not necessarily
85   unique, so we allocate them separately from global_rtl.  They are
86   initialized once per compilation unit, then copied into regno_reg_rtx
87   at the beginning of each function.  */
88static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
89
90/* We record floating-point CONST_DOUBLEs in each floating-point mode for
91   the values of 0, 1, and 2.  For the integer entries and VOIDmode, we
92   record a copy of const[012]_rtx.  */
93
94rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
95
96rtx const_true_rtx;
97
98REAL_VALUE_TYPE dconst0;
99REAL_VALUE_TYPE dconst1;
100REAL_VALUE_TYPE dconst2;
101REAL_VALUE_TYPE dconst3;
102REAL_VALUE_TYPE dconst10;
103REAL_VALUE_TYPE dconstm1;
104REAL_VALUE_TYPE dconstm2;
105REAL_VALUE_TYPE dconsthalf;
106REAL_VALUE_TYPE dconstthird;
107REAL_VALUE_TYPE dconstpi;
108REAL_VALUE_TYPE dconste;
109
110/* All references to the following fixed hard registers go through
111   these unique rtl objects.  On machines where the frame-pointer and
112   arg-pointer are the same register, they use the same unique object.
113
114   After register allocation, other rtl objects which used to be pseudo-regs
115   may be clobbered to refer to the frame-pointer register.
116   But references that were originally to the frame-pointer can be
117   distinguished from the others because they contain frame_pointer_rtx.
118
119   When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
120   tricky: until register elimination has taken place hard_frame_pointer_rtx
121   should be used if it is being set, and frame_pointer_rtx otherwise.  After
122   register elimination hard_frame_pointer_rtx should always be used.
123   On machines where the two registers are same (most) then these are the
124   same.
125
126   In an inline procedure, the stack and frame pointer rtxs may not be
127   used for anything else.  */
128rtx static_chain_rtx;		/* (REG:Pmode STATIC_CHAIN_REGNUM) */
129rtx static_chain_incoming_rtx;	/* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
130rtx pic_offset_table_rtx;	/* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
131
132/* This is used to implement __builtin_return_address for some machines.
133   See for instance the MIPS port.  */
134rtx return_address_pointer_rtx;	/* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
135
136/* We make one copy of (const_int C) where C is in
137   [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
138   to save space during the compilation and simplify comparisons of
139   integers.  */
140
141rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
142
143/* A hash table storing CONST_INTs whose absolute value is greater
144   than MAX_SAVED_CONST_INT.  */
145
146static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
147     htab_t const_int_htab;
148
149/* A hash table storing memory attribute structures.  */
150static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
151     htab_t mem_attrs_htab;
152
153/* A hash table storing register attribute structures.  */
154static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
155     htab_t reg_attrs_htab;
156
157/* A hash table storing all CONST_DOUBLEs.  */
158static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
159     htab_t const_double_htab;
160
161#define first_insn (cfun->emit->x_first_insn)
162#define last_insn (cfun->emit->x_last_insn)
163#define cur_insn_uid (cfun->emit->x_cur_insn_uid)
164#define last_location (cfun->emit->x_last_location)
165#define first_label_num (cfun->emit->x_first_label_num)
166
167static rtx make_jump_insn_raw (rtx);
168static rtx make_call_insn_raw (rtx);
169static rtx find_line_note (rtx);
170static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
171static void unshare_all_decls (tree);
172static void reset_used_decls (tree);
173static void mark_label_nuses (rtx);
174static hashval_t const_int_htab_hash (const void *);
175static int const_int_htab_eq (const void *, const void *);
176static hashval_t const_double_htab_hash (const void *);
177static int const_double_htab_eq (const void *, const void *);
178static rtx lookup_const_double (rtx);
179static hashval_t mem_attrs_htab_hash (const void *);
180static int mem_attrs_htab_eq (const void *, const void *);
181static mem_attrs *get_mem_attrs (HOST_WIDE_INT, tree, rtx, rtx, unsigned int,
182				 enum machine_mode);
183static hashval_t reg_attrs_htab_hash (const void *);
184static int reg_attrs_htab_eq (const void *, const void *);
185static reg_attrs *get_reg_attrs (tree, int);
186static tree component_ref_for_mem_expr (tree);
187static rtx gen_const_vector (enum machine_mode, int);
188static void copy_rtx_if_shared_1 (rtx *orig);
189
190/* Probability of the conditional branch currently proceeded by try_split.
191   Set to -1 otherwise.  */
192int split_branch_probability = -1;
193
194/* Returns a hash code for X (which is a really a CONST_INT).  */
195
196static hashval_t
197const_int_htab_hash (const void *x)
198{
199  return (hashval_t) INTVAL ((rtx) x);
200}
201
202/* Returns nonzero if the value represented by X (which is really a
203   CONST_INT) is the same as that given by Y (which is really a
204   HOST_WIDE_INT *).  */
205
206static int
207const_int_htab_eq (const void *x, const void *y)
208{
209  return (INTVAL ((rtx) x) == *((const HOST_WIDE_INT *) y));
210}
211
212/* Returns a hash code for X (which is really a CONST_DOUBLE).  */
213static hashval_t
214const_double_htab_hash (const void *x)
215{
216  rtx value = (rtx) x;
217  hashval_t h;
218
219  if (GET_MODE (value) == VOIDmode)
220    h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
221  else
222    {
223      h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
224      /* MODE is used in the comparison, so it should be in the hash.  */
225      h ^= GET_MODE (value);
226    }
227  return h;
228}
229
230/* Returns nonzero if the value represented by X (really a ...)
231   is the same as that represented by Y (really a ...) */
232static int
233const_double_htab_eq (const void *x, const void *y)
234{
235  rtx a = (rtx)x, b = (rtx)y;
236
237  if (GET_MODE (a) != GET_MODE (b))
238    return 0;
239  if (GET_MODE (a) == VOIDmode)
240    return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
241	    && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
242  else
243    return real_identical (CONST_DOUBLE_REAL_VALUE (a),
244			   CONST_DOUBLE_REAL_VALUE (b));
245}
246
247/* Returns a hash code for X (which is a really a mem_attrs *).  */
248
249static hashval_t
250mem_attrs_htab_hash (const void *x)
251{
252  mem_attrs *p = (mem_attrs *) x;
253
254  return (p->alias ^ (p->align * 1000)
255	  ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
256	  ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
257	  ^ (size_t) iterative_hash_expr (p->expr, 0));
258}
259
260/* Returns nonzero if the value represented by X (which is really a
261   mem_attrs *) is the same as that given by Y (which is also really a
262   mem_attrs *).  */
263
264static int
265mem_attrs_htab_eq (const void *x, const void *y)
266{
267  mem_attrs *p = (mem_attrs *) x;
268  mem_attrs *q = (mem_attrs *) y;
269
270  return (p->alias == q->alias && p->offset == q->offset
271	  && p->size == q->size && p->align == q->align
272	  && (p->expr == q->expr
273	      || (p->expr != NULL_TREE && q->expr != NULL_TREE
274		  && operand_equal_p (p->expr, q->expr, 0))));
275}
276
277/* Allocate a new mem_attrs structure and insert it into the hash table if
278   one identical to it is not already in the table.  We are doing this for
279   MEM of mode MODE.  */
280
281static mem_attrs *
282get_mem_attrs (HOST_WIDE_INT alias, tree expr, rtx offset, rtx size,
283	       unsigned int align, enum machine_mode mode)
284{
285  mem_attrs attrs;
286  void **slot;
287
288  /* If everything is the default, we can just return zero.
289     This must match what the corresponding MEM_* macros return when the
290     field is not present.  */
291  if (alias == 0 && expr == 0 && offset == 0
292      && (size == 0
293	  || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
294      && (STRICT_ALIGNMENT && mode != BLKmode
295	  ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
296    return 0;
297
298  attrs.alias = alias;
299  attrs.expr = expr;
300  attrs.offset = offset;
301  attrs.size = size;
302  attrs.align = align;
303
304  slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
305  if (*slot == 0)
306    {
307      *slot = ggc_alloc (sizeof (mem_attrs));
308      memcpy (*slot, &attrs, sizeof (mem_attrs));
309    }
310
311  return *slot;
312}
313
314/* Returns a hash code for X (which is a really a reg_attrs *).  */
315
316static hashval_t
317reg_attrs_htab_hash (const void *x)
318{
319  reg_attrs *p = (reg_attrs *) x;
320
321  return ((p->offset * 1000) ^ (long) p->decl);
322}
323
324/* Returns nonzero if the value represented by X (which is really a
325   reg_attrs *) is the same as that given by Y (which is also really a
326   reg_attrs *).  */
327
328static int
329reg_attrs_htab_eq (const void *x, const void *y)
330{
331  reg_attrs *p = (reg_attrs *) x;
332  reg_attrs *q = (reg_attrs *) y;
333
334  return (p->decl == q->decl && p->offset == q->offset);
335}
336/* Allocate a new reg_attrs structure and insert it into the hash table if
337   one identical to it is not already in the table.  We are doing this for
338   MEM of mode MODE.  */
339
340static reg_attrs *
341get_reg_attrs (tree decl, int offset)
342{
343  reg_attrs attrs;
344  void **slot;
345
346  /* If everything is the default, we can just return zero.  */
347  if (decl == 0 && offset == 0)
348    return 0;
349
350  attrs.decl = decl;
351  attrs.offset = offset;
352
353  slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
354  if (*slot == 0)
355    {
356      *slot = ggc_alloc (sizeof (reg_attrs));
357      memcpy (*slot, &attrs, sizeof (reg_attrs));
358    }
359
360  return *slot;
361}
362
363/* Generate a new REG rtx.  Make sure ORIGINAL_REGNO is set properly, and
364   don't attempt to share with the various global pieces of rtl (such as
365   frame_pointer_rtx).  */
366
367rtx
368gen_raw_REG (enum machine_mode mode, int regno)
369{
370  rtx x = gen_rtx_raw_REG (mode, regno);
371  ORIGINAL_REGNO (x) = regno;
372  return x;
373}
374
375/* There are some RTL codes that require special attention; the generation
376   functions do the raw handling.  If you add to this list, modify
377   special_rtx in gengenrtl.c as well.  */
378
379rtx
380gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
381{
382  void **slot;
383
384  if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
385    return const_int_rtx[arg + MAX_SAVED_CONST_INT];
386
387#if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
388  if (const_true_rtx && arg == STORE_FLAG_VALUE)
389    return const_true_rtx;
390#endif
391
392  /* Look up the CONST_INT in the hash table.  */
393  slot = htab_find_slot_with_hash (const_int_htab, &arg,
394				   (hashval_t) arg, INSERT);
395  if (*slot == 0)
396    *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
397
398  return (rtx) *slot;
399}
400
401rtx
402gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
403{
404  return GEN_INT (trunc_int_for_mode (c, mode));
405}
406
407/* CONST_DOUBLEs might be created from pairs of integers, or from
408   REAL_VALUE_TYPEs.  Also, their length is known only at run time,
409   so we cannot use gen_rtx_raw_CONST_DOUBLE.  */
410
411/* Determine whether REAL, a CONST_DOUBLE, already exists in the
412   hash table.  If so, return its counterpart; otherwise add it
413   to the hash table and return it.  */
414static rtx
415lookup_const_double (rtx real)
416{
417  void **slot = htab_find_slot (const_double_htab, real, INSERT);
418  if (*slot == 0)
419    *slot = real;
420
421  return (rtx) *slot;
422}
423
424/* Return a CONST_DOUBLE rtx for a floating-point value specified by
425   VALUE in mode MODE.  */
426rtx
427const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
428{
429  rtx real = rtx_alloc (CONST_DOUBLE);
430  PUT_MODE (real, mode);
431
432  real->u.rv = value;
433
434  return lookup_const_double (real);
435}
436
437/* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
438   of ints: I0 is the low-order word and I1 is the high-order word.
439   Do not use this routine for non-integer modes; convert to
440   REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE.  */
441
442rtx
443immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
444{
445  rtx value;
446  unsigned int i;
447
448  if (mode != VOIDmode)
449    {
450      int width;
451
452      gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
453		  || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
454		  /* We can get a 0 for an error mark.  */
455		  || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
456		  || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);
457
458      /* We clear out all bits that don't belong in MODE, unless they and
459	 our sign bit are all one.  So we get either a reasonable negative
460	 value or a reasonable unsigned value for this mode.  */
461      width = GET_MODE_BITSIZE (mode);
462      if (width < HOST_BITS_PER_WIDE_INT
463	  && ((i0 & ((HOST_WIDE_INT) (-1) << (width - 1)))
464	      != ((HOST_WIDE_INT) (-1) << (width - 1))))
465	i0 &= ((HOST_WIDE_INT) 1 << width) - 1, i1 = 0;
466      else if (width == HOST_BITS_PER_WIDE_INT
467	       && ! (i1 == ~0 && i0 < 0))
468	i1 = 0;
469      else
470	/* We should be able to represent this value as a constant.  */
471	gcc_assert (width <= 2 * HOST_BITS_PER_WIDE_INT);
472
473      /* If this would be an entire word for the target, but is not for
474	 the host, then sign-extend on the host so that the number will
475	 look the same way on the host that it would on the target.
476
477	 For example, when building a 64 bit alpha hosted 32 bit sparc
478	 targeted compiler, then we want the 32 bit unsigned value -1 to be
479	 represented as a 64 bit value -1, and not as 0x00000000ffffffff.
480	 The latter confuses the sparc backend.  */
481
482      if (width < HOST_BITS_PER_WIDE_INT
483	  && (i0 & ((HOST_WIDE_INT) 1 << (width - 1))))
484	i0 |= ((HOST_WIDE_INT) (-1) << width);
485
486      /* If MODE fits within HOST_BITS_PER_WIDE_INT, always use a
487	 CONST_INT.
488
489	 ??? Strictly speaking, this is wrong if we create a CONST_INT for
490	 a large unsigned constant with the size of MODE being
491	 HOST_BITS_PER_WIDE_INT and later try to interpret that constant
492	 in a wider mode.  In that case we will mis-interpret it as a
493	 negative number.
494
495	 Unfortunately, the only alternative is to make a CONST_DOUBLE for
496	 any constant in any mode if it is an unsigned constant larger
497	 than the maximum signed integer in an int on the host.  However,
498	 doing this will break everyone that always expects to see a
499	 CONST_INT for SImode and smaller.
500
501	 We have always been making CONST_INTs in this case, so nothing
502	 new is being broken.  */
503
504      if (width <= HOST_BITS_PER_WIDE_INT)
505	i1 = (i0 < 0) ? ~(HOST_WIDE_INT) 0 : 0;
506    }
507
508  /* If this integer fits in one word, return a CONST_INT.  */
509  if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
510    return GEN_INT (i0);
511
512  /* We use VOIDmode for integers.  */
513  value = rtx_alloc (CONST_DOUBLE);
514  PUT_MODE (value, VOIDmode);
515
516  CONST_DOUBLE_LOW (value) = i0;
517  CONST_DOUBLE_HIGH (value) = i1;
518
519  for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
520    XWINT (value, i) = 0;
521
522  return lookup_const_double (value);
523}
524
525rtx
526gen_rtx_REG (enum machine_mode mode, unsigned int regno)
527{
528  /* In case the MD file explicitly references the frame pointer, have
529     all such references point to the same frame pointer.  This is
530     used during frame pointer elimination to distinguish the explicit
531     references to these registers from pseudos that happened to be
532     assigned to them.
533
534     If we have eliminated the frame pointer or arg pointer, we will
535     be using it as a normal register, for example as a spill
536     register.  In such cases, we might be accessing it in a mode that
537     is not Pmode and therefore cannot use the pre-allocated rtx.
538
539     Also don't do this when we are making new REGs in reload, since
540     we don't want to get confused with the real pointers.  */
541
542  if (mode == Pmode && !reload_in_progress)
543    {
544      if (regno == FRAME_POINTER_REGNUM
545	  && (!reload_completed || frame_pointer_needed))
546	return frame_pointer_rtx;
547#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
548      if (regno == HARD_FRAME_POINTER_REGNUM
549	  && (!reload_completed || frame_pointer_needed))
550	return hard_frame_pointer_rtx;
551#endif
552#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
553      if (regno == ARG_POINTER_REGNUM)
554	return arg_pointer_rtx;
555#endif
556#ifdef RETURN_ADDRESS_POINTER_REGNUM
557      if (regno == RETURN_ADDRESS_POINTER_REGNUM)
558	return return_address_pointer_rtx;
559#endif
560      if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
561	  && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
562	return pic_offset_table_rtx;
563      if (regno == STACK_POINTER_REGNUM)
564	return stack_pointer_rtx;
565    }
566
567#if 0
568  /* If the per-function register table has been set up, try to re-use
569     an existing entry in that table to avoid useless generation of RTL.
570
571     This code is disabled for now until we can fix the various backends
572     which depend on having non-shared hard registers in some cases.   Long
573     term we want to re-enable this code as it can significantly cut down
574     on the amount of useless RTL that gets generated.
575
576     We'll also need to fix some code that runs after reload that wants to
577     set ORIGINAL_REGNO.  */
578
579  if (cfun
580      && cfun->emit
581      && regno_reg_rtx
582      && regno < FIRST_PSEUDO_REGISTER
583      && reg_raw_mode[regno] == mode)
584    return regno_reg_rtx[regno];
585#endif
586
587  return gen_raw_REG (mode, regno);
588}
589
590rtx
591gen_rtx_MEM (enum machine_mode mode, rtx addr)
592{
593  rtx rt = gen_rtx_raw_MEM (mode, addr);
594
595  /* This field is not cleared by the mere allocation of the rtx, so
596     we clear it here.  */
597  MEM_ATTRS (rt) = 0;
598
599  return rt;
600}
601
602/* Generate a memory referring to non-trapping constant memory.  */
603
604rtx
605gen_const_mem (enum machine_mode mode, rtx addr)
606{
607  rtx mem = gen_rtx_MEM (mode, addr);
608  MEM_READONLY_P (mem) = 1;
609  MEM_NOTRAP_P (mem) = 1;
610  return mem;
611}
612
613/* Generate a MEM referring to fixed portions of the frame, e.g., register
614   save areas.  */
615
616rtx
617gen_frame_mem (enum machine_mode mode, rtx addr)
618{
619  rtx mem = gen_rtx_MEM (mode, addr);
620  MEM_NOTRAP_P (mem) = 1;
621  set_mem_alias_set (mem, get_frame_alias_set ());
622  return mem;
623}
624
625/* Generate a MEM referring to a temporary use of the stack, not part
626    of the fixed stack frame.  For example, something which is pushed
627    by a target splitter.  */
628rtx
629gen_tmp_stack_mem (enum machine_mode mode, rtx addr)
630{
631  rtx mem = gen_rtx_MEM (mode, addr);
632  MEM_NOTRAP_P (mem) = 1;
633  if (!current_function_calls_alloca)
634    set_mem_alias_set (mem, get_frame_alias_set ());
635  return mem;
636}
637
638/* We want to create (subreg:OMODE (obj:IMODE) OFFSET).  Return true if
639   this construct would be valid, and false otherwise.  */
640
641bool
642validate_subreg (enum machine_mode omode, enum machine_mode imode,
643		 rtx reg, unsigned int offset)
644{
645  unsigned int isize = GET_MODE_SIZE (imode);
646  unsigned int osize = GET_MODE_SIZE (omode);
647
648  /* All subregs must be aligned.  */
649  if (offset % osize != 0)
650    return false;
651
652  /* The subreg offset cannot be outside the inner object.  */
653  if (offset >= isize)
654    return false;
655
656  /* ??? This should not be here.  Temporarily continue to allow word_mode
657     subregs of anything.  The most common offender is (subreg:SI (reg:DF)).
658     Generally, backends are doing something sketchy but it'll take time to
659     fix them all.  */
660  if (omode == word_mode)
661    ;
662  /* ??? Similarly, e.g. with (subreg:DF (reg:TI)).  Though store_bit_field
663     is the culprit here, and not the backends.  */
664  else if (osize >= UNITS_PER_WORD && isize >= osize)
665    ;
666  /* Allow component subregs of complex and vector.  Though given the below
667     extraction rules, it's not always clear what that means.  */
668  else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
669	   && GET_MODE_INNER (imode) == omode)
670    ;
671  /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
672     i.e. (subreg:V4SF (reg:SF) 0).  This surely isn't the cleanest way to
673     represent this.  It's questionable if this ought to be represented at
674     all -- why can't this all be hidden in post-reload splitters that make
675     arbitrarily mode changes to the registers themselves.  */
676  else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
677    ;
678  /* Subregs involving floating point modes are not allowed to
679     change size.  Therefore (subreg:DI (reg:DF) 0) is fine, but
680     (subreg:SI (reg:DF) 0) isn't.  */
681  else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
682    {
683      if (isize != osize)
684	return false;
685    }
686
687  /* Paradoxical subregs must have offset zero.  */
688  if (osize > isize)
689    return offset == 0;
690
691  /* This is a normal subreg.  Verify that the offset is representable.  */
692
693  /* For hard registers, we already have most of these rules collected in
694     subreg_offset_representable_p.  */
695  if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
696    {
697      unsigned int regno = REGNO (reg);
698
699#ifdef CANNOT_CHANGE_MODE_CLASS
700      if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
701	  && GET_MODE_INNER (imode) == omode)
702	;
703      else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
704	return false;
705#endif
706
707      return subreg_offset_representable_p (regno, imode, offset, omode);
708    }
709
710  /* For pseudo registers, we want most of the same checks.  Namely:
711     If the register no larger than a word, the subreg must be lowpart.
712     If the register is larger than a word, the subreg must be the lowpart
713     of a subword.  A subreg does *not* perform arbitrary bit extraction.
714     Given that we've already checked mode/offset alignment, we only have
715     to check subword subregs here.  */
716  if (osize < UNITS_PER_WORD)
717    {
718      enum machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
719      unsigned int low_off = subreg_lowpart_offset (omode, wmode);
720      if (offset % UNITS_PER_WORD != low_off)
721	return false;
722    }
723  return true;
724}
725
726rtx
727gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
728{
729  gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
730  return gen_rtx_raw_SUBREG (mode, reg, offset);
731}
732
733/* Generate a SUBREG representing the least-significant part of REG if MODE
734   is smaller than mode of REG, otherwise paradoxical SUBREG.  */
735
736rtx
737gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
738{
739  enum machine_mode inmode;
740
741  inmode = GET_MODE (reg);
742  if (inmode == VOIDmode)
743    inmode = mode;
744  return gen_rtx_SUBREG (mode, reg,
745			 subreg_lowpart_offset (mode, inmode));
746}
747
748/* gen_rtvec (n, [rt1, ..., rtn])
749**
750**	    This routine creates an rtvec and stores within it the
751**	pointers to rtx's which are its arguments.
752*/
753
754/*VARARGS1*/
755rtvec
756gen_rtvec (int n, ...)
757{
758  int i, save_n;
759  rtx *vector;
760  va_list p;
761
762  va_start (p, n);
763
764  if (n == 0)
765    return NULL_RTVEC;		/* Don't allocate an empty rtvec...	*/
766
767  vector = alloca (n * sizeof (rtx));
768
769  for (i = 0; i < n; i++)
770    vector[i] = va_arg (p, rtx);
771
772  /* The definition of VA_* in K&R C causes `n' to go out of scope.  */
773  save_n = n;
774  va_end (p);
775
776  return gen_rtvec_v (save_n, vector);
777}
778
779rtvec
780gen_rtvec_v (int n, rtx *argp)
781{
782  int i;
783  rtvec rt_val;
784
785  if (n == 0)
786    return NULL_RTVEC;		/* Don't allocate an empty rtvec...	*/
787
788  rt_val = rtvec_alloc (n);	/* Allocate an rtvec...			*/
789
790  for (i = 0; i < n; i++)
791    rt_val->elem[i] = *argp++;
792
793  return rt_val;
794}
795
796/* Generate a REG rtx for a new pseudo register of mode MODE.
797   This pseudo is assigned the next sequential register number.  */
798
799rtx
800gen_reg_rtx (enum machine_mode mode)
801{
802  struct function *f = cfun;
803  rtx val;
804
805  /* Don't let anything called after initial flow analysis create new
806     registers.  */
807  gcc_assert (!no_new_pseudos);
808
809  if (generating_concat_p
810      && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
811	  || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
812    {
813      /* For complex modes, don't make a single pseudo.
814	 Instead, make a CONCAT of two pseudos.
815	 This allows noncontiguous allocation of the real and imaginary parts,
816	 which makes much better code.  Besides, allocating DCmode
817	 pseudos overstrains reload on some machines like the 386.  */
818      rtx realpart, imagpart;
819      enum machine_mode partmode = GET_MODE_INNER (mode);
820
821      realpart = gen_reg_rtx (partmode);
822      imagpart = gen_reg_rtx (partmode);
823      return gen_rtx_CONCAT (mode, realpart, imagpart);
824    }
825
826  /* Make sure regno_pointer_align, and regno_reg_rtx are large
827     enough to have an element for this pseudo reg number.  */
828
829  if (reg_rtx_no == f->emit->regno_pointer_align_length)
830    {
831      int old_size = f->emit->regno_pointer_align_length;
832      char *new;
833      rtx *new1;
834
835      new = ggc_realloc (f->emit->regno_pointer_align, old_size * 2);
836      memset (new + old_size, 0, old_size);
837      f->emit->regno_pointer_align = (unsigned char *) new;
838
839      new1 = ggc_realloc (f->emit->x_regno_reg_rtx,
840			  old_size * 2 * sizeof (rtx));
841      memset (new1 + old_size, 0, old_size * sizeof (rtx));
842      regno_reg_rtx = new1;
843
844      f->emit->regno_pointer_align_length = old_size * 2;
845    }
846
847  val = gen_raw_REG (mode, reg_rtx_no);
848  regno_reg_rtx[reg_rtx_no++] = val;
849  return val;
850}
851
852/* Generate a register with same attributes as REG, but offsetted by OFFSET.
853   Do the big endian correction if needed.  */
854
855rtx
856gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno, int offset)
857{
858  rtx new = gen_rtx_REG (mode, regno);
859  tree decl;
860  HOST_WIDE_INT var_size;
861
862  /* PR middle-end/14084
863     The problem appears when a variable is stored in a larger register
864     and later it is used in the original mode or some mode in between
865     or some part of variable is accessed.
866
867     On little endian machines there is no problem because
868     the REG_OFFSET of the start of the variable is the same when
869     accessed in any mode (it is 0).
870
871     However, this is not true on big endian machines.
872     The offset of the start of the variable is different when accessed
873     in different modes.
874     When we are taking a part of the REG we have to change the OFFSET
875     from offset WRT size of mode of REG to offset WRT size of variable.
876
877     If we would not do the big endian correction the resulting REG_OFFSET
878     would be larger than the size of the DECL.
879
880     Examples of correction, for BYTES_BIG_ENDIAN WORDS_BIG_ENDIAN machine:
881
882     REG.mode  MODE  DECL size  old offset  new offset  description
883     DI        SI    4          4           0           int32 in SImode
884     DI        SI    1          4           0           char in SImode
885     DI        QI    1          7           0           char in QImode
886     DI        QI    4          5           1           1st element in QImode
887                                                        of char[4]
888     DI        HI    4          6           2           1st element in HImode
889                                                        of int16[2]
890
891     If the size of DECL is equal or greater than the size of REG
892     we can't do this correction because the register holds the
893     whole variable or a part of the variable and thus the REG_OFFSET
894     is already correct.  */
895
896  decl = REG_EXPR (reg);
897  if ((BYTES_BIG_ENDIAN || WORDS_BIG_ENDIAN)
898      && decl != NULL
899      && offset > 0
900      && GET_MODE_SIZE (GET_MODE (reg)) > GET_MODE_SIZE (mode)
901      && ((var_size = int_size_in_bytes (TREE_TYPE (decl))) > 0
902	  && var_size < GET_MODE_SIZE (GET_MODE (reg))))
903    {
904      int offset_le;
905
906      /* Convert machine endian to little endian WRT size of mode of REG.  */
907      if (WORDS_BIG_ENDIAN)
908	offset_le = ((GET_MODE_SIZE (GET_MODE (reg)) - 1 - offset)
909		     / UNITS_PER_WORD) * UNITS_PER_WORD;
910      else
911	offset_le = (offset / UNITS_PER_WORD) * UNITS_PER_WORD;
912
913      if (BYTES_BIG_ENDIAN)
914	offset_le += ((GET_MODE_SIZE (GET_MODE (reg)) - 1 - offset)
915		      % UNITS_PER_WORD);
916      else
917	offset_le += offset % UNITS_PER_WORD;
918
919      if (offset_le >= var_size)
920	{
921	  /* MODE is wider than the variable so the new reg will cover
922	     the whole variable so the resulting OFFSET should be 0.  */
923	  offset = 0;
924	}
925      else
926	{
927	  /* Convert little endian to machine endian WRT size of variable.  */
928	  if (WORDS_BIG_ENDIAN)
929	    offset = ((var_size - 1 - offset_le)
930		      / UNITS_PER_WORD) * UNITS_PER_WORD;
931	  else
932	    offset = (offset_le / UNITS_PER_WORD) * UNITS_PER_WORD;
933
934	  if (BYTES_BIG_ENDIAN)
935	    offset += ((var_size - 1 - offset_le)
936		       % UNITS_PER_WORD);
937	  else
938	    offset += offset_le % UNITS_PER_WORD;
939	}
940    }
941
942  REG_ATTRS (new) = get_reg_attrs (REG_EXPR (reg),
943				   REG_OFFSET (reg) + offset);
944  return new;
945}
946
947/* Set the decl for MEM to DECL.  */
948
949void
950set_reg_attrs_from_mem (rtx reg, rtx mem)
951{
952  if (MEM_OFFSET (mem) && GET_CODE (MEM_OFFSET (mem)) == CONST_INT)
953    REG_ATTRS (reg)
954      = get_reg_attrs (MEM_EXPR (mem), INTVAL (MEM_OFFSET (mem)));
955}
956
957/* Set the register attributes for registers contained in PARM_RTX.
958   Use needed values from memory attributes of MEM.  */
959
960void
961set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
962{
963  if (REG_P (parm_rtx))
964    set_reg_attrs_from_mem (parm_rtx, mem);
965  else if (GET_CODE (parm_rtx) == PARALLEL)
966    {
967      /* Check for a NULL entry in the first slot, used to indicate that the
968	 parameter goes both on the stack and in registers.  */
969      int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
970      for (; i < XVECLEN (parm_rtx, 0); i++)
971	{
972	  rtx x = XVECEXP (parm_rtx, 0, i);
973	  if (REG_P (XEXP (x, 0)))
974	    REG_ATTRS (XEXP (x, 0))
975	      = get_reg_attrs (MEM_EXPR (mem),
976			       INTVAL (XEXP (x, 1)));
977	}
978    }
979}
980
981/* Assign the RTX X to declaration T.  */
982void
983set_decl_rtl (tree t, rtx x)
984{
985  DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
986
987  if (!x)
988    return;
989  /* For register, we maintain the reverse information too.  */
990  if (REG_P (x))
991    REG_ATTRS (x) = get_reg_attrs (t, 0);
992  else if (GET_CODE (x) == SUBREG)
993    REG_ATTRS (SUBREG_REG (x))
994      = get_reg_attrs (t, -SUBREG_BYTE (x));
995  if (GET_CODE (x) == CONCAT)
996    {
997      if (REG_P (XEXP (x, 0)))
998        REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
999      if (REG_P (XEXP (x, 1)))
1000	REG_ATTRS (XEXP (x, 1))
1001	  = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1002    }
1003  if (GET_CODE (x) == PARALLEL)
1004    {
1005      int i;
1006      for (i = 0; i < XVECLEN (x, 0); i++)
1007	{
1008	  rtx y = XVECEXP (x, 0, i);
1009	  if (REG_P (XEXP (y, 0)))
1010	    REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1011	}
1012    }
1013}
1014
1015/* Assign the RTX X to parameter declaration T.  */
1016void
1017set_decl_incoming_rtl (tree t, rtx x)
1018{
1019  DECL_INCOMING_RTL (t) = x;
1020
1021  if (!x)
1022    return;
1023  /* For register, we maintain the reverse information too.  */
1024  if (REG_P (x))
1025    REG_ATTRS (x) = get_reg_attrs (t, 0);
1026  else if (GET_CODE (x) == SUBREG)
1027    REG_ATTRS (SUBREG_REG (x))
1028      = get_reg_attrs (t, -SUBREG_BYTE (x));
1029  if (GET_CODE (x) == CONCAT)
1030    {
1031      if (REG_P (XEXP (x, 0)))
1032        REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1033      if (REG_P (XEXP (x, 1)))
1034	REG_ATTRS (XEXP (x, 1))
1035	  = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1036    }
1037  if (GET_CODE (x) == PARALLEL)
1038    {
1039      int i, start;
1040
1041      /* Check for a NULL entry, used to indicate that the parameter goes
1042	 both on the stack and in registers.  */
1043      if (XEXP (XVECEXP (x, 0, 0), 0))
1044	start = 0;
1045      else
1046	start = 1;
1047
1048      for (i = start; i < XVECLEN (x, 0); i++)
1049	{
1050	  rtx y = XVECEXP (x, 0, i);
1051	  if (REG_P (XEXP (y, 0)))
1052	    REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1053	}
1054    }
1055}
1056
1057/* Identify REG (which may be a CONCAT) as a user register.  */
1058
1059void
1060mark_user_reg (rtx reg)
1061{
1062  if (GET_CODE (reg) == CONCAT)
1063    {
1064      REG_USERVAR_P (XEXP (reg, 0)) = 1;
1065      REG_USERVAR_P (XEXP (reg, 1)) = 1;
1066    }
1067  else
1068    {
1069      gcc_assert (REG_P (reg));
1070      REG_USERVAR_P (reg) = 1;
1071    }
1072}
1073
1074/* Identify REG as a probable pointer register and show its alignment
1075   as ALIGN, if nonzero.  */
1076
1077void
1078mark_reg_pointer (rtx reg, int align)
1079{
1080  if (! REG_POINTER (reg))
1081    {
1082      REG_POINTER (reg) = 1;
1083
1084      if (align)
1085	REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1086    }
1087  else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1088    /* We can no-longer be sure just how aligned this pointer is.  */
1089    REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1090}
1091
1092/* Return 1 plus largest pseudo reg number used in the current function.  */
1093
1094int
1095max_reg_num (void)
1096{
1097  return reg_rtx_no;
1098}
1099
1100/* Return 1 + the largest label number used so far in the current function.  */
1101
1102int
1103max_label_num (void)
1104{
1105  return label_num;
1106}
1107
1108/* Return first label number used in this function (if any were used).  */
1109
1110int
1111get_first_label_num (void)
1112{
1113  return first_label_num;
1114}
1115
1116/* If the rtx for label was created during the expansion of a nested
1117   function, then first_label_num won't include this label number.
1118   Fix this now so that array indicies work later.  */
1119
1120void
1121maybe_set_first_label_num (rtx x)
1122{
1123  if (CODE_LABEL_NUMBER (x) < first_label_num)
1124    first_label_num = CODE_LABEL_NUMBER (x);
1125}
1126
1127/* Return a value representing some low-order bits of X, where the number
1128   of low-order bits is given by MODE.  Note that no conversion is done
1129   between floating-point and fixed-point values, rather, the bit
1130   representation is returned.
1131
1132   This function handles the cases in common between gen_lowpart, below,
1133   and two variants in cse.c and combine.c.  These are the cases that can
1134   be safely handled at all points in the compilation.
1135
1136   If this is not a case we can handle, return 0.  */
1137
1138rtx
1139gen_lowpart_common (enum machine_mode mode, rtx x)
1140{
1141  int msize = GET_MODE_SIZE (mode);
1142  int xsize;
1143  int offset = 0;
1144  enum machine_mode innermode;
1145
1146  /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1147     so we have to make one up.  Yuk.  */
1148  innermode = GET_MODE (x);
1149  if (GET_CODE (x) == CONST_INT
1150      && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
1151    innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1152  else if (innermode == VOIDmode)
1153    innermode = mode_for_size (HOST_BITS_PER_WIDE_INT * 2, MODE_INT, 0);
1154
1155  xsize = GET_MODE_SIZE (innermode);
1156
1157  gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1158
1159  if (innermode == mode)
1160    return x;
1161
1162  /* MODE must occupy no more words than the mode of X.  */
1163  if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1164      > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1165    return 0;
1166
1167  /* Don't allow generating paradoxical FLOAT_MODE subregs.  */
1168  if (GET_MODE_CLASS (mode) == MODE_FLOAT && msize > xsize)
1169    return 0;
1170
1171  offset = subreg_lowpart_offset (mode, innermode);
1172
1173  if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1174      && (GET_MODE_CLASS (mode) == MODE_INT
1175	  || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1176    {
1177      /* If we are getting the low-order part of something that has been
1178	 sign- or zero-extended, we can either just use the object being
1179	 extended or make a narrower extension.  If we want an even smaller
1180	 piece than the size of the object being extended, call ourselves
1181	 recursively.
1182
1183	 This case is used mostly by combine and cse.  */
1184
1185      if (GET_MODE (XEXP (x, 0)) == mode)
1186	return XEXP (x, 0);
1187      else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1188	return gen_lowpart_common (mode, XEXP (x, 0));
1189      else if (msize < xsize)
1190	return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1191    }
1192  else if (GET_CODE (x) == SUBREG || REG_P (x)
1193	   || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1194	   || GET_CODE (x) == CONST_DOUBLE || GET_CODE (x) == CONST_INT)
1195    return simplify_gen_subreg (mode, x, innermode, offset);
1196
1197  /* Otherwise, we can't do this.  */
1198  return 0;
1199}
1200
1201rtx
1202gen_highpart (enum machine_mode mode, rtx x)
1203{
1204  unsigned int msize = GET_MODE_SIZE (mode);
1205  rtx result;
1206
1207  /* This case loses if X is a subreg.  To catch bugs early,
1208     complain if an invalid MODE is used even in other cases.  */
1209  gcc_assert (msize <= UNITS_PER_WORD
1210	      || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1211
1212  result = simplify_gen_subreg (mode, x, GET_MODE (x),
1213				subreg_highpart_offset (mode, GET_MODE (x)));
1214  gcc_assert (result);
1215
1216  /* simplify_gen_subreg is not guaranteed to return a valid operand for
1217     the target if we have a MEM.  gen_highpart must return a valid operand,
1218     emitting code if necessary to do so.  */
1219  if (MEM_P (result))
1220    {
1221      result = validize_mem (result);
1222      gcc_assert (result);
1223    }
1224
1225  return result;
1226}
1227
1228/* Like gen_highpart, but accept mode of EXP operand in case EXP can
1229   be VOIDmode constant.  */
1230rtx
1231gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1232{
1233  if (GET_MODE (exp) != VOIDmode)
1234    {
1235      gcc_assert (GET_MODE (exp) == innermode);
1236      return gen_highpart (outermode, exp);
1237    }
1238  return simplify_gen_subreg (outermode, exp, innermode,
1239			      subreg_highpart_offset (outermode, innermode));
1240}
1241
1242/* Return offset in bytes to get OUTERMODE low part
1243   of the value in mode INNERMODE stored in memory in target format.  */
1244
1245unsigned int
1246subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1247{
1248  unsigned int offset = 0;
1249  int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1250
1251  if (difference > 0)
1252    {
1253      if (WORDS_BIG_ENDIAN)
1254	offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1255      if (BYTES_BIG_ENDIAN)
1256	offset += difference % UNITS_PER_WORD;
1257    }
1258
1259  return offset;
1260}
1261
1262/* Return offset in bytes to get OUTERMODE high part
1263   of the value in mode INNERMODE stored in memory in target format.  */
1264unsigned int
1265subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1266{
1267  unsigned int offset = 0;
1268  int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1269
1270  gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
1271
1272  if (difference > 0)
1273    {
1274      if (! WORDS_BIG_ENDIAN)
1275	offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1276      if (! BYTES_BIG_ENDIAN)
1277	offset += difference % UNITS_PER_WORD;
1278    }
1279
1280  return offset;
1281}
1282
1283/* Return 1 iff X, assumed to be a SUBREG,
1284   refers to the least significant part of its containing reg.
1285   If X is not a SUBREG, always return 1 (it is its own low part!).  */
1286
1287int
1288subreg_lowpart_p (rtx x)
1289{
1290  if (GET_CODE (x) != SUBREG)
1291    return 1;
1292  else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1293    return 0;
1294
1295  return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1296	  == SUBREG_BYTE (x));
1297}
1298
1299/* Return subword OFFSET of operand OP.
1300   The word number, OFFSET, is interpreted as the word number starting
1301   at the low-order address.  OFFSET 0 is the low-order word if not
1302   WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1303
1304   If we cannot extract the required word, we return zero.  Otherwise,
1305   an rtx corresponding to the requested word will be returned.
1306
1307   VALIDATE_ADDRESS is nonzero if the address should be validated.  Before
1308   reload has completed, a valid address will always be returned.  After
1309   reload, if a valid address cannot be returned, we return zero.
1310
1311   If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1312   it is the responsibility of the caller.
1313
1314   MODE is the mode of OP in case it is a CONST_INT.
1315
1316   ??? This is still rather broken for some cases.  The problem for the
1317   moment is that all callers of this thing provide no 'goal mode' to
1318   tell us to work with.  This exists because all callers were written
1319   in a word based SUBREG world.
1320   Now use of this function can be deprecated by simplify_subreg in most
1321   cases.
1322 */
1323
1324rtx
1325operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1326{
1327  if (mode == VOIDmode)
1328    mode = GET_MODE (op);
1329
1330  gcc_assert (mode != VOIDmode);
1331
1332  /* If OP is narrower than a word, fail.  */
1333  if (mode != BLKmode
1334      && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1335    return 0;
1336
1337  /* If we want a word outside OP, return zero.  */
1338  if (mode != BLKmode
1339      && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1340    return const0_rtx;
1341
1342  /* Form a new MEM at the requested address.  */
1343  if (MEM_P (op))
1344    {
1345      rtx new = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1346
1347      if (! validate_address)
1348	return new;
1349
1350      else if (reload_completed)
1351	{
1352	  if (! strict_memory_address_p (word_mode, XEXP (new, 0)))
1353	    return 0;
1354	}
1355      else
1356	return replace_equiv_address (new, XEXP (new, 0));
1357    }
1358
1359  /* Rest can be handled by simplify_subreg.  */
1360  return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1361}
1362
1363/* Similar to `operand_subword', but never return 0.  If we can't
1364   extract the required subword, put OP into a register and try again.
1365   The second attempt must succeed.  We always validate the address in
1366   this case.
1367
1368   MODE is the mode of OP, in case it is CONST_INT.  */
1369
1370rtx
1371operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1372{
1373  rtx result = operand_subword (op, offset, 1, mode);
1374
1375  if (result)
1376    return result;
1377
1378  if (mode != BLKmode && mode != VOIDmode)
1379    {
1380      /* If this is a register which can not be accessed by words, copy it
1381	 to a pseudo register.  */
1382      if (REG_P (op))
1383	op = copy_to_reg (op);
1384      else
1385	op = force_reg (mode, op);
1386    }
1387
1388  result = operand_subword (op, offset, 1, mode);
1389  gcc_assert (result);
1390
1391  return result;
1392}
1393
1394/* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1395   or (2) a component ref of something variable.  Represent the later with
1396   a NULL expression.  */
1397
1398static tree
1399component_ref_for_mem_expr (tree ref)
1400{
1401  tree inner = TREE_OPERAND (ref, 0);
1402
1403  if (TREE_CODE (inner) == COMPONENT_REF)
1404    inner = component_ref_for_mem_expr (inner);
1405  else
1406    {
1407      /* Now remove any conversions: they don't change what the underlying
1408	 object is.  Likewise for SAVE_EXPR.  */
1409      while (TREE_CODE (inner) == NOP_EXPR || TREE_CODE (inner) == CONVERT_EXPR
1410	     || TREE_CODE (inner) == NON_LVALUE_EXPR
1411	     || TREE_CODE (inner) == VIEW_CONVERT_EXPR
1412	     || TREE_CODE (inner) == SAVE_EXPR)
1413	inner = TREE_OPERAND (inner, 0);
1414
1415      if (! DECL_P (inner))
1416	inner = NULL_TREE;
1417    }
1418
1419  if (inner == TREE_OPERAND (ref, 0))
1420    return ref;
1421  else
1422    return build3 (COMPONENT_REF, TREE_TYPE (ref), inner,
1423		   TREE_OPERAND (ref, 1), NULL_TREE);
1424}
1425
1426/* Returns 1 if both MEM_EXPR can be considered equal
1427   and 0 otherwise.  */
1428
1429int
1430mem_expr_equal_p (tree expr1, tree expr2)
1431{
1432  if (expr1 == expr2)
1433    return 1;
1434
1435  if (! expr1 || ! expr2)
1436    return 0;
1437
1438  if (TREE_CODE (expr1) != TREE_CODE (expr2))
1439    return 0;
1440
1441  if (TREE_CODE (expr1) == COMPONENT_REF)
1442    return
1443      mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1444			TREE_OPERAND (expr2, 0))
1445      && mem_expr_equal_p (TREE_OPERAND (expr1, 1), /* field decl */
1446			   TREE_OPERAND (expr2, 1));
1447
1448  if (INDIRECT_REF_P (expr1))
1449    return mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1450			     TREE_OPERAND (expr2, 0));
1451
1452  /* ARRAY_REFs, ARRAY_RANGE_REFs and BIT_FIELD_REFs should already
1453	      have been resolved here.  */
1454  gcc_assert (DECL_P (expr1));
1455
1456  /* Decls with different pointers can't be equal.  */
1457  return 0;
1458}
1459
1460/* Given REF, a MEM, and T, either the type of X or the expression
1461   corresponding to REF, set the memory attributes.  OBJECTP is nonzero
1462   if we are making a new object of this type.  BITPOS is nonzero if
1463   there is an offset outstanding on T that will be applied later.  */
1464
1465void
1466set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1467				 HOST_WIDE_INT bitpos)
1468{
1469  HOST_WIDE_INT alias = MEM_ALIAS_SET (ref);
1470  tree expr = MEM_EXPR (ref);
1471  rtx offset = MEM_OFFSET (ref);
1472  rtx size = MEM_SIZE (ref);
1473  unsigned int align = MEM_ALIGN (ref);
1474  HOST_WIDE_INT apply_bitpos = 0;
1475  tree type;
1476
1477  /* It can happen that type_for_mode was given a mode for which there
1478     is no language-level type.  In which case it returns NULL, which
1479     we can see here.  */
1480  if (t == NULL_TREE)
1481    return;
1482
1483  type = TYPE_P (t) ? t : TREE_TYPE (t);
1484  if (type == error_mark_node)
1485    return;
1486
1487  /* If we have already set DECL_RTL = ref, get_alias_set will get the
1488     wrong answer, as it assumes that DECL_RTL already has the right alias
1489     info.  Callers should not set DECL_RTL until after the call to
1490     set_mem_attributes.  */
1491  gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1492
1493  /* Get the alias set from the expression or type (perhaps using a
1494     front-end routine) and use it.  */
1495  alias = get_alias_set (t);
1496
1497  MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1498  MEM_IN_STRUCT_P (ref) = AGGREGATE_TYPE_P (type);
1499  MEM_POINTER (ref) = POINTER_TYPE_P (type);
1500
1501  /* If we are making an object of this type, or if this is a DECL, we know
1502     that it is a scalar if the type is not an aggregate.  */
1503  if ((objectp || DECL_P (t)) && ! AGGREGATE_TYPE_P (type))
1504    MEM_SCALAR_P (ref) = 1;
1505
1506  /* We can set the alignment from the type if we are making an object,
1507     this is an INDIRECT_REF, or if TYPE_ALIGN_OK.  */
1508  if (objectp || TREE_CODE (t) == INDIRECT_REF
1509      || TREE_CODE (t) == ALIGN_INDIRECT_REF
1510      || TYPE_ALIGN_OK (type))
1511    align = MAX (align, TYPE_ALIGN (type));
1512  else
1513    if (TREE_CODE (t) == MISALIGNED_INDIRECT_REF)
1514      {
1515	if (integer_zerop (TREE_OPERAND (t, 1)))
1516	  /* We don't know anything about the alignment.  */
1517	  align = BITS_PER_UNIT;
1518	else
1519	  align = tree_low_cst (TREE_OPERAND (t, 1), 1);
1520      }
1521
1522  /* If the size is known, we can set that.  */
1523  if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1524    size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1525
1526  /* If T is not a type, we may be able to deduce some more information about
1527     the expression.  */
1528  if (! TYPE_P (t))
1529    {
1530      tree base;
1531
1532      if (TREE_THIS_VOLATILE (t))
1533	MEM_VOLATILE_P (ref) = 1;
1534
1535      /* Now remove any conversions: they don't change what the underlying
1536	 object is.  Likewise for SAVE_EXPR.  */
1537      while (TREE_CODE (t) == NOP_EXPR || TREE_CODE (t) == CONVERT_EXPR
1538	     || TREE_CODE (t) == NON_LVALUE_EXPR
1539	     || TREE_CODE (t) == VIEW_CONVERT_EXPR
1540	     || TREE_CODE (t) == SAVE_EXPR)
1541	t = TREE_OPERAND (t, 0);
1542
1543      /* We may look through structure-like accesses for the purposes of
1544	 examining TREE_THIS_NOTRAP, but not array-like accesses.  */
1545      base = t;
1546      while (TREE_CODE (base) == COMPONENT_REF
1547	     || TREE_CODE (base) == REALPART_EXPR
1548	     || TREE_CODE (base) == IMAGPART_EXPR
1549	     || TREE_CODE (base) == BIT_FIELD_REF)
1550	base = TREE_OPERAND (base, 0);
1551
1552      if (DECL_P (base))
1553	{
1554	  if (CODE_CONTAINS_STRUCT (TREE_CODE (base), TS_DECL_WITH_VIS))
1555	    MEM_NOTRAP_P (ref) = !DECL_WEAK (base);
1556	  else
1557	    MEM_NOTRAP_P (ref) = 1;
1558	}
1559      else
1560	MEM_NOTRAP_P (ref) = TREE_THIS_NOTRAP (base);
1561
1562      base = get_base_address (base);
1563      if (base && DECL_P (base)
1564	  && TREE_READONLY (base)
1565	  && (TREE_STATIC (base) || DECL_EXTERNAL (base)))
1566	{
1567	  tree base_type = TREE_TYPE (base);
1568	  gcc_assert (!(base_type && TYPE_NEEDS_CONSTRUCTING (base_type))
1569		      || DECL_ARTIFICIAL (base));
1570	  MEM_READONLY_P (ref) = 1;
1571	}
1572
1573      /* If this expression uses it's parent's alias set, mark it such
1574	 that we won't change it.  */
1575      if (component_uses_parent_alias_set (t))
1576	MEM_KEEP_ALIAS_SET_P (ref) = 1;
1577
1578      /* If this is a decl, set the attributes of the MEM from it.  */
1579      if (DECL_P (t))
1580	{
1581	  expr = t;
1582	  offset = const0_rtx;
1583	  apply_bitpos = bitpos;
1584	  size = (DECL_SIZE_UNIT (t)
1585		  && host_integerp (DECL_SIZE_UNIT (t), 1)
1586		  ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1587	  align = DECL_ALIGN (t);
1588	}
1589
1590      /* If this is a constant, we know the alignment.  */
1591      else if (CONSTANT_CLASS_P (t))
1592	{
1593	  align = TYPE_ALIGN (type);
1594#ifdef CONSTANT_ALIGNMENT
1595	  align = CONSTANT_ALIGNMENT (t, align);
1596#endif
1597	}
1598
1599      /* If this is a field reference and not a bit-field, record it.  */
1600      /* ??? There is some information that can be gleened from bit-fields,
1601	 such as the word offset in the structure that might be modified.
1602	 But skip it for now.  */
1603      else if (TREE_CODE (t) == COMPONENT_REF
1604	       && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1605	{
1606	  expr = component_ref_for_mem_expr (t);
1607	  offset = const0_rtx;
1608	  apply_bitpos = bitpos;
1609	  /* ??? Any reason the field size would be different than
1610	     the size we got from the type?  */
1611	}
1612
1613      /* If this is an array reference, look for an outer field reference.  */
1614      else if (TREE_CODE (t) == ARRAY_REF)
1615	{
1616	  tree off_tree = size_zero_node;
1617	  /* We can't modify t, because we use it at the end of the
1618	     function.  */
1619	  tree t2 = t;
1620
1621	  do
1622	    {
1623	      tree index = TREE_OPERAND (t2, 1);
1624	      tree low_bound = array_ref_low_bound (t2);
1625	      tree unit_size = array_ref_element_size (t2);
1626
1627	      /* We assume all arrays have sizes that are a multiple of a byte.
1628		 First subtract the lower bound, if any, in the type of the
1629		 index, then convert to sizetype and multiply by the size of
1630		 the array element.  */
1631	      if (! integer_zerop (low_bound))
1632		index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1633				     index, low_bound);
1634
1635	      off_tree = size_binop (PLUS_EXPR,
1636				     size_binop (MULT_EXPR, convert (sizetype,
1637								     index),
1638						 unit_size),
1639				     off_tree);
1640	      t2 = TREE_OPERAND (t2, 0);
1641	    }
1642	  while (TREE_CODE (t2) == ARRAY_REF);
1643
1644	  if (DECL_P (t2))
1645	    {
1646	      expr = t2;
1647	      offset = NULL;
1648	      if (host_integerp (off_tree, 1))
1649		{
1650		  HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1651		  HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1652		  align = DECL_ALIGN (t2);
1653		  if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
1654	            align = aoff;
1655		  offset = GEN_INT (ioff);
1656		  apply_bitpos = bitpos;
1657		}
1658	    }
1659	  else if (TREE_CODE (t2) == COMPONENT_REF)
1660	    {
1661	      expr = component_ref_for_mem_expr (t2);
1662	      if (host_integerp (off_tree, 1))
1663		{
1664		  offset = GEN_INT (tree_low_cst (off_tree, 1));
1665		  apply_bitpos = bitpos;
1666		}
1667	      /* ??? Any reason the field size would be different than
1668		 the size we got from the type?  */
1669	    }
1670	  else if (flag_argument_noalias > 1
1671		   && (INDIRECT_REF_P (t2))
1672		   && TREE_CODE (TREE_OPERAND (t2, 0)) == PARM_DECL)
1673	    {
1674	      expr = t2;
1675	      offset = NULL;
1676	    }
1677	}
1678
1679      /* If this is a Fortran indirect argument reference, record the
1680	 parameter decl.  */
1681      else if (flag_argument_noalias > 1
1682	       && (INDIRECT_REF_P (t))
1683	       && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
1684	{
1685	  expr = t;
1686	  offset = NULL;
1687	}
1688    }
1689
1690  /* If we modified OFFSET based on T, then subtract the outstanding
1691     bit position offset.  Similarly, increase the size of the accessed
1692     object to contain the negative offset.  */
1693  if (apply_bitpos)
1694    {
1695      offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
1696      if (size)
1697	size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
1698    }
1699
1700  if (TREE_CODE (t) == ALIGN_INDIRECT_REF)
1701    {
1702      /* Force EXPR and OFFSE to NULL, since we don't know exactly what
1703	 we're overlapping.  */
1704      offset = NULL;
1705      expr = NULL;
1706    }
1707
1708  /* Now set the attributes we computed above.  */
1709  MEM_ATTRS (ref)
1710    = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
1711
1712  /* If this is already known to be a scalar or aggregate, we are done.  */
1713  if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
1714    return;
1715
1716  /* If it is a reference into an aggregate, this is part of an aggregate.
1717     Otherwise we don't know.  */
1718  else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1719	   || TREE_CODE (t) == ARRAY_RANGE_REF
1720	   || TREE_CODE (t) == BIT_FIELD_REF)
1721    MEM_IN_STRUCT_P (ref) = 1;
1722}
1723
1724void
1725set_mem_attributes (rtx ref, tree t, int objectp)
1726{
1727  set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1728}
1729
1730/* Set the decl for MEM to DECL.  */
1731
1732void
1733set_mem_attrs_from_reg (rtx mem, rtx reg)
1734{
1735  MEM_ATTRS (mem)
1736    = get_mem_attrs (MEM_ALIAS_SET (mem), REG_EXPR (reg),
1737		     GEN_INT (REG_OFFSET (reg)),
1738		     MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1739}
1740
1741/* Set the alias set of MEM to SET.  */
1742
1743void
1744set_mem_alias_set (rtx mem, HOST_WIDE_INT set)
1745{
1746#ifdef ENABLE_CHECKING
1747  /* If the new and old alias sets don't conflict, something is wrong.  */
1748  gcc_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
1749#endif
1750
1751  MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
1752				   MEM_SIZE (mem), MEM_ALIGN (mem),
1753				   GET_MODE (mem));
1754}
1755
1756/* Set the alignment of MEM to ALIGN bits.  */
1757
1758void
1759set_mem_align (rtx mem, unsigned int align)
1760{
1761  MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1762				   MEM_OFFSET (mem), MEM_SIZE (mem), align,
1763				   GET_MODE (mem));
1764}
1765
1766/* Set the expr for MEM to EXPR.  */
1767
1768void
1769set_mem_expr (rtx mem, tree expr)
1770{
1771  MEM_ATTRS (mem)
1772    = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1773		     MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1774}
1775
1776/* Set the offset of MEM to OFFSET.  */
1777
1778void
1779set_mem_offset (rtx mem, rtx offset)
1780{
1781  MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1782				   offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1783				   GET_MODE (mem));
1784}
1785
1786/* Set the size of MEM to SIZE.  */
1787
1788void
1789set_mem_size (rtx mem, rtx size)
1790{
1791  MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1792				   MEM_OFFSET (mem), size, MEM_ALIGN (mem),
1793				   GET_MODE (mem));
1794}
1795
1796/* Return a memory reference like MEMREF, but with its mode changed to MODE
1797   and its address changed to ADDR.  (VOIDmode means don't change the mode.
1798   NULL for ADDR means don't change the address.)  VALIDATE is nonzero if the
1799   returned memory location is required to be valid.  The memory
1800   attributes are not changed.  */
1801
1802static rtx
1803change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
1804{
1805  rtx new;
1806
1807  gcc_assert (MEM_P (memref));
1808  if (mode == VOIDmode)
1809    mode = GET_MODE (memref);
1810  if (addr == 0)
1811    addr = XEXP (memref, 0);
1812  if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
1813      && (!validate || memory_address_p (mode, addr)))
1814    return memref;
1815
1816  if (validate)
1817    {
1818      if (reload_in_progress || reload_completed)
1819	gcc_assert (memory_address_p (mode, addr));
1820      else
1821	addr = memory_address (mode, addr);
1822    }
1823
1824  if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1825    return memref;
1826
1827  new = gen_rtx_MEM (mode, addr);
1828  MEM_COPY_ATTRIBUTES (new, memref);
1829  return new;
1830}
1831
1832/* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1833   way we are changing MEMREF, so we only preserve the alias set.  */
1834
1835rtx
1836change_address (rtx memref, enum machine_mode mode, rtx addr)
1837{
1838  rtx new = change_address_1 (memref, mode, addr, 1), size;
1839  enum machine_mode mmode = GET_MODE (new);
1840  unsigned int align;
1841
1842  size = mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode));
1843  align = mmode == BLKmode ? BITS_PER_UNIT : GET_MODE_ALIGNMENT (mmode);
1844
1845  /* If there are no changes, just return the original memory reference.  */
1846  if (new == memref)
1847    {
1848      if (MEM_ATTRS (memref) == 0
1849	  || (MEM_EXPR (memref) == NULL
1850	      && MEM_OFFSET (memref) == NULL
1851	      && MEM_SIZE (memref) == size
1852	      && MEM_ALIGN (memref) == align))
1853	return new;
1854
1855      new = gen_rtx_MEM (mmode, XEXP (memref, 0));
1856      MEM_COPY_ATTRIBUTES (new, memref);
1857    }
1858
1859  MEM_ATTRS (new)
1860    = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0, size, align, mmode);
1861
1862  return new;
1863}
1864
1865/* Return a memory reference like MEMREF, but with its mode changed
1866   to MODE and its address offset by OFFSET bytes.  If VALIDATE is
1867   nonzero, the memory address is forced to be valid.
1868   If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1869   and caller is responsible for adjusting MEMREF base register.  */
1870
1871rtx
1872adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
1873		  int validate, int adjust)
1874{
1875  rtx addr = XEXP (memref, 0);
1876  rtx new;
1877  rtx memoffset = MEM_OFFSET (memref);
1878  rtx size = 0;
1879  unsigned int memalign = MEM_ALIGN (memref);
1880
1881  /* If there are no changes, just return the original memory reference.  */
1882  if (mode == GET_MODE (memref) && !offset
1883      && (!validate || memory_address_p (mode, addr)))
1884    return memref;
1885
1886  /* ??? Prefer to create garbage instead of creating shared rtl.
1887     This may happen even if offset is nonzero -- consider
1888     (plus (plus reg reg) const_int) -- so do this always.  */
1889  addr = copy_rtx (addr);
1890
1891  if (adjust)
1892    {
1893      /* If MEMREF is a LO_SUM and the offset is within the alignment of the
1894	 object, we can merge it into the LO_SUM.  */
1895      if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
1896	  && offset >= 0
1897	  && (unsigned HOST_WIDE_INT) offset
1898	      < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
1899	addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
1900			       plus_constant (XEXP (addr, 1), offset));
1901      else
1902	addr = plus_constant (addr, offset);
1903    }
1904
1905  new = change_address_1 (memref, mode, addr, validate);
1906
1907  /* Compute the new values of the memory attributes due to this adjustment.
1908     We add the offsets and update the alignment.  */
1909  if (memoffset)
1910    memoffset = GEN_INT (offset + INTVAL (memoffset));
1911
1912  /* Compute the new alignment by taking the MIN of the alignment and the
1913     lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
1914     if zero.  */
1915  if (offset != 0)
1916    memalign
1917      = MIN (memalign,
1918	     (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
1919
1920  /* We can compute the size in a number of ways.  */
1921  if (GET_MODE (new) != BLKmode)
1922    size = GEN_INT (GET_MODE_SIZE (GET_MODE (new)));
1923  else if (MEM_SIZE (memref))
1924    size = plus_constant (MEM_SIZE (memref), -offset);
1925
1926  MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
1927				   memoffset, size, memalign, GET_MODE (new));
1928
1929  /* At some point, we should validate that this offset is within the object,
1930     if all the appropriate values are known.  */
1931  return new;
1932}
1933
1934/* Return a memory reference like MEMREF, but with its mode changed
1935   to MODE and its address changed to ADDR, which is assumed to be
1936   MEMREF offseted by OFFSET bytes.  If VALIDATE is
1937   nonzero, the memory address is forced to be valid.  */
1938
1939rtx
1940adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
1941			     HOST_WIDE_INT offset, int validate)
1942{
1943  memref = change_address_1 (memref, VOIDmode, addr, validate);
1944  return adjust_address_1 (memref, mode, offset, validate, 0);
1945}
1946
1947/* Return a memory reference like MEMREF, but whose address is changed by
1948   adding OFFSET, an RTX, to it.  POW2 is the highest power of two factor
1949   known to be in OFFSET (possibly 1).  */
1950
1951rtx
1952offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
1953{
1954  rtx new, addr = XEXP (memref, 0);
1955
1956  new = simplify_gen_binary (PLUS, Pmode, addr, offset);
1957
1958  /* At this point we don't know _why_ the address is invalid.  It
1959     could have secondary memory references, multiplies or anything.
1960
1961     However, if we did go and rearrange things, we can wind up not
1962     being able to recognize the magic around pic_offset_table_rtx.
1963     This stuff is fragile, and is yet another example of why it is
1964     bad to expose PIC machinery too early.  */
1965  if (! memory_address_p (GET_MODE (memref), new)
1966      && GET_CODE (addr) == PLUS
1967      && XEXP (addr, 0) == pic_offset_table_rtx)
1968    {
1969      addr = force_reg (GET_MODE (addr), addr);
1970      new = simplify_gen_binary (PLUS, Pmode, addr, offset);
1971    }
1972
1973  update_temp_slot_address (XEXP (memref, 0), new);
1974  new = change_address_1 (memref, VOIDmode, new, 1);
1975
1976  /* If there are no changes, just return the original memory reference.  */
1977  if (new == memref)
1978    return new;
1979
1980  /* Update the alignment to reflect the offset.  Reset the offset, which
1981     we don't know.  */
1982  MEM_ATTRS (new)
1983    = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
1984		     MIN (MEM_ALIGN (memref), pow2 * BITS_PER_UNIT),
1985		     GET_MODE (new));
1986  return new;
1987}
1988
1989/* Return a memory reference like MEMREF, but with its address changed to
1990   ADDR.  The caller is asserting that the actual piece of memory pointed
1991   to is the same, just the form of the address is being changed, such as
1992   by putting something into a register.  */
1993
1994rtx
1995replace_equiv_address (rtx memref, rtx addr)
1996{
1997  /* change_address_1 copies the memory attribute structure without change
1998     and that's exactly what we want here.  */
1999  update_temp_slot_address (XEXP (memref, 0), addr);
2000  return change_address_1 (memref, VOIDmode, addr, 1);
2001}
2002
2003/* Likewise, but the reference is not required to be valid.  */
2004
2005rtx
2006replace_equiv_address_nv (rtx memref, rtx addr)
2007{
2008  return change_address_1 (memref, VOIDmode, addr, 0);
2009}
2010
2011/* Return a memory reference like MEMREF, but with its mode widened to
2012   MODE and offset by OFFSET.  This would be used by targets that e.g.
2013   cannot issue QImode memory operations and have to use SImode memory
2014   operations plus masking logic.  */
2015
2016rtx
2017widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
2018{
2019  rtx new = adjust_address_1 (memref, mode, offset, 1, 1);
2020  tree expr = MEM_EXPR (new);
2021  rtx memoffset = MEM_OFFSET (new);
2022  unsigned int size = GET_MODE_SIZE (mode);
2023
2024  /* If there are no changes, just return the original memory reference.  */
2025  if (new == memref)
2026    return new;
2027
2028  /* If we don't know what offset we were at within the expression, then
2029     we can't know if we've overstepped the bounds.  */
2030  if (! memoffset)
2031    expr = NULL_TREE;
2032
2033  while (expr)
2034    {
2035      if (TREE_CODE (expr) == COMPONENT_REF)
2036	{
2037	  tree field = TREE_OPERAND (expr, 1);
2038	  tree offset = component_ref_field_offset (expr);
2039
2040	  if (! DECL_SIZE_UNIT (field))
2041	    {
2042	      expr = NULL_TREE;
2043	      break;
2044	    }
2045
2046	  /* Is the field at least as large as the access?  If so, ok,
2047	     otherwise strip back to the containing structure.  */
2048	  if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2049	      && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2050	      && INTVAL (memoffset) >= 0)
2051	    break;
2052
2053	  if (! host_integerp (offset, 1))
2054	    {
2055	      expr = NULL_TREE;
2056	      break;
2057	    }
2058
2059	  expr = TREE_OPERAND (expr, 0);
2060	  memoffset
2061	    = (GEN_INT (INTVAL (memoffset)
2062			+ tree_low_cst (offset, 1)
2063			+ (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2064			   / BITS_PER_UNIT)));
2065	}
2066      /* Similarly for the decl.  */
2067      else if (DECL_P (expr)
2068	       && DECL_SIZE_UNIT (expr)
2069	       && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
2070	       && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2071	       && (! memoffset || INTVAL (memoffset) >= 0))
2072	break;
2073      else
2074	{
2075	  /* The widened memory access overflows the expression, which means
2076	     that it could alias another expression.  Zap it.  */
2077	  expr = NULL_TREE;
2078	  break;
2079	}
2080    }
2081
2082  if (! expr)
2083    memoffset = NULL_RTX;
2084
2085  /* The widened memory may alias other stuff, so zap the alias set.  */
2086  /* ??? Maybe use get_alias_set on any remaining expression.  */
2087
2088  MEM_ATTRS (new) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2089				   MEM_ALIGN (new), mode);
2090
2091  return new;
2092}
2093
2094/* Return a newly created CODE_LABEL rtx with a unique label number.  */
2095
2096rtx
2097gen_label_rtx (void)
2098{
2099  return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2100			     NULL, label_num++, NULL);
2101}
2102
2103/* For procedure integration.  */
2104
2105/* Install new pointers to the first and last insns in the chain.
2106   Also, set cur_insn_uid to one higher than the last in use.
2107   Used for an inline-procedure after copying the insn chain.  */
2108
2109void
2110set_new_first_and_last_insn (rtx first, rtx last)
2111{
2112  rtx insn;
2113
2114  first_insn = first;
2115  last_insn = last;
2116  cur_insn_uid = 0;
2117
2118  for (insn = first; insn; insn = NEXT_INSN (insn))
2119    cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2120
2121  cur_insn_uid++;
2122}
2123
2124/* Go through all the RTL insn bodies and copy any invalid shared
2125   structure.  This routine should only be called once.  */
2126
2127static void
2128unshare_all_rtl_1 (tree fndecl, rtx insn)
2129{
2130  tree decl;
2131
2132  /* Make sure that virtual parameters are not shared.  */
2133  for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
2134    SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2135
2136  /* Make sure that virtual stack slots are not shared.  */
2137  unshare_all_decls (DECL_INITIAL (fndecl));
2138
2139  /* Unshare just about everything else.  */
2140  unshare_all_rtl_in_chain (insn);
2141
2142  /* Make sure the addresses of stack slots found outside the insn chain
2143     (such as, in DECL_RTL of a variable) are not shared
2144     with the insn chain.
2145
2146     This special care is necessary when the stack slot MEM does not
2147     actually appear in the insn chain.  If it does appear, its address
2148     is unshared from all else at that point.  */
2149  stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2150}
2151
2152/* Go through all the RTL insn bodies and copy any invalid shared
2153   structure, again.  This is a fairly expensive thing to do so it
2154   should be done sparingly.  */
2155
2156void
2157unshare_all_rtl_again (rtx insn)
2158{
2159  rtx p;
2160  tree decl;
2161
2162  for (p = insn; p; p = NEXT_INSN (p))
2163    if (INSN_P (p))
2164      {
2165	reset_used_flags (PATTERN (p));
2166	reset_used_flags (REG_NOTES (p));
2167	reset_used_flags (LOG_LINKS (p));
2168      }
2169
2170  /* Make sure that virtual stack slots are not shared.  */
2171  reset_used_decls (DECL_INITIAL (cfun->decl));
2172
2173  /* Make sure that virtual parameters are not shared.  */
2174  for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2175    reset_used_flags (DECL_RTL (decl));
2176
2177  reset_used_flags (stack_slot_list);
2178
2179  unshare_all_rtl_1 (cfun->decl, insn);
2180}
2181
2182void
2183unshare_all_rtl (void)
2184{
2185  unshare_all_rtl_1 (current_function_decl, get_insns ());
2186}
2187
2188struct tree_opt_pass pass_unshare_all_rtl =
2189{
2190  "unshare",                            /* name */
2191  NULL,                                 /* gate */
2192  unshare_all_rtl,                      /* execute */
2193  NULL,                                 /* sub */
2194  NULL,                                 /* next */
2195  0,                                    /* static_pass_number */
2196  0,                                    /* tv_id */
2197  0,                                    /* properties_required */
2198  0,                                    /* properties_provided */
2199  0,                                    /* properties_destroyed */
2200  0,                                    /* todo_flags_start */
2201  TODO_dump_func,                       /* todo_flags_finish */
2202  0                                     /* letter */
2203};
2204
2205
2206/* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2207   Recursively does the same for subexpressions.  */
2208
2209static void
2210verify_rtx_sharing (rtx orig, rtx insn)
2211{
2212  rtx x = orig;
2213  int i;
2214  enum rtx_code code;
2215  const char *format_ptr;
2216
2217  if (x == 0)
2218    return;
2219
2220  code = GET_CODE (x);
2221
2222  /* These types may be freely shared.  */
2223
2224  switch (code)
2225    {
2226    case REG:
2227    case CONST_INT:
2228    case CONST_DOUBLE:
2229    case CONST_VECTOR:
2230    case SYMBOL_REF:
2231    case LABEL_REF:
2232    case CODE_LABEL:
2233    case PC:
2234    case CC0:
2235    case SCRATCH:
2236      return;
2237      /* SCRATCH must be shared because they represent distinct values.  */
2238    case CLOBBER:
2239      if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2240	return;
2241      break;
2242
2243    case CONST:
2244      /* CONST can be shared if it contains a SYMBOL_REF.  If it contains
2245	 a LABEL_REF, it isn't sharable.  */
2246      if (GET_CODE (XEXP (x, 0)) == PLUS
2247	  && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2248	  && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2249	return;
2250      break;
2251
2252    case MEM:
2253      /* A MEM is allowed to be shared if its address is constant.  */
2254      if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2255	  || reload_completed || reload_in_progress)
2256	return;
2257
2258      break;
2259
2260    default:
2261      break;
2262    }
2263
2264  /* This rtx may not be shared.  If it has already been seen,
2265     replace it with a copy of itself.  */
2266#ifdef ENABLE_CHECKING
2267  if (RTX_FLAG (x, used))
2268    {
2269      error ("invalid rtl sharing found in the insn");
2270      debug_rtx (insn);
2271      error ("shared rtx");
2272      debug_rtx (x);
2273      internal_error ("internal consistency failure");
2274    }
2275#endif
2276  gcc_assert (!RTX_FLAG (x, used));
2277
2278  RTX_FLAG (x, used) = 1;
2279
2280  /* Now scan the subexpressions recursively.  */
2281
2282  format_ptr = GET_RTX_FORMAT (code);
2283
2284  for (i = 0; i < GET_RTX_LENGTH (code); i++)
2285    {
2286      switch (*format_ptr++)
2287	{
2288	case 'e':
2289	  verify_rtx_sharing (XEXP (x, i), insn);
2290	  break;
2291
2292	case 'E':
2293	  if (XVEC (x, i) != NULL)
2294	    {
2295	      int j;
2296	      int len = XVECLEN (x, i);
2297
2298	      for (j = 0; j < len; j++)
2299		{
2300		  /* We allow sharing of ASM_OPERANDS inside single
2301		     instruction.  */
2302		  if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2303		      && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2304			  == ASM_OPERANDS))
2305		    verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2306		  else
2307		    verify_rtx_sharing (XVECEXP (x, i, j), insn);
2308		}
2309	    }
2310	  break;
2311	}
2312    }
2313  return;
2314}
2315
2316/* Go through all the RTL insn bodies and check that there is no unexpected
2317   sharing in between the subexpressions.  */
2318
2319void
2320verify_rtl_sharing (void)
2321{
2322  rtx p;
2323
2324  for (p = get_insns (); p; p = NEXT_INSN (p))
2325    if (INSN_P (p))
2326      {
2327	reset_used_flags (PATTERN (p));
2328	reset_used_flags (REG_NOTES (p));
2329	reset_used_flags (LOG_LINKS (p));
2330      }
2331
2332  for (p = get_insns (); p; p = NEXT_INSN (p))
2333    if (INSN_P (p))
2334      {
2335	verify_rtx_sharing (PATTERN (p), p);
2336	verify_rtx_sharing (REG_NOTES (p), p);
2337	verify_rtx_sharing (LOG_LINKS (p), p);
2338      }
2339}
2340
2341/* Go through all the RTL insn bodies and copy any invalid shared structure.
2342   Assumes the mark bits are cleared at entry.  */
2343
2344void
2345unshare_all_rtl_in_chain (rtx insn)
2346{
2347  for (; insn; insn = NEXT_INSN (insn))
2348    if (INSN_P (insn))
2349      {
2350	PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2351	REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2352	LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn));
2353      }
2354}
2355
2356/* Go through all virtual stack slots of a function and copy any
2357   shared structure.  */
2358static void
2359unshare_all_decls (tree blk)
2360{
2361  tree t;
2362
2363  /* Copy shared decls.  */
2364  for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2365    if (DECL_RTL_SET_P (t))
2366      SET_DECL_RTL (t, copy_rtx_if_shared (DECL_RTL (t)));
2367
2368  /* Now process sub-blocks.  */
2369  for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2370    unshare_all_decls (t);
2371}
2372
2373/* Go through all virtual stack slots of a function and mark them as
2374   not shared.  */
2375static void
2376reset_used_decls (tree blk)
2377{
2378  tree t;
2379
2380  /* Mark decls.  */
2381  for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2382    if (DECL_RTL_SET_P (t))
2383      reset_used_flags (DECL_RTL (t));
2384
2385  /* Now process sub-blocks.  */
2386  for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2387    reset_used_decls (t);
2388}
2389
2390/* Mark ORIG as in use, and return a copy of it if it was already in use.
2391   Recursively does the same for subexpressions.  Uses
2392   copy_rtx_if_shared_1 to reduce stack space.  */
2393
2394rtx
2395copy_rtx_if_shared (rtx orig)
2396{
2397  copy_rtx_if_shared_1 (&orig);
2398  return orig;
2399}
2400
2401/* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2402   use.  Recursively does the same for subexpressions.  */
2403
2404static void
2405copy_rtx_if_shared_1 (rtx *orig1)
2406{
2407  rtx x;
2408  int i;
2409  enum rtx_code code;
2410  rtx *last_ptr;
2411  const char *format_ptr;
2412  int copied = 0;
2413  int length;
2414
2415  /* Repeat is used to turn tail-recursion into iteration.  */
2416repeat:
2417  x = *orig1;
2418
2419  if (x == 0)
2420    return;
2421
2422  code = GET_CODE (x);
2423
2424  /* These types may be freely shared.  */
2425
2426  switch (code)
2427    {
2428    case REG:
2429    case CONST_INT:
2430    case CONST_DOUBLE:
2431    case CONST_VECTOR:
2432    case SYMBOL_REF:
2433    case LABEL_REF:
2434    case CODE_LABEL:
2435    case PC:
2436    case CC0:
2437    case SCRATCH:
2438      /* SCRATCH must be shared because they represent distinct values.  */
2439      return;
2440    case CLOBBER:
2441      if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2442	return;
2443      break;
2444
2445    case CONST:
2446      /* CONST can be shared if it contains a SYMBOL_REF.  If it contains
2447	 a LABEL_REF, it isn't sharable.  */
2448      if (GET_CODE (XEXP (x, 0)) == PLUS
2449	  && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2450	  && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2451	return;
2452      break;
2453
2454    case INSN:
2455    case JUMP_INSN:
2456    case CALL_INSN:
2457    case NOTE:
2458    case BARRIER:
2459      /* The chain of insns is not being copied.  */
2460      return;
2461
2462    default:
2463      break;
2464    }
2465
2466  /* This rtx may not be shared.  If it has already been seen,
2467     replace it with a copy of itself.  */
2468
2469  if (RTX_FLAG (x, used))
2470    {
2471      rtx copy;
2472
2473      copy = rtx_alloc (code);
2474      memcpy (copy, x, RTX_SIZE (code));
2475      x = copy;
2476      copied = 1;
2477    }
2478  RTX_FLAG (x, used) = 1;
2479
2480  /* Now scan the subexpressions recursively.
2481     We can store any replaced subexpressions directly into X
2482     since we know X is not shared!  Any vectors in X
2483     must be copied if X was copied.  */
2484
2485  format_ptr = GET_RTX_FORMAT (code);
2486  length = GET_RTX_LENGTH (code);
2487  last_ptr = NULL;
2488
2489  for (i = 0; i < length; i++)
2490    {
2491      switch (*format_ptr++)
2492	{
2493	case 'e':
2494          if (last_ptr)
2495            copy_rtx_if_shared_1 (last_ptr);
2496	  last_ptr = &XEXP (x, i);
2497	  break;
2498
2499	case 'E':
2500	  if (XVEC (x, i) != NULL)
2501	    {
2502	      int j;
2503	      int len = XVECLEN (x, i);
2504
2505              /* Copy the vector iff I copied the rtx and the length
2506		 is nonzero.  */
2507	      if (copied && len > 0)
2508		XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2509
2510              /* Call recursively on all inside the vector.  */
2511	      for (j = 0; j < len; j++)
2512                {
2513		  if (last_ptr)
2514		    copy_rtx_if_shared_1 (last_ptr);
2515                  last_ptr = &XVECEXP (x, i, j);
2516                }
2517	    }
2518	  break;
2519	}
2520    }
2521  *orig1 = x;
2522  if (last_ptr)
2523    {
2524      orig1 = last_ptr;
2525      goto repeat;
2526    }
2527  return;
2528}
2529
2530/* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2531   to look for shared sub-parts.  */
2532
2533void
2534reset_used_flags (rtx x)
2535{
2536  int i, j;
2537  enum rtx_code code;
2538  const char *format_ptr;
2539  int length;
2540
2541  /* Repeat is used to turn tail-recursion into iteration.  */
2542repeat:
2543  if (x == 0)
2544    return;
2545
2546  code = GET_CODE (x);
2547
2548  /* These types may be freely shared so we needn't do any resetting
2549     for them.  */
2550
2551  switch (code)
2552    {
2553    case REG:
2554    case CONST_INT:
2555    case CONST_DOUBLE:
2556    case CONST_VECTOR:
2557    case SYMBOL_REF:
2558    case CODE_LABEL:
2559    case PC:
2560    case CC0:
2561      return;
2562
2563    case INSN:
2564    case JUMP_INSN:
2565    case CALL_INSN:
2566    case NOTE:
2567    case LABEL_REF:
2568    case BARRIER:
2569      /* The chain of insns is not being copied.  */
2570      return;
2571
2572    default:
2573      break;
2574    }
2575
2576  RTX_FLAG (x, used) = 0;
2577
2578  format_ptr = GET_RTX_FORMAT (code);
2579  length = GET_RTX_LENGTH (code);
2580
2581  for (i = 0; i < length; i++)
2582    {
2583      switch (*format_ptr++)
2584	{
2585	case 'e':
2586          if (i == length-1)
2587            {
2588              x = XEXP (x, i);
2589	      goto repeat;
2590            }
2591	  reset_used_flags (XEXP (x, i));
2592	  break;
2593
2594	case 'E':
2595	  for (j = 0; j < XVECLEN (x, i); j++)
2596	    reset_used_flags (XVECEXP (x, i, j));
2597	  break;
2598	}
2599    }
2600}
2601
2602/* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2603   to look for shared sub-parts.  */
2604
2605void
2606set_used_flags (rtx x)
2607{
2608  int i, j;
2609  enum rtx_code code;
2610  const char *format_ptr;
2611
2612  if (x == 0)
2613    return;
2614
2615  code = GET_CODE (x);
2616
2617  /* These types may be freely shared so we needn't do any resetting
2618     for them.  */
2619
2620  switch (code)
2621    {
2622    case REG:
2623    case CONST_INT:
2624    case CONST_DOUBLE:
2625    case CONST_VECTOR:
2626    case SYMBOL_REF:
2627    case CODE_LABEL:
2628    case PC:
2629    case CC0:
2630      return;
2631
2632    case INSN:
2633    case JUMP_INSN:
2634    case CALL_INSN:
2635    case NOTE:
2636    case LABEL_REF:
2637    case BARRIER:
2638      /* The chain of insns is not being copied.  */
2639      return;
2640
2641    default:
2642      break;
2643    }
2644
2645  RTX_FLAG (x, used) = 1;
2646
2647  format_ptr = GET_RTX_FORMAT (code);
2648  for (i = 0; i < GET_RTX_LENGTH (code); i++)
2649    {
2650      switch (*format_ptr++)
2651	{
2652	case 'e':
2653	  set_used_flags (XEXP (x, i));
2654	  break;
2655
2656	case 'E':
2657	  for (j = 0; j < XVECLEN (x, i); j++)
2658	    set_used_flags (XVECEXP (x, i, j));
2659	  break;
2660	}
2661    }
2662}
2663
2664/* Copy X if necessary so that it won't be altered by changes in OTHER.
2665   Return X or the rtx for the pseudo reg the value of X was copied into.
2666   OTHER must be valid as a SET_DEST.  */
2667
2668rtx
2669make_safe_from (rtx x, rtx other)
2670{
2671  while (1)
2672    switch (GET_CODE (other))
2673      {
2674      case SUBREG:
2675	other = SUBREG_REG (other);
2676	break;
2677      case STRICT_LOW_PART:
2678      case SIGN_EXTEND:
2679      case ZERO_EXTEND:
2680	other = XEXP (other, 0);
2681	break;
2682      default:
2683	goto done;
2684      }
2685 done:
2686  if ((MEM_P (other)
2687       && ! CONSTANT_P (x)
2688       && !REG_P (x)
2689       && GET_CODE (x) != SUBREG)
2690      || (REG_P (other)
2691	  && (REGNO (other) < FIRST_PSEUDO_REGISTER
2692	      || reg_mentioned_p (other, x))))
2693    {
2694      rtx temp = gen_reg_rtx (GET_MODE (x));
2695      emit_move_insn (temp, x);
2696      return temp;
2697    }
2698  return x;
2699}
2700
2701/* Emission of insns (adding them to the doubly-linked list).  */
2702
2703/* Return the first insn of the current sequence or current function.  */
2704
2705rtx
2706get_insns (void)
2707{
2708  return first_insn;
2709}
2710
2711/* Specify a new insn as the first in the chain.  */
2712
2713void
2714set_first_insn (rtx insn)
2715{
2716  gcc_assert (!PREV_INSN (insn));
2717  first_insn = insn;
2718}
2719
2720/* Return the last insn emitted in current sequence or current function.  */
2721
2722rtx
2723get_last_insn (void)
2724{
2725  return last_insn;
2726}
2727
2728/* Specify a new insn as the last in the chain.  */
2729
2730void
2731set_last_insn (rtx insn)
2732{
2733  gcc_assert (!NEXT_INSN (insn));
2734  last_insn = insn;
2735}
2736
2737/* Return the last insn emitted, even if it is in a sequence now pushed.  */
2738
2739rtx
2740get_last_insn_anywhere (void)
2741{
2742  struct sequence_stack *stack;
2743  if (last_insn)
2744    return last_insn;
2745  for (stack = seq_stack; stack; stack = stack->next)
2746    if (stack->last != 0)
2747      return stack->last;
2748  return 0;
2749}
2750
2751/* Return the first nonnote insn emitted in current sequence or current
2752   function.  This routine looks inside SEQUENCEs.  */
2753
2754rtx
2755get_first_nonnote_insn (void)
2756{
2757  rtx insn = first_insn;
2758
2759  if (insn)
2760    {
2761      if (NOTE_P (insn))
2762	for (insn = next_insn (insn);
2763	     insn && NOTE_P (insn);
2764	     insn = next_insn (insn))
2765	  continue;
2766      else
2767	{
2768	  if (NONJUMP_INSN_P (insn)
2769	      && GET_CODE (PATTERN (insn)) == SEQUENCE)
2770	    insn = XVECEXP (PATTERN (insn), 0, 0);
2771	}
2772    }
2773
2774  return insn;
2775}
2776
2777/* Return the last nonnote insn emitted in current sequence or current
2778   function.  This routine looks inside SEQUENCEs.  */
2779
2780rtx
2781get_last_nonnote_insn (void)
2782{
2783  rtx insn = last_insn;
2784
2785  if (insn)
2786    {
2787      if (NOTE_P (insn))
2788	for (insn = previous_insn (insn);
2789	     insn && NOTE_P (insn);
2790	     insn = previous_insn (insn))
2791	  continue;
2792      else
2793	{
2794	  if (NONJUMP_INSN_P (insn)
2795	      && GET_CODE (PATTERN (insn)) == SEQUENCE)
2796	    insn = XVECEXP (PATTERN (insn), 0,
2797			    XVECLEN (PATTERN (insn), 0) - 1);
2798	}
2799    }
2800
2801  return insn;
2802}
2803
2804/* Return a number larger than any instruction's uid in this function.  */
2805
2806int
2807get_max_uid (void)
2808{
2809  return cur_insn_uid;
2810}
2811
2812/* Renumber instructions so that no instruction UIDs are wasted.  */
2813
2814void
2815renumber_insns (FILE *stream)
2816{
2817  rtx insn;
2818
2819  /* If we're not supposed to renumber instructions, don't.  */
2820  if (!flag_renumber_insns)
2821    return;
2822
2823  /* If there aren't that many instructions, then it's not really
2824     worth renumbering them.  */
2825  if (flag_renumber_insns == 1 && get_max_uid () < 25000)
2826    return;
2827
2828  cur_insn_uid = 1;
2829
2830  for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2831    {
2832      if (stream)
2833	fprintf (stream, "Renumbering insn %d to %d\n",
2834		 INSN_UID (insn), cur_insn_uid);
2835      INSN_UID (insn) = cur_insn_uid++;
2836    }
2837}
2838
2839/* Return the next insn.  If it is a SEQUENCE, return the first insn
2840   of the sequence.  */
2841
2842rtx
2843next_insn (rtx insn)
2844{
2845  if (insn)
2846    {
2847      insn = NEXT_INSN (insn);
2848      if (insn && NONJUMP_INSN_P (insn)
2849	  && GET_CODE (PATTERN (insn)) == SEQUENCE)
2850	insn = XVECEXP (PATTERN (insn), 0, 0);
2851    }
2852
2853  return insn;
2854}
2855
2856/* Return the previous insn.  If it is a SEQUENCE, return the last insn
2857   of the sequence.  */
2858
2859rtx
2860previous_insn (rtx insn)
2861{
2862  if (insn)
2863    {
2864      insn = PREV_INSN (insn);
2865      if (insn && NONJUMP_INSN_P (insn)
2866	  && GET_CODE (PATTERN (insn)) == SEQUENCE)
2867	insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
2868    }
2869
2870  return insn;
2871}
2872
2873/* Return the next insn after INSN that is not a NOTE.  This routine does not
2874   look inside SEQUENCEs.  */
2875
2876rtx
2877next_nonnote_insn (rtx insn)
2878{
2879  while (insn)
2880    {
2881      insn = NEXT_INSN (insn);
2882      if (insn == 0 || !NOTE_P (insn))
2883	break;
2884    }
2885
2886  return insn;
2887}
2888
2889/* Return the previous insn before INSN that is not a NOTE.  This routine does
2890   not look inside SEQUENCEs.  */
2891
2892rtx
2893prev_nonnote_insn (rtx insn)
2894{
2895  while (insn)
2896    {
2897      insn = PREV_INSN (insn);
2898      if (insn == 0 || !NOTE_P (insn))
2899	break;
2900    }
2901
2902  return insn;
2903}
2904
2905/* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2906   or 0, if there is none.  This routine does not look inside
2907   SEQUENCEs.  */
2908
2909rtx
2910next_real_insn (rtx insn)
2911{
2912  while (insn)
2913    {
2914      insn = NEXT_INSN (insn);
2915      if (insn == 0 || INSN_P (insn))
2916	break;
2917    }
2918
2919  return insn;
2920}
2921
2922/* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
2923   or 0, if there is none.  This routine does not look inside
2924   SEQUENCEs.  */
2925
2926rtx
2927prev_real_insn (rtx insn)
2928{
2929  while (insn)
2930    {
2931      insn = PREV_INSN (insn);
2932      if (insn == 0 || INSN_P (insn))
2933	break;
2934    }
2935
2936  return insn;
2937}
2938
2939/* Return the last CALL_INSN in the current list, or 0 if there is none.
2940   This routine does not look inside SEQUENCEs.  */
2941
2942rtx
2943last_call_insn (void)
2944{
2945  rtx insn;
2946
2947  for (insn = get_last_insn ();
2948       insn && !CALL_P (insn);
2949       insn = PREV_INSN (insn))
2950    ;
2951
2952  return insn;
2953}
2954
2955/* Find the next insn after INSN that really does something.  This routine
2956   does not look inside SEQUENCEs.  Until reload has completed, this is the
2957   same as next_real_insn.  */
2958
2959int
2960active_insn_p (rtx insn)
2961{
2962  return (CALL_P (insn) || JUMP_P (insn)
2963	  || (NONJUMP_INSN_P (insn)
2964	      && (! reload_completed
2965		  || (GET_CODE (PATTERN (insn)) != USE
2966		      && GET_CODE (PATTERN (insn)) != CLOBBER))));
2967}
2968
2969rtx
2970next_active_insn (rtx insn)
2971{
2972  while (insn)
2973    {
2974      insn = NEXT_INSN (insn);
2975      if (insn == 0 || active_insn_p (insn))
2976	break;
2977    }
2978
2979  return insn;
2980}
2981
2982/* Find the last insn before INSN that really does something.  This routine
2983   does not look inside SEQUENCEs.  Until reload has completed, this is the
2984   same as prev_real_insn.  */
2985
2986rtx
2987prev_active_insn (rtx insn)
2988{
2989  while (insn)
2990    {
2991      insn = PREV_INSN (insn);
2992      if (insn == 0 || active_insn_p (insn))
2993	break;
2994    }
2995
2996  return insn;
2997}
2998
2999/* Return the next CODE_LABEL after the insn INSN, or 0 if there is none.  */
3000
3001rtx
3002next_label (rtx insn)
3003{
3004  while (insn)
3005    {
3006      insn = NEXT_INSN (insn);
3007      if (insn == 0 || LABEL_P (insn))
3008	break;
3009    }
3010
3011  return insn;
3012}
3013
3014/* Return the last CODE_LABEL before the insn INSN, or 0 if there is none.  */
3015
3016rtx
3017prev_label (rtx insn)
3018{
3019  while (insn)
3020    {
3021      insn = PREV_INSN (insn);
3022      if (insn == 0 || LABEL_P (insn))
3023	break;
3024    }
3025
3026  return insn;
3027}
3028
3029/* Return the last label to mark the same position as LABEL.  Return null
3030   if LABEL itself is null.  */
3031
3032rtx
3033skip_consecutive_labels (rtx label)
3034{
3035  rtx insn;
3036
3037  for (insn = label; insn != 0 && !INSN_P (insn); insn = NEXT_INSN (insn))
3038    if (LABEL_P (insn))
3039      label = insn;
3040
3041  return label;
3042}
3043
3044#ifdef HAVE_cc0
3045/* INSN uses CC0 and is being moved into a delay slot.  Set up REG_CC_SETTER
3046   and REG_CC_USER notes so we can find it.  */
3047
3048void
3049link_cc0_insns (rtx insn)
3050{
3051  rtx user = next_nonnote_insn (insn);
3052
3053  if (NONJUMP_INSN_P (user) && GET_CODE (PATTERN (user)) == SEQUENCE)
3054    user = XVECEXP (PATTERN (user), 0, 0);
3055
3056  REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
3057					REG_NOTES (user));
3058  REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
3059}
3060
3061/* Return the next insn that uses CC0 after INSN, which is assumed to
3062   set it.  This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3063   applied to the result of this function should yield INSN).
3064
3065   Normally, this is simply the next insn.  However, if a REG_CC_USER note
3066   is present, it contains the insn that uses CC0.
3067
3068   Return 0 if we can't find the insn.  */
3069
3070rtx
3071next_cc0_user (rtx insn)
3072{
3073  rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3074
3075  if (note)
3076    return XEXP (note, 0);
3077
3078  insn = next_nonnote_insn (insn);
3079  if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3080    insn = XVECEXP (PATTERN (insn), 0, 0);
3081
3082  if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3083    return insn;
3084
3085  return 0;
3086}
3087
3088/* Find the insn that set CC0 for INSN.  Unless INSN has a REG_CC_SETTER
3089   note, it is the previous insn.  */
3090
3091rtx
3092prev_cc0_setter (rtx insn)
3093{
3094  rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3095
3096  if (note)
3097    return XEXP (note, 0);
3098
3099  insn = prev_nonnote_insn (insn);
3100  gcc_assert (sets_cc0_p (PATTERN (insn)));
3101
3102  return insn;
3103}
3104#endif
3105
3106/* Increment the label uses for all labels present in rtx.  */
3107
3108static void
3109mark_label_nuses (rtx x)
3110{
3111  enum rtx_code code;
3112  int i, j;
3113  const char *fmt;
3114
3115  code = GET_CODE (x);
3116  if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
3117    LABEL_NUSES (XEXP (x, 0))++;
3118
3119  fmt = GET_RTX_FORMAT (code);
3120  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3121    {
3122      if (fmt[i] == 'e')
3123	mark_label_nuses (XEXP (x, i));
3124      else if (fmt[i] == 'E')
3125	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3126	  mark_label_nuses (XVECEXP (x, i, j));
3127    }
3128}
3129
3130
3131/* Try splitting insns that can be split for better scheduling.
3132   PAT is the pattern which might split.
3133   TRIAL is the insn providing PAT.
3134   LAST is nonzero if we should return the last insn of the sequence produced.
3135
3136   If this routine succeeds in splitting, it returns the first or last
3137   replacement insn depending on the value of LAST.  Otherwise, it
3138   returns TRIAL.  If the insn to be returned can be split, it will be.  */
3139
3140rtx
3141try_split (rtx pat, rtx trial, int last)
3142{
3143  rtx before = PREV_INSN (trial);
3144  rtx after = NEXT_INSN (trial);
3145  int has_barrier = 0;
3146  rtx tem;
3147  rtx note, seq;
3148  int probability;
3149  rtx insn_last, insn;
3150  int njumps = 0;
3151
3152  if (any_condjump_p (trial)
3153      && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3154    split_branch_probability = INTVAL (XEXP (note, 0));
3155  probability = split_branch_probability;
3156
3157  seq = split_insns (pat, trial);
3158
3159  split_branch_probability = -1;
3160
3161  /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3162     We may need to handle this specially.  */
3163  if (after && BARRIER_P (after))
3164    {
3165      has_barrier = 1;
3166      after = NEXT_INSN (after);
3167    }
3168
3169  if (!seq)
3170    return trial;
3171
3172  /* Avoid infinite loop if any insn of the result matches
3173     the original pattern.  */
3174  insn_last = seq;
3175  while (1)
3176    {
3177      if (INSN_P (insn_last)
3178	  && rtx_equal_p (PATTERN (insn_last), pat))
3179	return trial;
3180      if (!NEXT_INSN (insn_last))
3181	break;
3182      insn_last = NEXT_INSN (insn_last);
3183    }
3184
3185  /* Mark labels.  */
3186  for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3187    {
3188      if (JUMP_P (insn))
3189	{
3190	  mark_jump_label (PATTERN (insn), insn, 0);
3191	  njumps++;
3192	  if (probability != -1
3193	      && any_condjump_p (insn)
3194	      && !find_reg_note (insn, REG_BR_PROB, 0))
3195	    {
3196	      /* We can preserve the REG_BR_PROB notes only if exactly
3197		 one jump is created, otherwise the machine description
3198		 is responsible for this step using
3199		 split_branch_probability variable.  */
3200	      gcc_assert (njumps == 1);
3201	      REG_NOTES (insn)
3202		= gen_rtx_EXPR_LIST (REG_BR_PROB,
3203				     GEN_INT (probability),
3204				     REG_NOTES (insn));
3205	    }
3206	}
3207    }
3208
3209  /* If we are splitting a CALL_INSN, look for the CALL_INSN
3210     in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it.  */
3211  if (CALL_P (trial))
3212    {
3213      for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3214	if (CALL_P (insn))
3215	  {
3216	    rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3217	    while (*p)
3218	      p = &XEXP (*p, 1);
3219	    *p = CALL_INSN_FUNCTION_USAGE (trial);
3220	    SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3221	  }
3222    }
3223
3224  /* Copy notes, particularly those related to the CFG.  */
3225  for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3226    {
3227      switch (REG_NOTE_KIND (note))
3228	{
3229	case REG_EH_REGION:
3230	  insn = insn_last;
3231	  while (insn != NULL_RTX)
3232	    {
3233	      if (CALL_P (insn)
3234		  || (flag_non_call_exceptions && INSN_P (insn)
3235		      && may_trap_p (PATTERN (insn))))
3236		REG_NOTES (insn)
3237		  = gen_rtx_EXPR_LIST (REG_EH_REGION,
3238				       XEXP (note, 0),
3239				       REG_NOTES (insn));
3240	      insn = PREV_INSN (insn);
3241	    }
3242	  break;
3243
3244	case REG_NORETURN:
3245	case REG_SETJMP:
3246	  insn = insn_last;
3247	  while (insn != NULL_RTX)
3248	    {
3249	      if (CALL_P (insn))
3250		REG_NOTES (insn)
3251		  = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3252				       XEXP (note, 0),
3253				       REG_NOTES (insn));
3254	      insn = PREV_INSN (insn);
3255	    }
3256	  break;
3257
3258	case REG_NON_LOCAL_GOTO:
3259	  insn = insn_last;
3260	  while (insn != NULL_RTX)
3261	    {
3262	      if (JUMP_P (insn))
3263		REG_NOTES (insn)
3264		  = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3265				       XEXP (note, 0),
3266				       REG_NOTES (insn));
3267	      insn = PREV_INSN (insn);
3268	    }
3269	  break;
3270
3271	default:
3272	  break;
3273	}
3274    }
3275
3276  /* If there are LABELS inside the split insns increment the
3277     usage count so we don't delete the label.  */
3278  if (NONJUMP_INSN_P (trial))
3279    {
3280      insn = insn_last;
3281      while (insn != NULL_RTX)
3282	{
3283	  if (NONJUMP_INSN_P (insn))
3284	    mark_label_nuses (PATTERN (insn));
3285
3286	  insn = PREV_INSN (insn);
3287	}
3288    }
3289
3290  tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
3291
3292  delete_insn (trial);
3293  if (has_barrier)
3294    emit_barrier_after (tem);
3295
3296  /* Recursively call try_split for each new insn created; by the
3297     time control returns here that insn will be fully split, so
3298     set LAST and continue from the insn after the one returned.
3299     We can't use next_active_insn here since AFTER may be a note.
3300     Ignore deleted insns, which can be occur if not optimizing.  */
3301  for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3302    if (! INSN_DELETED_P (tem) && INSN_P (tem))
3303      tem = try_split (PATTERN (tem), tem, 1);
3304
3305  /* Return either the first or the last insn, depending on which was
3306     requested.  */
3307  return last
3308    ? (after ? PREV_INSN (after) : last_insn)
3309    : NEXT_INSN (before);
3310}
3311
3312/* Make and return an INSN rtx, initializing all its slots.
3313   Store PATTERN in the pattern slots.  */
3314
3315rtx
3316make_insn_raw (rtx pattern)
3317{
3318  rtx insn;
3319
3320  insn = rtx_alloc (INSN);
3321
3322  INSN_UID (insn) = cur_insn_uid++;
3323  PATTERN (insn) = pattern;
3324  INSN_CODE (insn) = -1;
3325  LOG_LINKS (insn) = NULL;
3326  REG_NOTES (insn) = NULL;
3327  INSN_LOCATOR (insn) = 0;
3328  BLOCK_FOR_INSN (insn) = NULL;
3329
3330#ifdef ENABLE_RTL_CHECKING
3331  if (insn
3332      && INSN_P (insn)
3333      && (returnjump_p (insn)
3334	  || (GET_CODE (insn) == SET
3335	      && SET_DEST (insn) == pc_rtx)))
3336    {
3337      warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3338      debug_rtx (insn);
3339    }
3340#endif
3341
3342  return insn;
3343}
3344
3345/* Like `make_insn_raw' but make a JUMP_INSN instead of an insn.  */
3346
3347static rtx
3348make_jump_insn_raw (rtx pattern)
3349{
3350  rtx insn;
3351
3352  insn = rtx_alloc (JUMP_INSN);
3353  INSN_UID (insn) = cur_insn_uid++;
3354
3355  PATTERN (insn) = pattern;
3356  INSN_CODE (insn) = -1;
3357  LOG_LINKS (insn) = NULL;
3358  REG_NOTES (insn) = NULL;
3359  JUMP_LABEL (insn) = NULL;
3360  INSN_LOCATOR (insn) = 0;
3361  BLOCK_FOR_INSN (insn) = NULL;
3362
3363  return insn;
3364}
3365
3366/* Like `make_insn_raw' but make a CALL_INSN instead of an insn.  */
3367
3368static rtx
3369make_call_insn_raw (rtx pattern)
3370{
3371  rtx insn;
3372
3373  insn = rtx_alloc (CALL_INSN);
3374  INSN_UID (insn) = cur_insn_uid++;
3375
3376  PATTERN (insn) = pattern;
3377  INSN_CODE (insn) = -1;
3378  LOG_LINKS (insn) = NULL;
3379  REG_NOTES (insn) = NULL;
3380  CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3381  INSN_LOCATOR (insn) = 0;
3382  BLOCK_FOR_INSN (insn) = NULL;
3383
3384  return insn;
3385}
3386
3387/* Add INSN to the end of the doubly-linked list.
3388   INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE.  */
3389
3390void
3391add_insn (rtx insn)
3392{
3393  PREV_INSN (insn) = last_insn;
3394  NEXT_INSN (insn) = 0;
3395
3396  if (NULL != last_insn)
3397    NEXT_INSN (last_insn) = insn;
3398
3399  if (NULL == first_insn)
3400    first_insn = insn;
3401
3402  last_insn = insn;
3403}
3404
3405/* Add INSN into the doubly-linked list after insn AFTER.  This and
3406   the next should be the only functions called to insert an insn once
3407   delay slots have been filled since only they know how to update a
3408   SEQUENCE.  */
3409
3410void
3411add_insn_after (rtx insn, rtx after)
3412{
3413  rtx next = NEXT_INSN (after);
3414  basic_block bb;
3415
3416  gcc_assert (!optimize || !INSN_DELETED_P (after));
3417
3418  NEXT_INSN (insn) = next;
3419  PREV_INSN (insn) = after;
3420
3421  if (next)
3422    {
3423      PREV_INSN (next) = insn;
3424      if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3425	PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3426    }
3427  else if (last_insn == after)
3428    last_insn = insn;
3429  else
3430    {
3431      struct sequence_stack *stack = seq_stack;
3432      /* Scan all pending sequences too.  */
3433      for (; stack; stack = stack->next)
3434	if (after == stack->last)
3435	  {
3436	    stack->last = insn;
3437	    break;
3438	  }
3439
3440      gcc_assert (stack);
3441    }
3442
3443  if (!BARRIER_P (after)
3444      && !BARRIER_P (insn)
3445      && (bb = BLOCK_FOR_INSN (after)))
3446    {
3447      set_block_for_insn (insn, bb);
3448      if (INSN_P (insn))
3449	bb->flags |= BB_DIRTY;
3450      /* Should not happen as first in the BB is always
3451	 either NOTE or LABEL.  */
3452      if (BB_END (bb) == after
3453	  /* Avoid clobbering of structure when creating new BB.  */
3454	  && !BARRIER_P (insn)
3455	  && (!NOTE_P (insn)
3456	      || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3457	BB_END (bb) = insn;
3458    }
3459
3460  NEXT_INSN (after) = insn;
3461  if (NONJUMP_INSN_P (after) && GET_CODE (PATTERN (after)) == SEQUENCE)
3462    {
3463      rtx sequence = PATTERN (after);
3464      NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3465    }
3466}
3467
3468/* Add INSN into the doubly-linked list before insn BEFORE.  This and
3469   the previous should be the only functions called to insert an insn once
3470   delay slots have been filled since only they know how to update a
3471   SEQUENCE.  */
3472
3473void
3474add_insn_before (rtx insn, rtx before)
3475{
3476  rtx prev = PREV_INSN (before);
3477  basic_block bb;
3478
3479  gcc_assert (!optimize || !INSN_DELETED_P (before));
3480
3481  PREV_INSN (insn) = prev;
3482  NEXT_INSN (insn) = before;
3483
3484  if (prev)
3485    {
3486      NEXT_INSN (prev) = insn;
3487      if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3488	{
3489	  rtx sequence = PATTERN (prev);
3490	  NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3491	}
3492    }
3493  else if (first_insn == before)
3494    first_insn = insn;
3495  else
3496    {
3497      struct sequence_stack *stack = seq_stack;
3498      /* Scan all pending sequences too.  */
3499      for (; stack; stack = stack->next)
3500	if (before == stack->first)
3501	  {
3502	    stack->first = insn;
3503	    break;
3504	  }
3505
3506      gcc_assert (stack);
3507    }
3508
3509  if (!BARRIER_P (before)
3510      && !BARRIER_P (insn)
3511      && (bb = BLOCK_FOR_INSN (before)))
3512    {
3513      set_block_for_insn (insn, bb);
3514      if (INSN_P (insn))
3515	bb->flags |= BB_DIRTY;
3516      /* Should not happen as first in the BB is always either NOTE or
3517	 LABEL.  */
3518      gcc_assert (BB_HEAD (bb) != insn
3519		  /* Avoid clobbering of structure when creating new BB.  */
3520		  || BARRIER_P (insn)
3521		  || (NOTE_P (insn)
3522		      && NOTE_LINE_NUMBER (insn) == NOTE_INSN_BASIC_BLOCK));
3523    }
3524
3525  PREV_INSN (before) = insn;
3526  if (NONJUMP_INSN_P (before) && GET_CODE (PATTERN (before)) == SEQUENCE)
3527    PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3528}
3529
3530/* Remove an insn from its doubly-linked list.  This function knows how
3531   to handle sequences.  */
3532void
3533remove_insn (rtx insn)
3534{
3535  rtx next = NEXT_INSN (insn);
3536  rtx prev = PREV_INSN (insn);
3537  basic_block bb;
3538
3539  if (prev)
3540    {
3541      NEXT_INSN (prev) = next;
3542      if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3543	{
3544	  rtx sequence = PATTERN (prev);
3545	  NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3546	}
3547    }
3548  else if (first_insn == insn)
3549    first_insn = next;
3550  else
3551    {
3552      struct sequence_stack *stack = seq_stack;
3553      /* Scan all pending sequences too.  */
3554      for (; stack; stack = stack->next)
3555	if (insn == stack->first)
3556	  {
3557	    stack->first = next;
3558	    break;
3559	  }
3560
3561      gcc_assert (stack);
3562    }
3563
3564  if (next)
3565    {
3566      PREV_INSN (next) = prev;
3567      if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3568	PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3569    }
3570  else if (last_insn == insn)
3571    last_insn = prev;
3572  else
3573    {
3574      struct sequence_stack *stack = seq_stack;
3575      /* Scan all pending sequences too.  */
3576      for (; stack; stack = stack->next)
3577	if (insn == stack->last)
3578	  {
3579	    stack->last = prev;
3580	    break;
3581	  }
3582
3583      gcc_assert (stack);
3584    }
3585  if (!BARRIER_P (insn)
3586      && (bb = BLOCK_FOR_INSN (insn)))
3587    {
3588      if (INSN_P (insn))
3589	bb->flags |= BB_DIRTY;
3590      if (BB_HEAD (bb) == insn)
3591	{
3592	  /* Never ever delete the basic block note without deleting whole
3593	     basic block.  */
3594	  gcc_assert (!NOTE_P (insn));
3595	  BB_HEAD (bb) = next;
3596	}
3597      if (BB_END (bb) == insn)
3598	BB_END (bb) = prev;
3599    }
3600}
3601
3602/* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN.  */
3603
3604void
3605add_function_usage_to (rtx call_insn, rtx call_fusage)
3606{
3607  gcc_assert (call_insn && CALL_P (call_insn));
3608
3609  /* Put the register usage information on the CALL.  If there is already
3610     some usage information, put ours at the end.  */
3611  if (CALL_INSN_FUNCTION_USAGE (call_insn))
3612    {
3613      rtx link;
3614
3615      for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
3616	   link = XEXP (link, 1))
3617	;
3618
3619      XEXP (link, 1) = call_fusage;
3620    }
3621  else
3622    CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
3623}
3624
3625/* Delete all insns made since FROM.
3626   FROM becomes the new last instruction.  */
3627
3628void
3629delete_insns_since (rtx from)
3630{
3631  if (from == 0)
3632    first_insn = 0;
3633  else
3634    NEXT_INSN (from) = 0;
3635  last_insn = from;
3636}
3637
3638/* This function is deprecated, please use sequences instead.
3639
3640   Move a consecutive bunch of insns to a different place in the chain.
3641   The insns to be moved are those between FROM and TO.
3642   They are moved to a new position after the insn AFTER.
3643   AFTER must not be FROM or TO or any insn in between.
3644
3645   This function does not know about SEQUENCEs and hence should not be
3646   called after delay-slot filling has been done.  */
3647
3648void
3649reorder_insns_nobb (rtx from, rtx to, rtx after)
3650{
3651  /* Splice this bunch out of where it is now.  */
3652  if (PREV_INSN (from))
3653    NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3654  if (NEXT_INSN (to))
3655    PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3656  if (last_insn == to)
3657    last_insn = PREV_INSN (from);
3658  if (first_insn == from)
3659    first_insn = NEXT_INSN (to);
3660
3661  /* Make the new neighbors point to it and it to them.  */
3662  if (NEXT_INSN (after))
3663    PREV_INSN (NEXT_INSN (after)) = to;
3664
3665  NEXT_INSN (to) = NEXT_INSN (after);
3666  PREV_INSN (from) = after;
3667  NEXT_INSN (after) = from;
3668  if (after == last_insn)
3669    last_insn = to;
3670}
3671
3672/* Same as function above, but take care to update BB boundaries.  */
3673void
3674reorder_insns (rtx from, rtx to, rtx after)
3675{
3676  rtx prev = PREV_INSN (from);
3677  basic_block bb, bb2;
3678
3679  reorder_insns_nobb (from, to, after);
3680
3681  if (!BARRIER_P (after)
3682      && (bb = BLOCK_FOR_INSN (after)))
3683    {
3684      rtx x;
3685      bb->flags |= BB_DIRTY;
3686
3687      if (!BARRIER_P (from)
3688	  && (bb2 = BLOCK_FOR_INSN (from)))
3689	{
3690	  if (BB_END (bb2) == to)
3691	    BB_END (bb2) = prev;
3692	  bb2->flags |= BB_DIRTY;
3693	}
3694
3695      if (BB_END (bb) == after)
3696	BB_END (bb) = to;
3697
3698      for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
3699	if (!BARRIER_P (x))
3700	  set_block_for_insn (x, bb);
3701    }
3702}
3703
3704/* Return the line note insn preceding INSN.  */
3705
3706static rtx
3707find_line_note (rtx insn)
3708{
3709  if (no_line_numbers)
3710    return 0;
3711
3712  for (; insn; insn = PREV_INSN (insn))
3713    if (NOTE_P (insn)
3714	&& NOTE_LINE_NUMBER (insn) >= 0)
3715      break;
3716
3717  return insn;
3718}
3719
3720/* Remove unnecessary notes from the instruction stream.  */
3721
3722void
3723remove_unnecessary_notes (void)
3724{
3725  rtx eh_stack = NULL_RTX;
3726  rtx insn;
3727  rtx next;
3728  rtx tmp;
3729
3730  /* We must not remove the first instruction in the function because
3731     the compiler depends on the first instruction being a note.  */
3732  for (insn = NEXT_INSN (get_insns ()); insn; insn = next)
3733    {
3734      /* Remember what's next.  */
3735      next = NEXT_INSN (insn);
3736
3737      /* We're only interested in notes.  */
3738      if (!NOTE_P (insn))
3739	continue;
3740
3741      switch (NOTE_LINE_NUMBER (insn))
3742	{
3743	case NOTE_INSN_DELETED:
3744	  remove_insn (insn);
3745	  break;
3746
3747	case NOTE_INSN_EH_REGION_BEG:
3748	  eh_stack = alloc_INSN_LIST (insn, eh_stack);
3749	  break;
3750
3751	case NOTE_INSN_EH_REGION_END:
3752	  /* Too many end notes.  */
3753	  gcc_assert (eh_stack);
3754	  /* Mismatched nesting.  */
3755	  gcc_assert (NOTE_EH_HANDLER (XEXP (eh_stack, 0))
3756		      == NOTE_EH_HANDLER (insn));
3757	  tmp = eh_stack;
3758	  eh_stack = XEXP (eh_stack, 1);
3759	  free_INSN_LIST_node (tmp);
3760	  break;
3761
3762	case NOTE_INSN_BLOCK_BEG:
3763	case NOTE_INSN_BLOCK_END:
3764          /* BLOCK_END and BLOCK_BEG notes only exist in the `final' pass.  */
3765          gcc_unreachable ();
3766
3767	default:
3768	  break;
3769	}
3770    }
3771
3772  /* Too many EH_REGION_BEG notes.  */
3773  gcc_assert (!eh_stack);
3774}
3775
3776struct tree_opt_pass pass_remove_unnecessary_notes =
3777{
3778  "eunotes",                            /* name */
3779  NULL,					/* gate */
3780  remove_unnecessary_notes,             /* execute */
3781  NULL,                                 /* sub */
3782  NULL,                                 /* next */
3783  0,                                    /* static_pass_number */
3784  0,					/* tv_id */
3785  0,					/* properties_required */
3786  0,                                    /* properties_provided */
3787  0,					/* properties_destroyed */
3788  0,                                    /* todo_flags_start */
3789  TODO_dump_func,			/* todo_flags_finish */
3790  0                                     /* letter */
3791};
3792
3793
3794/* Emit insn(s) of given code and pattern
3795   at a specified place within the doubly-linked list.
3796
3797   All of the emit_foo global entry points accept an object
3798   X which is either an insn list or a PATTERN of a single
3799   instruction.
3800
3801   There are thus a few canonical ways to generate code and
3802   emit it at a specific place in the instruction stream.  For
3803   example, consider the instruction named SPOT and the fact that
3804   we would like to emit some instructions before SPOT.  We might
3805   do it like this:
3806
3807	start_sequence ();
3808	... emit the new instructions ...
3809	insns_head = get_insns ();
3810	end_sequence ();
3811
3812	emit_insn_before (insns_head, SPOT);
3813
3814   It used to be common to generate SEQUENCE rtl instead, but that
3815   is a relic of the past which no longer occurs.  The reason is that
3816   SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
3817   generated would almost certainly die right after it was created.  */
3818
3819/* Make X be output before the instruction BEFORE.  */
3820
3821rtx
3822emit_insn_before_noloc (rtx x, rtx before)
3823{
3824  rtx last = before;
3825  rtx insn;
3826
3827  gcc_assert (before);
3828
3829  if (x == NULL_RTX)
3830    return last;
3831
3832  switch (GET_CODE (x))
3833    {
3834    case INSN:
3835    case JUMP_INSN:
3836    case CALL_INSN:
3837    case CODE_LABEL:
3838    case BARRIER:
3839    case NOTE:
3840      insn = x;
3841      while (insn)
3842	{
3843	  rtx next = NEXT_INSN (insn);
3844	  add_insn_before (insn, before);
3845	  last = insn;
3846	  insn = next;
3847	}
3848      break;
3849
3850#ifdef ENABLE_RTL_CHECKING
3851    case SEQUENCE:
3852      gcc_unreachable ();
3853      break;
3854#endif
3855
3856    default:
3857      last = make_insn_raw (x);
3858      add_insn_before (last, before);
3859      break;
3860    }
3861
3862  return last;
3863}
3864
3865/* Make an instruction with body X and code JUMP_INSN
3866   and output it before the instruction BEFORE.  */
3867
3868rtx
3869emit_jump_insn_before_noloc (rtx x, rtx before)
3870{
3871  rtx insn, last = NULL_RTX;
3872
3873  gcc_assert (before);
3874
3875  switch (GET_CODE (x))
3876    {
3877    case INSN:
3878    case JUMP_INSN:
3879    case CALL_INSN:
3880    case CODE_LABEL:
3881    case BARRIER:
3882    case NOTE:
3883      insn = x;
3884      while (insn)
3885	{
3886	  rtx next = NEXT_INSN (insn);
3887	  add_insn_before (insn, before);
3888	  last = insn;
3889	  insn = next;
3890	}
3891      break;
3892
3893#ifdef ENABLE_RTL_CHECKING
3894    case SEQUENCE:
3895      gcc_unreachable ();
3896      break;
3897#endif
3898
3899    default:
3900      last = make_jump_insn_raw (x);
3901      add_insn_before (last, before);
3902      break;
3903    }
3904
3905  return last;
3906}
3907
3908/* Make an instruction with body X and code CALL_INSN
3909   and output it before the instruction BEFORE.  */
3910
3911rtx
3912emit_call_insn_before_noloc (rtx x, rtx before)
3913{
3914  rtx last = NULL_RTX, insn;
3915
3916  gcc_assert (before);
3917
3918  switch (GET_CODE (x))
3919    {
3920    case INSN:
3921    case JUMP_INSN:
3922    case CALL_INSN:
3923    case CODE_LABEL:
3924    case BARRIER:
3925    case NOTE:
3926      insn = x;
3927      while (insn)
3928	{
3929	  rtx next = NEXT_INSN (insn);
3930	  add_insn_before (insn, before);
3931	  last = insn;
3932	  insn = next;
3933	}
3934      break;
3935
3936#ifdef ENABLE_RTL_CHECKING
3937    case SEQUENCE:
3938      gcc_unreachable ();
3939      break;
3940#endif
3941
3942    default:
3943      last = make_call_insn_raw (x);
3944      add_insn_before (last, before);
3945      break;
3946    }
3947
3948  return last;
3949}
3950
3951/* Make an insn of code BARRIER
3952   and output it before the insn BEFORE.  */
3953
3954rtx
3955emit_barrier_before (rtx before)
3956{
3957  rtx insn = rtx_alloc (BARRIER);
3958
3959  INSN_UID (insn) = cur_insn_uid++;
3960
3961  add_insn_before (insn, before);
3962  return insn;
3963}
3964
3965/* Emit the label LABEL before the insn BEFORE.  */
3966
3967rtx
3968emit_label_before (rtx label, rtx before)
3969{
3970  /* This can be called twice for the same label as a result of the
3971     confusion that follows a syntax error!  So make it harmless.  */
3972  if (INSN_UID (label) == 0)
3973    {
3974      INSN_UID (label) = cur_insn_uid++;
3975      add_insn_before (label, before);
3976    }
3977
3978  return label;
3979}
3980
3981/* Emit a note of subtype SUBTYPE before the insn BEFORE.  */
3982
3983rtx
3984emit_note_before (int subtype, rtx before)
3985{
3986  rtx note = rtx_alloc (NOTE);
3987  INSN_UID (note) = cur_insn_uid++;
3988#ifndef USE_MAPPED_LOCATION
3989  NOTE_SOURCE_FILE (note) = 0;
3990#endif
3991  NOTE_LINE_NUMBER (note) = subtype;
3992  BLOCK_FOR_INSN (note) = NULL;
3993
3994  add_insn_before (note, before);
3995  return note;
3996}
3997
3998/* Helper for emit_insn_after, handles lists of instructions
3999   efficiently.  */
4000
4001static rtx emit_insn_after_1 (rtx, rtx);
4002
4003static rtx
4004emit_insn_after_1 (rtx first, rtx after)
4005{
4006  rtx last;
4007  rtx after_after;
4008  basic_block bb;
4009
4010  if (!BARRIER_P (after)
4011      && (bb = BLOCK_FOR_INSN (after)))
4012    {
4013      bb->flags |= BB_DIRTY;
4014      for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4015	if (!BARRIER_P (last))
4016	  set_block_for_insn (last, bb);
4017      if (!BARRIER_P (last))
4018	set_block_for_insn (last, bb);
4019      if (BB_END (bb) == after)
4020	BB_END (bb) = last;
4021    }
4022  else
4023    for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4024      continue;
4025
4026  after_after = NEXT_INSN (after);
4027
4028  NEXT_INSN (after) = first;
4029  PREV_INSN (first) = after;
4030  NEXT_INSN (last) = after_after;
4031  if (after_after)
4032    PREV_INSN (after_after) = last;
4033
4034  if (after == last_insn)
4035    last_insn = last;
4036  return last;
4037}
4038
4039/* Make X be output after the insn AFTER.  */
4040
4041rtx
4042emit_insn_after_noloc (rtx x, rtx after)
4043{
4044  rtx last = after;
4045
4046  gcc_assert (after);
4047
4048  if (x == NULL_RTX)
4049    return last;
4050
4051  switch (GET_CODE (x))
4052    {
4053    case INSN:
4054    case JUMP_INSN:
4055    case CALL_INSN:
4056    case CODE_LABEL:
4057    case BARRIER:
4058    case NOTE:
4059      last = emit_insn_after_1 (x, after);
4060      break;
4061
4062#ifdef ENABLE_RTL_CHECKING
4063    case SEQUENCE:
4064      gcc_unreachable ();
4065      break;
4066#endif
4067
4068    default:
4069      last = make_insn_raw (x);
4070      add_insn_after (last, after);
4071      break;
4072    }
4073
4074  return last;
4075}
4076
4077/* Similar to emit_insn_after, except that line notes are to be inserted so
4078   as to act as if this insn were at FROM.  */
4079
4080void
4081emit_insn_after_with_line_notes (rtx x, rtx after, rtx from)
4082{
4083  rtx from_line = find_line_note (from);
4084  rtx after_line = find_line_note (after);
4085  rtx insn = emit_insn_after (x, after);
4086
4087  if (from_line)
4088    emit_note_copy_after (from_line, after);
4089
4090  if (after_line)
4091    emit_note_copy_after (after_line, insn);
4092}
4093
4094/* Make an insn of code JUMP_INSN with body X
4095   and output it after the insn AFTER.  */
4096
4097rtx
4098emit_jump_insn_after_noloc (rtx x, rtx after)
4099{
4100  rtx last;
4101
4102  gcc_assert (after);
4103
4104  switch (GET_CODE (x))
4105    {
4106    case INSN:
4107    case JUMP_INSN:
4108    case CALL_INSN:
4109    case CODE_LABEL:
4110    case BARRIER:
4111    case NOTE:
4112      last = emit_insn_after_1 (x, after);
4113      break;
4114
4115#ifdef ENABLE_RTL_CHECKING
4116    case SEQUENCE:
4117      gcc_unreachable ();
4118      break;
4119#endif
4120
4121    default:
4122      last = make_jump_insn_raw (x);
4123      add_insn_after (last, after);
4124      break;
4125    }
4126
4127  return last;
4128}
4129
4130/* Make an instruction with body X and code CALL_INSN
4131   and output it after the instruction AFTER.  */
4132
4133rtx
4134emit_call_insn_after_noloc (rtx x, rtx after)
4135{
4136  rtx last;
4137
4138  gcc_assert (after);
4139
4140  switch (GET_CODE (x))
4141    {
4142    case INSN:
4143    case JUMP_INSN:
4144    case CALL_INSN:
4145    case CODE_LABEL:
4146    case BARRIER:
4147    case NOTE:
4148      last = emit_insn_after_1 (x, after);
4149      break;
4150
4151#ifdef ENABLE_RTL_CHECKING
4152    case SEQUENCE:
4153      gcc_unreachable ();
4154      break;
4155#endif
4156
4157    default:
4158      last = make_call_insn_raw (x);
4159      add_insn_after (last, after);
4160      break;
4161    }
4162
4163  return last;
4164}
4165
4166/* Make an insn of code BARRIER
4167   and output it after the insn AFTER.  */
4168
4169rtx
4170emit_barrier_after (rtx after)
4171{
4172  rtx insn = rtx_alloc (BARRIER);
4173
4174  INSN_UID (insn) = cur_insn_uid++;
4175
4176  add_insn_after (insn, after);
4177  return insn;
4178}
4179
4180/* Emit the label LABEL after the insn AFTER.  */
4181
4182rtx
4183emit_label_after (rtx label, rtx after)
4184{
4185  /* This can be called twice for the same label
4186     as a result of the confusion that follows a syntax error!
4187     So make it harmless.  */
4188  if (INSN_UID (label) == 0)
4189    {
4190      INSN_UID (label) = cur_insn_uid++;
4191      add_insn_after (label, after);
4192    }
4193
4194  return label;
4195}
4196
4197/* Emit a note of subtype SUBTYPE after the insn AFTER.  */
4198
4199rtx
4200emit_note_after (int subtype, rtx after)
4201{
4202  rtx note = rtx_alloc (NOTE);
4203  INSN_UID (note) = cur_insn_uid++;
4204#ifndef USE_MAPPED_LOCATION
4205  NOTE_SOURCE_FILE (note) = 0;
4206#endif
4207  NOTE_LINE_NUMBER (note) = subtype;
4208  BLOCK_FOR_INSN (note) = NULL;
4209  add_insn_after (note, after);
4210  return note;
4211}
4212
4213/* Emit a copy of note ORIG after the insn AFTER.  */
4214
4215rtx
4216emit_note_copy_after (rtx orig, rtx after)
4217{
4218  rtx note;
4219
4220  if (NOTE_LINE_NUMBER (orig) >= 0 && no_line_numbers)
4221    {
4222      cur_insn_uid++;
4223      return 0;
4224    }
4225
4226  note = rtx_alloc (NOTE);
4227  INSN_UID (note) = cur_insn_uid++;
4228  NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4229  NOTE_DATA (note) = NOTE_DATA (orig);
4230  BLOCK_FOR_INSN (note) = NULL;
4231  add_insn_after (note, after);
4232  return note;
4233}
4234
4235/* Like emit_insn_after_noloc, but set INSN_LOCATOR according to SCOPE.  */
4236rtx
4237emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4238{
4239  rtx last = emit_insn_after_noloc (pattern, after);
4240
4241  if (pattern == NULL_RTX || !loc)
4242    return last;
4243
4244  after = NEXT_INSN (after);
4245  while (1)
4246    {
4247      if (active_insn_p (after) && !INSN_LOCATOR (after))
4248	INSN_LOCATOR (after) = loc;
4249      if (after == last)
4250	break;
4251      after = NEXT_INSN (after);
4252    }
4253  return last;
4254}
4255
4256/* Like emit_insn_after_noloc, but set INSN_LOCATOR according to AFTER.  */
4257rtx
4258emit_insn_after (rtx pattern, rtx after)
4259{
4260  if (INSN_P (after))
4261    return emit_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4262  else
4263    return emit_insn_after_noloc (pattern, after);
4264}
4265
4266/* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to SCOPE.  */
4267rtx
4268emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4269{
4270  rtx last = emit_jump_insn_after_noloc (pattern, after);
4271
4272  if (pattern == NULL_RTX || !loc)
4273    return last;
4274
4275  after = NEXT_INSN (after);
4276  while (1)
4277    {
4278      if (active_insn_p (after) && !INSN_LOCATOR (after))
4279	INSN_LOCATOR (after) = loc;
4280      if (after == last)
4281	break;
4282      after = NEXT_INSN (after);
4283    }
4284  return last;
4285}
4286
4287/* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to AFTER.  */
4288rtx
4289emit_jump_insn_after (rtx pattern, rtx after)
4290{
4291  if (INSN_P (after))
4292    return emit_jump_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4293  else
4294    return emit_jump_insn_after_noloc (pattern, after);
4295}
4296
4297/* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to SCOPE.  */
4298rtx
4299emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4300{
4301  rtx last = emit_call_insn_after_noloc (pattern, after);
4302
4303  if (pattern == NULL_RTX || !loc)
4304    return last;
4305
4306  after = NEXT_INSN (after);
4307  while (1)
4308    {
4309      if (active_insn_p (after) && !INSN_LOCATOR (after))
4310	INSN_LOCATOR (after) = loc;
4311      if (after == last)
4312	break;
4313      after = NEXT_INSN (after);
4314    }
4315  return last;
4316}
4317
4318/* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to AFTER.  */
4319rtx
4320emit_call_insn_after (rtx pattern, rtx after)
4321{
4322  if (INSN_P (after))
4323    return emit_call_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4324  else
4325    return emit_call_insn_after_noloc (pattern, after);
4326}
4327
4328/* Like emit_insn_before_noloc, but set INSN_LOCATOR according to SCOPE.  */
4329rtx
4330emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4331{
4332  rtx first = PREV_INSN (before);
4333  rtx last = emit_insn_before_noloc (pattern, before);
4334
4335  if (pattern == NULL_RTX || !loc)
4336    return last;
4337
4338  first = NEXT_INSN (first);
4339  while (1)
4340    {
4341      if (active_insn_p (first) && !INSN_LOCATOR (first))
4342	INSN_LOCATOR (first) = loc;
4343      if (first == last)
4344	break;
4345      first = NEXT_INSN (first);
4346    }
4347  return last;
4348}
4349
4350/* Like emit_insn_before_noloc, but set INSN_LOCATOR according to BEFORE.  */
4351rtx
4352emit_insn_before (rtx pattern, rtx before)
4353{
4354  if (INSN_P (before))
4355    return emit_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4356  else
4357    return emit_insn_before_noloc (pattern, before);
4358}
4359
4360/* like emit_insn_before_noloc, but set insn_locator according to scope.  */
4361rtx
4362emit_jump_insn_before_setloc (rtx pattern, rtx before, int loc)
4363{
4364  rtx first = PREV_INSN (before);
4365  rtx last = emit_jump_insn_before_noloc (pattern, before);
4366
4367  if (pattern == NULL_RTX)
4368    return last;
4369
4370  first = NEXT_INSN (first);
4371  while (1)
4372    {
4373      if (active_insn_p (first) && !INSN_LOCATOR (first))
4374	INSN_LOCATOR (first) = loc;
4375      if (first == last)
4376	break;
4377      first = NEXT_INSN (first);
4378    }
4379  return last;
4380}
4381
4382/* Like emit_jump_insn_before_noloc, but set INSN_LOCATOR according to BEFORE.  */
4383rtx
4384emit_jump_insn_before (rtx pattern, rtx before)
4385{
4386  if (INSN_P (before))
4387    return emit_jump_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4388  else
4389    return emit_jump_insn_before_noloc (pattern, before);
4390}
4391
4392/* like emit_insn_before_noloc, but set insn_locator according to scope.  */
4393rtx
4394emit_call_insn_before_setloc (rtx pattern, rtx before, int loc)
4395{
4396  rtx first = PREV_INSN (before);
4397  rtx last = emit_call_insn_before_noloc (pattern, before);
4398
4399  if (pattern == NULL_RTX)
4400    return last;
4401
4402  first = NEXT_INSN (first);
4403  while (1)
4404    {
4405      if (active_insn_p (first) && !INSN_LOCATOR (first))
4406	INSN_LOCATOR (first) = loc;
4407      if (first == last)
4408	break;
4409      first = NEXT_INSN (first);
4410    }
4411  return last;
4412}
4413
4414/* like emit_call_insn_before_noloc,
4415   but set insn_locator according to before.  */
4416rtx
4417emit_call_insn_before (rtx pattern, rtx before)
4418{
4419  if (INSN_P (before))
4420    return emit_call_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4421  else
4422    return emit_call_insn_before_noloc (pattern, before);
4423}
4424
4425/* Take X and emit it at the end of the doubly-linked
4426   INSN list.
4427
4428   Returns the last insn emitted.  */
4429
4430rtx
4431emit_insn (rtx x)
4432{
4433  rtx last = last_insn;
4434  rtx insn;
4435
4436  if (x == NULL_RTX)
4437    return last;
4438
4439  switch (GET_CODE (x))
4440    {
4441    case INSN:
4442    case JUMP_INSN:
4443    case CALL_INSN:
4444    case CODE_LABEL:
4445    case BARRIER:
4446    case NOTE:
4447      insn = x;
4448      while (insn)
4449	{
4450	  rtx next = NEXT_INSN (insn);
4451	  add_insn (insn);
4452	  last = insn;
4453	  insn = next;
4454	}
4455      break;
4456
4457#ifdef ENABLE_RTL_CHECKING
4458    case SEQUENCE:
4459      gcc_unreachable ();
4460      break;
4461#endif
4462
4463    default:
4464      last = make_insn_raw (x);
4465      add_insn (last);
4466      break;
4467    }
4468
4469  return last;
4470}
4471
4472/* Make an insn of code JUMP_INSN with pattern X
4473   and add it to the end of the doubly-linked list.  */
4474
4475rtx
4476emit_jump_insn (rtx x)
4477{
4478  rtx last = NULL_RTX, insn;
4479
4480  switch (GET_CODE (x))
4481    {
4482    case INSN:
4483    case JUMP_INSN:
4484    case CALL_INSN:
4485    case CODE_LABEL:
4486    case BARRIER:
4487    case NOTE:
4488      insn = x;
4489      while (insn)
4490	{
4491	  rtx next = NEXT_INSN (insn);
4492	  add_insn (insn);
4493	  last = insn;
4494	  insn = next;
4495	}
4496      break;
4497
4498#ifdef ENABLE_RTL_CHECKING
4499    case SEQUENCE:
4500      gcc_unreachable ();
4501      break;
4502#endif
4503
4504    default:
4505      last = make_jump_insn_raw (x);
4506      add_insn (last);
4507      break;
4508    }
4509
4510  return last;
4511}
4512
4513/* Make an insn of code CALL_INSN with pattern X
4514   and add it to the end of the doubly-linked list.  */
4515
4516rtx
4517emit_call_insn (rtx x)
4518{
4519  rtx insn;
4520
4521  switch (GET_CODE (x))
4522    {
4523    case INSN:
4524    case JUMP_INSN:
4525    case CALL_INSN:
4526    case CODE_LABEL:
4527    case BARRIER:
4528    case NOTE:
4529      insn = emit_insn (x);
4530      break;
4531
4532#ifdef ENABLE_RTL_CHECKING
4533    case SEQUENCE:
4534      gcc_unreachable ();
4535      break;
4536#endif
4537
4538    default:
4539      insn = make_call_insn_raw (x);
4540      add_insn (insn);
4541      break;
4542    }
4543
4544  return insn;
4545}
4546
4547/* Add the label LABEL to the end of the doubly-linked list.  */
4548
4549rtx
4550emit_label (rtx label)
4551{
4552  /* This can be called twice for the same label
4553     as a result of the confusion that follows a syntax error!
4554     So make it harmless.  */
4555  if (INSN_UID (label) == 0)
4556    {
4557      INSN_UID (label) = cur_insn_uid++;
4558      add_insn (label);
4559    }
4560  return label;
4561}
4562
4563/* Make an insn of code BARRIER
4564   and add it to the end of the doubly-linked list.  */
4565
4566rtx
4567emit_barrier (void)
4568{
4569  rtx barrier = rtx_alloc (BARRIER);
4570  INSN_UID (barrier) = cur_insn_uid++;
4571  add_insn (barrier);
4572  return barrier;
4573}
4574
4575/* Make line numbering NOTE insn for LOCATION add it to the end
4576   of the doubly-linked list, but only if line-numbers are desired for
4577   debugging info and it doesn't match the previous one.  */
4578
4579rtx
4580emit_line_note (location_t location)
4581{
4582  rtx note;
4583
4584#ifdef USE_MAPPED_LOCATION
4585  if (location == last_location)
4586    return NULL_RTX;
4587#else
4588  if (location.file && last_location.file
4589      && !strcmp (location.file, last_location.file)
4590      && location.line == last_location.line)
4591    return NULL_RTX;
4592#endif
4593  last_location = location;
4594
4595  if (no_line_numbers)
4596    {
4597      cur_insn_uid++;
4598      return NULL_RTX;
4599    }
4600
4601#ifdef USE_MAPPED_LOCATION
4602  note = emit_note ((int) location);
4603#else
4604  note = emit_note (location.line);
4605  NOTE_SOURCE_FILE (note) = location.file;
4606#endif
4607
4608  return note;
4609}
4610
4611/* Emit a copy of note ORIG.  */
4612
4613rtx
4614emit_note_copy (rtx orig)
4615{
4616  rtx note;
4617
4618  if (NOTE_LINE_NUMBER (orig) >= 0 && no_line_numbers)
4619    {
4620      cur_insn_uid++;
4621      return NULL_RTX;
4622    }
4623
4624  note = rtx_alloc (NOTE);
4625
4626  INSN_UID (note) = cur_insn_uid++;
4627  NOTE_DATA (note) = NOTE_DATA (orig);
4628  NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4629  BLOCK_FOR_INSN (note) = NULL;
4630  add_insn (note);
4631
4632  return note;
4633}
4634
4635/* Make an insn of code NOTE or type NOTE_NO
4636   and add it to the end of the doubly-linked list.  */
4637
4638rtx
4639emit_note (int note_no)
4640{
4641  rtx note;
4642
4643  note = rtx_alloc (NOTE);
4644  INSN_UID (note) = cur_insn_uid++;
4645  NOTE_LINE_NUMBER (note) = note_no;
4646  memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4647  BLOCK_FOR_INSN (note) = NULL;
4648  add_insn (note);
4649  return note;
4650}
4651
4652/* Cause next statement to emit a line note even if the line number
4653   has not changed.  */
4654
4655void
4656force_next_line_note (void)
4657{
4658#ifdef USE_MAPPED_LOCATION
4659  last_location = -1;
4660#else
4661  last_location.line = -1;
4662#endif
4663}
4664
4665/* Place a note of KIND on insn INSN with DATUM as the datum. If a
4666   note of this type already exists, remove it first.  */
4667
4668rtx
4669set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
4670{
4671  rtx note = find_reg_note (insn, kind, NULL_RTX);
4672
4673  switch (kind)
4674    {
4675    case REG_EQUAL:
4676    case REG_EQUIV:
4677      /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4678	 has multiple sets (some callers assume single_set
4679	 means the insn only has one set, when in fact it
4680	 means the insn only has one * useful * set).  */
4681      if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4682	{
4683	  gcc_assert (!note);
4684	  return NULL_RTX;
4685	}
4686
4687      /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4688	 It serves no useful purpose and breaks eliminate_regs.  */
4689      if (GET_CODE (datum) == ASM_OPERANDS)
4690	return NULL_RTX;
4691      break;
4692
4693    default:
4694      break;
4695    }
4696
4697  if (note)
4698    {
4699      XEXP (note, 0) = datum;
4700      return note;
4701    }
4702
4703  REG_NOTES (insn) = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
4704  return REG_NOTES (insn);
4705}
4706
4707/* Return an indication of which type of insn should have X as a body.
4708   The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN.  */
4709
4710static enum rtx_code
4711classify_insn (rtx x)
4712{
4713  if (LABEL_P (x))
4714    return CODE_LABEL;
4715  if (GET_CODE (x) == CALL)
4716    return CALL_INSN;
4717  if (GET_CODE (x) == RETURN)
4718    return JUMP_INSN;
4719  if (GET_CODE (x) == SET)
4720    {
4721      if (SET_DEST (x) == pc_rtx)
4722	return JUMP_INSN;
4723      else if (GET_CODE (SET_SRC (x)) == CALL)
4724	return CALL_INSN;
4725      else
4726	return INSN;
4727    }
4728  if (GET_CODE (x) == PARALLEL)
4729    {
4730      int j;
4731      for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
4732	if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
4733	  return CALL_INSN;
4734	else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4735		 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
4736	  return JUMP_INSN;
4737	else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4738		 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
4739	  return CALL_INSN;
4740    }
4741  return INSN;
4742}
4743
4744/* Emit the rtl pattern X as an appropriate kind of insn.
4745   If X is a label, it is simply added into the insn chain.  */
4746
4747rtx
4748emit (rtx x)
4749{
4750  enum rtx_code code = classify_insn (x);
4751
4752  switch (code)
4753    {
4754    case CODE_LABEL:
4755      return emit_label (x);
4756    case INSN:
4757      return emit_insn (x);
4758    case  JUMP_INSN:
4759      {
4760	rtx insn = emit_jump_insn (x);
4761	if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
4762	  return emit_barrier ();
4763	return insn;
4764      }
4765    case CALL_INSN:
4766      return emit_call_insn (x);
4767    default:
4768      gcc_unreachable ();
4769    }
4770}
4771
4772/* Space for free sequence stack entries.  */
4773static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
4774
4775/* Begin emitting insns to a sequence.  If this sequence will contain
4776   something that might cause the compiler to pop arguments to function
4777   calls (because those pops have previously been deferred; see
4778   INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
4779   before calling this function.  That will ensure that the deferred
4780   pops are not accidentally emitted in the middle of this sequence.  */
4781
4782void
4783start_sequence (void)
4784{
4785  struct sequence_stack *tem;
4786
4787  if (free_sequence_stack != NULL)
4788    {
4789      tem = free_sequence_stack;
4790      free_sequence_stack = tem->next;
4791    }
4792  else
4793    tem = ggc_alloc (sizeof (struct sequence_stack));
4794
4795  tem->next = seq_stack;
4796  tem->first = first_insn;
4797  tem->last = last_insn;
4798
4799  seq_stack = tem;
4800
4801  first_insn = 0;
4802  last_insn = 0;
4803}
4804
4805/* Set up the insn chain starting with FIRST as the current sequence,
4806   saving the previously current one.  See the documentation for
4807   start_sequence for more information about how to use this function.  */
4808
4809void
4810push_to_sequence (rtx first)
4811{
4812  rtx last;
4813
4814  start_sequence ();
4815
4816  for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
4817
4818  first_insn = first;
4819  last_insn = last;
4820}
4821
4822/* Set up the outer-level insn chain
4823   as the current sequence, saving the previously current one.  */
4824
4825void
4826push_topmost_sequence (void)
4827{
4828  struct sequence_stack *stack, *top = NULL;
4829
4830  start_sequence ();
4831
4832  for (stack = seq_stack; stack; stack = stack->next)
4833    top = stack;
4834
4835  first_insn = top->first;
4836  last_insn = top->last;
4837}
4838
4839/* After emitting to the outer-level insn chain, update the outer-level
4840   insn chain, and restore the previous saved state.  */
4841
4842void
4843pop_topmost_sequence (void)
4844{
4845  struct sequence_stack *stack, *top = NULL;
4846
4847  for (stack = seq_stack; stack; stack = stack->next)
4848    top = stack;
4849
4850  top->first = first_insn;
4851  top->last = last_insn;
4852
4853  end_sequence ();
4854}
4855
4856/* After emitting to a sequence, restore previous saved state.
4857
4858   To get the contents of the sequence just made, you must call
4859   `get_insns' *before* calling here.
4860
4861   If the compiler might have deferred popping arguments while
4862   generating this sequence, and this sequence will not be immediately
4863   inserted into the instruction stream, use do_pending_stack_adjust
4864   before calling get_insns.  That will ensure that the deferred
4865   pops are inserted into this sequence, and not into some random
4866   location in the instruction stream.  See INHIBIT_DEFER_POP for more
4867   information about deferred popping of arguments.  */
4868
4869void
4870end_sequence (void)
4871{
4872  struct sequence_stack *tem = seq_stack;
4873
4874  first_insn = tem->first;
4875  last_insn = tem->last;
4876  seq_stack = tem->next;
4877
4878  memset (tem, 0, sizeof (*tem));
4879  tem->next = free_sequence_stack;
4880  free_sequence_stack = tem;
4881}
4882
4883/* Return 1 if currently emitting into a sequence.  */
4884
4885int
4886in_sequence_p (void)
4887{
4888  return seq_stack != 0;
4889}
4890
4891/* Put the various virtual registers into REGNO_REG_RTX.  */
4892
4893void
4894init_virtual_regs (struct emit_status *es)
4895{
4896  rtx *ptr = es->x_regno_reg_rtx;
4897  ptr[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
4898  ptr[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
4899  ptr[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
4900  ptr[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
4901  ptr[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
4902}
4903
4904
4905/* Used by copy_insn_1 to avoid copying SCRATCHes more than once.  */
4906static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
4907static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
4908static int copy_insn_n_scratches;
4909
4910/* When an insn is being copied by copy_insn_1, this is nonzero if we have
4911   copied an ASM_OPERANDS.
4912   In that case, it is the original input-operand vector.  */
4913static rtvec orig_asm_operands_vector;
4914
4915/* When an insn is being copied by copy_insn_1, this is nonzero if we have
4916   copied an ASM_OPERANDS.
4917   In that case, it is the copied input-operand vector.  */
4918static rtvec copy_asm_operands_vector;
4919
4920/* Likewise for the constraints vector.  */
4921static rtvec orig_asm_constraints_vector;
4922static rtvec copy_asm_constraints_vector;
4923
4924/* Recursively create a new copy of an rtx for copy_insn.
4925   This function differs from copy_rtx in that it handles SCRATCHes and
4926   ASM_OPERANDs properly.
4927   Normally, this function is not used directly; use copy_insn as front end.
4928   However, you could first copy an insn pattern with copy_insn and then use
4929   this function afterwards to properly copy any REG_NOTEs containing
4930   SCRATCHes.  */
4931
4932rtx
4933copy_insn_1 (rtx orig)
4934{
4935  rtx copy;
4936  int i, j;
4937  RTX_CODE code;
4938  const char *format_ptr;
4939
4940  code = GET_CODE (orig);
4941
4942  switch (code)
4943    {
4944    case REG:
4945    case CONST_INT:
4946    case CONST_DOUBLE:
4947    case CONST_VECTOR:
4948    case SYMBOL_REF:
4949    case CODE_LABEL:
4950    case PC:
4951    case CC0:
4952      return orig;
4953    case CLOBBER:
4954      if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER)
4955	return orig;
4956      break;
4957
4958    case SCRATCH:
4959      for (i = 0; i < copy_insn_n_scratches; i++)
4960	if (copy_insn_scratch_in[i] == orig)
4961	  return copy_insn_scratch_out[i];
4962      break;
4963
4964    case CONST:
4965      /* CONST can be shared if it contains a SYMBOL_REF.  If it contains
4966	 a LABEL_REF, it isn't sharable.  */
4967      if (GET_CODE (XEXP (orig, 0)) == PLUS
4968	  && GET_CODE (XEXP (XEXP (orig, 0), 0)) == SYMBOL_REF
4969	  && GET_CODE (XEXP (XEXP (orig, 0), 1)) == CONST_INT)
4970	return orig;
4971      break;
4972
4973      /* A MEM with a constant address is not sharable.  The problem is that
4974	 the constant address may need to be reloaded.  If the mem is shared,
4975	 then reloading one copy of this mem will cause all copies to appear
4976	 to have been reloaded.  */
4977
4978    default:
4979      break;
4980    }
4981
4982  copy = rtx_alloc (code);
4983
4984  /* Copy the various flags, and other information.  We assume that
4985     all fields need copying, and then clear the fields that should
4986     not be copied.  That is the sensible default behavior, and forces
4987     us to explicitly document why we are *not* copying a flag.  */
4988  memcpy (copy, orig, RTX_HDR_SIZE);
4989
4990  /* We do not copy the USED flag, which is used as a mark bit during
4991     walks over the RTL.  */
4992  RTX_FLAG (copy, used) = 0;
4993
4994  /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs.  */
4995  if (INSN_P (orig))
4996    {
4997      RTX_FLAG (copy, jump) = 0;
4998      RTX_FLAG (copy, call) = 0;
4999      RTX_FLAG (copy, frame_related) = 0;
5000    }
5001
5002  format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5003
5004  for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5005    {
5006      copy->u.fld[i] = orig->u.fld[i];
5007      switch (*format_ptr++)
5008	{
5009	case 'e':
5010	  if (XEXP (orig, i) != NULL)
5011	    XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5012	  break;
5013
5014	case 'E':
5015	case 'V':
5016	  if (XVEC (orig, i) == orig_asm_constraints_vector)
5017	    XVEC (copy, i) = copy_asm_constraints_vector;
5018	  else if (XVEC (orig, i) == orig_asm_operands_vector)
5019	    XVEC (copy, i) = copy_asm_operands_vector;
5020	  else if (XVEC (orig, i) != NULL)
5021	    {
5022	      XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5023	      for (j = 0; j < XVECLEN (copy, i); j++)
5024		XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5025	    }
5026	  break;
5027
5028	case 't':
5029	case 'w':
5030	case 'i':
5031	case 's':
5032	case 'S':
5033	case 'u':
5034	case '0':
5035	  /* These are left unchanged.  */
5036	  break;
5037
5038	default:
5039	  gcc_unreachable ();
5040	}
5041    }
5042
5043  if (code == SCRATCH)
5044    {
5045      i = copy_insn_n_scratches++;
5046      gcc_assert (i < MAX_RECOG_OPERANDS);
5047      copy_insn_scratch_in[i] = orig;
5048      copy_insn_scratch_out[i] = copy;
5049    }
5050  else if (code == ASM_OPERANDS)
5051    {
5052      orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5053      copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5054      orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5055      copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5056    }
5057
5058  return copy;
5059}
5060
5061/* Create a new copy of an rtx.
5062   This function differs from copy_rtx in that it handles SCRATCHes and
5063   ASM_OPERANDs properly.
5064   INSN doesn't really have to be a full INSN; it could be just the
5065   pattern.  */
5066rtx
5067copy_insn (rtx insn)
5068{
5069  copy_insn_n_scratches = 0;
5070  orig_asm_operands_vector = 0;
5071  orig_asm_constraints_vector = 0;
5072  copy_asm_operands_vector = 0;
5073  copy_asm_constraints_vector = 0;
5074  return copy_insn_1 (insn);
5075}
5076
5077/* Initialize data structures and variables in this file
5078   before generating rtl for each function.  */
5079
5080void
5081init_emit (void)
5082{
5083  struct function *f = cfun;
5084
5085  f->emit = ggc_alloc (sizeof (struct emit_status));
5086  first_insn = NULL;
5087  last_insn = NULL;
5088  cur_insn_uid = 1;
5089  reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5090  last_location = UNKNOWN_LOCATION;
5091  first_label_num = label_num;
5092  seq_stack = NULL;
5093
5094  /* Init the tables that describe all the pseudo regs.  */
5095
5096  f->emit->regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5097
5098  f->emit->regno_pointer_align
5099    = ggc_alloc_cleared (f->emit->regno_pointer_align_length
5100			 * sizeof (unsigned char));
5101
5102  regno_reg_rtx
5103    = ggc_alloc (f->emit->regno_pointer_align_length * sizeof (rtx));
5104
5105  /* Put copies of all the hard registers into regno_reg_rtx.  */
5106  memcpy (regno_reg_rtx,
5107	  static_regno_reg_rtx,
5108	  FIRST_PSEUDO_REGISTER * sizeof (rtx));
5109
5110  /* Put copies of all the virtual register rtx into regno_reg_rtx.  */
5111  init_virtual_regs (f->emit);
5112
5113  /* Indicate that the virtual registers and stack locations are
5114     all pointers.  */
5115  REG_POINTER (stack_pointer_rtx) = 1;
5116  REG_POINTER (frame_pointer_rtx) = 1;
5117  REG_POINTER (hard_frame_pointer_rtx) = 1;
5118  REG_POINTER (arg_pointer_rtx) = 1;
5119
5120  REG_POINTER (virtual_incoming_args_rtx) = 1;
5121  REG_POINTER (virtual_stack_vars_rtx) = 1;
5122  REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5123  REG_POINTER (virtual_outgoing_args_rtx) = 1;
5124  REG_POINTER (virtual_cfa_rtx) = 1;
5125
5126#ifdef STACK_BOUNDARY
5127  REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5128  REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5129  REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5130  REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5131
5132  REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5133  REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5134  REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5135  REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5136  REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5137#endif
5138
5139#ifdef INIT_EXPANDERS
5140  INIT_EXPANDERS;
5141#endif
5142}
5143
5144/* Generate a vector constant for mode MODE and constant value CONSTANT.  */
5145
5146static rtx
5147gen_const_vector (enum machine_mode mode, int constant)
5148{
5149  rtx tem;
5150  rtvec v;
5151  int units, i;
5152  enum machine_mode inner;
5153
5154  units = GET_MODE_NUNITS (mode);
5155  inner = GET_MODE_INNER (mode);
5156
5157  v = rtvec_alloc (units);
5158
5159  /* We need to call this function after we set the scalar const_tiny_rtx
5160     entries.  */
5161  gcc_assert (const_tiny_rtx[constant][(int) inner]);
5162
5163  for (i = 0; i < units; ++i)
5164    RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5165
5166  tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5167  return tem;
5168}
5169
5170/* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5171   all elements are zero, and the one vector when all elements are one.  */
5172rtx
5173gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5174{
5175  enum machine_mode inner = GET_MODE_INNER (mode);
5176  int nunits = GET_MODE_NUNITS (mode);
5177  rtx x;
5178  int i;
5179
5180  /* Check to see if all of the elements have the same value.  */
5181  x = RTVEC_ELT (v, nunits - 1);
5182  for (i = nunits - 2; i >= 0; i--)
5183    if (RTVEC_ELT (v, i) != x)
5184      break;
5185
5186  /* If the values are all the same, check to see if we can use one of the
5187     standard constant vectors.  */
5188  if (i == -1)
5189    {
5190      if (x == CONST0_RTX (inner))
5191	return CONST0_RTX (mode);
5192      else if (x == CONST1_RTX (inner))
5193	return CONST1_RTX (mode);
5194    }
5195
5196  return gen_rtx_raw_CONST_VECTOR (mode, v);
5197}
5198
5199/* Create some permanent unique rtl objects shared between all functions.
5200   LINE_NUMBERS is nonzero if line numbers are to be generated.  */
5201
5202void
5203init_emit_once (int line_numbers)
5204{
5205  int i;
5206  enum machine_mode mode;
5207  enum machine_mode double_mode;
5208
5209  /* We need reg_raw_mode, so initialize the modes now.  */
5210  init_reg_modes_once ();
5211
5212  /* Initialize the CONST_INT, CONST_DOUBLE, and memory attribute hash
5213     tables.  */
5214  const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5215				    const_int_htab_eq, NULL);
5216
5217  const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5218				       const_double_htab_eq, NULL);
5219
5220  mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5221				    mem_attrs_htab_eq, NULL);
5222  reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5223				    reg_attrs_htab_eq, NULL);
5224
5225  no_line_numbers = ! line_numbers;
5226
5227  /* Compute the word and byte modes.  */
5228
5229  byte_mode = VOIDmode;
5230  word_mode = VOIDmode;
5231  double_mode = VOIDmode;
5232
5233  for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5234       mode = GET_MODE_WIDER_MODE (mode))
5235    {
5236      if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5237	  && byte_mode == VOIDmode)
5238	byte_mode = mode;
5239
5240      if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5241	  && word_mode == VOIDmode)
5242	word_mode = mode;
5243    }
5244
5245  for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5246       mode = GET_MODE_WIDER_MODE (mode))
5247    {
5248      if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5249	  && double_mode == VOIDmode)
5250	double_mode = mode;
5251    }
5252
5253  ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5254
5255  /* Assign register numbers to the globally defined register rtx.
5256     This must be done at runtime because the register number field
5257     is in a union and some compilers can't initialize unions.  */
5258
5259  pc_rtx = gen_rtx_PC (VOIDmode);
5260  cc0_rtx = gen_rtx_CC0 (VOIDmode);
5261  stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5262  frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5263  if (hard_frame_pointer_rtx == 0)
5264    hard_frame_pointer_rtx = gen_raw_REG (Pmode,
5265					  HARD_FRAME_POINTER_REGNUM);
5266  if (arg_pointer_rtx == 0)
5267    arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5268  virtual_incoming_args_rtx =
5269    gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5270  virtual_stack_vars_rtx =
5271    gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5272  virtual_stack_dynamic_rtx =
5273    gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5274  virtual_outgoing_args_rtx =
5275    gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5276  virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5277
5278  /* Initialize RTL for commonly used hard registers.  These are
5279     copied into regno_reg_rtx as we begin to compile each function.  */
5280  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5281    static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5282
5283#ifdef INIT_EXPANDERS
5284  /* This is to initialize {init|mark|free}_machine_status before the first
5285     call to push_function_context_to.  This is needed by the Chill front
5286     end which calls push_function_context_to before the first call to
5287     init_function_start.  */
5288  INIT_EXPANDERS;
5289#endif
5290
5291  /* Create the unique rtx's for certain rtx codes and operand values.  */
5292
5293  /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5294     tries to use these variables.  */
5295  for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5296    const_int_rtx[i + MAX_SAVED_CONST_INT] =
5297      gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5298
5299  if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5300      && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5301    const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5302  else
5303    const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5304
5305  REAL_VALUE_FROM_INT (dconst0,   0,  0, double_mode);
5306  REAL_VALUE_FROM_INT (dconst1,   1,  0, double_mode);
5307  REAL_VALUE_FROM_INT (dconst2,   2,  0, double_mode);
5308  REAL_VALUE_FROM_INT (dconst3,   3,  0, double_mode);
5309  REAL_VALUE_FROM_INT (dconst10, 10,  0, double_mode);
5310  REAL_VALUE_FROM_INT (dconstm1, -1, -1, double_mode);
5311  REAL_VALUE_FROM_INT (dconstm2, -2, -1, double_mode);
5312
5313  dconsthalf = dconst1;
5314  SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5315
5316  real_arithmetic (&dconstthird, RDIV_EXPR, &dconst1, &dconst3);
5317
5318  /* Initialize mathematical constants for constant folding builtins.
5319     These constants need to be given to at least 160 bits precision.  */
5320  real_from_string (&dconstpi,
5321    "3.1415926535897932384626433832795028841971693993751058209749445923078");
5322  real_from_string (&dconste,
5323    "2.7182818284590452353602874713526624977572470936999595749669676277241");
5324
5325  for (i = 0; i < (int) ARRAY_SIZE (const_tiny_rtx); i++)
5326    {
5327      REAL_VALUE_TYPE *r =
5328	(i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5329
5330      for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5331	   mode = GET_MODE_WIDER_MODE (mode))
5332	const_tiny_rtx[i][(int) mode] =
5333	  CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5334
5335      const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5336
5337      for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5338	   mode = GET_MODE_WIDER_MODE (mode))
5339	const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5340
5341      for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5342	   mode != VOIDmode;
5343	   mode = GET_MODE_WIDER_MODE (mode))
5344	const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5345    }
5346
5347  for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5348       mode != VOIDmode;
5349       mode = GET_MODE_WIDER_MODE (mode))
5350    {
5351      const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5352      const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5353    }
5354
5355  for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5356       mode != VOIDmode;
5357       mode = GET_MODE_WIDER_MODE (mode))
5358    {
5359      const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5360      const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5361    }
5362
5363  for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5364    if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5365      const_tiny_rtx[0][i] = const0_rtx;
5366
5367  const_tiny_rtx[0][(int) BImode] = const0_rtx;
5368  if (STORE_FLAG_VALUE == 1)
5369    const_tiny_rtx[1][(int) BImode] = const1_rtx;
5370
5371#ifdef RETURN_ADDRESS_POINTER_REGNUM
5372  return_address_pointer_rtx
5373    = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5374#endif
5375
5376#ifdef STATIC_CHAIN_REGNUM
5377  static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5378
5379#ifdef STATIC_CHAIN_INCOMING_REGNUM
5380  if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
5381    static_chain_incoming_rtx
5382      = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
5383  else
5384#endif
5385    static_chain_incoming_rtx = static_chain_rtx;
5386#endif
5387
5388#ifdef STATIC_CHAIN
5389  static_chain_rtx = STATIC_CHAIN;
5390
5391#ifdef STATIC_CHAIN_INCOMING
5392  static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
5393#else
5394  static_chain_incoming_rtx = static_chain_rtx;
5395#endif
5396#endif
5397
5398  if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5399    pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5400}
5401
5402/* Produce exact duplicate of insn INSN after AFTER.
5403   Care updating of libcall regions if present.  */
5404
5405rtx
5406emit_copy_of_insn_after (rtx insn, rtx after)
5407{
5408  rtx new;
5409  rtx note1, note2, link;
5410
5411  switch (GET_CODE (insn))
5412    {
5413    case INSN:
5414      new = emit_insn_after (copy_insn (PATTERN (insn)), after);
5415      break;
5416
5417    case JUMP_INSN:
5418      new = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5419      break;
5420
5421    case CALL_INSN:
5422      new = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5423      if (CALL_INSN_FUNCTION_USAGE (insn))
5424	CALL_INSN_FUNCTION_USAGE (new)
5425	  = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5426      SIBLING_CALL_P (new) = SIBLING_CALL_P (insn);
5427      CONST_OR_PURE_CALL_P (new) = CONST_OR_PURE_CALL_P (insn);
5428      break;
5429
5430    default:
5431      gcc_unreachable ();
5432    }
5433
5434  /* Update LABEL_NUSES.  */
5435  mark_jump_label (PATTERN (new), new, 0);
5436
5437  INSN_LOCATOR (new) = INSN_LOCATOR (insn);
5438
5439  /* If the old insn is frame related, then so is the new one.  This is
5440     primarily needed for IA-64 unwind info which marks epilogue insns,
5441     which may be duplicated by the basic block reordering code.  */
5442  RTX_FRAME_RELATED_P (new) = RTX_FRAME_RELATED_P (insn);
5443
5444  /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
5445     make them.  */
5446  for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5447    if (REG_NOTE_KIND (link) != REG_LABEL)
5448      {
5449	if (GET_CODE (link) == EXPR_LIST)
5450	  REG_NOTES (new)
5451	    = copy_insn_1 (gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
5452					      XEXP (link, 0),
5453					      REG_NOTES (new)));
5454	else
5455	  REG_NOTES (new)
5456	    = copy_insn_1 (gen_rtx_INSN_LIST (REG_NOTE_KIND (link),
5457					      XEXP (link, 0),
5458					      REG_NOTES (new)));
5459      }
5460
5461  /* Fix the libcall sequences.  */
5462  if ((note1 = find_reg_note (new, REG_RETVAL, NULL_RTX)) != NULL)
5463    {
5464      rtx p = new;
5465      while ((note2 = find_reg_note (p, REG_LIBCALL, NULL_RTX)) == NULL)
5466	p = PREV_INSN (p);
5467      XEXP (note1, 0) = p;
5468      XEXP (note2, 0) = new;
5469    }
5470  INSN_CODE (new) = INSN_CODE (insn);
5471  return new;
5472}
5473
5474static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
5475rtx
5476gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
5477{
5478  if (hard_reg_clobbers[mode][regno])
5479    return hard_reg_clobbers[mode][regno];
5480  else
5481    return (hard_reg_clobbers[mode][regno] =
5482	    gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
5483}
5484
5485#include "gt-emit-rtl.h"
5486