1/* Definitions of target machine for GCC for Motorola 680x0/ColdFire.
2   Copyright (C) 1987, 1988, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3   2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GCC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING.  If not, write to
19the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20Boston, MA 02110-1301, USA.  */
21
22/* We need to have MOTOROLA always defined (either 0 or 1) because we use
23   if-statements and ?: on it.  This way we have compile-time error checking
24   for both the MOTOROLA and MIT code paths.  We do rely on the host compiler
25   to optimize away all constant tests.  */
26#ifdef MOTOROLA
27# undef MOTOROLA
28# define MOTOROLA 1  /* Use the Motorola assembly syntax.  */
29# define TARGET_VERSION fprintf (stderr, " (68k, Motorola syntax)")
30#else
31# define TARGET_VERSION fprintf (stderr, " (68k, MIT syntax)")
32# define MOTOROLA 0  /* Use the MIT assembly syntax.  */
33#endif
34
35/* Note that some other tm.h files include this one and then override
36   many of the definitions that relate to assembler syntax.  */
37
38#define TARGET_CPU_CPP_BUILTINS()		\
39  do						\
40    {						\
41      builtin_define ("__m68k__");		\
42      builtin_define_std ("mc68000");		\
43      if (TARGET_68040_ONLY)			\
44	{					\
45	  if (TARGET_68060)			\
46	    builtin_define_std ("mc68060");	\
47	  else					\
48	    builtin_define_std ("mc68040");	\
49	}					\
50      else if (TARGET_68060) /* -m68020-60 */	\
51	{					\
52	  builtin_define_std ("mc68060");	\
53	  builtin_define_std ("mc68040");	\
54	  builtin_define_std ("mc68030");	\
55	  builtin_define_std ("mc68020");	\
56	}					\
57      else if (TARGET_68040) /* -m68020-40 */	\
58	{					\
59	  builtin_define_std ("mc68040");	\
60	  builtin_define_std ("mc68030");	\
61	  builtin_define_std ("mc68020");	\
62	}					\
63      else if (TARGET_68030)			\
64	builtin_define_std ("mc68030");		\
65      else if (TARGET_68020)			\
66	builtin_define_std ("mc68020");		\
67      if (TARGET_68881)				\
68	builtin_define ("__HAVE_68881__");	\
69      if (TARGET_CPU32)				\
70	{					\
71	  builtin_define_std ("mc68332");	\
72	  builtin_define_std ("mcpu32");	\
73	}					\
74      if (TARGET_COLDFIRE)			\
75	builtin_define ("__mcoldfire__");	\
76      if (TARGET_5200)				\
77	builtin_define ("__mcf5200__");		\
78      if (TARGET_528x)				\
79	{					\
80	  builtin_define ("__mcf528x__");	\
81	  builtin_define ("__mcf5200__");	\
82	}					\
83      if (TARGET_CFV3)				\
84	{					\
85	  builtin_define ("__mcf5300__");	\
86	  builtin_define ("__mcf5307__");	\
87	}					\
88      if (TARGET_CFV4)				\
89	{					\
90	  builtin_define ("__mcf5400__");	\
91	  builtin_define ("__mcf5407__");	\
92	}					\
93      if (TARGET_CF_HWDIV)			\
94	builtin_define ("__mcfhwdiv__");	\
95      if (flag_pic)				\
96	{					\
97	  builtin_define ("__pic__");		\
98	  if (flag_pic > 1)			\
99	    builtin_define ("__PIC__");		\
100	}					\
101      builtin_assert ("cpu=m68k");		\
102      builtin_assert ("machine=m68k");		\
103    }						\
104  while (0)
105
106/* Classify the groups of pseudo-ops used to assemble QI, HI and SI
107   quantities.  */
108#define INT_OP_STANDARD	0	/* .byte, .short, .long */
109#define INT_OP_DOT_WORD	1	/* .byte, .word, .long */
110#define INT_OP_NO_DOT   2	/* byte, short, long */
111#define INT_OP_DC	3	/* dc.b, dc.w, dc.l */
112
113/* Set the default.  */
114#define INT_OP_GROUP INT_OP_DOT_WORD
115
116/* Compile for a CPU32.  A 68020 without bitfields is a good
117   heuristic for a CPU32.  */
118#define TARGET_CPU32	(TARGET_68020 && !TARGET_BITFIELD)
119
120/* Is the target a ColdFire?  */
121#define MASK_COLDFIRE	(MASK_5200 | MASK_528x | MASK_CFV3 | MASK_CFV4)
122#define TARGET_COLDFIRE	((target_flags & MASK_COLDFIRE) != 0)
123
124#define OVERRIDE_OPTIONS   override_options()
125
126/* These are meant to be redefined in the host dependent files */
127#define SUBTARGET_OVERRIDE_OPTIONS
128
129/* target machine storage layout */
130
131#define LONG_DOUBLE_TYPE_SIZE 80
132
133/* Set the value of FLT_EVAL_METHOD in float.h.  When using 68040 fp
134   instructions, we get proper intermediate rounding, otherwise we
135   get extended precision results.  */
136#define TARGET_FLT_EVAL_METHOD ((TARGET_68040_ONLY || ! TARGET_68881) ? 0 : 2)
137
138#define BITS_BIG_ENDIAN 1
139#define BYTES_BIG_ENDIAN 1
140#define WORDS_BIG_ENDIAN 1
141
142#define UNITS_PER_WORD 4
143
144#define PARM_BOUNDARY (TARGET_SHORT ? 16 : 32)
145#define STACK_BOUNDARY 16
146#define FUNCTION_BOUNDARY 16
147#define EMPTY_FIELD_BOUNDARY 16
148
149/* No data type wants to be aligned rounder than this.
150   Most published ABIs say that ints should be aligned on 16 bit
151   boundaries, but CPUs with 32-bit busses get better performance
152   aligned on 32-bit boundaries.  ColdFires without a misalignment
153   module require 32-bit alignment.  */
154#define BIGGEST_ALIGNMENT (TARGET_ALIGN_INT ? 32 : 16)
155
156#define STRICT_ALIGNMENT (TARGET_STRICT_ALIGNMENT)
157
158#define INT_TYPE_SIZE (TARGET_SHORT ? 16 : 32)
159
160/* Define these to avoid dependence on meaning of `int'.  */
161#define WCHAR_TYPE "long int"
162#define WCHAR_TYPE_SIZE 32
163
164/* Maximum number of library IDs we permit with -mid-shared-library.  */
165#define MAX_LIBRARY_ID 255
166
167
168/* Standard register usage.  */
169
170/* For the m68k, we give the data registers numbers 0-7,
171   the address registers numbers 010-017 (8-15),
172   and the 68881 floating point registers numbers 020-027 (16-24).
173   We also have a fake `arg-pointer' register 030 (25) used for
174   register elimination.  */
175#define FIRST_PSEUDO_REGISTER 25
176
177/* All m68k targets (except AmigaOS) use %a5 as the PIC register  */
178#define PIC_OFFSET_TABLE_REGNUM (flag_pic ? 13 : INVALID_REGNUM)
179
180/* 1 for registers that have pervasive standard uses
181   and are not available for the register allocator.
182   On the m68k, only the stack pointer is such.
183   Our fake arg-pointer is obviously fixed as well.  */
184#define FIXED_REGISTERS        \
185 {/* Data registers.  */       \
186  0, 0, 0, 0, 0, 0, 0, 0,      \
187                               \
188  /* Address registers.  */    \
189  0, 0, 0, 0, 0, 0, 0, 1,      \
190                               \
191  /* Floating point registers  \
192     (if available).  */       \
193  0, 0, 0, 0, 0, 0, 0, 0,      \
194                               \
195  /* Arg pointer.  */          \
196  1 }
197
198/* 1 for registers not available across function calls.
199   These must include the FIXED_REGISTERS and also any
200   registers that can be used without being saved.
201   The latter must include the registers where values are returned
202   and the register where structure-value addresses are passed.
203   Aside from that, you can include as many other registers as you like.  */
204#define CALL_USED_REGISTERS     \
205 {/* Data registers.  */        \
206  1, 1, 0, 0, 0, 0, 0, 0,       \
207                                \
208  /* Address registers.  */     \
209  1, 1, 0, 0, 0, 0, 0, 1,       \
210                                \
211  /* Floating point registers   \
212     (if available).  */        \
213  1, 1, 0, 0, 0, 0, 0, 0,       \
214                                \
215  /* Arg pointer.  */           \
216  1 }
217
218#define REG_ALLOC_ORDER		\
219{ /* d0/d1/a0/a1 */		\
220  0, 1, 8, 9,			\
221  /* d2-d7 */			\
222  2, 3, 4, 5, 6, 7,		\
223  /* a2-a7/arg */		\
224  10, 11, 12, 13, 14, 15, 24,	\
225  /* fp0-fp7 */			\
226  16, 17, 18, 19, 20, 21, 22, 23\
227}
228
229
230/* Make sure everything's fine if we *don't* have a given processor.
231   This assumes that putting a register in fixed_regs will keep the
232   compiler's mitts completely off it.  We don't bother to zero it out
233   of register classes.  */
234#define CONDITIONAL_REGISTER_USAGE				\
235{								\
236  int i;							\
237  HARD_REG_SET x;						\
238  if (! TARGET_68881)						\
239    {								\
240      COPY_HARD_REG_SET (x, reg_class_contents[(int)FP_REGS]);	\
241      for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)		\
242        if (TEST_HARD_REG_BIT (x, i))				\
243	  fixed_regs[i] = call_used_regs[i] = 1;		\
244    }								\
245  if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)		\
246    fixed_regs[PIC_OFFSET_TABLE_REGNUM]				\
247      = call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1;		\
248}
249
250/* On the m68k, ordinary registers hold 32 bits worth;
251   for the 68881 registers, a single register is always enough for
252   anything that can be stored in them at all.  */
253#define HARD_REGNO_NREGS(REGNO, MODE)   \
254  ((REGNO) >= 16 ? GET_MODE_NUNITS (MODE)	\
255   : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
256
257/* A C expression that is nonzero if hard register NEW_REG can be
258   considered for use as a rename register for OLD_REG register.  */
259
260#define HARD_REGNO_RENAME_OK(OLD_REG, NEW_REG) \
261  m68k_hard_regno_rename_ok (OLD_REG, NEW_REG)
262
263/* Value is true if hard register REGNO can hold a value of machine-mode MODE.
264   On the 68000, the cpu registers can hold any mode except bytes in
265   address registers, the 68881 registers can hold only SFmode or DFmode.  */
266
267#define HARD_REGNO_MODE_OK(REGNO, MODE) \
268  m68k_regno_mode_ok ((REGNO), (MODE))
269
270#define MODES_TIEABLE_P(MODE1, MODE2)			\
271  (! TARGET_68881					\
272   || ((GET_MODE_CLASS (MODE1) == MODE_FLOAT		\
273	|| GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT)	\
274       == (GET_MODE_CLASS (MODE2) == MODE_FLOAT		\
275	   || GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT)))
276
277/* Specify the registers used for certain standard purposes.
278   The values of these macros are register numbers.  */
279
280#define STACK_POINTER_REGNUM 15
281
282/* Most m68k targets use %a6 as a frame pointer.  The AmigaOS
283   ABI uses %a6 for shared library calls, therefore the frame
284   pointer is shifted to %a5 on this target.  */
285#define FRAME_POINTER_REGNUM 14
286
287#define FRAME_POINTER_REQUIRED 0
288
289/* Base register for access to arguments of the function.
290 * This isn't a hardware register. It will be eliminated to the
291 * stack pointer or frame pointer.
292 */
293#define ARG_POINTER_REGNUM 24
294
295#define STATIC_CHAIN_REGNUM 8
296
297/* Register in which address to store a structure value
298   is passed to a function.  */
299#define M68K_STRUCT_VALUE_REGNUM 9
300
301
302
303/* The m68k has three kinds of registers, so eight classes would be
304   a complete set.  One of them is not needed.  */
305enum reg_class {
306  NO_REGS, DATA_REGS,
307  ADDR_REGS, FP_REGS,
308  GENERAL_REGS, DATA_OR_FP_REGS,
309  ADDR_OR_FP_REGS, ALL_REGS,
310  LIM_REG_CLASSES };
311
312#define N_REG_CLASSES (int) LIM_REG_CLASSES
313
314#define REG_CLASS_NAMES \
315 { "NO_REGS", "DATA_REGS",              \
316   "ADDR_REGS", "FP_REGS",              \
317   "GENERAL_REGS", "DATA_OR_FP_REGS",   \
318   "ADDR_OR_FP_REGS", "ALL_REGS" }
319
320#define REG_CLASS_CONTENTS \
321{					\
322  {0x00000000},  /* NO_REGS */		\
323  {0x000000ff},  /* DATA_REGS */	\
324  {0x0100ff00},  /* ADDR_REGS */	\
325  {0x00ff0000},  /* FP_REGS */		\
326  {0x0100ffff},  /* GENERAL_REGS */	\
327  {0x00ff00ff},  /* DATA_OR_FP_REGS */	\
328  {0x01ffff00},  /* ADDR_OR_FP_REGS */	\
329  {0x01ffffff},  /* ALL_REGS */		\
330}
331
332extern enum reg_class regno_reg_class[];
333#define REGNO_REG_CLASS(REGNO) (regno_reg_class[(REGNO)])
334#define INDEX_REG_CLASS GENERAL_REGS
335#define BASE_REG_CLASS ADDR_REGS
336
337/* We do a trick here to modify the effective constraints on the
338   machine description; we zorch the constraint letters that aren't
339   appropriate for a specific target.  This allows us to guarantee
340   that a specific kind of register will not be used for a given target
341   without fiddling with the register classes above.  */
342#define REG_CLASS_FROM_LETTER(C) \
343  ((C) == 'a' ? ADDR_REGS :			\
344   ((C) == 'd' ? DATA_REGS :			\
345    ((C) == 'f' ? (TARGET_68881 ? FP_REGS :	\
346		   NO_REGS) :			\
347     NO_REGS)))
348
349/* For the m68k, `I' is used for the range 1 to 8
350   allowed as immediate shift counts and in addq.
351   `J' is used for the range of signed numbers that fit in 16 bits.
352   `K' is for numbers that moveq can't handle.
353   `L' is for range -8 to -1, range of values that can be added with subq.
354   `M' is for numbers that moveq+notb can't handle.
355   'N' is for range 24 to 31, rotatert:SI 8 to 1 expressed as rotate.
356   'O' is for 16 (for rotate using swap).
357   'P' is for range 8 to 15, rotatert:HI 8 to 1 expressed as rotate.  */
358#define CONST_OK_FOR_LETTER_P(VALUE, C) \
359  ((C) == 'I' ? (VALUE) > 0 && (VALUE) <= 8 : \
360   (C) == 'J' ? (VALUE) >= -0x8000 && (VALUE) <= 0x7FFF : \
361   (C) == 'K' ? (VALUE) < -0x80 || (VALUE) >= 0x80 : \
362   (C) == 'L' ? (VALUE) < 0 && (VALUE) >= -8 : \
363   (C) == 'M' ? (VALUE) < -0x100 || (VALUE) >= 0x100 : \
364   (C) == 'N' ? (VALUE) >= 24 && (VALUE) <= 31 : \
365   (C) == 'O' ? (VALUE) == 16 : \
366   (C) == 'P' ? (VALUE) >= 8 && (VALUE) <= 15 : 0)
367
368/* "G" defines all of the floating constants that are *NOT* 68881
369   constants.  This is so 68881 constants get reloaded and the
370   fpmovecr is used.  */
371#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C)  \
372  ((C) == 'G' ? ! (TARGET_68881 && standard_68881_constant_p (VALUE)) : 0 )
373
374/* `Q' means address register indirect addressing mode.
375   `S' is for operands that satisfy 'm' when -mpcrel is in effect.
376   `T' is for operands that satisfy 's' when -mpcrel is not in effect.
377   `U' is for register offset addressing.  */
378#define EXTRA_CONSTRAINT(OP,CODE)			\
379  (((CODE) == 'S')					\
380   ? (TARGET_PCREL					\
381      && GET_CODE (OP) == MEM				\
382      && (GET_CODE (XEXP (OP, 0)) == SYMBOL_REF		\
383	  || GET_CODE (XEXP (OP, 0)) == LABEL_REF	\
384	  || GET_CODE (XEXP (OP, 0)) == CONST))		\
385   : 							\
386  (((CODE) == 'T')					\
387   ? ( !TARGET_PCREL 					\
388      && (GET_CODE (OP) == SYMBOL_REF			\
389	  || GET_CODE (OP) == LABEL_REF			\
390	  || GET_CODE (OP) == CONST))			\
391   :							\
392  (((CODE) == 'Q')					\
393   ? (GET_CODE (OP) == MEM 				\
394      && GET_CODE (XEXP (OP, 0)) == REG)		\
395   :							\
396  (((CODE) == 'U')					\
397   ? (GET_CODE (OP) == MEM 				\
398      && GET_CODE (XEXP (OP, 0)) == PLUS		\
399      && GET_CODE (XEXP (XEXP (OP, 0), 0)) == REG	\
400      && GET_CODE (XEXP (XEXP (OP, 0), 1)) == CONST_INT) \
401   :							\
402   0))))
403
404/* On the m68k, use a data reg if possible when the
405   value is a constant in the range where moveq could be used
406   and we ensure that QImodes are reloaded into data regs.  */
407#define PREFERRED_RELOAD_CLASS(X,CLASS)  \
408  ((GET_CODE (X) == CONST_INT			\
409    && (unsigned) (INTVAL (X) + 0x80) < 0x100	\
410    && (CLASS) != ADDR_REGS)			\
411   ? DATA_REGS					\
412   : (GET_MODE (X) == QImode && (CLASS) != ADDR_REGS) \
413   ? DATA_REGS					\
414   : (GET_CODE (X) == CONST_DOUBLE					\
415      && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT)			\
416   ? (TARGET_68881 && (CLASS == FP_REGS || CLASS == DATA_OR_FP_REGS)	\
417      ? FP_REGS : NO_REGS)						\
418   : (TARGET_PCREL				\
419      && (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST \
420	  || GET_CODE (X) == LABEL_REF))	\
421   ? ADDR_REGS					\
422   : (CLASS))
423
424/* Force QImode output reloads from subregs to be allocated to data regs,
425   since QImode stores from address regs are not supported.  We make the
426   assumption that if the class is not ADDR_REGS, then it must be a superset
427   of DATA_REGS.  */
428#define LIMIT_RELOAD_CLASS(MODE, CLASS) \
429  (((MODE) == QImode && (CLASS) != ADDR_REGS)	\
430   ? DATA_REGS					\
431   : (CLASS))
432
433/* On the m68k, this is the size of MODE in words,
434   except in the FP regs, where a single reg is always enough.  */
435#define CLASS_MAX_NREGS(CLASS, MODE)	\
436 ((CLASS) == FP_REGS ? 1 \
437  : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
438
439/* Moves between fp regs and other regs are two insns.  */
440#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2)	\
441  (((CLASS1) == FP_REGS && (CLASS2) != FP_REGS)	        \
442    || ((CLASS2) == FP_REGS && (CLASS1) != FP_REGS)	\
443    ? 4 : 2)
444
445/* Stack layout; function entry, exit and calling.  */
446
447#define STACK_GROWS_DOWNWARD
448#define FRAME_GROWS_DOWNWARD 1
449#define STARTING_FRAME_OFFSET 0
450
451/* On the 680x0, sp@- in a byte insn really pushes a word.
452   On the ColdFire, sp@- in a byte insn pushes just a byte.  */
453#define PUSH_ROUNDING(BYTES) (TARGET_COLDFIRE ? BYTES : ((BYTES) + 1) & ~1)
454
455#define FIRST_PARM_OFFSET(FNDECL) 8
456
457/* On the 68000, the RTS insn cannot pop anything.
458   On the 68010, the RTD insn may be used to pop them if the number
459     of args is fixed, but if the number is variable then the caller
460     must pop them all.  RTD can't be used for library calls now
461     because the library is compiled with the Unix compiler.
462   Use of RTD is a selectable option, since it is incompatible with
463   standard Unix calling sequences.  If the option is not selected,
464   the caller must always pop the args.  */
465#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE)   \
466  ((TARGET_RTD && (!(FUNDECL) || TREE_CODE (FUNDECL) != IDENTIFIER_NODE)	\
467    && (TYPE_ARG_TYPES (FUNTYPE) == 0				\
468	|| (TREE_VALUE (tree_last (TYPE_ARG_TYPES (FUNTYPE)))	\
469	    == void_type_node)))				\
470   ? (SIZE) : 0)
471
472/* On the m68k the return value is always in D0.  */
473#define FUNCTION_VALUE(VALTYPE, FUNC)  \
474  gen_rtx_REG (TYPE_MODE (VALTYPE), 0)
475
476/* On the m68k the return value is always in D0.  */
477#define LIBCALL_VALUE(MODE)  gen_rtx_REG (MODE, 0)
478
479/* On the m68k, D0 is the only register used.  */
480#define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
481
482/* Define this to be true when FUNCTION_VALUE_REGNO_P is true for
483   more than one register.
484   XXX This macro is m68k specific and used only for m68kemb.h.  */
485#define NEEDS_UNTYPED_CALL 0
486
487#define PCC_STATIC_STRUCT_RETURN
488
489/* On the m68k, all arguments are usually pushed on the stack.  */
490#define FUNCTION_ARG_REGNO_P(N) 0
491
492/* On the m68k, this is a single integer, which is a number of bytes
493   of arguments scanned so far.  */
494#define CUMULATIVE_ARGS int
495
496/* On the m68k, the offset starts at 0.  */
497#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
498 ((CUM) = 0)
499
500#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED)	\
501 ((CUM) += ((MODE) != BLKmode			\
502	    ? (GET_MODE_SIZE (MODE) + 3) & ~3	\
503	    : (int_size_in_bytes (TYPE) + 3) & ~3))
504
505/* On the m68k all args are always pushed.  */
506#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) 0
507
508#define FUNCTION_PROFILER(FILE, LABELNO)  \
509  asm_fprintf (FILE, "\tlea %LLP%d,%Ra0\n\tjsr mcount\n", (LABELNO))
510
511#define EXIT_IGNORE_STACK 1
512
513/* Determine if the epilogue should be output as RTL.
514   You should override this if you define FUNCTION_EXTRA_EPILOGUE.
515
516   XXX This macro is m68k-specific and only used in m68k.md.  */
517#define USE_RETURN_INSN use_return_insn ()
518
519/* Output assembler code for a block containing the constant parts
520   of a trampoline, leaving space for the variable parts.
521
522   On the m68k, the trampoline looks like this:
523     movl #STATIC,a0
524     jmp  FUNCTION
525
526   WARNING: Targets that may run on 68040+ cpus must arrange for
527   the instruction cache to be flushed.  Previous incarnations of
528   the m68k trampoline code attempted to get around this by either
529   using an out-of-line transfer function or pc-relative data, but
530   the fact remains that the code to jump to the transfer function
531   or the code to load the pc-relative data needs to be flushed
532   just as much as the "variable" portion of the trampoline.
533   Recognizing that a cache flush is going to be required anyway,
534   dispense with such notions and build a smaller trampoline.
535
536   Since more instructions are required to move a template into
537   place than to create it on the spot, don't use a template.  */
538
539#define TRAMPOLINE_SIZE 12
540#define TRAMPOLINE_ALIGNMENT 16
541
542/* Targets redefine this to invoke code to either flush the cache,
543   or enable stack execution (or both).  */
544#ifndef FINALIZE_TRAMPOLINE
545#define FINALIZE_TRAMPOLINE(TRAMP)
546#endif
547
548/* We generate a two-instructions program at address TRAMP :
549	movea.l &CXT,%a0
550	jmp FNADDR  */
551#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT)			\
552{									\
553  emit_move_insn (gen_rtx_MEM (HImode, TRAMP), GEN_INT(0x207C));	\
554  emit_move_insn (gen_rtx_MEM (SImode, plus_constant (TRAMP, 2)), CXT); \
555  emit_move_insn (gen_rtx_MEM (HImode, plus_constant (TRAMP, 6)),	\
556		  GEN_INT(0x4EF9));					\
557  emit_move_insn (gen_rtx_MEM (SImode, plus_constant (TRAMP, 8)), FNADDR); \
558  FINALIZE_TRAMPOLINE(TRAMP);						\
559}
560
561/* This is the library routine that is used to transfer control from the
562   trampoline to the actual nested function.  It is defined for backward
563   compatibility, for linking with object code that used the old trampoline
564   definition.
565
566   A colon is used with no explicit operands to cause the template string
567   to be scanned for %-constructs.
568
569   The function name __transfer_from_trampoline is not actually used.
570   The function definition just permits use of "asm with operands"
571   (though the operand list is empty).  */
572#define TRANSFER_FROM_TRAMPOLINE				\
573void								\
574__transfer_from_trampoline ()					\
575{								\
576  register char *a0 asm ("%a0");				\
577  asm (GLOBAL_ASM_OP "___trampoline");				\
578  asm ("___trampoline:");					\
579  asm volatile ("move%.l %0,%@" : : "m" (a0[22]));		\
580  asm volatile ("move%.l %1,%0" : "=a" (a0) : "m" (a0[18]));	\
581  asm ("rts":);							\
582}
583
584/* There are two registers that can always be eliminated on the m68k.
585   The frame pointer and the arg pointer can be replaced by either the
586   hard frame pointer or to the stack pointer, depending upon the
587   circumstances.  The hard frame pointer is not used before reload and
588   so it is not eligible for elimination.  */
589#define ELIMINABLE_REGS					\
590{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM },		\
591 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM },		\
592 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM }}
593
594#define CAN_ELIMINATE(FROM, TO) \
595  ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
596
597#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET)			\
598  (OFFSET) = m68k_initial_elimination_offset(FROM, TO)
599
600/* Addressing modes, and classification of registers for them.  */
601
602#define HAVE_POST_INCREMENT 1
603#define HAVE_PRE_DECREMENT 1
604
605/* Macros to check register numbers against specific register classes.  */
606
607#define REGNO_OK_FOR_INDEX_P(REGNO) \
608((REGNO) < 16 || (unsigned) reg_renumber[REGNO] < 16)
609#define REGNO_OK_FOR_BASE_P(REGNO) \
610(((REGNO) ^ 010) < 8 || (unsigned) (reg_renumber[REGNO] ^ 010) < 8)
611#define REGNO_OK_FOR_DATA_P(REGNO) \
612((REGNO) < 8 || (unsigned) reg_renumber[REGNO] < 8)
613#define REGNO_OK_FOR_FP_P(REGNO) \
614(((REGNO) ^ 020) < 8 || (unsigned) (reg_renumber[REGNO] ^ 020) < 8)
615
616/* Now macros that check whether X is a register and also,
617   strictly, whether it is in a specified class.
618
619   These macros are specific to the m68k, and may be used only
620   in code for printing assembler insns and in conditions for
621   define_optimization.  */
622
623/* 1 if X is a data register.  */
624#define DATA_REG_P(X) (REG_P (X) && REGNO_OK_FOR_DATA_P (REGNO (X)))
625
626/* 1 if X is an fp register.  */
627#define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
628
629/* 1 if X is an address register  */
630#define ADDRESS_REG_P(X) (REG_P (X) && REGNO_OK_FOR_BASE_P (REGNO (X)))
631
632
633#define MAX_REGS_PER_ADDRESS 2
634
635#define CONSTANT_ADDRESS_P(X)   \
636  (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF		\
637   || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST		\
638   || GET_CODE (X) == HIGH)
639
640/* Nonzero if the constant value X is a legitimate general operand.
641   It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.  */
642#define LEGITIMATE_CONSTANT_P(X) (GET_MODE (X) != XFmode)
643
644#ifndef REG_OK_STRICT
645#define PCREL_GENERAL_OPERAND_OK 0
646#else
647#define PCREL_GENERAL_OPERAND_OK (TARGET_PCREL)
648#endif
649
650#define LEGITIMATE_PIC_OPERAND_P(X)	\
651  (! symbolic_operand (X, VOIDmode)				\
652   || (GET_CODE (X) == SYMBOL_REF && SYMBOL_REF_FLAG (X))	\
653   || PCREL_GENERAL_OPERAND_OK)
654
655#ifndef REG_OK_STRICT
656
657/* Nonzero if X is a hard reg that can be used as an index
658   or if it is a pseudo reg.  */
659#define REG_OK_FOR_INDEX_P(X) ((REGNO (X) ^ 020) >= 8)
660/* Nonzero if X is a hard reg that can be used as a base reg
661   or if it is a pseudo reg.  */
662#define REG_OK_FOR_BASE_P(X) ((REGNO (X) & ~027) != 0)
663
664#else
665
666/* Nonzero if X is a hard reg that can be used as an index.  */
667#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
668/* Nonzero if X is a hard reg that can be used as a base reg.  */
669#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
670
671#endif
672
673/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
674   that is a valid memory address for an instruction.
675   The MODE argument is the machine mode for the MEM expression
676   that wants to use this address.
677
678   When generating PIC, an address involving a SYMBOL_REF is legitimate
679   if and only if it is the sum of pic_offset_table_rtx and the SYMBOL_REF.
680   We use LEGITIMATE_PIC_OPERAND_P to throw out the illegitimate addresses,
681   and we explicitly check for the sum of pic_offset_table_rtx and a SYMBOL_REF.
682
683   Likewise for a LABEL_REF when generating PIC.
684
685   The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS.  */
686
687/* Allow SUBREG everywhere we allow REG.  This results in better code.  It
688   also makes function inlining work when inline functions are called with
689   arguments that are SUBREGs.  */
690
691#define LEGITIMATE_BASE_REG_P(X)   \
692  ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X))	\
693   || (GET_CODE (X) == SUBREG				\
694       && GET_CODE (SUBREG_REG (X)) == REG		\
695       && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
696
697#define INDIRECTABLE_1_ADDRESS_P(X)  \
698  ((CONSTANT_ADDRESS_P (X) && (!flag_pic || LEGITIMATE_PIC_OPERAND_P (X))) \
699   || LEGITIMATE_BASE_REG_P (X)						\
700   || ((GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_INC)		\
701       && LEGITIMATE_BASE_REG_P (XEXP (X, 0)))				\
702   || (GET_CODE (X) == PLUS						\
703       && LEGITIMATE_BASE_REG_P (XEXP (X, 0))				\
704       && GET_CODE (XEXP (X, 1)) == CONST_INT				\
705       && (TARGET_68020							\
706	   || ((unsigned) INTVAL (XEXP (X, 1)) + 0x8000) < 0x10000))	\
707   || (GET_CODE (X) == PLUS && XEXP (X, 0) == pic_offset_table_rtx 	\
708       && flag_pic && GET_CODE (XEXP (X, 1)) == SYMBOL_REF)		\
709   || (GET_CODE (X) == PLUS && XEXP (X, 0) == pic_offset_table_rtx 	\
710       && flag_pic && GET_CODE (XEXP (X, 1)) == LABEL_REF))
711
712#define GO_IF_NONINDEXED_ADDRESS(X, ADDR)  \
713{ if (INDIRECTABLE_1_ADDRESS_P (X)) goto ADDR; }
714
715/* Only labels on dispatch tables are valid for indexing from.  */
716#define GO_IF_INDEXABLE_BASE(X, ADDR)				\
717{ rtx temp;							\
718  if (GET_CODE (X) == LABEL_REF					\
719      && (temp = next_nonnote_insn (XEXP (X, 0))) != 0		\
720      && GET_CODE (temp) == JUMP_INSN				\
721      && (GET_CODE (PATTERN (temp)) == ADDR_VEC			\
722	  || GET_CODE (PATTERN (temp)) == ADDR_DIFF_VEC))	\
723    goto ADDR;							\
724  if (LEGITIMATE_BASE_REG_P (X)) goto ADDR; }
725
726#define GO_IF_INDEXING(X, ADDR)	\
727{ if (GET_CODE (X) == PLUS && LEGITIMATE_INDEX_P (XEXP (X, 0)))		\
728    { GO_IF_INDEXABLE_BASE (XEXP (X, 1), ADDR); }			\
729  if (GET_CODE (X) == PLUS && LEGITIMATE_INDEX_P (XEXP (X, 1)))		\
730    { GO_IF_INDEXABLE_BASE (XEXP (X, 0), ADDR); } }
731
732#define GO_IF_INDEXED_ADDRESS(X, ADDR)	 \
733{ GO_IF_INDEXING (X, ADDR);						\
734  if (GET_CODE (X) == PLUS)						\
735    { if (GET_CODE (XEXP (X, 1)) == CONST_INT				\
736	  && (TARGET_68020 || (unsigned) INTVAL (XEXP (X, 1)) + 0x80 < 0x100))		\
737	{ rtx go_temp = XEXP (X, 0); GO_IF_INDEXING (go_temp, ADDR); }	\
738      if (GET_CODE (XEXP (X, 0)) == CONST_INT				\
739	  && (TARGET_68020 || (unsigned) INTVAL (XEXP (X, 0)) + 0x80 < 0x100))		\
740	{ rtx go_temp = XEXP (X, 1); GO_IF_INDEXING (go_temp, ADDR); } } }
741
742/* ColdFire/5200 does not allow HImode index registers.  */
743#define LEGITIMATE_INDEX_REG_P(X)   \
744  ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X))	\
745   || (! TARGET_COLDFIRE					\
746       && GET_CODE (X) == SIGN_EXTEND			\
747       && GET_CODE (XEXP (X, 0)) == REG			\
748       && GET_MODE (XEXP (X, 0)) == HImode		\
749       && REG_OK_FOR_INDEX_P (XEXP (X, 0)))		\
750   || (GET_CODE (X) == SUBREG				\
751       && GET_CODE (SUBREG_REG (X)) == REG		\
752       && REG_OK_FOR_INDEX_P (SUBREG_REG (X))))
753
754#define LEGITIMATE_INDEX_P(X)   \
755   (LEGITIMATE_INDEX_REG_P (X)				\
756    || ((TARGET_68020 || TARGET_COLDFIRE) && GET_CODE (X) == MULT \
757	&& LEGITIMATE_INDEX_REG_P (XEXP (X, 0))		\
758	&& GET_CODE (XEXP (X, 1)) == CONST_INT		\
759	&& (INTVAL (XEXP (X, 1)) == 2			\
760	    || INTVAL (XEXP (X, 1)) == 4		\
761	    || (INTVAL (XEXP (X, 1)) == 8 && !TARGET_COLDFIRE))))
762
763/* If pic, we accept INDEX+LABEL, which is what do_tablejump makes.  */
764#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)				\
765{ GO_IF_NONINDEXED_ADDRESS (X, ADDR);					\
766  GO_IF_INDEXED_ADDRESS (X, ADDR);					\
767  if (flag_pic && MODE == CASE_VECTOR_MODE && GET_CODE (X) == PLUS	\
768      && LEGITIMATE_INDEX_P (XEXP (X, 0))				\
769      && GET_CODE (XEXP (X, 1)) == LABEL_REF)				\
770    goto ADDR; }
771
772/* Don't call memory_address_noforce for the address to fetch
773   the switch offset.  This address is ok as it stands (see above),
774   but memory_address_noforce would alter it.  */
775#define PIC_CASE_VECTOR_ADDRESS(index) index
776
777/* For the 68000, we handle X+REG by loading X into a register R and
778   using R+REG.  R will go in an address reg and indexing will be used.
779   However, if REG is a broken-out memory address or multiplication,
780   nothing needs to be done because REG can certainly go in an address reg.  */
781#define COPY_ONCE(Y) if (!copied) { Y = copy_rtx (Y); copied = ch = 1; }
782#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN)   \
783{ register int ch = (X) != (OLDX);					\
784  if (GET_CODE (X) == PLUS)						\
785    { int copied = 0;							\
786      if (GET_CODE (XEXP (X, 0)) == MULT)				\
787	{ COPY_ONCE (X); XEXP (X, 0) = force_operand (XEXP (X, 0), 0);}	\
788      if (GET_CODE (XEXP (X, 1)) == MULT)				\
789	{ COPY_ONCE (X); XEXP (X, 1) = force_operand (XEXP (X, 1), 0);}	\
790      if (ch && GET_CODE (XEXP (X, 1)) == REG				\
791	  && GET_CODE (XEXP (X, 0)) == REG)				\
792	goto WIN;							\
793      if (ch) { GO_IF_LEGITIMATE_ADDRESS (MODE, X, WIN); }		\
794      if (GET_CODE (XEXP (X, 0)) == REG					\
795	       || (GET_CODE (XEXP (X, 0)) == SIGN_EXTEND		\
796		   && GET_CODE (XEXP (XEXP (X, 0), 0)) == REG		\
797		   && GET_MODE (XEXP (XEXP (X, 0), 0)) == HImode))	\
798	{ register rtx temp = gen_reg_rtx (Pmode);			\
799	  register rtx val = force_operand (XEXP (X, 1), 0);		\
800	  emit_move_insn (temp, val);					\
801	  COPY_ONCE (X);						\
802	  XEXP (X, 1) = temp;						\
803	  goto WIN; }							\
804      else if (GET_CODE (XEXP (X, 1)) == REG				\
805	       || (GET_CODE (XEXP (X, 1)) == SIGN_EXTEND		\
806		   && GET_CODE (XEXP (XEXP (X, 1), 0)) == REG		\
807		   && GET_MODE (XEXP (XEXP (X, 1), 0)) == HImode))	\
808	{ register rtx temp = gen_reg_rtx (Pmode);			\
809	  register rtx val = force_operand (XEXP (X, 0), 0);		\
810	  emit_move_insn (temp, val);					\
811	  COPY_ONCE (X);						\
812	  XEXP (X, 0) = temp;						\
813	  goto WIN; }}}
814
815/* On the 68000, only predecrement and postincrement address depend thus
816   (the amount of decrement or increment being the length of the operand).  */
817#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)	\
818 if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == PRE_DEC) goto LABEL
819
820#define CASE_VECTOR_MODE HImode
821#define CASE_VECTOR_PC_RELATIVE 1
822
823#define DEFAULT_SIGNED_CHAR 1
824#define MOVE_MAX 4
825#define SLOW_BYTE_ACCESS 0
826
827#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
828
829#define STORE_FLAG_VALUE (-1)
830
831#define Pmode SImode
832#define FUNCTION_MODE QImode
833
834
835/* Tell final.c how to eliminate redundant test instructions.  */
836
837/* Here we define machine-dependent flags and fields in cc_status
838   (see `conditions.h').  */
839
840/* Set if the cc value is actually in the 68881, so a floating point
841   conditional branch must be output.  */
842#define CC_IN_68881 04000
843
844/* On the 68000, all the insns to store in an address register fail to
845   set the cc's.  However, in some cases these instructions can make it
846   possibly invalid to use the saved cc's.  In those cases we clear out
847   some or all of the saved cc's so they won't be used.  */
848#define NOTICE_UPDATE_CC(EXP,INSN) notice_update_cc (EXP, INSN)
849
850#define OUTPUT_JUMP(NORMAL, FLOAT, NO_OV)  \
851do { if (cc_prev_status.flags & CC_IN_68881)			\
852    return FLOAT;						\
853  if (cc_prev_status.flags & CC_NO_OVERFLOW)			\
854    return NO_OV;						\
855  return NORMAL; } while (0)
856
857/* Control the assembler format that we output.  */
858
859#define ASM_APP_ON "#APP\n"
860#define ASM_APP_OFF "#NO_APP\n"
861#define TEXT_SECTION_ASM_OP "\t.text"
862#define DATA_SECTION_ASM_OP "\t.data"
863#define GLOBAL_ASM_OP "\t.globl\t"
864#define REGISTER_PREFIX ""
865#define LOCAL_LABEL_PREFIX ""
866#define USER_LABEL_PREFIX "_"
867#define IMMEDIATE_PREFIX "#"
868
869#define REGISTER_NAMES \
870{REGISTER_PREFIX"d0", REGISTER_PREFIX"d1", REGISTER_PREFIX"d2",	\
871 REGISTER_PREFIX"d3", REGISTER_PREFIX"d4", REGISTER_PREFIX"d5",	\
872 REGISTER_PREFIX"d6", REGISTER_PREFIX"d7",			\
873 REGISTER_PREFIX"a0", REGISTER_PREFIX"a1", REGISTER_PREFIX"a2", \
874 REGISTER_PREFIX"a3", REGISTER_PREFIX"a4", REGISTER_PREFIX"a5", \
875 REGISTER_PREFIX"a6", REGISTER_PREFIX"sp",			\
876 REGISTER_PREFIX"fp0", REGISTER_PREFIX"fp1", REGISTER_PREFIX"fp2", \
877 REGISTER_PREFIX"fp3", REGISTER_PREFIX"fp4", REGISTER_PREFIX"fp5", \
878 REGISTER_PREFIX"fp6", REGISTER_PREFIX"fp7", REGISTER_PREFIX"argptr" }
879
880#define M68K_FP_REG_NAME REGISTER_PREFIX"fp"
881
882/* Return a register name by index, handling %fp nicely.
883   We don't replace %fp for targets that don't map it to %a6
884   since it may confuse GAS.  */
885#define M68K_REGNAME(r) ( \
886  ((FRAME_POINTER_REGNUM == 14) \
887    && ((r) == FRAME_POINTER_REGNUM) \
888    && frame_pointer_needed) ? \
889    M68K_FP_REG_NAME : reg_names[(r)])
890
891/* On the Sun-3, the floating point registers have numbers
892   18 to 25, not 16 to 23 as they do in the compiler.  */
893#define DBX_REGISTER_NUMBER(REGNO) ((REGNO) < 16 ? (REGNO) : (REGNO) + 2)
894
895/* Before the prologue, RA is at 0(%sp).  */
896#define INCOMING_RETURN_ADDR_RTX \
897  gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
898
899/* We must not use the DBX register numbers for the DWARF 2 CFA column
900   numbers because that maps to numbers beyond FIRST_PSEUDO_REGISTER.
901   Instead use the identity mapping.  */
902#define DWARF_FRAME_REGNUM(REG) REG
903
904/* Before the prologue, the top of the frame is at 4(%sp).  */
905#define INCOMING_FRAME_SP_OFFSET 4
906
907/* Describe how we implement __builtin_eh_return.  */
908#define EH_RETURN_DATA_REGNO(N) \
909  ((N) < 2 ? (N) : INVALID_REGNUM)
910#define EH_RETURN_STACKADJ_RTX	gen_rtx_REG (Pmode, 8)
911#define EH_RETURN_HANDLER_RTX					    \
912  gen_rtx_MEM (Pmode,						    \
913	       gen_rtx_PLUS (Pmode, arg_pointer_rtx,		    \
914			     plus_constant (EH_RETURN_STACKADJ_RTX, \
915					    UNITS_PER_WORD)))
916
917/* Select a format to encode pointers in exception handling data.  CODE
918   is 0 for data, 1 for code labels, 2 for function pointers.  GLOBAL is
919   true if the symbol may be affected by dynamic relocations.  */
920#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL)			   \
921  (flag_pic								   \
922   ? ((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4 \
923   : DW_EH_PE_absptr)
924
925#define ASM_OUTPUT_LABELREF(FILE,NAME)	\
926  asm_fprintf (FILE, "%U%s", NAME)
927
928#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM)	\
929  sprintf (LABEL, "*%s%s%ld", LOCAL_LABEL_PREFIX, PREFIX, (long)(NUM))
930
931#define ASM_OUTPUT_REG_PUSH(FILE,REGNO)  \
932  asm_fprintf (FILE, "\tmovel %s,%Rsp@-\n", reg_names[REGNO])
933#define ASM_OUTPUT_REG_POP(FILE,REGNO)  \
934  asm_fprintf (FILE, "\tmovel %Rsp@+,%s\n", reg_names[REGNO])
935
936/* The m68k does not use absolute case-vectors, but we must define this macro
937   anyway.  */
938#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)  \
939  asm_fprintf (FILE, "\t.long %LL%d\n", VALUE)
940
941#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL)  \
942  asm_fprintf (FILE, "\t.word %LL%d-%LL%d\n", VALUE, REL)
943
944/* We don't have a way to align to more than a two-byte boundary, so do the
945   best we can and don't complain.  */
946#define ASM_OUTPUT_ALIGN(FILE,LOG)	\
947  if ((LOG) >= 1)			\
948    fprintf (FILE, "\t.even\n");
949
950#define ASM_OUTPUT_SKIP(FILE,SIZE)  \
951  fprintf (FILE, "\t.skip %u\n", (int)(SIZE))
952
953#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED)  \
954( fputs (".comm ", (FILE)),			\
955  assemble_name ((FILE), (NAME)),		\
956  fprintf ((FILE), ",%u\n", (int)(ROUNDED)))
957
958#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED)  \
959( fputs (".lcomm ", (FILE)),			\
960  assemble_name ((FILE), (NAME)),		\
961  fprintf ((FILE), ",%u\n", (int)(ROUNDED)))
962
963/* Output a float value (represented as a C double) as an immediate operand.
964   This macro is m68k-specific.  */
965#define ASM_OUTPUT_FLOAT_OPERAND(CODE,FILE,VALUE)		\
966 do {								\
967      if (CODE == 'f')						\
968        {							\
969          char dstr[30];					\
970	  real_to_decimal (dstr, &(VALUE), sizeof (dstr), 9, 0); \
971          asm_fprintf ((FILE), "%I0r%s", dstr);			\
972        }							\
973      else							\
974        {							\
975          long l;						\
976          REAL_VALUE_TO_TARGET_SINGLE (VALUE, l);		\
977          asm_fprintf ((FILE), "%I0x%lx", l);			\
978        }							\
979     } while (0)
980
981/* Output a double value (represented as a C double) as an immediate operand.
982   This macro is m68k-specific.  */
983#define ASM_OUTPUT_DOUBLE_OPERAND(FILE,VALUE)				\
984 do { char dstr[30];							\
985      real_to_decimal (dstr, &(VALUE), sizeof (dstr), 0, 1);		\
986      asm_fprintf (FILE, "%I0r%s", dstr);				\
987    } while (0)
988
989/* Note, long double immediate operands are not actually
990   generated by m68k.md.  */
991#define ASM_OUTPUT_LONG_DOUBLE_OPERAND(FILE,VALUE)			\
992 do { char dstr[30];							\
993      real_to_decimal (dstr, &(VALUE), sizeof (dstr), 0, 1);		\
994      asm_fprintf (FILE, "%I0r%s", dstr);				\
995    } while (0)
996
997/* On the 68000, we use several CODE characters:
998   '.' for dot needed in Motorola-style opcode names.
999   '-' for an operand pushing on the stack:
1000       sp@-, -(sp) or -(%sp) depending on the style of syntax.
1001   '+' for an operand pushing on the stack:
1002       sp@+, (sp)+ or (%sp)+ depending on the style of syntax.
1003   '@' for a reference to the top word on the stack:
1004       sp@, (sp) or (%sp) depending on the style of syntax.
1005   '#' for an immediate operand prefix (# in MIT and Motorola syntax
1006       but & in SGS syntax).
1007   '!' for the fpcr register (used in some float-to-fixed conversions).
1008   '$' for the letter `s' in an op code, but only on the 68040.
1009   '&' for the letter `d' in an op code, but only on the 68040.
1010   '/' for register prefix needed by longlong.h.
1011
1012   'b' for byte insn (no effect, on the Sun; this is for the ISI).
1013   'd' to force memory addressing to be absolute, not relative.
1014   'f' for float insn (print a CONST_DOUBLE as a float rather than in hex)
1015   'o' for operands to go directly to output_operand_address (bypassing
1016       print_operand_address--used only for SYMBOL_REFs under TARGET_PCREL)
1017   'x' for float insn (print a CONST_DOUBLE as a float rather than in hex),
1018       or print pair of registers as rx:ry.  */
1019
1020#define PRINT_OPERAND_PUNCT_VALID_P(CODE)				\
1021  ((CODE) == '.' || (CODE) == '#' || (CODE) == '-'			\
1022   || (CODE) == '+' || (CODE) == '@' || (CODE) == '!'			\
1023   || (CODE) == '$' || (CODE) == '&' || (CODE) == '/')
1024
1025
1026/* See m68k.c for the m68k specific codes.  */
1027#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1028
1029#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
1030
1031/* Variables in m68k.c */
1032extern const char *m68k_library_id_string;
1033extern int m68k_last_compare_had_fp_operands;
1034