1/* Target macros for the FRV port of GCC.
2   Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005
3   Free Software Foundation, Inc.
4   Contributed by Red Hat Inc.
5
6   This file is part of GCC.
7
8   GCC is free software; you can redistribute it and/or modify it
9   under the terms of the GNU General Public License as published
10   by the Free Software Foundation; either version 2, or (at your
11   option) any later version.
12
13   GCC is distributed in the hope that it will be useful, but WITHOUT
14   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15   or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
16   License for more details.
17
18   You should have received a copy of the GNU General Public License
19   along with GCC; see the file COPYING.  If not, write to the Free
20   Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21   02110-1301, USA.  */
22
23#ifndef __FRV_H__
24#define __FRV_H__
25
26/* Frv general purpose macros.  */
27/* Align an address.  */
28#define ADDR_ALIGN(addr,align) (((addr) + (align) - 1) & ~((align) - 1))
29
30/* Return true if a value is inside a range.  */
31#define IN_RANGE_P(VALUE, LOW, HIGH)				\
32  (   (((HOST_WIDE_INT)(VALUE)) >= (HOST_WIDE_INT)(LOW))	\
33   && (((HOST_WIDE_INT)(VALUE)) <= ((HOST_WIDE_INT)(HIGH))))
34
35
36/* Driver configuration.  */
37
38/* A C expression which determines whether the option `-CHAR' takes arguments.
39   The value should be the number of arguments that option takes-zero, for many
40   options.
41
42   By default, this macro is defined to handle the standard options properly.
43   You need not define it unless you wish to add additional options which take
44   arguments.
45
46   Defined in svr4.h.  */
47#undef  SWITCH_TAKES_ARG
48#define SWITCH_TAKES_ARG(CHAR)                                          \
49  (DEFAULT_SWITCH_TAKES_ARG (CHAR) || (CHAR) == 'G')
50
51/* A C expression which determines whether the option `-NAME' takes arguments.
52   The value should be the number of arguments that option takes-zero, for many
53   options.  This macro rather than `SWITCH_TAKES_ARG' is used for
54   multi-character option names.
55
56   By default, this macro is defined as `DEFAULT_WORD_SWITCH_TAKES_ARG', which
57   handles the standard options properly.  You need not define
58   `WORD_SWITCH_TAKES_ARG' unless you wish to add additional options which take
59   arguments.  Any redefinition should call `DEFAULT_WORD_SWITCH_TAKES_ARG' and
60   then check for additional options.
61
62   Defined in svr4.h.  */
63#undef WORD_SWITCH_TAKES_ARG
64
65/* -fpic and -fPIC used to imply the -mlibrary-pic multilib, but with
66    FDPIC which multilib to use depends on whether FDPIC is in use or
67    not.  The trick we use is to introduce -multilib-library-pic as a
68    pseudo-flag that selects the library-pic multilib, and map fpic
69    and fPIC to it only if fdpic is not selected.  Also, if fdpic is
70    selected and no PIC/PIE options are present, we imply -fPIE.
71    Otherwise, if -fpic or -fPIC are enabled and we're optimizing for
72    speed, or if we have -On with n>=3, enable inlining of PLTs.  As
73    for -mgprel-ro, we want to enable it by default, but not for -fpic or
74    -fpie.  */
75
76#define DRIVER_SELF_SPECS SUBTARGET_DRIVER_SELF_SPECS \
77"%{mno-pack:\
78   %{!mhard-float:-msoft-float}\
79   %{!mmedia:-mno-media}}\
80 %{!mfdpic:%{fpic|fPIC: -multilib-library-pic}}\
81 %{mfdpic:%{!fpic:%{!fpie:%{!fPIC:%{!fPIE:\
82   	    %{!fno-pic:%{!fno-pie:%{!fno-PIC:%{!fno-PIE:-fPIE}}}}}}}} \
83	  %{!mno-inline-plt:%{O*:%{!O0:%{!Os:%{fpic|fPIC:-minline-plt} \
84                    %{!fpic:%{!fPIC:%{!O:%{!O1:%{!O2:-minline-plt}}}}}}}}} \
85	  %{!mno-gprel-ro:%{!fpic:%{!fpie:-mgprel-ro}}}} \
86"
87#ifndef SUBTARGET_DRIVER_SELF_SPECS
88# define SUBTARGET_DRIVER_SELF_SPECS
89#endif
90
91/* A C string constant that tells the GCC driver program options to pass to
92   the assembler.  It can also specify how to translate options you give to GNU
93   CC into options for GCC to pass to the assembler.  See the file `sun3.h'
94   for an example of this.
95
96   Do not define this macro if it does not need to do anything.
97
98   Defined in svr4.h.  */
99#undef  ASM_SPEC
100#define ASM_SPEC "\
101%{G*} %{v} %{n} %{T} %{Ym,*} %{Yd,*} %{Wa,*:%*} \
102%{mtomcat-stats} \
103%{!mno-eflags: \
104    %{mcpu=*} \
105    %{mgpr-*} %{mfpr-*} \
106    %{msoft-float} %{mhard-float} \
107    %{mdword} %{mno-dword} \
108    %{mdouble} %{mno-double} \
109    %{mmedia} %{mno-media} \
110    %{mmuladd} %{mno-muladd} \
111    %{mpack} %{mno-pack} \
112    %{mno-fdpic:-mnopic} %{mfdpic} \
113    %{fpic|fpie: -mpic} %{fPIC|fPIE: -mPIC} %{mlibrary-pic}}"
114
115/* Another C string constant used much like `LINK_SPEC'.  The difference
116   between the two is that `STARTFILE_SPEC' is used at the very beginning of
117   the command given to the linker.
118
119   If this macro is not defined, a default is provided that loads the standard
120   C startup file from the usual place.  See `gcc.c'.
121
122   Defined in svr4.h.  */
123#undef  STARTFILE_SPEC
124#define STARTFILE_SPEC "crt0%O%s frvbegin%O%s"
125
126/* Another C string constant used much like `LINK_SPEC'.  The difference
127   between the two is that `ENDFILE_SPEC' is used at the very end of the
128   command given to the linker.
129
130   Do not define this macro if it does not need to do anything.
131
132   Defined in svr4.h.  */
133#undef  ENDFILE_SPEC
134#define ENDFILE_SPEC "frvend%O%s"
135
136
137#define MASK_DEFAULT_FRV	\
138  (MASK_MEDIA			\
139   | MASK_DOUBLE		\
140   | MASK_MULADD		\
141   | MASK_DWORD			\
142   | MASK_PACK)
143
144#define MASK_DEFAULT_FR500 \
145  (MASK_MEDIA | MASK_DWORD | MASK_PACK)
146
147#define MASK_DEFAULT_FR550 \
148  (MASK_MEDIA | MASK_DWORD | MASK_PACK)
149
150#define MASK_DEFAULT_FR450	\
151  (MASK_GPR_32			\
152   | MASK_FPR_32		\
153   | MASK_MEDIA			\
154   | MASK_SOFT_FLOAT		\
155   | MASK_DWORD			\
156   | MASK_PACK)
157
158#define MASK_DEFAULT_FR400	\
159  (MASK_GPR_32			\
160   | MASK_FPR_32		\
161   | MASK_MEDIA			\
162   | MASK_ACC_4			\
163   | MASK_SOFT_FLOAT		\
164   | MASK_DWORD			\
165   | MASK_PACK)
166
167#define MASK_DEFAULT_SIMPLE \
168  (MASK_GPR_32 | MASK_SOFT_FLOAT)
169
170/* A C string constant that tells the GCC driver program options to pass to
171   `cc1'.  It can also specify how to translate options you give to GCC into
172   options for GCC to pass to the `cc1'.
173
174   Do not define this macro if it does not need to do anything.  */
175/* For ABI compliance, we need to put bss data into the normal data section.  */
176#define CC1_SPEC "%{G*}"
177
178/* A C string constant that tells the GCC driver program options to pass to
179   the linker.  It can also specify how to translate options you give to GCC
180   into options for GCC to pass to the linker.
181
182   Do not define this macro if it does not need to do anything.
183
184   Defined in svr4.h.  */
185/* Override the svr4.h version with one that dispenses without the svr4
186   shared library options, notably -G.  */
187#undef	LINK_SPEC
188#define LINK_SPEC "\
189%{h*} %{v:-V} \
190%{b} \
191%{mfdpic:-melf32frvfd -z text} \
192%{static:-dn -Bstatic} \
193%{shared:-Bdynamic} \
194%{symbolic:-Bsymbolic} \
195%{G*} \
196%{YP,*} \
197%{Qy:} %{!Qn:-Qy}"
198
199/* Another C string constant used much like `LINK_SPEC'.  The difference
200   between the two is that `LIB_SPEC' is used at the end of the command given
201   to the linker.
202
203   If this macro is not defined, a default is provided that loads the standard
204   C library from the usual place.  See `gcc.c'.
205
206   Defined in svr4.h.  */
207
208#undef  LIB_SPEC
209#define LIB_SPEC "--start-group -lc -lsim --end-group"
210
211#ifndef CPU_TYPE
212#define CPU_TYPE		FRV_CPU_FR500
213#endif
214
215/* Run-time target specifications */
216
217#define TARGET_CPU_CPP_BUILTINS()					\
218  do									\
219    {									\
220      int issue_rate;							\
221									\
222      builtin_define ("__frv__");					\
223      builtin_assert ("machine=frv");					\
224									\
225      issue_rate = frv_issue_rate ();					\
226      if (issue_rate > 1)						\
227	builtin_define_with_int_value ("__FRV_VLIW__", issue_rate);	\
228      builtin_define_with_int_value ("__FRV_GPR__", NUM_GPRS);		\
229      builtin_define_with_int_value ("__FRV_FPR__", NUM_FPRS);		\
230      builtin_define_with_int_value ("__FRV_ACC__", NUM_ACCS);		\
231									\
232      switch (frv_cpu_type)						\
233	{								\
234	case FRV_CPU_GENERIC:						\
235	  builtin_define ("__CPU_GENERIC__");				\
236	  break;							\
237	case FRV_CPU_FR550:						\
238	  builtin_define ("__CPU_FR550__");				\
239	  break;							\
240	case FRV_CPU_FR500:						\
241	case FRV_CPU_TOMCAT:						\
242	  builtin_define ("__CPU_FR500__");				\
243	  break;							\
244	case FRV_CPU_FR450:						\
245	  builtin_define ("__CPU_FR450__");				\
246	  break;							\
247	case FRV_CPU_FR405:						\
248	  builtin_define ("__CPU_FR405__");				\
249	  break;							\
250	case FRV_CPU_FR400:						\
251	  builtin_define ("__CPU_FR400__");				\
252	  break;							\
253	case FRV_CPU_FR300:						\
254	case FRV_CPU_SIMPLE:						\
255	  builtin_define ("__CPU_FR300__");				\
256	  break;							\
257	}								\
258									\
259      if (TARGET_HARD_FLOAT)						\
260	builtin_define ("__FRV_HARD_FLOAT__");				\
261      if (TARGET_DWORD)							\
262	builtin_define ("__FRV_DWORD__");				\
263      if (TARGET_FDPIC)							\
264	builtin_define ("__FRV_FDPIC__");				\
265      if (flag_leading_underscore > 0)					\
266	builtin_define ("__FRV_UNDERSCORE__");				\
267    }									\
268  while (0)
269
270
271#define TARGET_HAS_FPRS		(TARGET_HARD_FLOAT || TARGET_MEDIA)
272
273#define NUM_GPRS		(TARGET_GPR_32? 32 : 64)
274#define NUM_FPRS		(!TARGET_HAS_FPRS? 0 : TARGET_FPR_32? 32 : 64)
275#define NUM_ACCS		(!TARGET_MEDIA? 0 : TARGET_ACC_4? 4 : 8)
276
277/* X is a valid accumulator number if (X & ACC_MASK) == X.  */
278#define ACC_MASK						\
279  (!TARGET_MEDIA ? 0						\
280   : TARGET_ACC_4 ? 3						\
281   : frv_cpu_type == FRV_CPU_FR450 ? 11				\
282   : 7)
283
284/* Macros to identify the blend of media instructions available.  Revision 1
285   is the one found on the FR500.  Revision 2 includes the changes made for
286   the FR400.
287
288   Treat the generic processor as a revision 1 machine for now, for
289   compatibility with earlier releases.  */
290
291#define TARGET_MEDIA_REV1					\
292  (TARGET_MEDIA							\
293   && (frv_cpu_type == FRV_CPU_GENERIC				\
294       || frv_cpu_type == FRV_CPU_FR500))
295
296#define TARGET_MEDIA_REV2					\
297  (TARGET_MEDIA							\
298   && (frv_cpu_type == FRV_CPU_FR400				\
299       || frv_cpu_type == FRV_CPU_FR405				\
300       || frv_cpu_type == FRV_CPU_FR450				\
301       || frv_cpu_type == FRV_CPU_FR550))
302
303#define TARGET_MEDIA_FR450					\
304  (frv_cpu_type == FRV_CPU_FR450)
305
306#define TARGET_FR500_FR550_BUILTINS				\
307   (frv_cpu_type == FRV_CPU_FR500				\
308    || frv_cpu_type == FRV_CPU_FR550)
309
310#define TARGET_FR405_BUILTINS					\
311  (frv_cpu_type == FRV_CPU_FR405				\
312   || frv_cpu_type == FRV_CPU_FR450)
313
314#ifndef HAVE_AS_TLS
315#define HAVE_AS_TLS 0
316#endif
317
318/* This macro is a C statement to print on `stderr' a string describing the
319   particular machine description choice.  Every machine description should
320   define `TARGET_VERSION'.  For example:
321
322        #ifdef MOTOROLA
323        #define TARGET_VERSION \
324          fprintf (stderr, " (68k, Motorola syntax)");
325        #else
326        #define TARGET_VERSION \
327          fprintf (stderr, " (68k, MIT syntax)");
328        #endif  */
329#define TARGET_VERSION fprintf (stderr, _(" (frv)"))
330
331/* Sometimes certain combinations of command options do not make sense on a
332   particular target machine.  You can define a macro `OVERRIDE_OPTIONS' to
333   take account of this.  This macro, if defined, is executed once just after
334   all the command options have been parsed.
335
336   Don't use this macro to turn on various extra optimizations for `-O'.  That
337   is what `OPTIMIZATION_OPTIONS' is for.  */
338
339#define OVERRIDE_OPTIONS frv_override_options ()
340
341/* Some machines may desire to change what optimizations are performed for
342   various optimization levels.  This macro, if defined, is executed once just
343   after the optimization level is determined and before the remainder of the
344   command options have been parsed.  Values set in this macro are used as the
345   default values for the other command line options.
346
347   LEVEL is the optimization level specified; 2 if `-O2' is specified, 1 if
348   `-O' is specified, and 0 if neither is specified.
349
350   SIZE is nonzero if `-Os' is specified, 0 otherwise.
351
352   You should not use this macro to change options that are not
353   machine-specific.  These should uniformly selected by the same optimization
354   level on all supported machines.  Use this macro to enable machine-specific
355   optimizations.
356
357   *Do not examine `write_symbols' in this macro!* The debugging options are
358   *not supposed to alter the generated code.  */
359#define OPTIMIZATION_OPTIONS(LEVEL,SIZE) frv_optimization_options (LEVEL, SIZE)
360
361
362/* Define this macro if debugging can be performed even without a frame
363   pointer.  If this macro is defined, GCC will turn on the
364   `-fomit-frame-pointer' option whenever `-O' is specified.  */
365/* Frv needs a specific frame layout that includes the frame pointer.  */
366
367#define CAN_DEBUG_WITHOUT_FP
368
369#define LABEL_ALIGN_AFTER_BARRIER(LABEL) (TARGET_ALIGN_LABELS ? 3 : 0)
370
371/* Small Data Area Support.  */
372/* Maximum size of variables that go in .sdata/.sbss.
373   The -msdata=foo switch also controls how small variables are handled.  */
374#ifndef SDATA_DEFAULT_SIZE
375#define SDATA_DEFAULT_SIZE 8
376#endif
377
378
379/* Storage Layout */
380
381/* Define this macro to have the value 1 if the most significant bit in a byte
382   has the lowest number; otherwise define it to have the value zero.  This
383   means that bit-field instructions count from the most significant bit.  If
384   the machine has no bit-field instructions, then this must still be defined,
385   but it doesn't matter which value it is defined to.  This macro need not be
386   a constant.
387
388   This macro does not affect the way structure fields are packed into bytes or
389   words; that is controlled by `BYTES_BIG_ENDIAN'.  */
390#define BITS_BIG_ENDIAN 1
391
392/* Define this macro to have the value 1 if the most significant byte in a word
393   has the lowest number.  This macro need not be a constant.  */
394#define BYTES_BIG_ENDIAN 1
395
396/* Define this macro to have the value 1 if, in a multiword object, the most
397   significant word has the lowest number.  This applies to both memory
398   locations and registers; GCC fundamentally assumes that the order of
399   words in memory is the same as the order in registers.  This macro need not
400   be a constant.  */
401#define WORDS_BIG_ENDIAN 1
402
403/* Number of storage units in a word; normally 4.  */
404#define UNITS_PER_WORD 4
405
406/* A macro to update MODE and UNSIGNEDP when an object whose type is TYPE and
407   which has the specified mode and signedness is to be stored in a register.
408   This macro is only called when TYPE is a scalar type.
409
410   On most RISC machines, which only have operations that operate on a full
411   register, define this macro to set M to `word_mode' if M is an integer mode
412   narrower than `BITS_PER_WORD'.  In most cases, only integer modes should be
413   widened because wider-precision floating-point operations are usually more
414   expensive than their narrower counterparts.
415
416   For most machines, the macro definition does not change UNSIGNEDP.  However,
417   some machines, have instructions that preferentially handle either signed or
418   unsigned quantities of certain modes.  For example, on the DEC Alpha, 32-bit
419   loads from memory and 32-bit add instructions sign-extend the result to 64
420   bits.  On such machines, set UNSIGNEDP according to which kind of extension
421   is more efficient.
422
423   Do not define this macro if it would never modify MODE.  */
424#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE)	\
425  do						\
426    {						\
427      if (GET_MODE_CLASS (MODE) == MODE_INT	\
428	  && GET_MODE_SIZE (MODE) < 4)		\
429	(MODE) = SImode;			\
430    }						\
431  while (0)
432
433/* Normal alignment required for function parameters on the stack, in bits.
434   All stack parameters receive at least this much alignment regardless of data
435   type.  On most machines, this is the same as the size of an integer.  */
436#define PARM_BOUNDARY 32
437
438/* Define this macro if you wish to preserve a certain alignment for the stack
439   pointer.  The definition is a C expression for the desired alignment
440   (measured in bits).
441
442   If `PUSH_ROUNDING' is not defined, the stack will always be aligned to the
443   specified boundary.  If `PUSH_ROUNDING' is defined and specifies a less
444   strict alignment than `STACK_BOUNDARY', the stack may be momentarily
445   unaligned while pushing arguments.  */
446#define STACK_BOUNDARY 64
447
448/* Alignment required for a function entry point, in bits.  */
449#define FUNCTION_BOUNDARY 128
450
451/* Biggest alignment that any data type can require on this machine,
452   in bits.  */
453#define BIGGEST_ALIGNMENT 64
454
455/* @@@ A hack, needed because libobjc wants to use ADJUST_FIELD_ALIGN for
456   some reason.  */
457#ifdef IN_TARGET_LIBS
458#define BIGGEST_FIELD_ALIGNMENT 64
459#else
460/* An expression for the alignment of a structure field FIELD if the
461   alignment computed in the usual way is COMPUTED.  GCC uses this
462   value instead of the value in `BIGGEST_ALIGNMENT' or
463   `BIGGEST_FIELD_ALIGNMENT', if defined, for structure fields only.  */
464#define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) 				\
465  frv_adjust_field_align (FIELD, COMPUTED)
466#endif
467
468/* If defined, a C expression to compute the alignment for a static variable.
469   TYPE is the data type, and ALIGN is the alignment that the object
470   would ordinarily have.  The value of this macro is used instead of that
471   alignment to align the object.
472
473   If this macro is not defined, then ALIGN is used.
474
475   One use of this macro is to increase alignment of medium-size data to make
476   it all fit in fewer cache lines.  Another is to cause character arrays to be
477   word-aligned so that `strcpy' calls that copy constants to character arrays
478   can be done inline.  */
479#define DATA_ALIGNMENT(TYPE, ALIGN)		\
480  (TREE_CODE (TYPE) == ARRAY_TYPE		\
481   && TYPE_MODE (TREE_TYPE (TYPE)) == QImode	\
482   && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
483
484/* If defined, a C expression to compute the alignment given to a constant that
485   is being placed in memory.  CONSTANT is the constant and ALIGN is the
486   alignment that the object would ordinarily have.  The value of this macro is
487   used instead of that alignment to align the object.
488
489   If this macro is not defined, then ALIGN is used.
490
491   The typical use of this macro is to increase alignment for string constants
492   to be word aligned so that `strcpy' calls that copy constants can be done
493   inline.  */
494#define CONSTANT_ALIGNMENT(EXP, ALIGN)  \
495  (TREE_CODE (EXP) == STRING_CST	\
496   && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
497
498/* Define this macro to be the value 1 if instructions will fail to work if
499   given data not on the nominal alignment.  If instructions will merely go
500   slower in that case, define this macro as 0.  */
501#define STRICT_ALIGNMENT 1
502
503/* Define this if you wish to imitate the way many other C compilers handle
504   alignment of bitfields and the structures that contain them.
505
506   The behavior is that the type written for a bit-field (`int', `short', or
507   other integer type) imposes an alignment for the entire structure, as if the
508   structure really did contain an ordinary field of that type.  In addition,
509   the bit-field is placed within the structure so that it would fit within such
510   a field, not crossing a boundary for it.
511
512   Thus, on most machines, a bit-field whose type is written as `int' would not
513   cross a four-byte boundary, and would force four-byte alignment for the
514   whole structure.  (The alignment used may not be four bytes; it is
515   controlled by the other alignment parameters.)
516
517   If the macro is defined, its definition should be a C expression; a nonzero
518   value for the expression enables this behavior.
519
520   Note that if this macro is not defined, or its value is zero, some bitfields
521   may cross more than one alignment boundary.  The compiler can support such
522   references if there are `insv', `extv', and `extzv' insns that can directly
523   reference memory.
524
525   The other known way of making bitfields work is to define
526   `STRUCTURE_SIZE_BOUNDARY' as large as `BIGGEST_ALIGNMENT'.  Then every
527   structure can be accessed with fullwords.
528
529   Unless the machine has bit-field instructions or you define
530   `STRUCTURE_SIZE_BOUNDARY' that way, you must define
531   `PCC_BITFIELD_TYPE_MATTERS' to have a nonzero value.
532
533   If your aim is to make GCC use the same conventions for laying out
534   bitfields as are used by another compiler, here is how to investigate what
535   the other compiler does.  Compile and run this program:
536
537        struct foo1
538        {
539          char x;
540          char :0;
541          char y;
542        };
543
544        struct foo2
545        {
546          char x;
547          int :0;
548          char y;
549        };
550
551        main ()
552        {
553          printf ("Size of foo1 is %d\n",
554                  sizeof (struct foo1));
555          printf ("Size of foo2 is %d\n",
556                  sizeof (struct foo2));
557          exit (0);
558        }
559
560   If this prints 2 and 5, then the compiler's behavior is what you would get
561   from `PCC_BITFIELD_TYPE_MATTERS'.
562
563   Defined in svr4.h.  */
564#define PCC_BITFIELD_TYPE_MATTERS 1
565
566
567/* Layout of Source Language Data Types.  */
568
569#define CHAR_TYPE_SIZE         8
570#define SHORT_TYPE_SIZE       16
571#define INT_TYPE_SIZE         32
572#define LONG_TYPE_SIZE        32
573#define LONG_LONG_TYPE_SIZE   64
574#define FLOAT_TYPE_SIZE       32
575#define DOUBLE_TYPE_SIZE      64
576#define LONG_DOUBLE_TYPE_SIZE 64
577
578/* An expression whose value is 1 or 0, according to whether the type `char'
579   should be signed or unsigned by default.  The user can always override this
580   default with the options `-fsigned-char' and `-funsigned-char'.  */
581#define DEFAULT_SIGNED_CHAR 1
582
583
584/* General purpose registers.  */
585#define GPR_FIRST       0                       /* First gpr */
586#define GPR_LAST        (GPR_FIRST + 63)        /* Last gpr */
587#define GPR_R0          GPR_FIRST               /* R0, constant 0 */
588#define GPR_FP          (GPR_FIRST + 2)         /* Frame pointer */
589#define GPR_SP          (GPR_FIRST + 1)         /* Stack pointer */
590						/* small data register */
591#define SDA_BASE_REG    ((unsigned)(TARGET_FDPIC ? -1 : flag_pic ? PIC_REGNO : (GPR_FIRST + 16)))
592#define PIC_REGNO       (GPR_FIRST + (TARGET_FDPIC?15:17))        /* PIC register.  */
593#define FDPIC_FPTR_REGNO  (GPR_FIRST + 14)        /* uClinux PIC function pointer register.  */
594#define FDPIC_REGNO   (GPR_FIRST + 15)        /* uClinux PIC register.  */
595
596#define OUR_FDPIC_REG	get_hard_reg_initial_val (SImode, FDPIC_REGNO)
597
598#define FPR_FIRST       64			/* First FP reg */
599#define FPR_LAST        127			/* Last  FP reg */
600
601#define GPR_TEMP_NUM	frv_condexec_temps	/* # gprs to reserve for temps */
602
603/* We reserve the last CR and CCR in each category to be used as a reload
604   register to reload the CR/CCR registers.  This is a kludge.  */
605#define CC_FIRST	128			/* First ICC/FCC reg */
606#define CC_LAST		135			/* Last  ICC/FCC reg */
607#define ICC_FIRST	(CC_FIRST + 4)		/* First ICC reg */
608#define ICC_LAST	(CC_FIRST + 7)		/* Last  ICC reg */
609#define ICC_TEMP	(CC_FIRST + 7)		/* Temporary ICC reg */
610#define FCC_FIRST	(CC_FIRST)		/* First FCC reg */
611#define FCC_LAST	(CC_FIRST + 3)		/* Last  FCC reg */
612
613/* Amount to shift a value to locate a ICC or FCC register in the CCR
614   register and shift it to the bottom 4 bits.  */
615#define CC_SHIFT_RIGHT(REGNO) (((REGNO) - CC_FIRST) << 2)
616
617/* Mask to isolate a single ICC/FCC value.  */
618#define CC_MASK		0xf
619
620/* Masks to isolate the various bits in an ICC field.  */
621#define ICC_MASK_N	0x8	/* negative */
622#define ICC_MASK_Z	0x4	/* zero */
623#define ICC_MASK_V	0x2	/* overflow */
624#define ICC_MASK_C	0x1	/* carry */
625
626/* Mask to isolate the N/Z flags in an ICC.  */
627#define ICC_MASK_NZ (ICC_MASK_N | ICC_MASK_Z)
628
629/* Mask to isolate the Z/C flags in an ICC.  */
630#define ICC_MASK_ZC (ICC_MASK_Z | ICC_MASK_C)
631
632/* Masks to isolate the various bits in a FCC field.  */
633#define FCC_MASK_E	0x8	/* equal */
634#define FCC_MASK_L	0x4	/* less than */
635#define FCC_MASK_G	0x2	/* greater than */
636#define FCC_MASK_U	0x1	/* unordered */
637
638/* For CCR registers, the machine wants CR4..CR7 to be used for integer
639   code and CR0..CR3 to be used for floating point.  */
640#define CR_FIRST	136			/* First CCR */
641#define CR_LAST		143			/* Last  CCR */
642#define CR_NUM		(CR_LAST-CR_FIRST+1)	/* # of CCRs (8) */
643#define ICR_FIRST	(CR_FIRST + 4)		/* First integer CCR */
644#define ICR_LAST	(CR_FIRST + 7)		/* Last  integer CCR */
645#define ICR_TEMP	ICR_LAST		/* Temp  integer CCR */
646#define FCR_FIRST	(CR_FIRST + 0)		/* First float CCR */
647#define FCR_LAST	(CR_FIRST + 3)		/* Last  float CCR */
648
649/* Amount to shift a value to locate a CR register in the CCCR special purpose
650   register and shift it to the bottom 2 bits.  */
651#define CR_SHIFT_RIGHT(REGNO) (((REGNO) - CR_FIRST) << 1)
652
653/* Mask to isolate a single CR value.  */
654#define CR_MASK		0x3
655
656#define ACC_FIRST	144			/* First acc register */
657#define ACC_LAST	155			/* Last  acc register */
658
659#define ACCG_FIRST	156			/* First accg register */
660#define ACCG_LAST	167			/* Last  accg register */
661
662#define AP_FIRST	168			/* fake argument pointer */
663
664#define SPR_FIRST	169
665#define SPR_LAST	172
666#define LR_REGNO	(SPR_FIRST)
667#define LCR_REGNO	(SPR_FIRST + 1)
668#define IACC_FIRST	(SPR_FIRST + 2)
669#define IACC_LAST	(SPR_FIRST + 3)
670
671#define GPR_P(R)	IN_RANGE_P (R, GPR_FIRST, GPR_LAST)
672#define GPR_OR_AP_P(R)	(GPR_P (R) || (R) == ARG_POINTER_REGNUM)
673#define FPR_P(R)	IN_RANGE_P (R, FPR_FIRST, FPR_LAST)
674#define CC_P(R)		IN_RANGE_P (R, CC_FIRST, CC_LAST)
675#define ICC_P(R)	IN_RANGE_P (R, ICC_FIRST, ICC_LAST)
676#define FCC_P(R)	IN_RANGE_P (R, FCC_FIRST, FCC_LAST)
677#define CR_P(R)		IN_RANGE_P (R, CR_FIRST, CR_LAST)
678#define ICR_P(R)	IN_RANGE_P (R, ICR_FIRST, ICR_LAST)
679#define FCR_P(R)	IN_RANGE_P (R, FCR_FIRST, FCR_LAST)
680#define ACC_P(R)	IN_RANGE_P (R, ACC_FIRST, ACC_LAST)
681#define ACCG_P(R)	IN_RANGE_P (R, ACCG_FIRST, ACCG_LAST)
682#define SPR_P(R)	IN_RANGE_P (R, SPR_FIRST, SPR_LAST)
683
684#define GPR_OR_PSEUDO_P(R)	(GPR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
685#define FPR_OR_PSEUDO_P(R)	(FPR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
686#define GPR_AP_OR_PSEUDO_P(R)	(GPR_OR_AP_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
687#define CC_OR_PSEUDO_P(R)	(CC_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
688#define ICC_OR_PSEUDO_P(R)	(ICC_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
689#define FCC_OR_PSEUDO_P(R)	(FCC_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
690#define CR_OR_PSEUDO_P(R)	(CR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
691#define ICR_OR_PSEUDO_P(R)	(ICR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
692#define FCR_OR_PSEUDO_P(R)	(FCR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
693#define ACC_OR_PSEUDO_P(R)	(ACC_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
694#define ACCG_OR_PSEUDO_P(R)	(ACCG_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
695
696#define MAX_STACK_IMMEDIATE_OFFSET 2047
697
698
699/* Register Basics.  */
700
701/* Number of hardware registers known to the compiler.  They receive numbers 0
702   through `FIRST_PSEUDO_REGISTER-1'; thus, the first pseudo register's number
703   really is assigned the number `FIRST_PSEUDO_REGISTER'.  */
704#define FIRST_PSEUDO_REGISTER (SPR_LAST + 1)
705
706/* The first/last register that can contain the arguments to a function.  */
707#define FIRST_ARG_REGNUM	(GPR_FIRST + 8)
708#define LAST_ARG_REGNUM		(FIRST_ARG_REGNUM + FRV_NUM_ARG_REGS - 1)
709
710/* Registers used by the exception handling functions.  These should be
711   registers that are not otherwise used by the calling sequence.  */
712#define FIRST_EH_REGNUM		14
713#define LAST_EH_REGNUM		15
714
715/* Scratch registers used in the prologue, epilogue and thunks.
716   OFFSET_REGNO is for loading constant addends that are too big for a
717   single instruction.  TEMP_REGNO is used for transferring SPRs to and from
718   the stack, and various other activities.  */
719#define OFFSET_REGNO		4
720#define TEMP_REGNO		5
721
722/* Registers used in the prologue.  OLD_SP_REGNO is the old stack pointer,
723   which is sometimes used to set up the frame pointer.  */
724#define OLD_SP_REGNO		6
725
726/* Registers used in the epilogue.  STACKADJ_REGNO stores the exception
727   handler's stack adjustment.  */
728#define STACKADJ_REGNO		6
729
730/* Registers used in thunks.  JMP_REGNO is used for loading the target
731   address.  */
732#define JUMP_REGNO		6
733
734#define EH_RETURN_DATA_REGNO(N)	((N) <= (LAST_EH_REGNUM - FIRST_EH_REGNUM)? \
735				 (N) + FIRST_EH_REGNUM : INVALID_REGNUM)
736#define EH_RETURN_STACKADJ_RTX	gen_rtx_REG (SImode, STACKADJ_REGNO)
737#define EH_RETURN_HANDLER_RTX   RETURN_ADDR_RTX (0, frame_pointer_rtx)
738
739#define EPILOGUE_USES(REGNO) ((REGNO) == LR_REGNO)
740
741/* An initializer that says which registers are used for fixed purposes all
742   throughout the compiled code and are therefore not available for general
743   allocation.  These would include the stack pointer, the frame pointer
744   (except on machines where that can be used as a general register when no
745   frame pointer is needed), the program counter on machines where that is
746   considered one of the addressable registers, and any other numbered register
747   with a standard use.
748
749   This information is expressed as a sequence of numbers, separated by commas
750   and surrounded by braces.  The Nth number is 1 if register N is fixed, 0
751   otherwise.
752
753   The table initialized from this macro, and the table initialized by the
754   following one, may be overridden at run time either automatically, by the
755   actions of the macro `CONDITIONAL_REGISTER_USAGE', or by the user with the
756   command options `-ffixed-REG', `-fcall-used-REG' and `-fcall-saved-REG'.  */
757
758/* gr0  -- Hard Zero
759   gr1  -- Stack Pointer
760   gr2  -- Frame Pointer
761   gr3  -- Hidden Parameter
762   gr16 -- Small Data reserved
763   gr17 -- Pic reserved
764   gr28 -- OS reserved
765   gr29 -- OS reserved
766   gr30 -- OS reserved
767   gr31 -- OS reserved
768   cr3  -- reserved to reload FCC registers.
769   cr7  -- reserved to reload ICC registers.  */
770#define FIXED_REGISTERS							\
771{	/* Integer Registers */						\
772	1, 1, 1, 1, 0, 0, 0, 0,		/* 000-007, gr0  - gr7  */	\
773	0, 0, 0, 0, 0, 0, 0, 0,		/* 008-015, gr8  - gr15 */	\
774	1, 1, 0, 0, 0, 0, 0, 0,		/* 016-023, gr16 - gr23 */	\
775	0, 0, 0, 0, 1, 1, 1, 1,		/* 024-031, gr24 - gr31 */	\
776	0, 0, 0, 0, 0, 0, 0, 0,		/* 032-039, gr32 - gr39 */	\
777	0, 0, 0, 0, 0, 0, 0, 0,		/* 040-040, gr48 - gr47 */	\
778	0, 0, 0, 0, 0, 0, 0, 0,		/* 048-055, gr48 - gr55 */	\
779	0, 0, 0, 0, 0, 0, 0, 0,		/* 056-063, gr56 - gr63 */	\
780	/* Float Registers */						\
781	0, 0, 0, 0, 0, 0, 0, 0,		/* 064-071, fr0  - fr7  */	\
782	0, 0, 0, 0, 0, 0, 0, 0,		/* 072-079, fr8  - fr15 */	\
783	0, 0, 0, 0, 0, 0, 0, 0,		/* 080-087, fr16 - fr23 */	\
784	0, 0, 0, 0, 0, 0, 0, 0,		/* 088-095, fr24 - fr31 */	\
785	0, 0, 0, 0, 0, 0, 0, 0,		/* 096-103, fr32 - fr39 */	\
786	0, 0, 0, 0, 0, 0, 0, 0,		/* 104-111, fr48 - fr47 */	\
787	0, 0, 0, 0, 0, 0, 0, 0,		/* 112-119, fr48 - fr55 */	\
788	0, 0, 0, 0, 0, 0, 0, 0,		/* 120-127, fr56 - fr63 */	\
789	/* Condition Code Registers */					\
790	0, 0, 0, 0,			/* 128-131, fcc0 - fcc3  */	\
791	0, 0, 0, 1,			/* 132-135, icc0 - icc3 */	\
792	/* Conditional execution Registers (CCR) */			\
793	0, 0, 0, 0, 0, 0, 0, 1,		/* 136-143, cr0 - cr7 */	\
794	/* Accumulators */						\
795	1, 1, 1, 1, 1, 1, 1, 1,		/* 144-151, acc0  - acc7 */	\
796	1, 1, 1, 1,			/* 152-155, acc8  - acc11 */	\
797	1, 1, 1, 1, 1, 1, 1, 1,		/* 156-163, accg0 - accg7 */	\
798	1, 1, 1, 1,			/* 164-167, accg8 - accg11 */	\
799	/* Other registers */						\
800	1,				/* 168, AP   - fake arg ptr */	\
801	0,				/* 169, LR   - Link register*/	\
802	0,				/* 170, LCR  - Loop count reg*/	\
803	1, 1				/* 171-172, iacc0 */		\
804}
805
806/* Like `FIXED_REGISTERS' but has 1 for each register that is clobbered (in
807   general) by function calls as well as for fixed registers.  This macro
808   therefore identifies the registers that are not available for general
809   allocation of values that must live across function calls.
810
811   If a register has 0 in `CALL_USED_REGISTERS', the compiler automatically
812   saves it on function entry and restores it on function exit, if the register
813   is used within the function.  */
814#define CALL_USED_REGISTERS						\
815{	/* Integer Registers */						\
816	1, 1, 1, 1, 1, 1, 1, 1,		/* 000-007, gr0  - gr7  */	\
817	1, 1, 1, 1, 1, 1, 1, 1,		/* 008-015, gr8  - gr15 */	\
818	1, 1, 0, 0, 0, 0, 0, 0,		/* 016-023, gr16 - gr23 */	\
819	0, 0, 0, 0, 1, 1, 1, 1,		/* 024-031, gr24 - gr31 */	\
820	1, 1, 1, 1, 1, 1, 1, 1,		/* 032-039, gr32 - gr39 */	\
821	1, 1, 1, 1, 1, 1, 1, 1,		/* 040-040, gr48 - gr47 */	\
822	0, 0, 0, 0, 0, 0, 0, 0,		/* 048-055, gr48 - gr55 */	\
823	0, 0, 0, 0, 0, 0, 0, 0,		/* 056-063, gr56 - gr63 */	\
824	/* Float Registers */						\
825	1, 1, 1, 1, 1, 1, 1, 1,		/* 064-071, fr0  - fr7  */	\
826	1, 1, 1, 1, 1, 1, 1, 1,		/* 072-079, fr8  - fr15 */	\
827	0, 0, 0, 0, 0, 0, 0, 0,		/* 080-087, fr16 - fr23 */	\
828	0, 0, 0, 0, 0, 0, 0, 0,		/* 088-095, fr24 - fr31 */	\
829	1, 1, 1, 1, 1, 1, 1, 1,		/* 096-103, fr32 - fr39 */	\
830	1, 1, 1, 1, 1, 1, 1, 1,		/* 104-111, fr48 - fr47 */	\
831	0, 0, 0, 0, 0, 0, 0, 0,		/* 112-119, fr48 - fr55 */	\
832	0, 0, 0, 0, 0, 0, 0, 0,		/* 120-127, fr56 - fr63 */	\
833	/* Condition Code Registers */					\
834	1, 1, 1, 1,			/* 128-131, fcc0 - fcc3 */	\
835	1, 1, 1, 1,			/* 132-135, icc0 - icc3  */	\
836	/* Conditional execution Registers (CCR) */			\
837	1, 1, 1, 1, 1, 1, 1, 1,		/* 136-143, cr0 - cr7 */	\
838	/* Accumulators */						\
839	1, 1, 1, 1, 1, 1, 1, 1,		/* 144-151, acc0 - acc7 */	\
840	1, 1, 1, 1,			/* 152-155, acc8 - acc11 */	\
841	1, 1, 1, 1, 1, 1, 1, 1,		/* 156-163, accg0 - accg7 */	\
842	1, 1, 1, 1,			/* 164-167, accg8 - accg11 */	\
843	/* Other registers */						\
844	1,				/* 168, AP  - fake arg ptr */	\
845	1,				/* 169, LR  - Link register*/	\
846	1,				/* 170, LCR - Loop count reg */	\
847	1, 1				/* 171-172, iacc0 */		\
848}
849
850/* Zero or more C statements that may conditionally modify two variables
851   `fixed_regs' and `call_used_regs' (both of type `char []') after they have
852   been initialized from the two preceding macros.
853
854   This is necessary in case the fixed or call-clobbered registers depend on
855   target flags.
856
857   You need not define this macro if it has no work to do.
858
859   If the usage of an entire class of registers depends on the target flags,
860   you may indicate this to GCC by using this macro to modify `fixed_regs' and
861   `call_used_regs' to 1 for each of the registers in the classes which should
862   not be used by GCC.  Also define the macro `REG_CLASS_FROM_LETTER' to return
863   `NO_REGS' if it is called with a letter for a class that shouldn't be used.
864
865   (However, if this class is not included in `GENERAL_REGS' and all of the
866   insn patterns whose constraints permit this class are controlled by target
867   switches, then GCC will automatically avoid using these registers when the
868   target switches are opposed to them.)  */
869
870#define CONDITIONAL_REGISTER_USAGE frv_conditional_register_usage ()
871
872
873/* Order of allocation of registers.  */
874
875/* If defined, an initializer for a vector of integers, containing the numbers
876   of hard registers in the order in which GCC should prefer to use them
877   (from most preferred to least).
878
879   If this macro is not defined, registers are used lowest numbered first (all
880   else being equal).
881
882   One use of this macro is on machines where the highest numbered registers
883   must always be saved and the save-multiple-registers instruction supports
884   only sequences of consecutive registers.  On such machines, define
885   `REG_ALLOC_ORDER' to be an initializer that lists the highest numbered
886   allocatable register first.  */
887
888/* On the FRV, allocate GR16 and GR17 after other saved registers so that we
889   have a better chance of allocating 2 registers at a time and can use the
890   double word load/store instructions in the prologue.  */
891#define REG_ALLOC_ORDER							\
892{									\
893  /* volatile registers */						\
894  GPR_FIRST  +  4, GPR_FIRST  +  5, GPR_FIRST  +  6, GPR_FIRST 	+  7,	\
895  GPR_FIRST  +  8, GPR_FIRST  +  9, GPR_FIRST  + 10, GPR_FIRST 	+ 11,	\
896  GPR_FIRST  + 12, GPR_FIRST  + 13, GPR_FIRST  + 14, GPR_FIRST 	+ 15,	\
897  GPR_FIRST  + 32, GPR_FIRST  + 33, GPR_FIRST  + 34, GPR_FIRST 	+ 35,	\
898  GPR_FIRST  + 36, GPR_FIRST  + 37, GPR_FIRST  + 38, GPR_FIRST 	+ 39,	\
899  GPR_FIRST  + 40, GPR_FIRST  + 41, GPR_FIRST  + 42, GPR_FIRST 	+ 43,	\
900  GPR_FIRST  + 44, GPR_FIRST  + 45, GPR_FIRST  + 46, GPR_FIRST 	+ 47,	\
901									\
902  FPR_FIRST  +  0, FPR_FIRST  +  1, FPR_FIRST  +  2, FPR_FIRST 	+  3,	\
903  FPR_FIRST  +  4, FPR_FIRST  +  5, FPR_FIRST  +  6, FPR_FIRST 	+  7,	\
904  FPR_FIRST  +  8, FPR_FIRST  +  9, FPR_FIRST  + 10, FPR_FIRST 	+ 11,	\
905  FPR_FIRST  + 12, FPR_FIRST  + 13, FPR_FIRST  + 14, FPR_FIRST 	+ 15,	\
906  FPR_FIRST  + 32, FPR_FIRST  + 33, FPR_FIRST  + 34, FPR_FIRST 	+ 35,	\
907  FPR_FIRST  + 36, FPR_FIRST  + 37, FPR_FIRST  + 38, FPR_FIRST 	+ 39,	\
908  FPR_FIRST  + 40, FPR_FIRST  + 41, FPR_FIRST  + 42, FPR_FIRST 	+ 43,	\
909  FPR_FIRST  + 44, FPR_FIRST  + 45, FPR_FIRST  + 46, FPR_FIRST 	+ 47,	\
910									\
911  ICC_FIRST  +  0, ICC_FIRST  +  1, ICC_FIRST  +  2, ICC_FIRST 	+  3,	\
912  FCC_FIRST  +  0, FCC_FIRST  +  1, FCC_FIRST  +  2, FCC_FIRST 	+  3,	\
913  CR_FIRST   +  0, CR_FIRST   +  1, CR_FIRST   +  2, CR_FIRST  	+  3,	\
914  CR_FIRST   +  4, CR_FIRST   +  5, CR_FIRST   +  6, CR_FIRST  	+  7,	\
915									\
916  /* saved registers */							\
917  GPR_FIRST  + 18, GPR_FIRST  + 19,					\
918  GPR_FIRST  + 20, GPR_FIRST  + 21, GPR_FIRST  + 22, GPR_FIRST 	+ 23,	\
919  GPR_FIRST  + 24, GPR_FIRST  + 25, GPR_FIRST  + 26, GPR_FIRST 	+ 27,	\
920  GPR_FIRST  + 48, GPR_FIRST  + 49, GPR_FIRST  + 50, GPR_FIRST 	+ 51,	\
921  GPR_FIRST  + 52, GPR_FIRST  + 53, GPR_FIRST  + 54, GPR_FIRST 	+ 55,	\
922  GPR_FIRST  + 56, GPR_FIRST  + 57, GPR_FIRST  + 58, GPR_FIRST 	+ 59,	\
923  GPR_FIRST  + 60, GPR_FIRST  + 61, GPR_FIRST  + 62, GPR_FIRST 	+ 63,	\
924  GPR_FIRST  + 16, GPR_FIRST  + 17,					\
925									\
926  FPR_FIRST  + 16, FPR_FIRST  + 17, FPR_FIRST  + 18, FPR_FIRST 	+ 19,	\
927  FPR_FIRST  + 20, FPR_FIRST  + 21, FPR_FIRST  + 22, FPR_FIRST 	+ 23,	\
928  FPR_FIRST  + 24, FPR_FIRST  + 25, FPR_FIRST  + 26, FPR_FIRST 	+ 27,	\
929  FPR_FIRST  + 28, FPR_FIRST  + 29, FPR_FIRST  + 30, FPR_FIRST 	+ 31,	\
930  FPR_FIRST  + 48, FPR_FIRST  + 49, FPR_FIRST  + 50, FPR_FIRST 	+ 51,	\
931  FPR_FIRST  + 52, FPR_FIRST  + 53, FPR_FIRST  + 54, FPR_FIRST 	+ 55,	\
932  FPR_FIRST  + 56, FPR_FIRST  + 57, FPR_FIRST  + 58, FPR_FIRST 	+ 59,	\
933  FPR_FIRST  + 60, FPR_FIRST  + 61, FPR_FIRST  + 62, FPR_FIRST 	+ 63,	\
934									\
935  /* special or fixed registers */					\
936  GPR_FIRST  +  0, GPR_FIRST  +  1, GPR_FIRST  +  2, GPR_FIRST 	+  3,	\
937  GPR_FIRST  + 28, GPR_FIRST  + 29, GPR_FIRST  + 30, GPR_FIRST 	+ 31,	\
938  ACC_FIRST  +  0, ACC_FIRST  +  1, ACC_FIRST  +  2, ACC_FIRST 	+  3,	\
939  ACC_FIRST  +  4, ACC_FIRST  +  5, ACC_FIRST  +  6, ACC_FIRST 	+  7,	\
940  ACC_FIRST  +  8, ACC_FIRST  +  9, ACC_FIRST  + 10, ACC_FIRST 	+ 11,	\
941  ACCG_FIRST +  0, ACCG_FIRST +  1, ACCG_FIRST +  2, ACCG_FIRST	+  3,	\
942  ACCG_FIRST +  4, ACCG_FIRST +  5, ACCG_FIRST +  6, ACCG_FIRST	+  7,	\
943  ACCG_FIRST +  8, ACCG_FIRST +  9, ACCG_FIRST + 10, ACCG_FIRST	+ 11,	\
944  AP_FIRST, 	   LR_REGNO,       LCR_REGNO,				\
945  IACC_FIRST +  0, IACC_FIRST +  1					\
946}
947
948
949/* How Values Fit in Registers.  */
950
951/* A C expression for the number of consecutive hard registers, starting at
952   register number REGNO, required to hold a value of mode MODE.
953
954   On a machine where all registers are exactly one word, a suitable definition
955   of this macro is
956
957        #define HARD_REGNO_NREGS(REGNO, MODE)            \
958           ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1)  \
959            / UNITS_PER_WORD))  */
960
961/* On the FRV, make the CC modes take 3 words in the integer registers, so that
962   we can build the appropriate instructions to properly reload the values.  */
963#define HARD_REGNO_NREGS(REGNO, MODE) frv_hard_regno_nregs (REGNO, MODE)
964
965/* A C expression that is nonzero if it is permissible to store a value of mode
966   MODE in hard register number REGNO (or in several registers starting with
967   that one).  For a machine where all registers are equivalent, a suitable
968   definition is
969
970        #define HARD_REGNO_MODE_OK(REGNO, MODE) 1
971
972   It is not necessary for this macro to check for the numbers of fixed
973   registers, because the allocation mechanism considers them to be always
974   occupied.
975
976   On some machines, double-precision values must be kept in even/odd register
977   pairs.  The way to implement that is to define this macro to reject odd
978   register numbers for such modes.
979
980   The minimum requirement for a mode to be OK in a register is that the
981   `movMODE' instruction pattern support moves between the register and any
982   other hard register for which the mode is OK; and that moving a value into
983   the register and back out not alter it.
984
985   Since the same instruction used to move `SImode' will work for all narrower
986   integer modes, it is not necessary on any machine for `HARD_REGNO_MODE_OK'
987   to distinguish between these modes, provided you define patterns `movhi',
988   etc., to take advantage of this.  This is useful because of the interaction
989   between `HARD_REGNO_MODE_OK' and `MODES_TIEABLE_P'; it is very desirable for
990   all integer modes to be tieable.
991
992   Many machines have special registers for floating point arithmetic.  Often
993   people assume that floating point machine modes are allowed only in floating
994   point registers.  This is not true.  Any registers that can hold integers
995   can safely *hold* a floating point machine mode, whether or not floating
996   arithmetic can be done on it in those registers.  Integer move instructions
997   can be used to move the values.
998
999   On some machines, though, the converse is true: fixed-point machine modes
1000   may not go in floating registers.  This is true if the floating registers
1001   normalize any value stored in them, because storing a non-floating value
1002   there would garble it.  In this case, `HARD_REGNO_MODE_OK' should reject
1003   fixed-point machine modes in floating registers.  But if the floating
1004   registers do not automatically normalize, if you can store any bit pattern
1005   in one and retrieve it unchanged without a trap, then any machine mode may
1006   go in a floating register, so you can define this macro to say so.
1007
1008   The primary significance of special floating registers is rather that they
1009   are the registers acceptable in floating point arithmetic instructions.
1010   However, this is of no concern to `HARD_REGNO_MODE_OK'.  You handle it by
1011   writing the proper constraints for those instructions.
1012
1013   On some machines, the floating registers are especially slow to access, so
1014   that it is better to store a value in a stack frame than in such a register
1015   if floating point arithmetic is not being done.  As long as the floating
1016   registers are not in class `GENERAL_REGS', they will not be used unless some
1017   pattern's constraint asks for one.  */
1018#define HARD_REGNO_MODE_OK(REGNO, MODE) frv_hard_regno_mode_ok (REGNO, MODE)
1019
1020/* A C expression that is nonzero if it is desirable to choose register
1021   allocation so as to avoid move instructions between a value of mode MODE1
1022   and a value of mode MODE2.
1023
1024   If `HARD_REGNO_MODE_OK (R, MODE1)' and `HARD_REGNO_MODE_OK (R, MODE2)' are
1025   ever different for any R, then `MODES_TIEABLE_P (MODE1, MODE2)' must be
1026   zero.  */
1027#define MODES_TIEABLE_P(MODE1, MODE2) (MODE1 == MODE2)
1028
1029/* Define this macro if the compiler should avoid copies to/from CCmode
1030   registers.  You should only define this macro if support fo copying to/from
1031   CCmode is incomplete.  */
1032#define AVOID_CCMODE_COPIES
1033
1034
1035/* Register Classes.  */
1036
1037/* An enumeral type that must be defined with all the register class names as
1038   enumeral values.  `NO_REGS' must be first.  `ALL_REGS' must be the last
1039   register class, followed by one more enumeral value, `LIM_REG_CLASSES',
1040   which is not a register class but rather tells how many classes there are.
1041
1042   Each register class has a number, which is the value of casting the class
1043   name to type `int'.  The number serves as an index in many of the tables
1044   described below.  */
1045enum reg_class
1046{
1047  NO_REGS,
1048  ICC_REGS,
1049  FCC_REGS,
1050  CC_REGS,
1051  ICR_REGS,
1052  FCR_REGS,
1053  CR_REGS,
1054  LCR_REG,
1055  LR_REG,
1056  GR8_REGS,
1057  GR9_REGS,
1058  GR89_REGS,
1059  FDPIC_REGS,
1060  FDPIC_FPTR_REGS,
1061  FDPIC_CALL_REGS,
1062  SPR_REGS,
1063  QUAD_ACC_REGS,
1064  EVEN_ACC_REGS,
1065  ACC_REGS,
1066  ACCG_REGS,
1067  QUAD_FPR_REGS,
1068  FEVEN_REGS,
1069  FPR_REGS,
1070  QUAD_REGS,
1071  EVEN_REGS,
1072  GPR_REGS,
1073  ALL_REGS,
1074  LIM_REG_CLASSES
1075};
1076
1077#define GENERAL_REGS GPR_REGS
1078
1079/* The number of distinct register classes, defined as follows:
1080
1081        #define N_REG_CLASSES (int) LIM_REG_CLASSES  */
1082#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1083
1084/* An initializer containing the names of the register classes as C string
1085   constants.  These names are used in writing some of the debugging dumps.  */
1086#define REG_CLASS_NAMES {						\
1087   "NO_REGS",								\
1088   "ICC_REGS",								\
1089   "FCC_REGS",								\
1090   "CC_REGS",								\
1091   "ICR_REGS",								\
1092   "FCR_REGS",								\
1093   "CR_REGS",								\
1094   "LCR_REG",								\
1095   "LR_REG",								\
1096   "GR8_REGS",                                                          \
1097   "GR9_REGS",                                                          \
1098   "GR89_REGS",                                                         \
1099   "FDPIC_REGS",							\
1100   "FDPIC_FPTR_REGS",							\
1101   "FDPIC_CALL_REGS",							\
1102   "SPR_REGS",								\
1103   "QUAD_ACC_REGS",							\
1104   "EVEN_ACC_REGS",							\
1105   "ACC_REGS",								\
1106   "ACCG_REGS",								\
1107   "QUAD_FPR_REGS",							\
1108   "FEVEN_REGS",							\
1109   "FPR_REGS",								\
1110   "QUAD_REGS",								\
1111   "EVEN_REGS",								\
1112   "GPR_REGS",								\
1113   "ALL_REGS"								\
1114}
1115
1116/* An initializer containing the contents of the register classes, as integers
1117   which are bit masks.  The Nth integer specifies the contents of class N.
1118   The way the integer MASK is interpreted is that register R is in the class
1119   if `MASK & (1 << R)' is 1.
1120
1121   When the machine has more than 32 registers, an integer does not suffice.
1122   Then the integers are replaced by sub-initializers, braced groupings
1123   containing several integers.  Each sub-initializer must be suitable as an
1124   initializer for the type `HARD_REG_SET' which is defined in
1125   `hard-reg-set.h'.  */
1126#define REG_CLASS_CONTENTS						       \
1127{  /* gr0-gr31 gr32-gr63  fr0-fr31   fr32-fr-63 cc/ccr/acc ap/spr */	       \
1128  { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* NO_REGS  */\
1129  { 0x00000000,0x00000000,0x00000000,0x00000000,0x000000f0,0x0}, /* ICC_REGS */\
1130  { 0x00000000,0x00000000,0x00000000,0x00000000,0x0000000f,0x0}, /* FCC_REGS */\
1131  { 0x00000000,0x00000000,0x00000000,0x00000000,0x000000ff,0x0}, /* CC_REGS  */\
1132  { 0x00000000,0x00000000,0x00000000,0x00000000,0x0000f000,0x0}, /* ICR_REGS */\
1133  { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000f00,0x0}, /* FCR_REGS */\
1134  { 0x00000000,0x00000000,0x00000000,0x00000000,0x0000ff00,0x0}, /* CR_REGS  */\
1135  { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x400}, /* LCR_REGS */\
1136  { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x200}, /* LR_REGS  */\
1137  { 0x00000100,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* GR8_REGS */\
1138  { 0x00000200,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* GR9_REGS */\
1139  { 0x00000300,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* GR89_REGS */\
1140  { 0x00008000,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* FDPIC_REGS */\
1141  { 0x00004000,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* FDPIC_FPTR_REGS */\
1142  { 0x0000c000,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* FDPIC_CALL_REGS */\
1143  { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x1e00}, /* SPR_REGS */\
1144  { 0x00000000,0x00000000,0x00000000,0x00000000,0x0fff0000,0x0}, /* QUAD_ACC */\
1145  { 0x00000000,0x00000000,0x00000000,0x00000000,0x0fff0000,0x0}, /* EVEN_ACC */\
1146  { 0x00000000,0x00000000,0x00000000,0x00000000,0x0fff0000,0x0}, /* ACC_REGS */\
1147  { 0x00000000,0x00000000,0x00000000,0x00000000,0xf0000000,0xff}, /* ACCG_REGS*/\
1148  { 0x00000000,0x00000000,0xffffffff,0xffffffff,0x00000000,0x0}, /* QUAD_FPR */\
1149  { 0x00000000,0x00000000,0xffffffff,0xffffffff,0x00000000,0x0}, /* FEVEN_REG*/\
1150  { 0x00000000,0x00000000,0xffffffff,0xffffffff,0x00000000,0x0}, /* FPR_REGS */\
1151  { 0x0ffffffc,0xffffffff,0x00000000,0x00000000,0x00000000,0x0}, /* QUAD_REGS*/\
1152  { 0xfffffffc,0xffffffff,0x00000000,0x00000000,0x00000000,0x0}, /* EVEN_REGS*/\
1153  { 0xffffffff,0xffffffff,0x00000000,0x00000000,0x00000000,0x100}, /* GPR_REGS */\
1154  { 0xffffffff,0xffffffff,0xffffffff,0xffffffff,0xffffffff,0x1fff}, /* ALL_REGS */\
1155}
1156
1157/* A C expression whose value is a register class containing hard register
1158   REGNO.  In general there is more than one such class; choose a class which
1159   is "minimal", meaning that no smaller class also contains the register.  */
1160
1161extern enum reg_class regno_reg_class[];
1162#define REGNO_REG_CLASS(REGNO) regno_reg_class [REGNO]
1163
1164/* A macro whose definition is the name of the class to which a valid base
1165   register must belong.  A base register is one used in an address which is
1166   the register value plus a displacement.  */
1167#define BASE_REG_CLASS GPR_REGS
1168
1169/* A macro whose definition is the name of the class to which a valid index
1170   register must belong.  An index register is one used in an address where its
1171   value is either multiplied by a scale factor or added to another register
1172   (as well as added to a displacement).  */
1173#define INDEX_REG_CLASS GPR_REGS
1174
1175/* A C expression which defines the machine-dependent operand constraint
1176   letters for register classes.  If CHAR is such a letter, the value should be
1177   the register class corresponding to it.  Otherwise, the value should be
1178   `NO_REGS'.  The register letter `r', corresponding to class `GENERAL_REGS',
1179   will not be passed to this macro; you do not need to handle it.
1180
1181   The following letters are unavailable, due to being used as
1182   constraints:
1183	'0'..'9'
1184	'<', '>'
1185	'E', 'F', 'G', 'H'
1186	'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P'
1187	'Q', 'R', 'S', 'T', 'U'
1188	'V', 'X'
1189	'g', 'i', 'm', 'n', 'o', 'p', 'r', 's' */
1190
1191extern enum reg_class reg_class_from_letter[];
1192#define REG_CLASS_FROM_LETTER(CHAR) reg_class_from_letter [(unsigned char)(CHAR)]
1193
1194/* A C expression which is nonzero if register number NUM is suitable for use
1195   as a base register in operand addresses.  It may be either a suitable hard
1196   register or a pseudo register that has been allocated such a hard register.  */
1197#define REGNO_OK_FOR_BASE_P(NUM)           \
1198  ((NUM) < FIRST_PSEUDO_REGISTER           \
1199   ? GPR_P (NUM)                           \
1200   : (reg_renumber [NUM] >= 0 && GPR_P (reg_renumber [NUM])))
1201
1202/* A C expression which is nonzero if register number NUM is suitable for use
1203   as an index register in operand addresses.  It may be either a suitable hard
1204   register or a pseudo register that has been allocated such a hard register.
1205
1206   The difference between an index register and a base register is that the
1207   index register may be scaled.  If an address involves the sum of two
1208   registers, neither one of them scaled, then either one may be labeled the
1209   "base" and the other the "index"; but whichever labeling is used must fit
1210   the machine's constraints of which registers may serve in each capacity.
1211   The compiler will try both labelings, looking for one that is valid, and
1212   will reload one or both registers only if neither labeling works.  */
1213#define REGNO_OK_FOR_INDEX_P(NUM)                                       \
1214  ((NUM) < FIRST_PSEUDO_REGISTER                                        \
1215   ? GPR_P (NUM)                                                        \
1216   : (reg_renumber [NUM] >= 0 && GPR_P (reg_renumber [NUM])))
1217
1218/* A C expression that places additional restrictions on the register class to
1219   use when it is necessary to copy value X into a register in class CLASS.
1220   The value is a register class; perhaps CLASS, or perhaps another, smaller
1221   class.  On many machines, the following definition is safe:
1222
1223        #define PREFERRED_RELOAD_CLASS(X,CLASS) CLASS
1224
1225   Sometimes returning a more restrictive class makes better code.  For
1226   example, on the 68000, when X is an integer constant that is in range for a
1227   `moveq' instruction, the value of this macro is always `DATA_REGS' as long
1228   as CLASS includes the data registers.  Requiring a data register guarantees
1229   that a `moveq' will be used.
1230
1231   If X is a `const_double', by returning `NO_REGS' you can force X into a
1232   memory constant.  This is useful on certain machines where immediate
1233   floating values cannot be loaded into certain kinds of registers.
1234
1235   This declaration must be present.  */
1236#define PREFERRED_RELOAD_CLASS(X, CLASS) CLASS
1237
1238#define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
1239  frv_secondary_reload_class (CLASS, MODE, X, TRUE)
1240
1241#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
1242  frv_secondary_reload_class (CLASS, MODE, X, FALSE)
1243
1244/* A C expression whose value is nonzero if pseudos that have been assigned to
1245   registers of class CLASS would likely be spilled because registers of CLASS
1246   are needed for spill registers.
1247
1248   The default value of this macro returns 1 if CLASS has exactly one register
1249   and zero otherwise.  On most machines, this default should be used.  Only
1250   define this macro to some other expression if pseudo allocated by
1251   `local-alloc.c' end up in memory because their hard registers were needed
1252   for spill registers.  If this macro returns nonzero for those classes, those
1253   pseudos will only be allocated by `global.c', which knows how to reallocate
1254   the pseudo to another register.  If there would not be another register
1255   available for reallocation, you should not change the definition of this
1256   macro since the only effect of such a definition would be to slow down
1257   register allocation.  */
1258#define CLASS_LIKELY_SPILLED_P(CLASS) frv_class_likely_spilled_p (CLASS)
1259
1260/* A C expression for the maximum number of consecutive registers of
1261   class CLASS needed to hold a value of mode MODE.
1262
1263   This is closely related to the macro `HARD_REGNO_NREGS'.  In fact, the value
1264   of the macro `CLASS_MAX_NREGS (CLASS, MODE)' should be the maximum value of
1265   `HARD_REGNO_NREGS (REGNO, MODE)' for all REGNO values in the class CLASS.
1266
1267   This macro helps control the handling of multiple-word values in
1268   the reload pass.
1269
1270   This declaration is required.  */
1271#define CLASS_MAX_NREGS(CLASS, MODE) frv_class_max_nregs (CLASS, MODE)
1272
1273#define ZERO_P(x) (x == CONST0_RTX (GET_MODE (x)))
1274
1275/* 6 bit signed immediate.  */
1276#define CONST_OK_FOR_I(VALUE) IN_RANGE_P(VALUE, -32, 31)
1277/* 10 bit signed immediate.  */
1278#define CONST_OK_FOR_J(VALUE) IN_RANGE_P(VALUE, -512, 511)
1279/* Unused */
1280#define CONST_OK_FOR_K(VALUE)  0
1281/* 16 bit signed immediate.  */
1282#define CONST_OK_FOR_L(VALUE) IN_RANGE_P(VALUE, -32768, 32767)
1283/* 16 bit unsigned immediate.  */
1284#define CONST_OK_FOR_M(VALUE)  IN_RANGE_P (VALUE, 0, 65535)
1285/* 12 bit signed immediate that is negative.  */
1286#define CONST_OK_FOR_N(VALUE) IN_RANGE_P(VALUE, -2048, -1)
1287/* Zero */
1288#define CONST_OK_FOR_O(VALUE) ((VALUE) == 0)
1289/* 12 bit signed immediate that is negative.  */
1290#define CONST_OK_FOR_P(VALUE) IN_RANGE_P(VALUE, 1, 2047)
1291
1292/* A C expression that defines the machine-dependent operand constraint letters
1293   (`I', `J', `K', .. 'P') that specify particular ranges of integer values.
1294   If C is one of those letters, the expression should check that VALUE, an
1295   integer, is in the appropriate range and return 1 if so, 0 otherwise.  If C
1296   is not one of those letters, the value should be 0 regardless of VALUE.  */
1297#define CONST_OK_FOR_LETTER_P(VALUE, C)		\
1298  (  (C) == 'I' ? CONST_OK_FOR_I (VALUE)        \
1299   : (C) == 'J' ? CONST_OK_FOR_J (VALUE)        \
1300   : (C) == 'K' ? CONST_OK_FOR_K (VALUE)        \
1301   : (C) == 'L' ? CONST_OK_FOR_L (VALUE)        \
1302   : (C) == 'M' ? CONST_OK_FOR_M (VALUE)        \
1303   : (C) == 'N' ? CONST_OK_FOR_N (VALUE)        \
1304   : (C) == 'O' ? CONST_OK_FOR_O (VALUE)        \
1305   : (C) == 'P' ? CONST_OK_FOR_P (VALUE)        \
1306   : 0)
1307
1308
1309/* A C expression that defines the machine-dependent operand constraint letters
1310   (`G', `H') that specify particular ranges of `const_double' values.
1311
1312   If C is one of those letters, the expression should check that VALUE, an RTX
1313   of code `const_double', is in the appropriate range and return 1 if so, 0
1314   otherwise.  If C is not one of those letters, the value should be 0
1315   regardless of VALUE.
1316
1317   `const_double' is used for all floating-point constants and for `DImode'
1318   fixed-point constants.  A given letter can accept either or both kinds of
1319   values.  It can use `GET_MODE' to distinguish between these kinds.  */
1320
1321#define CONST_DOUBLE_OK_FOR_G(VALUE)					\
1322  ((GET_MODE (VALUE) == VOIDmode 					\
1323    && CONST_DOUBLE_LOW (VALUE) == 0					\
1324    && CONST_DOUBLE_HIGH (VALUE) == 0)					\
1325   || ((GET_MODE (VALUE) == SFmode					\
1326        || GET_MODE (VALUE) == DFmode)					\
1327       && (VALUE) == CONST0_RTX (GET_MODE (VALUE))))
1328
1329#define CONST_DOUBLE_OK_FOR_H(VALUE) 0
1330
1331#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C)				\
1332  (  (C) == 'G' ? CONST_DOUBLE_OK_FOR_G (VALUE)				\
1333   : (C) == 'H' ? CONST_DOUBLE_OK_FOR_H (VALUE)				\
1334   : 0)
1335
1336/* A C expression that defines the optional machine-dependent constraint
1337   letters (`Q', `R', `S', `T', `U') that can be used to segregate specific
1338   types of operands, usually memory references, for the target machine.
1339   Normally this macro will not be defined.  If it is required for a particular
1340   target machine, it should return 1 if VALUE corresponds to the operand type
1341   represented by the constraint letter C.  If C is not defined as an extra
1342   constraint, the value returned should be 0 regardless of VALUE.
1343
1344   For example, on the ROMP, load instructions cannot have their output in r0
1345   if the memory reference contains a symbolic address.  Constraint letter `Q'
1346   is defined as representing a memory address that does *not* contain a
1347   symbolic address.  An alternative is specified with a `Q' constraint on the
1348   input and `r' on the output.  The next alternative specifies `m' on the
1349   input and a register class that does not include r0 on the output.  */
1350
1351/* 12-bit relocations.  */
1352#define EXTRA_CONSTRAINT_FOR_Q(VALUE)					\
1353  (got12_operand (VALUE, GET_MODE (VALUE)))
1354
1355/* Double word memory ops that take one instruction.  */
1356#define EXTRA_CONSTRAINT_FOR_R(VALUE)					\
1357  (dbl_memory_one_insn_operand (VALUE, GET_MODE (VALUE)))
1358
1359/* SYMBOL_REF */
1360#define EXTRA_CONSTRAINT_FOR_S(VALUE) \
1361  (CONSTANT_P (VALUE) && call_operand (VALUE, VOIDmode))
1362
1363/* Double word memory ops that take two instructions.  */
1364#define EXTRA_CONSTRAINT_FOR_T(VALUE)					\
1365  (dbl_memory_two_insn_operand (VALUE, GET_MODE (VALUE)))
1366
1367/* Memory operand for conditional execution.  */
1368#define EXTRA_CONSTRAINT_FOR_U(VALUE)					\
1369  (condexec_memory_operand (VALUE, GET_MODE (VALUE)))
1370
1371#define EXTRA_CONSTRAINT(VALUE, C)					\
1372  (  (C) == 'Q'   ? EXTRA_CONSTRAINT_FOR_Q (VALUE)			\
1373   : (C) == 'R' ? EXTRA_CONSTRAINT_FOR_R (VALUE)			\
1374   : (C) == 'S' ? EXTRA_CONSTRAINT_FOR_S (VALUE)			\
1375   : (C) == 'T' ? EXTRA_CONSTRAINT_FOR_T (VALUE)			\
1376   : (C) == 'U' ? EXTRA_CONSTRAINT_FOR_U (VALUE)			\
1377   : 0)
1378
1379#define CONSTRAINT_LEN(C, STR) \
1380  ((C) == 'D' ? 3 : DEFAULT_CONSTRAINT_LEN ((C), (STR)))
1381
1382#define REG_CLASS_FROM_CONSTRAINT(C, STR) \
1383  (((C) == 'D' && (STR)[1] == '8' && (STR)[2] == '9') ? GR89_REGS : \
1384   ((C) == 'D' && (STR)[1] == '0' && (STR)[2] == '9') ? GR9_REGS : \
1385   ((C) == 'D' && (STR)[1] == '0' && (STR)[2] == '8') ? GR8_REGS : \
1386   ((C) == 'D' && (STR)[1] == '1' && (STR)[2] == '4') ? FDPIC_FPTR_REGS : \
1387   ((C) == 'D' && (STR)[1] == '1' && (STR)[2] == '5') ? FDPIC_REGS : \
1388   REG_CLASS_FROM_LETTER ((C)))
1389
1390
1391/* Basic Stack Layout.  */
1392
1393/* Structure to describe information about a saved range of registers */
1394
1395typedef struct frv_stack_regs {
1396  const char * name;		/* name of the register ranges */
1397  int first;			/* first register in the range */
1398  int last;			/* last register in the range */
1399  int size_1word;		/* # of bytes to be stored via 1 word stores */
1400  int size_2words;		/* # of bytes to be stored via 2 word stores */
1401  unsigned char field_p;	/* true if the registers are a single SPR */
1402  unsigned char dword_p;	/* true if we can do dword stores */
1403  unsigned char special_p;	/* true if the regs have a fixed save loc.  */
1404} frv_stack_regs_t;
1405
1406/* Register ranges to look into saving.  */
1407#define STACK_REGS_GPR		0	/* Gprs (normally gr16..gr31, gr48..gr63) */
1408#define STACK_REGS_FPR		1	/* Fprs (normally fr16..fr31, fr48..fr63) */
1409#define STACK_REGS_LR		2	/* LR register */
1410#define STACK_REGS_CC		3	/* CCrs (normally not saved) */
1411#define STACK_REGS_LCR		5	/* lcr register */
1412#define STACK_REGS_STDARG	6	/* stdarg registers */
1413#define STACK_REGS_STRUCT	7	/* structure return (gr3) */
1414#define STACK_REGS_FP		8	/* FP register */
1415#define STACK_REGS_MAX		9	/* # of register ranges */
1416
1417/* Values for save_p field.  */
1418#define REG_SAVE_NO_SAVE	0	/* register not saved */
1419#define REG_SAVE_1WORD		1	/* save the register */
1420#define REG_SAVE_2WORDS		2	/* save register and register+1 */
1421
1422/* Structure used to define the frv stack.  */
1423
1424typedef struct frv_stack {
1425  int total_size;		/* total bytes allocated for stack */
1426  int vars_size;		/* variable save area size */
1427  int parameter_size;		/* outgoing parameter size */
1428  int stdarg_size;		/* size of regs needed to be saved for stdarg */
1429  int regs_size;		/* size of the saved registers */
1430  int regs_size_1word;		/* # of bytes to be stored via 1 word stores */
1431  int regs_size_2words;		/* # of bytes to be stored via 2 word stores */
1432  int header_size;		/* size of the old FP, struct ret., LR save */
1433  int pretend_size;		/* size of pretend args */
1434  int vars_offset;		/* offset to save local variables from new SP*/
1435  int regs_offset;		/* offset to save registers from new SP */
1436				/* register range information */
1437  frv_stack_regs_t regs[STACK_REGS_MAX];
1438				/* offset to store each register */
1439  int reg_offset[FIRST_PSEUDO_REGISTER];
1440				/* whether to save register (& reg+1) */
1441  unsigned char save_p[FIRST_PSEUDO_REGISTER];
1442} frv_stack_t;
1443
1444/* Define this macro if pushing a word onto the stack moves the stack pointer
1445   to a smaller address.  */
1446#define STACK_GROWS_DOWNWARD 1
1447
1448/* Define this macro to nonzero if the addresses of local variable slots
1449   are at negative offsets from the frame pointer.  */
1450#define FRAME_GROWS_DOWNWARD 1
1451
1452/* Offset from the frame pointer to the first local variable slot to be
1453   allocated.
1454
1455   If `FRAME_GROWS_DOWNWARD', find the next slot's offset by subtracting the
1456   first slot's length from `STARTING_FRAME_OFFSET'.  Otherwise, it is found by
1457   adding the length of the first slot to the value `STARTING_FRAME_OFFSET'.  */
1458#define STARTING_FRAME_OFFSET 0
1459
1460/* Offset from the stack pointer register to the first location at which
1461   outgoing arguments are placed.  If not specified, the default value of zero
1462   is used.  This is the proper value for most machines.
1463
1464   If `ARGS_GROW_DOWNWARD', this is the offset to the location above the first
1465   location at which outgoing arguments are placed.  */
1466#define STACK_POINTER_OFFSET 0
1467
1468/* Offset from the argument pointer register to the first argument's address.
1469   On some machines it may depend on the data type of the function.
1470
1471   If `ARGS_GROW_DOWNWARD', this is the offset to the location above the first
1472   argument's address.  */
1473#define FIRST_PARM_OFFSET(FUNDECL) 0
1474
1475/* A C expression whose value is RTL representing the address in a stack frame
1476   where the pointer to the caller's frame is stored.  Assume that FRAMEADDR is
1477   an RTL expression for the address of the stack frame itself.
1478
1479   If you don't define this macro, the default is to return the value of
1480   FRAMEADDR--that is, the stack frame address is also the address of the stack
1481   word that points to the previous frame.  */
1482#define DYNAMIC_CHAIN_ADDRESS(FRAMEADDR) frv_dynamic_chain_address (FRAMEADDR)
1483
1484/* A C expression whose value is RTL representing the value of the return
1485   address for the frame COUNT steps up from the current frame, after the
1486   prologue.  FRAMEADDR is the frame pointer of the COUNT frame, or the frame
1487   pointer of the COUNT - 1 frame if `RETURN_ADDR_IN_PREVIOUS_FRAME' is
1488   defined.
1489
1490   The value of the expression must always be the correct address when COUNT is
1491   zero, but may be `NULL_RTX' if there is not way to determine the return
1492   address of other frames.  */
1493#define RETURN_ADDR_RTX(COUNT, FRAMEADDR) frv_return_addr_rtx (COUNT, FRAMEADDR)
1494
1495#define RETURN_POINTER_REGNUM LR_REGNO
1496
1497/* A C expression whose value is RTL representing the location of the incoming
1498   return address at the beginning of any function, before the prologue.  This
1499   RTL is either a `REG', indicating that the return value is saved in `REG',
1500   or a `MEM' representing a location in the stack.
1501
1502   You only need to define this macro if you want to support call frame
1503   debugging information like that provided by DWARF 2.  */
1504#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (SImode, RETURN_POINTER_REGNUM)
1505
1506
1507/* Register That Address the Stack Frame.  */
1508
1509/* The register number of the stack pointer register, which must also be a
1510   fixed register according to `FIXED_REGISTERS'.  On most machines, the
1511   hardware determines which register this is.  */
1512#define STACK_POINTER_REGNUM (GPR_FIRST + 1)
1513
1514/* The register number of the frame pointer register, which is used to access
1515   automatic variables in the stack frame.  On some machines, the hardware
1516   determines which register this is.  On other machines, you can choose any
1517   register you wish for this purpose.  */
1518#define FRAME_POINTER_REGNUM (GPR_FIRST + 2)
1519
1520/* The register number of the arg pointer register, which is used to access the
1521   function's argument list.  On some machines, this is the same as the frame
1522   pointer register.  On some machines, the hardware determines which register
1523   this is.  On other machines, you can choose any register you wish for this
1524   purpose.  If this is not the same register as the frame pointer register,
1525   then you must mark it as a fixed register according to `FIXED_REGISTERS', or
1526   arrange to be able to eliminate it.  */
1527
1528/* On frv this is a fake register that is eliminated in
1529   terms of either the frame pointer or stack pointer.  */
1530#define ARG_POINTER_REGNUM AP_FIRST
1531
1532/* Register numbers used for passing a function's static chain pointer.  If
1533   register windows are used, the register number as seen by the called
1534   function is `STATIC_CHAIN_INCOMING_REGNUM', while the register number as
1535   seen by the calling function is `STATIC_CHAIN_REGNUM'.  If these registers
1536   are the same, `STATIC_CHAIN_INCOMING_REGNUM' need not be defined.
1537
1538   The static chain register need not be a fixed register.
1539
1540   If the static chain is passed in memory, these macros should not be defined;
1541   instead, the next two macros should be defined.  */
1542#define STATIC_CHAIN_REGNUM (GPR_FIRST + 7)
1543#define STATIC_CHAIN_INCOMING_REGNUM (GPR_FIRST + 7)
1544
1545
1546/* Eliminating the Frame Pointer and the Arg Pointer.  */
1547
1548/* A C expression which is nonzero if a function must have and use a frame
1549   pointer.  This expression is evaluated in the reload pass.  If its value is
1550   nonzero the function will have a frame pointer.
1551
1552   The expression can in principle examine the current function and decide
1553   according to the facts, but on most machines the constant 0 or the constant
1554   1 suffices.  Use 0 when the machine allows code to be generated with no
1555   frame pointer, and doing so saves some time or space.  Use 1 when there is
1556   no possible advantage to avoiding a frame pointer.
1557
1558   In certain cases, the compiler does not know how to produce valid code
1559   without a frame pointer.  The compiler recognizes those cases and
1560   automatically gives the function a frame pointer regardless of what
1561   `FRAME_POINTER_REQUIRED' says.  You don't need to worry about them.
1562
1563   In a function that does not require a frame pointer, the frame pointer
1564   register can be allocated for ordinary usage, unless you mark it as a fixed
1565   register.  See `FIXED_REGISTERS' for more information.  */
1566#define FRAME_POINTER_REQUIRED frv_frame_pointer_required ()
1567
1568/* If defined, this macro specifies a table of register pairs used to eliminate
1569   unneeded registers that point into the stack frame.  If it is not defined,
1570   the only elimination attempted by the compiler is to replace references to
1571   the frame pointer with references to the stack pointer.
1572
1573   The definition of this macro is a list of structure initializations, each of
1574   which specifies an original and replacement register.
1575
1576   On some machines, the position of the argument pointer is not known until
1577   the compilation is completed.  In such a case, a separate hard register must
1578   be used for the argument pointer.  This register can be eliminated by
1579   replacing it with either the frame pointer or the argument pointer,
1580   depending on whether or not the frame pointer has been eliminated.
1581
1582   In this case, you might specify:
1583        #define ELIMINABLE_REGS  \
1584        {{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1585         {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
1586         {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
1587
1588   Note that the elimination of the argument pointer with the stack pointer is
1589   specified first since that is the preferred elimination.  */
1590
1591#define ELIMINABLE_REGS							\
1592{									\
1593  {ARG_POINTER_REGNUM,	 STACK_POINTER_REGNUM},				\
1594  {ARG_POINTER_REGNUM,	 FRAME_POINTER_REGNUM},				\
1595  {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}				\
1596}
1597
1598/* A C expression that returns nonzero if the compiler is allowed to try to
1599   replace register number FROM with register number TO.  This macro need only
1600   be defined if `ELIMINABLE_REGS' is defined, and will usually be the constant
1601   1, since most of the cases preventing register elimination are things that
1602   the compiler already knows about.  */
1603
1604#define CAN_ELIMINATE(FROM, TO)						\
1605  ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM		\
1606   ? ! frame_pointer_needed						\
1607   : 1)
1608
1609/* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'.  It specifies the
1610   initial difference between the specified pair of registers.  This macro must
1611   be defined if `ELIMINABLE_REGS' is defined.  */
1612
1613#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET)			\
1614  (OFFSET) = frv_initial_elimination_offset (FROM, TO)
1615
1616
1617/* Passing Function Arguments on the Stack.  */
1618
1619/* If defined, the maximum amount of space required for outgoing arguments will
1620   be computed and placed into the variable
1621   `current_function_outgoing_args_size'.  No space will be pushed onto the
1622   stack for each call; instead, the function prologue should increase the
1623   stack frame size by this amount.
1624
1625   Defining both `PUSH_ROUNDING' and `ACCUMULATE_OUTGOING_ARGS' is not
1626   proper.  */
1627#define ACCUMULATE_OUTGOING_ARGS 1
1628
1629/* A C expression that should indicate the number of bytes of its own arguments
1630   that a function pops on returning, or 0 if the function pops no arguments
1631   and the caller must therefore pop them all after the function returns.
1632
1633   FUNDECL is a C variable whose value is a tree node that describes the
1634   function in question.  Normally it is a node of type `FUNCTION_DECL' that
1635   describes the declaration of the function.  From this it is possible to
1636   obtain the DECL_ATTRIBUTES of the function.
1637
1638   FUNTYPE is a C variable whose value is a tree node that describes the
1639   function in question.  Normally it is a node of type `FUNCTION_TYPE' that
1640   describes the data type of the function.  From this it is possible to obtain
1641   the data types of the value and arguments (if known).
1642
1643   When a call to a library function is being considered, FUNTYPE will contain
1644   an identifier node for the library function.  Thus, if you need to
1645   distinguish among various library functions, you can do so by their names.
1646   Note that "library function" in this context means a function used to
1647   perform arithmetic, whose name is known specially in the compiler and was
1648   not mentioned in the C code being compiled.
1649
1650   STACK-SIZE is the number of bytes of arguments passed on the stack.  If a
1651   variable number of bytes is passed, it is zero, and argument popping will
1652   always be the responsibility of the calling function.
1653
1654   On the VAX, all functions always pop their arguments, so the definition of
1655   this macro is STACK-SIZE.  On the 68000, using the standard calling
1656   convention, no functions pop their arguments, so the value of the macro is
1657   always 0 in this case.  But an alternative calling convention is available
1658   in which functions that take a fixed number of arguments pop them but other
1659   functions (such as `printf') pop nothing (the caller pops all).  When this
1660   convention is in use, FUNTYPE is examined to determine whether a function
1661   takes a fixed number of arguments.  */
1662#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, STACK_SIZE) 0
1663
1664
1665/* The number of register assigned to holding function arguments.  */
1666
1667#define FRV_NUM_ARG_REGS        6
1668
1669#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED)                    \
1670  frv_function_arg (&CUM, MODE, TYPE, NAMED, FALSE)
1671
1672/* Define this macro if the target machine has "register windows", so that the
1673   register in which a function sees an arguments is not necessarily the same
1674   as the one in which the caller passed the argument.
1675
1676   For such machines, `FUNCTION_ARG' computes the register in which the caller
1677   passes the value, and `FUNCTION_INCOMING_ARG' should be defined in a similar
1678   fashion to tell the function being called where the arguments will arrive.
1679
1680   If `FUNCTION_INCOMING_ARG' is not defined, `FUNCTION_ARG' serves both
1681   purposes.  */
1682
1683#define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED)			\
1684  frv_function_arg (&CUM, MODE, TYPE, NAMED, TRUE)
1685
1686/* A C type for declaring a variable that is used as the first argument of
1687   `FUNCTION_ARG' and other related values.  For some target machines, the type
1688   `int' suffices and can hold the number of bytes of argument so far.
1689
1690   There is no need to record in `CUMULATIVE_ARGS' anything about the arguments
1691   that have been passed on the stack.  The compiler has other variables to
1692   keep track of that.  For target machines on which all arguments are passed
1693   on the stack, there is no need to store anything in `CUMULATIVE_ARGS';
1694   however, the data structure must exist and should not be empty, so use
1695   `int'.  */
1696#define CUMULATIVE_ARGS int
1697
1698/* A C statement (sans semicolon) for initializing the variable CUM for the
1699   state at the beginning of the argument list.  The variable has type
1700   `CUMULATIVE_ARGS'.  The value of FNTYPE is the tree node for the data type
1701   of the function which will receive the args, or 0 if the args are to a
1702   compiler support library function.  The value of INDIRECT is nonzero when
1703   processing an indirect call, for example a call through a function pointer.
1704   The value of INDIRECT is zero for a call to an explicitly named function, a
1705   library function call, or when `INIT_CUMULATIVE_ARGS' is used to find
1706   arguments for the function being compiled.
1707
1708   When processing a call to a compiler support library function, LIBNAME
1709   identifies which one.  It is a `symbol_ref' rtx which contains the name of
1710   the function, as a string.  LIBNAME is 0 when an ordinary C function call is
1711   being processed.  Thus, each time this macro is called, either LIBNAME or
1712   FNTYPE is nonzero, but never both of them at once.  */
1713
1714#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1715  frv_init_cumulative_args (&CUM, FNTYPE, LIBNAME, FNDECL, FALSE)
1716
1717/* Like `INIT_CUMULATIVE_ARGS' but overrides it for the purposes of finding the
1718   arguments for the function being compiled.  If this macro is undefined,
1719   `INIT_CUMULATIVE_ARGS' is used instead.
1720
1721   The value passed for LIBNAME is always 0, since library routines with
1722   special calling conventions are never compiled with GCC.  The argument
1723   LIBNAME exists for symmetry with `INIT_CUMULATIVE_ARGS'.  */
1724
1725#define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1726  frv_init_cumulative_args (&CUM, FNTYPE, LIBNAME, NULL, TRUE)
1727
1728/* A C statement (sans semicolon) to update the summarizer variable CUM to
1729   advance past an argument in the argument list.  The values MODE, TYPE and
1730   NAMED describe that argument.  Once this is done, the variable CUM is
1731   suitable for analyzing the *following* argument with `FUNCTION_ARG', etc.
1732
1733   This macro need not do anything if the argument in question was passed on
1734   the stack.  The compiler knows how to track the amount of stack space used
1735   for arguments without any special help.  */
1736#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED)			\
1737  frv_function_arg_advance (&CUM, MODE, TYPE, NAMED)
1738
1739/* If defined, a C expression that gives the alignment boundary, in bits, of an
1740   argument with the specified mode and type.  If it is not defined,
1741   `PARM_BOUNDARY' is used for all arguments.  */
1742
1743#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1744  frv_function_arg_boundary (MODE, TYPE)
1745
1746/* A C expression that is nonzero if REGNO is the number of a hard register in
1747   which function arguments are sometimes passed.  This does *not* include
1748   implicit arguments such as the static chain and the structure-value address.
1749   On many machines, no registers can be used for this purpose since all
1750   function arguments are pushed on the stack.  */
1751#define FUNCTION_ARG_REGNO_P(REGNO) \
1752  ((REGNO) >= FIRST_ARG_REGNUM && ((REGNO) <= LAST_ARG_REGNUM))
1753
1754
1755/* How Scalar Function Values are Returned.  */
1756
1757/* The number of the hard register that is used to return a scalar value from a
1758   function call.  */
1759#define RETURN_VALUE_REGNUM	(GPR_FIRST + 8)
1760
1761/* A C expression to create an RTX representing the place where a function
1762   returns a value of data type VALTYPE.  VALTYPE is a tree node representing a
1763   data type.  Write `TYPE_MODE (VALTYPE)' to get the machine mode used to
1764   represent that type.  On many machines, only the mode is relevant.
1765   (Actually, on most machines, scalar values are returned in the same place
1766   regardless of mode).
1767
1768   If `TARGET_PROMOTE_FUNCTION_RETURN' is defined to return true, you
1769   must apply the same promotion rules specified in `PROMOTE_MODE' if
1770   VALTYPE is a scalar type.
1771
1772   If the precise function being called is known, FUNC is a tree node
1773   (`FUNCTION_DECL') for it; otherwise, FUNC is a null pointer.  This makes it
1774   possible to use a different value-returning convention for specific
1775   functions when all their calls are known.
1776
1777   `FUNCTION_VALUE' is not used for return vales with aggregate data types,
1778   because these are returned in another way.  See
1779   `TARGET_STRUCT_VALUE_RTX' and related macros, below.  */
1780#define FUNCTION_VALUE(VALTYPE, FUNC) \
1781  gen_rtx_REG (TYPE_MODE (VALTYPE), RETURN_VALUE_REGNUM)
1782
1783/* A C expression to create an RTX representing the place where a library
1784   function returns a value of mode MODE.
1785
1786   Note that "library function" in this context means a compiler support
1787   routine, used to perform arithmetic, whose name is known specially by the
1788   compiler and was not mentioned in the C code being compiled.
1789
1790   The definition of `LIBRARY_VALUE' need not be concerned aggregate data
1791   types, because none of the library functions returns such types.  */
1792#define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, RETURN_VALUE_REGNUM)
1793
1794/* A C expression that is nonzero if REGNO is the number of a hard register in
1795   which the values of called function may come back.
1796
1797   A register whose use for returning values is limited to serving as the
1798   second of a pair (for a value of type `double', say) need not be recognized
1799   by this macro.  So for most machines, this definition suffices:
1800
1801        #define FUNCTION_VALUE_REGNO_P(N) ((N) == RETURN)
1802
1803   If the machine has register windows, so that the caller and the called
1804   function use different registers for the return value, this macro should
1805   recognize only the caller's register numbers.  */
1806#define FUNCTION_VALUE_REGNO_P(REGNO) ((REGNO) == RETURN_VALUE_REGNUM)
1807
1808
1809/* How Large Values are Returned.  */
1810
1811/* The number of the register that is used to to pass the structure
1812   value address.  */
1813#define FRV_STRUCT_VALUE_REGNUM (GPR_FIRST + 3)
1814
1815
1816/* Function Entry and Exit.  */
1817
1818/* Define this macro as a C expression that is nonzero if the return
1819   instruction or the function epilogue ignores the value of the stack pointer;
1820   in other words, if it is safe to delete an instruction to adjust the stack
1821   pointer before a return from the function.
1822
1823   Note that this macro's value is relevant only for functions for which frame
1824   pointers are maintained.  It is never safe to delete a final stack
1825   adjustment in a function that has no frame pointer, and the compiler knows
1826   this regardless of `EXIT_IGNORE_STACK'.  */
1827#define EXIT_IGNORE_STACK 1
1828
1829/* Generating Code for Profiling.  */
1830
1831/* A C statement or compound statement to output to FILE some assembler code to
1832   call the profiling subroutine `mcount'.  Before calling, the assembler code
1833   must load the address of a counter variable into a register where `mcount'
1834   expects to find the address.  The name of this variable is `LP' followed by
1835   the number LABELNO, so you would generate the name using `LP%d' in a
1836   `fprintf'.
1837
1838   The details of how the address should be passed to `mcount' are determined
1839   by your operating system environment, not by GCC.  To figure them out,
1840   compile a small program for profiling using the system's installed C
1841   compiler and look at the assembler code that results.
1842
1843   This declaration must be present, but it can be an abort if profiling is
1844   not implemented.  */
1845
1846#define FUNCTION_PROFILER(FILE, LABELNO)
1847
1848
1849/* Implementing the Varargs Macros.  */
1850
1851/* Implement the stdarg/varargs va_start macro.  STDARG_P is nonzero if this
1852   is stdarg.h instead of varargs.h.  VALIST is the tree of the va_list
1853   variable to initialize.  NEXTARG is the machine independent notion of the
1854   'next' argument after the variable arguments.  If not defined, a standard
1855   implementation will be defined that works for arguments passed on the stack.  */
1856
1857#define EXPAND_BUILTIN_VA_START(VALIST, NEXTARG)		\
1858  (frv_expand_builtin_va_start(VALIST, NEXTARG))
1859
1860
1861/* Trampolines for Nested Functions.  */
1862
1863/* A C expression for the size in bytes of the trampoline, as an integer.  */
1864#define TRAMPOLINE_SIZE frv_trampoline_size ()
1865
1866/* Alignment required for trampolines, in bits.
1867
1868   If you don't define this macro, the value of `BIGGEST_ALIGNMENT' is used for
1869   aligning trampolines.  */
1870#define TRAMPOLINE_ALIGNMENT (TARGET_FDPIC ? 64 : 32)
1871
1872/* A C statement to initialize the variable parts of a trampoline.  ADDR is an
1873   RTX for the address of the trampoline; FNADDR is an RTX for the address of
1874   the nested function; STATIC_CHAIN is an RTX for the static chain value that
1875   should be passed to the function when it is called.  */
1876#define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, STATIC_CHAIN) \
1877  frv_initialize_trampoline (ADDR, FNADDR, STATIC_CHAIN)
1878
1879/* Define this macro if trampolines need a special subroutine to do their work.
1880   The macro should expand to a series of `asm' statements which will be
1881   compiled with GCC.  They go in a library function named
1882   `__transfer_from_trampoline'.
1883
1884   If you need to avoid executing the ordinary prologue code of a compiled C
1885   function when you jump to the subroutine, you can do so by placing a special
1886   label of your own in the assembler code.  Use one `asm' statement to
1887   generate an assembler label, and another to make the label global.  Then
1888   trampolines can use that label to jump directly to your special assembler
1889   code.  */
1890
1891#ifdef __FRV_UNDERSCORE__
1892#define TRAMPOLINE_TEMPLATE_NAME "___trampoline_template"
1893#else
1894#define TRAMPOLINE_TEMPLATE_NAME "__trampoline_template"
1895#endif
1896
1897#define Twrite _write
1898
1899#if ! __FRV_FDPIC__
1900#define TRANSFER_FROM_TRAMPOLINE					\
1901extern int Twrite (int, const void *, unsigned);			\
1902									\
1903void									\
1904__trampoline_setup (short * addr, int size, int fnaddr, int sc)		\
1905{									\
1906  extern short __trampoline_template[];					\
1907  short * to = addr;							\
1908  short * from = &__trampoline_template[0];				\
1909  int i;								\
1910									\
1911  if (size < 20)							\
1912    {									\
1913      Twrite (2, "__trampoline_setup bad size\n",			\
1914	      sizeof ("__trampoline_setup bad size\n") - 1);		\
1915      exit (-1);							\
1916    }									\
1917									\
1918  to[0] = from[0];							\
1919  to[1] = (short)(fnaddr);						\
1920  to[2] = from[2];							\
1921  to[3] = (short)(sc);							\
1922  to[4] = from[4];							\
1923  to[5] = (short)(fnaddr >> 16);					\
1924  to[6] = from[6];							\
1925  to[7] = (short)(sc >> 16);						\
1926  to[8] = from[8];							\
1927  to[9] = from[9];							\
1928									\
1929  for (i = 0; i < 20; i++)						\
1930    __asm__ volatile ("dcf @(%0,%1)\n\tici @(%0,%1)" :: "r" (to), "r" (i)); \
1931}									\
1932									\
1933__asm__("\n"								\
1934	"\t.globl " TRAMPOLINE_TEMPLATE_NAME "\n"			\
1935	"\t.text\n"							\
1936	TRAMPOLINE_TEMPLATE_NAME ":\n"					\
1937	"\tsetlos #0, gr6\n"	/* jump register */			\
1938	"\tsetlos #0, gr7\n"	/* static chain */			\
1939	"\tsethi #0, gr6\n"						\
1940	"\tsethi #0, gr7\n"						\
1941	"\tjmpl @(gr0,gr6)\n");
1942#else
1943#define TRANSFER_FROM_TRAMPOLINE					\
1944extern int Twrite (int, const void *, unsigned);			\
1945									\
1946void									\
1947__trampoline_setup (addr, size, fnaddr, sc)				\
1948     short * addr;							\
1949     int size;								\
1950     int fnaddr;							\
1951     int sc;								\
1952{									\
1953  extern short __trampoline_template[];					\
1954  short * from = &__trampoline_template[0];				\
1955  int i;								\
1956  short **desc = (short **)addr;					\
1957  short * to = addr + 4;						\
1958									\
1959  if (size != 32)							\
1960    {									\
1961      Twrite (2, "__trampoline_setup bad size\n",			\
1962	      sizeof ("__trampoline_setup bad size\n") - 1);		\
1963      exit (-1);							\
1964    }									\
1965									\
1966  /* Create a function descriptor with the address of the code below
1967     and NULL as the FDPIC value.  We don't need the real GOT value
1968     here, since we don't use it, so we use NULL, that is just as
1969     good.  */								\
1970  desc[0] = to;								\
1971  desc[1] = NULL;							\
1972  size -= 8;								\
1973									\
1974  to[0] = from[0];							\
1975  to[1] = (short)(fnaddr);						\
1976  to[2] = from[2];							\
1977  to[3] = (short)(sc);							\
1978  to[4] = from[4];							\
1979  to[5] = (short)(fnaddr >> 16);					\
1980  to[6] = from[6];							\
1981  to[7] = (short)(sc >> 16);						\
1982  to[8] = from[8];							\
1983  to[9] = from[9];							\
1984  to[10] = from[10];							\
1985  to[11] = from[11];							\
1986									\
1987  for (i = 0; i < size; i++)						\
1988    __asm__ volatile ("dcf @(%0,%1)\n\tici @(%0,%1)" :: "r" (to), "r" (i)); \
1989}									\
1990									\
1991__asm__("\n"								\
1992	"\t.globl " TRAMPOLINE_TEMPLATE_NAME "\n"			\
1993	"\t.text\n"							\
1994	TRAMPOLINE_TEMPLATE_NAME ":\n"					\
1995	"\tsetlos #0, gr6\n"	/* Jump register.  */			\
1996	"\tsetlos #0, gr7\n"	/* Static chain.  */			\
1997	"\tsethi #0, gr6\n"						\
1998	"\tsethi #0, gr7\n"						\
1999	"\tldd @(gr6,gr0),gr14\n"					\
2000	"\tjmpl @(gr14,gr0)\n"						\
2001	);
2002#endif
2003
2004
2005/* Addressing Modes.  */
2006
2007/* A C expression that is 1 if the RTX X is a constant which is a valid
2008   address.  On most machines, this can be defined as `CONSTANT_P (X)', but a
2009   few machines are more restrictive in which constant addresses are supported.
2010
2011   `CONSTANT_P' accepts integer-values expressions whose values are not
2012   explicitly known, such as `symbol_ref', `label_ref', and `high' expressions
2013   and `const' arithmetic expressions, in addition to `const_int' and
2014   `const_double' expressions.  */
2015#define CONSTANT_ADDRESS_P(X) CONSTANT_P (X)
2016
2017/* A number, the maximum number of registers that can appear in a valid memory
2018   address.  Note that it is up to you to specify a value equal to the maximum
2019   number that `GO_IF_LEGITIMATE_ADDRESS' would ever accept.  */
2020#define MAX_REGS_PER_ADDRESS 2
2021
2022/* A C compound statement with a conditional `goto LABEL;' executed if X (an
2023   RTX) is a legitimate memory address on the target machine for a memory
2024   operand of mode MODE.
2025
2026   It usually pays to define several simpler macros to serve as subroutines for
2027   this one.  Otherwise it may be too complicated to understand.
2028
2029   This macro must exist in two variants: a strict variant and a non-strict
2030   one.  The strict variant is used in the reload pass.  It must be defined so
2031   that any pseudo-register that has not been allocated a hard register is
2032   considered a memory reference.  In contexts where some kind of register is
2033   required, a pseudo-register with no hard register must be rejected.
2034
2035   The non-strict variant is used in other passes.  It must be defined to
2036   accept all pseudo-registers in every context where some kind of register is
2037   required.
2038
2039   Compiler source files that want to use the strict variant of this macro
2040   define the macro `REG_OK_STRICT'.  You should use an `#ifdef REG_OK_STRICT'
2041   conditional to define the strict variant in that case and the non-strict
2042   variant otherwise.
2043
2044   Subroutines to check for acceptable registers for various purposes (one for
2045   base registers, one for index registers, and so on) are typically among the
2046   subroutines used to define `GO_IF_LEGITIMATE_ADDRESS'.  Then only these
2047   subroutine macros need have two variants; the higher levels of macros may be
2048   the same whether strict or not.
2049
2050   Normally, constant addresses which are the sum of a `symbol_ref' and an
2051   integer are stored inside a `const' RTX to mark them as constant.
2052   Therefore, there is no need to recognize such sums specifically as
2053   legitimate addresses.  Normally you would simply recognize any `const' as
2054   legitimate.
2055
2056   Usually `PRINT_OPERAND_ADDRESS' is not prepared to handle constant sums that
2057   are not marked with `const'.  It assumes that a naked `plus' indicates
2058   indexing.  If so, then you *must* reject such naked constant sums as
2059   illegitimate addresses, so that none of them will be given to
2060   `PRINT_OPERAND_ADDRESS'.
2061
2062   On some machines, whether a symbolic address is legitimate depends on the
2063   section that the address refers to.  On these machines, define the macro
2064   `ENCODE_SECTION_INFO' to store the information into the `symbol_ref', and
2065   then check for it here.  When you see a `const', you will have to look
2066   inside it to find the `symbol_ref' in order to determine the section.
2067
2068   The best way to modify the name string is by adding text to the beginning,
2069   with suitable punctuation to prevent any ambiguity.  Allocate the new name
2070   in `saveable_obstack'.  You will have to modify `ASM_OUTPUT_LABELREF' to
2071   remove and decode the added text and output the name accordingly, and define
2072   `(* targetm.strip_name_encoding)' to access the original name string.
2073
2074   You can check the information stored here into the `symbol_ref' in the
2075   definitions of the macros `GO_IF_LEGITIMATE_ADDRESS' and
2076   `PRINT_OPERAND_ADDRESS'.  */
2077
2078#ifdef REG_OK_STRICT
2079#define REG_OK_STRICT_P 1
2080#else
2081#define REG_OK_STRICT_P 0
2082#endif
2083
2084#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL)			\
2085  do									\
2086    {									\
2087      if (frv_legitimate_address_p (MODE, X, REG_OK_STRICT_P,		\
2088 				    FALSE, FALSE))			\
2089	goto LABEL;							\
2090    }									\
2091  while (0)
2092
2093/* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
2094   use as a base register.  For hard registers, it should always accept those
2095   which the hardware permits and reject the others.  Whether the macro accepts
2096   or rejects pseudo registers must be controlled by `REG_OK_STRICT' as
2097   described above.  This usually requires two variant definitions, of which
2098   `REG_OK_STRICT' controls the one actually used.  */
2099#ifdef REG_OK_STRICT
2100#define REG_OK_FOR_BASE_P(X) GPR_P (REGNO (X))
2101#else
2102#define REG_OK_FOR_BASE_P(X) GPR_AP_OR_PSEUDO_P (REGNO (X))
2103#endif
2104
2105/* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
2106   use as an index register.
2107
2108   The difference between an index register and a base register is that the
2109   index register may be scaled.  If an address involves the sum of two
2110   registers, neither one of them scaled, then either one may be labeled the
2111   "base" and the other the "index"; but whichever labeling is used must fit
2112   the machine's constraints of which registers may serve in each capacity.
2113   The compiler will try both labelings, looking for one that is valid, and
2114   will reload one or both registers only if neither labeling works.  */
2115#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_BASE_P (X)
2116
2117#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN)		\
2118do {							\
2119  rtx new_x = frv_legitimize_address (X, OLDX, MODE);	\
2120  if (new_x)						\
2121    { 							\
2122      (X) = new_x; 					\
2123      goto WIN; 					\
2124    } 							\
2125} while (0)
2126
2127#define FIND_BASE_TERM frv_find_base_term
2128
2129/* A C statement or compound statement with a conditional `goto LABEL;'
2130   executed if memory address X (an RTX) can have different meanings depending
2131   on the machine mode of the memory reference it is used for or if the address
2132   is valid for some modes but not others.
2133
2134   Autoincrement and autodecrement addresses typically have mode-dependent
2135   effects because the amount of the increment or decrement is the size of the
2136   operand being addressed.  Some machines have other mode-dependent addresses.
2137   Many RISC machines have no mode-dependent addresses.
2138
2139   You may assume that ADDR is a valid address for the machine.  */
2140#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL)
2141
2142/* A C expression that is nonzero if X is a legitimate constant for an
2143   immediate operand on the target machine.  You can assume that X satisfies
2144   `CONSTANT_P', so you need not check this.  In fact, `1' is a suitable
2145   definition for this macro on machines where anything `CONSTANT_P' is valid.  */
2146#define LEGITIMATE_CONSTANT_P(X) frv_legitimate_constant_p (X)
2147
2148/* The load-and-update commands allow pre-modification in addresses.
2149   The index has to be in a register.  */
2150#define HAVE_PRE_MODIFY_REG 1
2151
2152
2153/* We define extra CC modes in frv-modes.def so we need a selector.  */
2154
2155#define SELECT_CC_MODE frv_select_cc_mode
2156
2157/* A C expression whose value is one if it is always safe to reverse a
2158   comparison whose mode is MODE.  If `SELECT_CC_MODE' can ever return MODE for
2159   a floating-point inequality comparison, then `REVERSIBLE_CC_MODE (MODE)'
2160   must be zero.
2161
2162   You need not define this macro if it would always returns zero or if the
2163   floating-point format is anything other than `IEEE_FLOAT_FORMAT'.  For
2164   example, here is the definition used on the SPARC, where floating-point
2165   inequality comparisons are always given `CCFPEmode':
2166
2167        #define REVERSIBLE_CC_MODE(MODE)  ((MODE) != CCFPEmode)  */
2168
2169/* On frv, don't consider floating point comparisons to be reversible.  In
2170   theory, fp equality comparisons can be reversible.  */
2171#define REVERSIBLE_CC_MODE(MODE) \
2172  ((MODE) == CCmode || (MODE) == CC_UNSmode || (MODE) == CC_NZmode)
2173
2174/* Frv CCR_MODE's are not reversible.  */
2175#define REVERSE_CONDEXEC_PREDICATES_P(x,y)      0
2176
2177
2178/* Describing Relative Costs of Operations.  */
2179
2180/* A C expression for the cost of moving data from a register in class FROM to
2181   one in class TO.  The classes are expressed using the enumeration values
2182   such as `GENERAL_REGS'.  A value of 4 is the default; other values are
2183   interpreted relative to that.
2184
2185   It is not required that the cost always equal 2 when FROM is the same as TO;
2186   on some machines it is expensive to move between registers if they are not
2187   general registers.
2188
2189   If reload sees an insn consisting of a single `set' between two hard
2190   registers, and if `REGISTER_MOVE_COST' applied to their classes returns a
2191   value of 2, reload does not check to ensure that the constraints of the insn
2192   are met.  Setting a cost of other than 2 will allow reload to verify that
2193   the constraints are met.  You should do this if the `movM' pattern's
2194   constraints do not allow such copying.  */
2195#define REGISTER_MOVE_COST(MODE, FROM, TO) frv_register_move_cost (FROM, TO)
2196
2197/* A C expression for the cost of moving data of mode M between a register and
2198   memory.  A value of 2 is the default; this cost is relative to those in
2199   `REGISTER_MOVE_COST'.
2200
2201   If moving between registers and memory is more expensive than between two
2202   registers, you should define this macro to express the relative cost.  */
2203#define MEMORY_MOVE_COST(M,C,I) 4
2204
2205/* A C expression for the cost of a branch instruction.  A value of 1 is the
2206   default; other values are interpreted relative to that.  */
2207#define BRANCH_COST frv_branch_cost_int
2208
2209/* Define this macro as a C expression which is nonzero if accessing less than
2210   a word of memory (i.e. a `char' or a `short') is no faster than accessing a
2211   word of memory, i.e., if such access require more than one instruction or if
2212   there is no difference in cost between byte and (aligned) word loads.
2213
2214   When this macro is not defined, the compiler will access a field by finding
2215   the smallest containing object; when it is defined, a fullword load will be
2216   used if alignment permits.  Unless bytes accesses are faster than word
2217   accesses, using word accesses is preferable since it may eliminate
2218   subsequent memory access if subsequent accesses occur to other fields in the
2219   same word of the structure, but to different bytes.  */
2220#define SLOW_BYTE_ACCESS 1
2221
2222/* Define this macro if it is as good or better to call a constant function
2223   address than to call an address kept in a register.  */
2224#define NO_FUNCTION_CSE
2225
2226
2227/* Dividing the output into sections.  */
2228
2229/* A C expression whose value is a string containing the assembler operation
2230   that should precede instructions and read-only data.  Normally `".text"' is
2231   right.  */
2232#define TEXT_SECTION_ASM_OP "\t.text"
2233
2234/* A C expression whose value is a string containing the assembler operation to
2235   identify the following data as writable initialized data.  Normally
2236   `".data"' is right.  */
2237#define DATA_SECTION_ASM_OP "\t.data"
2238
2239/* If defined, a C expression whose value is a string containing the
2240   assembler operation to identify the following data as
2241   uninitialized global data.  If not defined, and neither
2242   `ASM_OUTPUT_BSS' nor `ASM_OUTPUT_ALIGNED_BSS' are defined,
2243   uninitialized global data will be output in the data section if
2244   `-fno-common' is passed, otherwise `ASM_OUTPUT_COMMON' will be
2245   used.  */
2246#define BSS_SECTION_ASM_OP "\t.section .bss,\"aw\""
2247
2248/* Short Data Support */
2249#define SDATA_SECTION_ASM_OP	"\t.section .sdata,\"aw\""
2250
2251/* On svr4, we *do* have support for the .init and .fini sections, and we
2252   can put stuff in there to be executed before and after `main'.  We let
2253   crtstuff.c and other files know this by defining the following symbols.
2254   The definitions say how to change sections to the .init and .fini
2255   sections.  This is the same for all known svr4 assemblers.
2256
2257   The standard System V.4 macros will work, but they look ugly in the
2258   assembly output, so redefine them.  */
2259
2260#undef	INIT_SECTION_ASM_OP
2261#undef	FINI_SECTION_ASM_OP
2262#define INIT_SECTION_ASM_OP	"\t.section .init,\"ax\""
2263#define FINI_SECTION_ASM_OP	"\t.section .fini,\"ax\""
2264
2265#undef CTORS_SECTION_ASM_OP
2266#undef DTORS_SECTION_ASM_OP
2267#define CTORS_SECTION_ASM_OP	"\t.section\t.ctors,\"a\""
2268#define DTORS_SECTION_ASM_OP	"\t.section\t.dtors,\"a\""
2269
2270/* A C expression whose value is a string containing the assembler operation to
2271   switch to the fixup section that records all initialized pointers in a -fpic
2272   program so they can be changed program startup time if the program is loaded
2273   at a different address than linked for.  */
2274#define FIXUP_SECTION_ASM_OP	"\t.section .rofixup,\"a\""
2275
2276/* A list of names for sections other than the standard two, which are
2277   `in_text' and `in_data'.  You need not define this macro
2278   on a system with no other sections (that GCC needs to use).  */
2279#undef  EXTRA_SECTIONS
2280#define EXTRA_SECTIONS in_sdata, in_const, in_fixup
2281
2282/* One or more functions to be defined in "varasm.c".  These
2283   functions should do jobs analogous to those of `text_section' and
2284   `data_section', for your additional sections.  Do not define this
2285   macro if you do not define `EXTRA_SECTIONS'.  */
2286#undef  EXTRA_SECTION_FUNCTIONS
2287#define EXTRA_SECTION_FUNCTIONS                                         \
2288	SDATA_SECTION_FUNCTION						\
2289	FIXUP_SECTION_FUNCTION
2290
2291#define SDATA_SECTION_FUNCTION						\
2292void									\
2293sdata_section (void)							\
2294{									\
2295  if (in_section != in_sdata)						\
2296    {									\
2297      fprintf (asm_out_file, "%s\n", SDATA_SECTION_ASM_OP);		\
2298      in_section = in_sdata;						\
2299    }									\
2300}
2301
2302#define FIXUP_SECTION_FUNCTION						\
2303void									\
2304fixup_section (void)							\
2305{									\
2306  if (in_section != in_fixup)						\
2307    {									\
2308      fprintf (asm_out_file, "%s\n", FIXUP_SECTION_ASM_OP);		\
2309      in_section = in_fixup;						\
2310    }									\
2311}
2312
2313/* Position Independent Code.  */
2314
2315/* A C expression that is nonzero if X is a legitimate immediate operand on the
2316   target machine when generating position independent code.  You can assume
2317   that X satisfies `CONSTANT_P', so you need not check this.  You can also
2318   assume FLAG_PIC is true, so you need not check it either.  You need not
2319   define this macro if all constants (including `SYMBOL_REF') can be immediate
2320   operands when generating position independent code.  */
2321#define LEGITIMATE_PIC_OPERAND_P(X)					\
2322  (   GET_CODE (X) == CONST_INT						\
2323   || GET_CODE (X) == CONST_DOUBLE					\
2324   || (GET_CODE (X) == HIGH && GET_CODE (XEXP (X, 0)) == CONST_INT)	\
2325   || got12_operand (X, VOIDmode))					\
2326
2327
2328/* The Overall Framework of an Assembler File.  */
2329
2330/* A C string constant describing how to begin a comment in the target
2331   assembler language.  The compiler assumes that the comment will end at the
2332   end of the line.  */
2333#define ASM_COMMENT_START ";"
2334
2335/* A C string constant for text to be output before each `asm' statement or
2336   group of consecutive ones.  Normally this is `"#APP"', which is a comment
2337   that has no effect on most assemblers but tells the GNU assembler that it
2338   must check the lines that follow for all valid assembler constructs.  */
2339#define ASM_APP_ON "#APP\n"
2340
2341/* A C string constant for text to be output after each `asm' statement or
2342   group of consecutive ones.  Normally this is `"#NO_APP"', which tells the
2343   GNU assembler to resume making the time-saving assumptions that are valid
2344   for ordinary compiler output.  */
2345#define ASM_APP_OFF "#NO_APP\n"
2346
2347
2348/* Output of Data.  */
2349
2350/* This is how to output a label to dwarf/dwarf2.  */
2351#define ASM_OUTPUT_DWARF_ADDR(STREAM, LABEL)				\
2352do {									\
2353  fprintf (STREAM, "\t.picptr\t");					\
2354  assemble_name (STREAM, LABEL);					\
2355} while (0)
2356
2357/* Whether to emit the gas specific dwarf2 line number support.  */
2358#define DWARF2_ASM_LINE_DEBUG_INFO (TARGET_DEBUG_LOC)
2359
2360/* Output of Uninitialized Variables.  */
2361
2362/* A C statement (sans semicolon) to output to the stdio stream STREAM the
2363   assembler definition of a local-common-label named NAME whose size is SIZE
2364   bytes.  The variable ROUNDED is the size rounded up to whatever alignment
2365   the caller wants.
2366
2367   Use the expression `assemble_name (STREAM, NAME)' to output the name itself;
2368   before and after that, output the additional assembler syntax for defining
2369   the name, and a newline.
2370
2371   This macro controls how the assembler definitions of uninitialized static
2372   variables are output.  */
2373#undef ASM_OUTPUT_LOCAL
2374
2375/* Like `ASM_OUTPUT_LOCAL' except takes the required alignment as a separate,
2376   explicit argument.  If you define this macro, it is used in place of
2377   `ASM_OUTPUT_LOCAL', and gives you more flexibility in handling the required
2378   alignment of the variable.  The alignment is specified as the number of
2379   bits.
2380
2381   Defined in svr4.h.  */
2382#undef ASM_OUTPUT_ALIGNED_LOCAL
2383
2384/* This is for final.c, because it is used by ASM_DECLARE_OBJECT_NAME.  */
2385extern int size_directive_output;
2386
2387/* Like `ASM_OUTPUT_ALIGNED_LOCAL' except that it takes an additional
2388   parameter - the DECL of variable to be output, if there is one.
2389   This macro can be called with DECL == NULL_TREE.  If you define
2390   this macro, it is used in place of `ASM_OUTPUT_LOCAL' and
2391   `ASM_OUTPUT_ALIGNED_LOCAL', and gives you more flexibility in
2392   handling the destination of the variable.  */
2393#undef ASM_OUTPUT_ALIGNED_DECL_LOCAL
2394#define ASM_OUTPUT_ALIGNED_DECL_LOCAL(STREAM, DECL, NAME, SIZE, ALIGN)	\
2395do {                                                                   	\
2396  if ((SIZE) > 0 && (SIZE) <= g_switch_value)				\
2397    named_section (0, ".sbss", 0);                                    	\
2398  else                                                                 	\
2399    bss_section ();                                                  	\
2400  ASM_OUTPUT_ALIGN (STREAM, floor_log2 ((ALIGN) / BITS_PER_UNIT));     	\
2401  ASM_DECLARE_OBJECT_NAME (STREAM, NAME, DECL);                        	\
2402  ASM_OUTPUT_SKIP (STREAM, (SIZE) ? (SIZE) : 1);                       	\
2403} while (0)
2404
2405
2406/* Output and Generation of Labels.  */
2407
2408/* A C statement (sans semicolon) to output to the stdio stream STREAM the
2409   assembler definition of a label named NAME.  Use the expression
2410   `assemble_name (STREAM, NAME)' to output the name itself; before and after
2411   that, output the additional assembler syntax for defining the name, and a
2412   newline.  */
2413#define ASM_OUTPUT_LABEL(STREAM, NAME)					\
2414do {									\
2415  assemble_name (STREAM, NAME);						\
2416  fputs (":\n", STREAM);						\
2417} while (0)
2418
2419/* Globalizing directive for a label.  */
2420#define GLOBAL_ASM_OP "\t.globl "
2421
2422/* A C statement to store into the string STRING a label whose name is made
2423   from the string PREFIX and the number NUM.
2424
2425   This string, when output subsequently by `assemble_name', should produce the
2426   output that `(*targetm.asm_out.internal_label)' would produce with the same PREFIX
2427   and NUM.
2428
2429   If the string begins with `*', then `assemble_name' will output the rest of
2430   the string unchanged.  It is often convenient for
2431   `ASM_GENERATE_INTERNAL_LABEL' to use `*' in this way.  If the string doesn't
2432   start with `*', then `ASM_OUTPUT_LABELREF' gets to output the string, and
2433   may change it.  (Of course, `ASM_OUTPUT_LABELREF' is also part of your
2434   machine description, so you should know what it does on your machine.)
2435
2436   Defined in svr4.h.  */
2437#undef ASM_GENERATE_INTERNAL_LABEL
2438#define ASM_GENERATE_INTERNAL_LABEL(LABEL, PREFIX, NUM)			\
2439do {									\
2440  sprintf (LABEL, "*.%s%ld", PREFIX, (long)NUM);			\
2441} while (0)
2442
2443
2444/* Macros Controlling Initialization Routines.  */
2445
2446/* If defined, a C string constant for the assembler operation to identify the
2447   following data as initialization code.  If not defined, GCC will assume
2448   such a section does not exist.  When you are using special sections for
2449   initialization and termination functions, this macro also controls how
2450   `crtstuff.c' and `libgcc2.c' arrange to run the initialization functions.
2451
2452   Defined in svr4.h.  */
2453#undef INIT_SECTION_ASM_OP
2454
2455/* If defined, `main' will call `__main' despite the presence of
2456   `INIT_SECTION_ASM_OP'.  This macro should be defined for systems where the
2457   init section is not actually run automatically, but is still useful for
2458   collecting the lists of constructors and destructors.  */
2459#define INVOKE__main
2460
2461/* Output of Assembler Instructions.  */
2462
2463/* A C initializer containing the assembler's names for the machine registers,
2464   each one as a C string constant.  This is what translates register numbers
2465   in the compiler into assembler language.  */
2466#define REGISTER_NAMES							\
2467{									\
2468 "gr0",  "sp",   "fp",   "gr3",  "gr4",  "gr5",  "gr6",  "gr7",		\
2469  "gr8",  "gr9",  "gr10", "gr11", "gr12", "gr13", "gr14", "gr15",	\
2470  "gr16", "gr17", "gr18", "gr19", "gr20", "gr21", "gr22", "gr23",	\
2471  "gr24", "gr25", "gr26", "gr27", "gr28", "gr29", "gr30", "gr31",	\
2472  "gr32", "gr33", "gr34", "gr35", "gr36", "gr37", "gr38", "gr39",	\
2473  "gr40", "gr41", "gr42", "gr43", "gr44", "gr45", "gr46", "gr47",	\
2474  "gr48", "gr49", "gr50", "gr51", "gr52", "gr53", "gr54", "gr55",	\
2475  "gr56", "gr57", "gr58", "gr59", "gr60", "gr61", "gr62", "gr63",	\
2476									\
2477  "fr0",  "fr1",  "fr2",  "fr3",  "fr4",  "fr5",  "fr6",  "fr7",	\
2478  "fr8",  "fr9",  "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",	\
2479  "fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23",	\
2480  "fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31",	\
2481  "fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39",	\
2482  "fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47",	\
2483  "fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55",	\
2484  "fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63",	\
2485									\
2486  "fcc0", "fcc1", "fcc2", "fcc3", "icc0", "icc1", "icc2", "icc3",	\
2487  "cc0",  "cc1",  "cc2",  "cc3",  "cc4",  "cc5",  "cc6",  "cc7",	\
2488  "acc0", "acc1", "acc2", "acc3", "acc4", "acc5", "acc6", "acc7",	\
2489  "acc8", "acc9", "acc10", "acc11",					\
2490  "accg0","accg1","accg2","accg3","accg4","accg5","accg6","accg7",	\
2491  "accg8", "accg9", "accg10", "accg11",					\
2492  "ap",   "lr",   "lcr",  "iacc0h", "iacc0l"				\
2493}
2494
2495/* Define this macro if you are using an unusual assembler that
2496   requires different names for the machine instructions.
2497
2498   The definition is a C statement or statements which output an
2499   assembler instruction opcode to the stdio stream STREAM.  The
2500   macro-operand PTR is a variable of type `char *' which points to
2501   the opcode name in its "internal" form--the form that is written
2502   in the machine description.  The definition should output the
2503   opcode name to STREAM, performing any translation you desire, and
2504   increment the variable PTR to point at the end of the opcode so
2505   that it will not be output twice.
2506
2507   In fact, your macro definition may process less than the entire
2508   opcode name, or more than the opcode name; but if you want to
2509   process text that includes `%'-sequences to substitute operands,
2510   you must take care of the substitution yourself.  Just be sure to
2511   increment PTR over whatever text should not be output normally.
2512
2513   If you need to look at the operand values, they can be found as the
2514   elements of `recog_operand'.
2515
2516   If the macro definition does nothing, the instruction is output in
2517   the usual way.  */
2518
2519#define ASM_OUTPUT_OPCODE(STREAM, PTR)\
2520   (PTR) = frv_asm_output_opcode (STREAM, PTR)
2521
2522/* If defined, a C statement to be executed just prior to the output
2523   of assembler code for INSN, to modify the extracted operands so
2524   they will be output differently.
2525
2526   Here the argument OPVEC is the vector containing the operands
2527   extracted from INSN, and NOPERANDS is the number of elements of
2528   the vector which contain meaningful data for this insn.  The
2529   contents of this vector are what will be used to convert the insn
2530   template into assembler code, so you can change the assembler
2531   output by changing the contents of the vector.
2532
2533   This macro is useful when various assembler syntaxes share a single
2534   file of instruction patterns; by defining this macro differently,
2535   you can cause a large class of instructions to be output
2536   differently (such as with rearranged operands).  Naturally,
2537   variations in assembler syntax affecting individual insn patterns
2538   ought to be handled by writing conditional output routines in
2539   those patterns.
2540
2541   If this macro is not defined, it is equivalent to a null statement.  */
2542
2543#define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS)\
2544  frv_final_prescan_insn (INSN, OPVEC, NOPERANDS)
2545
2546
2547/* A C compound statement to output to stdio stream STREAM the assembler syntax
2548   for an instruction operand X.  X is an RTL expression.
2549
2550   CODE is a value that can be used to specify one of several ways of printing
2551   the operand.  It is used when identical operands must be printed differently
2552   depending on the context.  CODE comes from the `%' specification that was
2553   used to request printing of the operand.  If the specification was just
2554   `%DIGIT' then CODE is 0; if the specification was `%LTR DIGIT' then CODE is
2555   the ASCII code for LTR.
2556
2557   If X is a register, this macro should print the register's name.  The names
2558   can be found in an array `reg_names' whose type is `char *[]'.  `reg_names'
2559   is initialized from `REGISTER_NAMES'.
2560
2561   When the machine description has a specification `%PUNCT' (a `%' followed by
2562   a punctuation character), this macro is called with a null pointer for X and
2563   the punctuation character for CODE.  */
2564#define PRINT_OPERAND(STREAM, X, CODE) frv_print_operand (STREAM, X, CODE)
2565
2566/* A C expression which evaluates to true if CODE is a valid punctuation
2567   character for use in the `PRINT_OPERAND' macro.  If
2568   `PRINT_OPERAND_PUNCT_VALID_P' is not defined, it means that no punctuation
2569   characters (except for the standard one, `%') are used in this way.  */
2570/* . == gr0
2571   # == hint operand -- always zero for now
2572   @ == small data base register (gr16)
2573   ~ == pic register (gr17)
2574   * == temporary integer CCR register (cr3)
2575   & == temporary integer ICC register (icc3)  */
2576#define PRINT_OPERAND_PUNCT_VALID_P(CODE)				\
2577((CODE) == '.' || (CODE) == '#' || (CODE) == '@' || (CODE) == '~'	\
2578 || (CODE) == '*' || (CODE) == '&')
2579
2580/* A C compound statement to output to stdio stream STREAM the assembler syntax
2581   for an instruction operand that is a memory reference whose address is X.  X
2582   is an RTL expression.
2583
2584   On some machines, the syntax for a symbolic address depends on the section
2585   that the address refers to.  On these machines, define the macro
2586   `ENCODE_SECTION_INFO' to store the information into the `symbol_ref', and
2587   then check for it here.
2588
2589   This declaration must be present.  */
2590#define PRINT_OPERAND_ADDRESS(STREAM, X) frv_print_operand_address (STREAM, X)
2591
2592/* If defined, C string expressions to be used for the `%R', `%L', `%U', and
2593   `%I' options of `asm_fprintf' (see `final.c').  These are useful when a
2594   single `md' file must support multiple assembler formats.  In that case, the
2595   various `tm.h' files can define these macros differently.
2596
2597   USER_LABEL_PREFIX is defined in svr4.h.  */
2598#undef USER_LABEL_PREFIX
2599#define USER_LABEL_PREFIX ""
2600#define REGISTER_PREFIX ""
2601#define LOCAL_LABEL_PREFIX "."
2602#define IMMEDIATE_PREFIX "#"
2603
2604
2605/* Output of dispatch tables.  */
2606
2607/* This macro should be provided on machines where the addresses in a dispatch
2608   table are relative to the table's own address.
2609
2610   The definition should be a C statement to output to the stdio stream STREAM
2611   an assembler pseudo-instruction to generate a difference between two labels.
2612   VALUE and REL are the numbers of two internal labels.  The definitions of
2613   these labels are output using `(*targetm.asm_out.internal_label)', and they must be
2614   printed in the same way here.  For example,
2615
2616        fprintf (STREAM, "\t.word L%d-L%d\n", VALUE, REL)  */
2617#define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
2618fprintf (STREAM, "\t.word .L%d-.L%d\n", VALUE, REL)
2619
2620/* This macro should be provided on machines where the addresses in a dispatch
2621   table are absolute.
2622
2623   The definition should be a C statement to output to the stdio stream STREAM
2624   an assembler pseudo-instruction to generate a reference to a label.  VALUE
2625   is the number of an internal label whose definition is output using
2626   `(*targetm.asm_out.internal_label)'.  For example,
2627
2628        fprintf (STREAM, "\t.word L%d\n", VALUE)  */
2629#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
2630fprintf (STREAM, "\t.word .L%d\n", VALUE)
2631
2632/* Define this if the label before a jump-table needs to be output specially.
2633   The first three arguments are the same as for `(*targetm.asm_out.internal_label)';
2634   the fourth argument is the jump-table which follows (a `jump_insn'
2635   containing an `addr_vec' or `addr_diff_vec').
2636
2637   This feature is used on system V to output a `swbeg' statement for the
2638   table.
2639
2640   If this macro is not defined, these labels are output with
2641   `(*targetm.asm_out.internal_label)'.
2642
2643   Defined in svr4.h.  */
2644/* When generating embedded PIC or mips16 code we want to put the jump
2645   table in the .text section.  In all other cases, we want to put the
2646   jump table in the .rdata section.  Unfortunately, we can't use
2647   JUMP_TABLES_IN_TEXT_SECTION, because it is not conditional.
2648   Instead, we use ASM_OUTPUT_CASE_LABEL to switch back to the .text
2649   section if appropriate.  */
2650
2651#undef  ASM_OUTPUT_CASE_LABEL
2652#define ASM_OUTPUT_CASE_LABEL(STREAM, PREFIX, NUM, TABLE)               \
2653do {                                                                    \
2654  if (flag_pic)                                                         \
2655    function_section (current_function_decl);                           \
2656  (*targetm.asm_out.internal_label) (STREAM, PREFIX, NUM);                      \
2657} while (0)
2658
2659
2660/* Assembler Commands for Exception Regions.  */
2661
2662/* Define this macro to 0 if your target supports DWARF 2 frame unwind
2663   information, but it does not yet work with exception handling.  Otherwise,
2664   if your target supports this information (if it defines
2665   `INCOMING_RETURN_ADDR_RTX' and either `UNALIGNED_INT_ASM_OP' or
2666   `OBJECT_FORMAT_ELF'), GCC will provide a default definition of 1.
2667
2668   If this macro is defined to 1, the DWARF 2 unwinder will be the default
2669   exception handling mechanism; otherwise, setjmp/longjmp will be used by
2670   default.
2671
2672   If this macro is defined to anything, the DWARF 2 unwinder will be used
2673   instead of inline unwinders and __unwind_function in the non-setjmp case.  */
2674#define DWARF2_UNWIND_INFO 1
2675
2676#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNO)
2677
2678/* Assembler Commands for Alignment.  */
2679
2680/* A C statement to output to the stdio stream STREAM an assembler instruction
2681   to advance the location counter by NBYTES bytes.  Those bytes should be zero
2682   when loaded.  NBYTES will be a C expression of type `int'.
2683
2684   Defined in svr4.h.  */
2685#undef  ASM_OUTPUT_SKIP
2686#define ASM_OUTPUT_SKIP(STREAM, NBYTES) \
2687  fprintf (STREAM, "\t.zero\t%u\n", (int)(NBYTES))
2688
2689/* A C statement to output to the stdio stream STREAM an assembler command to
2690   advance the location counter to a multiple of 2 to the POWER bytes.  POWER
2691   will be a C expression of type `int'.  */
2692#define ASM_OUTPUT_ALIGN(STREAM, POWER) \
2693  fprintf ((STREAM), "\t.p2align %d\n", (POWER))
2694
2695/* Inside the text section, align with unpacked nops rather than zeros.  */
2696#define ASM_OUTPUT_ALIGN_WITH_NOP(STREAM, POWER) \
2697  fprintf ((STREAM), "\t.p2alignl %d,0x80880000\n", (POWER))
2698
2699/* Macros Affecting all Debug Formats.  */
2700
2701/* A C expression that returns the DBX register number for the compiler
2702   register number REGNO.  In simple cases, the value of this expression may be
2703   REGNO itself.  But sometimes there are some registers that the compiler
2704   knows about and DBX does not, or vice versa.  In such cases, some register
2705   may need to have one number in the compiler and another for DBX.
2706
2707   If two registers have consecutive numbers inside GCC, and they can be
2708   used as a pair to hold a multiword value, then they *must* have consecutive
2709   numbers after renumbering with `DBX_REGISTER_NUMBER'.  Otherwise, debuggers
2710   will be unable to access such a pair, because they expect register pairs to
2711   be consecutive in their own numbering scheme.
2712
2713   If you find yourself defining `DBX_REGISTER_NUMBER' in way that does not
2714   preserve register pairs, then what you must do instead is redefine the
2715   actual register numbering scheme.
2716
2717   This declaration is required.  */
2718#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
2719
2720/* A C expression that returns the type of debugging output GCC produces
2721   when the user specifies `-g' or `-ggdb'.  Define this if you have arranged
2722   for GCC to support more than one format of debugging output.  Currently,
2723   the allowable values are `DBX_DEBUG', `SDB_DEBUG', `DWARF_DEBUG',
2724   `DWARF2_DEBUG', and `XCOFF_DEBUG'.
2725
2726   The value of this macro only affects the default debugging output; the user
2727   can always get a specific type of output by using `-gstabs', `-gcoff',
2728   `-gdwarf-1', `-gdwarf-2', or `-gxcoff'.
2729
2730   Defined in svr4.h.  */
2731#undef  PREFERRED_DEBUGGING_TYPE
2732#define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
2733
2734/* Miscellaneous Parameters.  */
2735
2736/* An alias for a machine mode name.  This is the machine mode that elements of
2737   a jump-table should have.  */
2738#define CASE_VECTOR_MODE SImode
2739
2740/* Define this macro if operations between registers with integral mode smaller
2741   than a word are always performed on the entire register.  Most RISC machines
2742   have this property and most CISC machines do not.  */
2743#define WORD_REGISTER_OPERATIONS
2744
2745/* Define this macro to be a C expression indicating when insns that read
2746   memory in MODE, an integral mode narrower than a word, set the bits outside
2747   of MODE to be either the sign-extension or the zero-extension of the data
2748   read.  Return `SIGN_EXTEND' for values of MODE for which the insn
2749   sign-extends, `ZERO_EXTEND' for which it zero-extends, and `UNKNOWN' for other
2750   modes.
2751
2752   This macro is not called with MODE non-integral or with a width greater than
2753   or equal to `BITS_PER_WORD', so you may return any value in this case.  Do
2754   not define this macro if it would always return `UNKNOWN'.  On machines where
2755   this macro is defined, you will normally define it as the constant
2756   `SIGN_EXTEND' or `ZERO_EXTEND'.  */
2757#define LOAD_EXTEND_OP(MODE) SIGN_EXTEND
2758
2759/* Define if loading short immediate values into registers sign extends.  */
2760#define SHORT_IMMEDIATES_SIGN_EXTEND
2761
2762/* The maximum number of bytes that a single instruction can move quickly from
2763   memory to memory.  */
2764#define MOVE_MAX 8
2765
2766/* A C expression which is nonzero if on this machine it is safe to "convert"
2767   an integer of INPREC bits to one of OUTPREC bits (where OUTPREC is smaller
2768   than INPREC) by merely operating on it as if it had only OUTPREC bits.
2769
2770   On many machines, this expression can be 1.
2771
2772   When `TRULY_NOOP_TRUNCATION' returns 1 for a pair of sizes for modes for
2773   which `MODES_TIEABLE_P' is 0, suboptimal code can result.  If this is the
2774   case, making `TRULY_NOOP_TRUNCATION' return 0 in such cases may improve
2775   things.  */
2776#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2777
2778/* An alias for the machine mode for pointers.  On most machines, define this
2779   to be the integer mode corresponding to the width of a hardware pointer;
2780   `SImode' on 32-bit machine or `DImode' on 64-bit machines.  On some machines
2781   you must define this to be one of the partial integer modes, such as
2782   `PSImode'.
2783
2784   The width of `Pmode' must be at least as large as the value of
2785   `POINTER_SIZE'.  If it is not equal, you must define the macro
2786   `POINTERS_EXTEND_UNSIGNED' to specify how pointers are extended to `Pmode'.  */
2787#define Pmode SImode
2788
2789/* An alias for the machine mode used for memory references to functions being
2790   called, in `call' RTL expressions.  On most machines this should be
2791   `QImode'.  */
2792#define FUNCTION_MODE QImode
2793
2794/* Define this macro to handle System V style pragmas: #pragma pack and
2795   #pragma weak.  Note, #pragma weak will only be supported if SUPPORT_WEAK is
2796   defined.
2797
2798   Defined in svr4.h.  */
2799#define HANDLE_SYSV_PRAGMA 1
2800
2801/* A C expression for the maximum number of instructions to execute via
2802   conditional execution instructions instead of a branch.  A value of
2803   BRANCH_COST+1 is the default if the machine does not use
2804   cc0, and 1 if it does use cc0.  */
2805#define MAX_CONDITIONAL_EXECUTE frv_condexec_insns
2806
2807/* A C expression to modify the code described by the conditional if
2808   information CE_INFO, possibly updating the tests in TRUE_EXPR, and
2809   FALSE_EXPR for converting if-then and if-then-else code to conditional
2810   instructions.  Set either TRUE_EXPR or FALSE_EXPR to a null pointer if the
2811   tests cannot be converted.  */
2812#define IFCVT_MODIFY_TESTS(CE_INFO, TRUE_EXPR, FALSE_EXPR)		\
2813frv_ifcvt_modify_tests (CE_INFO, &TRUE_EXPR, &FALSE_EXPR)
2814
2815/* A C expression to modify the code described by the conditional if
2816   information CE_INFO, for the basic block BB, possibly updating the tests in
2817   TRUE_EXPR, and FALSE_EXPR for converting the && and || parts of if-then or
2818   if-then-else code to conditional instructions.  OLD_TRUE and OLD_FALSE are
2819   the previous tests.  Set either TRUE_EXPR or FALSE_EXPR to a null pointer if
2820   the tests cannot be converted.  */
2821#define IFCVT_MODIFY_MULTIPLE_TESTS(CE_INFO, BB, TRUE_EXPR, FALSE_EXPR) \
2822frv_ifcvt_modify_multiple_tests (CE_INFO, BB, &TRUE_EXPR, &FALSE_EXPR)
2823
2824/* A C expression to modify the code described by the conditional if
2825   information CE_INFO with the new PATTERN in INSN.  If PATTERN is a null
2826   pointer after the IFCVT_MODIFY_INSN macro executes, it is assumed that that
2827   insn cannot be converted to be executed conditionally.  */
2828#define IFCVT_MODIFY_INSN(CE_INFO, PATTERN, INSN) \
2829(PATTERN) = frv_ifcvt_modify_insn (CE_INFO, PATTERN, INSN)
2830
2831/* A C expression to perform any final machine dependent modifications in
2832   converting code to conditional execution in the code described by the
2833   conditional if information CE_INFO.  */
2834#define IFCVT_MODIFY_FINAL(CE_INFO) frv_ifcvt_modify_final (CE_INFO)
2835
2836/* A C expression to cancel any machine dependent modifications in converting
2837   code to conditional execution in the code described by the conditional if
2838   information CE_INFO.  */
2839#define IFCVT_MODIFY_CANCEL(CE_INFO) frv_ifcvt_modify_cancel (CE_INFO)
2840
2841/* Initialize the extra fields provided by IFCVT_EXTRA_FIELDS.  */
2842#define IFCVT_INIT_EXTRA_FIELDS(CE_INFO) frv_ifcvt_init_extra_fields (CE_INFO)
2843
2844/* The definition of the following macro results in that the 2nd jump
2845   optimization (after the 2nd insn scheduling) is minimal.  It is
2846   necessary to define when start cycle marks of insns (TImode is used
2847   for this) is used for VLIW insn packing.  Some jump optimizations
2848   make such marks invalid.  These marks are corrected for some
2849   (minimal) optimizations.  ??? Probably the macro is temporary.
2850   Final solution could making the 2nd jump optimizations before the
2851   2nd instruction scheduling or corrections of the marks for all jump
2852   optimizations.  Although some jump optimizations are actually
2853   deoptimizations for VLIW (super-scalar) processors.  */
2854
2855#define MINIMAL_SECOND_JUMP_OPTIMIZATION
2856
2857
2858/* If the following macro is defined and nonzero and deterministic
2859   finite state automata are used for pipeline hazard recognition, the
2860   code making resource-constrained software pipelining is on.  */
2861#define RCSP_SOFTWARE_PIPELINING 1
2862
2863/* If the following macro is defined and nonzero and deterministic
2864   finite state automata are used for pipeline hazard recognition, we
2865   will try to exchange insns in queue ready to improve the schedule.
2866   The more macro value, the more tries will be made.  */
2867#define FIRST_CYCLE_MULTIPASS_SCHEDULING 1
2868
2869/* The following macro is used only when value of
2870   FIRST_CYCLE_MULTIPASS_SCHEDULING is nonzero.  The more macro value,
2871   the more tries will be made to choose better schedule.  If the
2872   macro value is zero or negative there will be no multi-pass
2873   scheduling.  */
2874#define FIRST_CYCLE_MULTIPASS_SCHEDULING_LOOKAHEAD frv_sched_lookahead
2875
2876enum frv_builtins
2877{
2878  FRV_BUILTIN_MAND,
2879  FRV_BUILTIN_MOR,
2880  FRV_BUILTIN_MXOR,
2881  FRV_BUILTIN_MNOT,
2882  FRV_BUILTIN_MAVEH,
2883  FRV_BUILTIN_MSATHS,
2884  FRV_BUILTIN_MSATHU,
2885  FRV_BUILTIN_MADDHSS,
2886  FRV_BUILTIN_MADDHUS,
2887  FRV_BUILTIN_MSUBHSS,
2888  FRV_BUILTIN_MSUBHUS,
2889  FRV_BUILTIN_MPACKH,
2890  FRV_BUILTIN_MQADDHSS,
2891  FRV_BUILTIN_MQADDHUS,
2892  FRV_BUILTIN_MQSUBHSS,
2893  FRV_BUILTIN_MQSUBHUS,
2894  FRV_BUILTIN_MUNPACKH,
2895  FRV_BUILTIN_MDPACKH,
2896  FRV_BUILTIN_MBTOH,
2897  FRV_BUILTIN_MHTOB,
2898  FRV_BUILTIN_MCOP1,
2899  FRV_BUILTIN_MCOP2,
2900  FRV_BUILTIN_MROTLI,
2901  FRV_BUILTIN_MROTRI,
2902  FRV_BUILTIN_MWCUT,
2903  FRV_BUILTIN_MSLLHI,
2904  FRV_BUILTIN_MSRLHI,
2905  FRV_BUILTIN_MSRAHI,
2906  FRV_BUILTIN_MEXPDHW,
2907  FRV_BUILTIN_MEXPDHD,
2908  FRV_BUILTIN_MMULHS,
2909  FRV_BUILTIN_MMULHU,
2910  FRV_BUILTIN_MMULXHS,
2911  FRV_BUILTIN_MMULXHU,
2912  FRV_BUILTIN_MMACHS,
2913  FRV_BUILTIN_MMACHU,
2914  FRV_BUILTIN_MMRDHS,
2915  FRV_BUILTIN_MMRDHU,
2916  FRV_BUILTIN_MQMULHS,
2917  FRV_BUILTIN_MQMULHU,
2918  FRV_BUILTIN_MQMULXHU,
2919  FRV_BUILTIN_MQMULXHS,
2920  FRV_BUILTIN_MQMACHS,
2921  FRV_BUILTIN_MQMACHU,
2922  FRV_BUILTIN_MCPXRS,
2923  FRV_BUILTIN_MCPXRU,
2924  FRV_BUILTIN_MCPXIS,
2925  FRV_BUILTIN_MCPXIU,
2926  FRV_BUILTIN_MQCPXRS,
2927  FRV_BUILTIN_MQCPXRU,
2928  FRV_BUILTIN_MQCPXIS,
2929  FRV_BUILTIN_MQCPXIU,
2930  FRV_BUILTIN_MCUT,
2931  FRV_BUILTIN_MCUTSS,
2932  FRV_BUILTIN_MWTACC,
2933  FRV_BUILTIN_MWTACCG,
2934  FRV_BUILTIN_MRDACC,
2935  FRV_BUILTIN_MRDACCG,
2936  FRV_BUILTIN_MTRAP,
2937  FRV_BUILTIN_MCLRACC,
2938  FRV_BUILTIN_MCLRACCA,
2939  FRV_BUILTIN_MDUNPACKH,
2940  FRV_BUILTIN_MBTOHE,
2941  FRV_BUILTIN_MQXMACHS,
2942  FRV_BUILTIN_MQXMACXHS,
2943  FRV_BUILTIN_MQMACXHS,
2944  FRV_BUILTIN_MADDACCS,
2945  FRV_BUILTIN_MSUBACCS,
2946  FRV_BUILTIN_MASACCS,
2947  FRV_BUILTIN_MDADDACCS,
2948  FRV_BUILTIN_MDSUBACCS,
2949  FRV_BUILTIN_MDASACCS,
2950  FRV_BUILTIN_MABSHS,
2951  FRV_BUILTIN_MDROTLI,
2952  FRV_BUILTIN_MCPLHI,
2953  FRV_BUILTIN_MCPLI,
2954  FRV_BUILTIN_MDCUTSSI,
2955  FRV_BUILTIN_MQSATHS,
2956  FRV_BUILTIN_MQLCLRHS,
2957  FRV_BUILTIN_MQLMTHS,
2958  FRV_BUILTIN_MQSLLHI,
2959  FRV_BUILTIN_MQSRAHI,
2960  FRV_BUILTIN_MHSETLOS,
2961  FRV_BUILTIN_MHSETLOH,
2962  FRV_BUILTIN_MHSETHIS,
2963  FRV_BUILTIN_MHSETHIH,
2964  FRV_BUILTIN_MHDSETS,
2965  FRV_BUILTIN_MHDSETH,
2966  FRV_BUILTIN_SMUL,
2967  FRV_BUILTIN_UMUL,
2968  FRV_BUILTIN_PREFETCH0,
2969  FRV_BUILTIN_PREFETCH,
2970  FRV_BUILTIN_SMASS,
2971  FRV_BUILTIN_SMSSS,
2972  FRV_BUILTIN_SMU,
2973  FRV_BUILTIN_SCUTSS,
2974  FRV_BUILTIN_ADDSS,
2975  FRV_BUILTIN_SUBSS,
2976  FRV_BUILTIN_SLASS,
2977  FRV_BUILTIN_IACCreadll,
2978  FRV_BUILTIN_IACCreadl,
2979  FRV_BUILTIN_IACCsetll,
2980  FRV_BUILTIN_IACCsetl,
2981  FRV_BUILTIN_SCAN,
2982  FRV_BUILTIN_READ8,
2983  FRV_BUILTIN_READ16,
2984  FRV_BUILTIN_READ32,
2985  FRV_BUILTIN_READ64,
2986  FRV_BUILTIN_WRITE8,
2987  FRV_BUILTIN_WRITE16,
2988  FRV_BUILTIN_WRITE32,
2989  FRV_BUILTIN_WRITE64
2990};
2991#define FRV_BUILTIN_FIRST_NONMEDIA FRV_BUILTIN_SMUL
2992
2993/* Enable prototypes on the call rtl functions.  */
2994#define MD_CALL_PROTOTYPES 1
2995
2996extern GTY(()) rtx frv_compare_op0;			/* operand save for */
2997extern GTY(()) rtx frv_compare_op1;			/* comparison generation */
2998
2999#define CPU_UNITS_QUERY 1
3000
3001#ifdef __FRV_FDPIC__
3002#define CRT_GET_RFIB_DATA(dbase) \
3003  ({ extern void *_GLOBAL_OFFSET_TABLE_; (dbase) = &_GLOBAL_OFFSET_TABLE_; })
3004#endif
3005
3006#endif /* __FRV_H__ */
3007