1/* Control flow graph analysis code for GNU compiler.
2   Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3   1999, 2000, 2001, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 2, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING.  If not, write to the Free
19Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
2002110-1301, USA.  */
21
22/* This file contains various simple utilities to analyze the CFG.  */
23#include "config.h"
24#include "system.h"
25#include "coretypes.h"
26#include "tm.h"
27#include "rtl.h"
28#include "obstack.h"
29#include "hard-reg-set.h"
30#include "basic-block.h"
31#include "insn-config.h"
32#include "recog.h"
33#include "toplev.h"
34#include "tm_p.h"
35#include "timevar.h"
36
37/* Store the data structures necessary for depth-first search.  */
38struct depth_first_search_dsS {
39  /* stack for backtracking during the algorithm */
40  basic_block *stack;
41
42  /* number of edges in the stack.  That is, positions 0, ..., sp-1
43     have edges.  */
44  unsigned int sp;
45
46  /* record of basic blocks already seen by depth-first search */
47  sbitmap visited_blocks;
48};
49typedef struct depth_first_search_dsS *depth_first_search_ds;
50
51static void flow_dfs_compute_reverse_init (depth_first_search_ds);
52static void flow_dfs_compute_reverse_add_bb (depth_first_search_ds,
53					     basic_block);
54static basic_block flow_dfs_compute_reverse_execute (depth_first_search_ds,
55						     basic_block);
56static void flow_dfs_compute_reverse_finish (depth_first_search_ds);
57static bool flow_active_insn_p (rtx);
58
59/* Like active_insn_p, except keep the return value clobber around
60   even after reload.  */
61
62static bool
63flow_active_insn_p (rtx insn)
64{
65  if (active_insn_p (insn))
66    return true;
67
68  /* A clobber of the function return value exists for buggy
69     programs that fail to return a value.  Its effect is to
70     keep the return value from being live across the entire
71     function.  If we allow it to be skipped, we introduce the
72     possibility for register lifetime confusion.  */
73  if (GET_CODE (PATTERN (insn)) == CLOBBER
74      && REG_P (XEXP (PATTERN (insn), 0))
75      && REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))
76    return true;
77
78  return false;
79}
80
81/* Return true if the block has no effect and only forwards control flow to
82   its single destination.  */
83
84bool
85forwarder_block_p (basic_block bb)
86{
87  rtx insn;
88
89  if (bb == EXIT_BLOCK_PTR || bb == ENTRY_BLOCK_PTR
90      || !single_succ_p (bb))
91    return false;
92
93  for (insn = BB_HEAD (bb); insn != BB_END (bb); insn = NEXT_INSN (insn))
94    if (INSN_P (insn) && flow_active_insn_p (insn))
95      return false;
96
97  return (!INSN_P (insn)
98	  || (JUMP_P (insn) && simplejump_p (insn))
99	  || !flow_active_insn_p (insn));
100}
101
102/* Return nonzero if we can reach target from src by falling through.  */
103
104bool
105can_fallthru (basic_block src, basic_block target)
106{
107  rtx insn = BB_END (src);
108  rtx insn2;
109  edge e;
110  edge_iterator ei;
111
112  if (target == EXIT_BLOCK_PTR)
113    return true;
114  if (src->next_bb != target)
115    return 0;
116  FOR_EACH_EDGE (e, ei, src->succs)
117    if (e->dest == EXIT_BLOCK_PTR
118	&& e->flags & EDGE_FALLTHRU)
119      return 0;
120
121  insn2 = BB_HEAD (target);
122  if (insn2 && !active_insn_p (insn2))
123    insn2 = next_active_insn (insn2);
124
125  /* ??? Later we may add code to move jump tables offline.  */
126  return next_active_insn (insn) == insn2;
127}
128
129/* Return nonzero if we could reach target from src by falling through,
130   if the target was made adjacent.  If we already have a fall-through
131   edge to the exit block, we can't do that.  */
132bool
133could_fall_through (basic_block src, basic_block target)
134{
135  edge e;
136  edge_iterator ei;
137
138  if (target == EXIT_BLOCK_PTR)
139    return true;
140  FOR_EACH_EDGE (e, ei, src->succs)
141    if (e->dest == EXIT_BLOCK_PTR
142	&& e->flags & EDGE_FALLTHRU)
143      return 0;
144  return true;
145}
146
147/* Mark the back edges in DFS traversal.
148   Return nonzero if a loop (natural or otherwise) is present.
149   Inspired by Depth_First_Search_PP described in:
150
151     Advanced Compiler Design and Implementation
152     Steven Muchnick
153     Morgan Kaufmann, 1997
154
155   and heavily borrowed from flow_depth_first_order_compute.  */
156
157bool
158mark_dfs_back_edges (void)
159{
160  edge_iterator *stack;
161  int *pre;
162  int *post;
163  int sp;
164  int prenum = 1;
165  int postnum = 1;
166  sbitmap visited;
167  bool found = false;
168
169  /* Allocate the preorder and postorder number arrays.  */
170  pre = xcalloc (last_basic_block, sizeof (int));
171  post = xcalloc (last_basic_block, sizeof (int));
172
173  /* Allocate stack for back-tracking up CFG.  */
174  stack = xmalloc ((n_basic_blocks + 1) * sizeof (edge_iterator));
175  sp = 0;
176
177  /* Allocate bitmap to track nodes that have been visited.  */
178  visited = sbitmap_alloc (last_basic_block);
179
180  /* None of the nodes in the CFG have been visited yet.  */
181  sbitmap_zero (visited);
182
183  /* Push the first edge on to the stack.  */
184  stack[sp++] = ei_start (ENTRY_BLOCK_PTR->succs);
185
186  while (sp)
187    {
188      edge_iterator ei;
189      basic_block src;
190      basic_block dest;
191
192      /* Look at the edge on the top of the stack.  */
193      ei = stack[sp - 1];
194      src = ei_edge (ei)->src;
195      dest = ei_edge (ei)->dest;
196      ei_edge (ei)->flags &= ~EDGE_DFS_BACK;
197
198      /* Check if the edge destination has been visited yet.  */
199      if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
200	{
201	  /* Mark that we have visited the destination.  */
202	  SET_BIT (visited, dest->index);
203
204	  pre[dest->index] = prenum++;
205	  if (EDGE_COUNT (dest->succs) > 0)
206	    {
207	      /* Since the DEST node has been visited for the first
208		 time, check its successors.  */
209	      stack[sp++] = ei_start (dest->succs);
210	    }
211	  else
212	    post[dest->index] = postnum++;
213	}
214      else
215	{
216	  if (dest != EXIT_BLOCK_PTR && src != ENTRY_BLOCK_PTR
217	      && pre[src->index] >= pre[dest->index]
218	      && post[dest->index] == 0)
219	    ei_edge (ei)->flags |= EDGE_DFS_BACK, found = true;
220
221	  if (ei_one_before_end_p (ei) && src != ENTRY_BLOCK_PTR)
222	    post[src->index] = postnum++;
223
224	  if (!ei_one_before_end_p (ei))
225	    ei_next (&stack[sp - 1]);
226	  else
227	    sp--;
228	}
229    }
230
231  free (pre);
232  free (post);
233  free (stack);
234  sbitmap_free (visited);
235
236  return found;
237}
238
239/* Set the flag EDGE_CAN_FALLTHRU for edges that can be fallthru.  */
240
241void
242set_edge_can_fallthru_flag (void)
243{
244  basic_block bb;
245
246  FOR_EACH_BB (bb)
247    {
248      edge e;
249      edge_iterator ei;
250
251      FOR_EACH_EDGE (e, ei, bb->succs)
252	{
253	  e->flags &= ~EDGE_CAN_FALLTHRU;
254
255	  /* The FALLTHRU edge is also CAN_FALLTHRU edge.  */
256	  if (e->flags & EDGE_FALLTHRU)
257	    e->flags |= EDGE_CAN_FALLTHRU;
258	}
259
260      /* If the BB ends with an invertible condjump all (2) edges are
261	 CAN_FALLTHRU edges.  */
262      if (EDGE_COUNT (bb->succs) != 2)
263	continue;
264      if (!any_condjump_p (BB_END (bb)))
265	continue;
266      if (!invert_jump (BB_END (bb), JUMP_LABEL (BB_END (bb)), 0))
267	continue;
268      invert_jump (BB_END (bb), JUMP_LABEL (BB_END (bb)), 0);
269      EDGE_SUCC (bb, 0)->flags |= EDGE_CAN_FALLTHRU;
270      EDGE_SUCC (bb, 1)->flags |= EDGE_CAN_FALLTHRU;
271    }
272}
273
274/* Find unreachable blocks.  An unreachable block will have 0 in
275   the reachable bit in block->flags.  A nonzero value indicates the
276   block is reachable.  */
277
278void
279find_unreachable_blocks (void)
280{
281  edge e;
282  edge_iterator ei;
283  basic_block *tos, *worklist, bb;
284
285  tos = worklist = xmalloc (sizeof (basic_block) * n_basic_blocks);
286
287  /* Clear all the reachability flags.  */
288
289  FOR_EACH_BB (bb)
290    bb->flags &= ~BB_REACHABLE;
291
292  /* Add our starting points to the worklist.  Almost always there will
293     be only one.  It isn't inconceivable that we might one day directly
294     support Fortran alternate entry points.  */
295
296  FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
297    {
298      *tos++ = e->dest;
299
300      /* Mark the block reachable.  */
301      e->dest->flags |= BB_REACHABLE;
302    }
303
304  /* Iterate: find everything reachable from what we've already seen.  */
305
306  while (tos != worklist)
307    {
308      basic_block b = *--tos;
309
310      FOR_EACH_EDGE (e, ei, b->succs)
311	{
312	  basic_block dest = e->dest;
313
314	  if (!(dest->flags & BB_REACHABLE))
315	    {
316	      *tos++ = dest;
317	      dest->flags |= BB_REACHABLE;
318	    }
319	}
320    }
321
322  free (worklist);
323}
324
325/* Functions to access an edge list with a vector representation.
326   Enough data is kept such that given an index number, the
327   pred and succ that edge represents can be determined, or
328   given a pred and a succ, its index number can be returned.
329   This allows algorithms which consume a lot of memory to
330   represent the normally full matrix of edge (pred,succ) with a
331   single indexed vector,  edge (EDGE_INDEX (pred, succ)), with no
332   wasted space in the client code due to sparse flow graphs.  */
333
334/* This functions initializes the edge list. Basically the entire
335   flowgraph is processed, and all edges are assigned a number,
336   and the data structure is filled in.  */
337
338struct edge_list *
339create_edge_list (void)
340{
341  struct edge_list *elist;
342  edge e;
343  int num_edges;
344  int block_count;
345  basic_block bb;
346  edge_iterator ei;
347
348  block_count = n_basic_blocks + 2;   /* Include the entry and exit blocks.  */
349
350  num_edges = 0;
351
352  /* Determine the number of edges in the flow graph by counting successor
353     edges on each basic block.  */
354  FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
355    {
356      num_edges += EDGE_COUNT (bb->succs);
357    }
358
359  elist = xmalloc (sizeof (struct edge_list));
360  elist->num_blocks = block_count;
361  elist->num_edges = num_edges;
362  elist->index_to_edge = xmalloc (sizeof (edge) * num_edges);
363
364  num_edges = 0;
365
366  /* Follow successors of blocks, and register these edges.  */
367  FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
368    FOR_EACH_EDGE (e, ei, bb->succs)
369      elist->index_to_edge[num_edges++] = e;
370
371  return elist;
372}
373
374/* This function free's memory associated with an edge list.  */
375
376void
377free_edge_list (struct edge_list *elist)
378{
379  if (elist)
380    {
381      free (elist->index_to_edge);
382      free (elist);
383    }
384}
385
386/* This function provides debug output showing an edge list.  */
387
388void
389print_edge_list (FILE *f, struct edge_list *elist)
390{
391  int x;
392
393  fprintf (f, "Compressed edge list, %d BBs + entry & exit, and %d edges\n",
394	   elist->num_blocks - 2, elist->num_edges);
395
396  for (x = 0; x < elist->num_edges; x++)
397    {
398      fprintf (f, " %-4d - edge(", x);
399      if (INDEX_EDGE_PRED_BB (elist, x) == ENTRY_BLOCK_PTR)
400	fprintf (f, "entry,");
401      else
402	fprintf (f, "%d,", INDEX_EDGE_PRED_BB (elist, x)->index);
403
404      if (INDEX_EDGE_SUCC_BB (elist, x) == EXIT_BLOCK_PTR)
405	fprintf (f, "exit)\n");
406      else
407	fprintf (f, "%d)\n", INDEX_EDGE_SUCC_BB (elist, x)->index);
408    }
409}
410
411/* This function provides an internal consistency check of an edge list,
412   verifying that all edges are present, and that there are no
413   extra edges.  */
414
415void
416verify_edge_list (FILE *f, struct edge_list *elist)
417{
418  int pred, succ, index;
419  edge e;
420  basic_block bb, p, s;
421  edge_iterator ei;
422
423  FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
424    {
425      FOR_EACH_EDGE (e, ei, bb->succs)
426	{
427	  pred = e->src->index;
428	  succ = e->dest->index;
429	  index = EDGE_INDEX (elist, e->src, e->dest);
430	  if (index == EDGE_INDEX_NO_EDGE)
431	    {
432	      fprintf (f, "*p* No index for edge from %d to %d\n", pred, succ);
433	      continue;
434	    }
435
436	  if (INDEX_EDGE_PRED_BB (elist, index)->index != pred)
437	    fprintf (f, "*p* Pred for index %d should be %d not %d\n",
438		     index, pred, INDEX_EDGE_PRED_BB (elist, index)->index);
439	  if (INDEX_EDGE_SUCC_BB (elist, index)->index != succ)
440	    fprintf (f, "*p* Succ for index %d should be %d not %d\n",
441		     index, succ, INDEX_EDGE_SUCC_BB (elist, index)->index);
442	}
443    }
444
445  /* We've verified that all the edges are in the list, now lets make sure
446     there are no spurious edges in the list.  */
447
448  FOR_BB_BETWEEN (p, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
449    FOR_BB_BETWEEN (s, ENTRY_BLOCK_PTR->next_bb, NULL, next_bb)
450      {
451	int found_edge = 0;
452
453	FOR_EACH_EDGE (e, ei, p->succs)
454	  if (e->dest == s)
455	    {
456	      found_edge = 1;
457	      break;
458	    }
459
460	FOR_EACH_EDGE (e, ei, s->preds)
461	  if (e->src == p)
462	    {
463	      found_edge = 1;
464	      break;
465	    }
466
467	if (EDGE_INDEX (elist, p, s)
468	    == EDGE_INDEX_NO_EDGE && found_edge != 0)
469	  fprintf (f, "*** Edge (%d, %d) appears to not have an index\n",
470		   p->index, s->index);
471	if (EDGE_INDEX (elist, p, s)
472	    != EDGE_INDEX_NO_EDGE && found_edge == 0)
473	  fprintf (f, "*** Edge (%d, %d) has index %d, but there is no edge\n",
474		   p->index, s->index, EDGE_INDEX (elist, p, s));
475      }
476}
477
478/* Given PRED and SUCC blocks, return the edge which connects the blocks.
479   If no such edge exists, return NULL.  */
480
481edge
482find_edge (basic_block pred, basic_block succ)
483{
484  edge e;
485  edge_iterator ei;
486
487  if (EDGE_COUNT (pred->succs) <= EDGE_COUNT (succ->preds))
488    {
489      FOR_EACH_EDGE (e, ei, pred->succs)
490	if (e->dest == succ)
491	  return e;
492    }
493  else
494    {
495      FOR_EACH_EDGE (e, ei, succ->preds)
496	if (e->src == pred)
497	  return e;
498    }
499
500  return NULL;
501}
502
503/* This routine will determine what, if any, edge there is between
504   a specified predecessor and successor.  */
505
506int
507find_edge_index (struct edge_list *edge_list, basic_block pred, basic_block succ)
508{
509  int x;
510
511  for (x = 0; x < NUM_EDGES (edge_list); x++)
512    if (INDEX_EDGE_PRED_BB (edge_list, x) == pred
513	&& INDEX_EDGE_SUCC_BB (edge_list, x) == succ)
514      return x;
515
516  return (EDGE_INDEX_NO_EDGE);
517}
518
519/* Dump the list of basic blocks in the bitmap NODES.  */
520
521void
522flow_nodes_print (const char *str, const sbitmap nodes, FILE *file)
523{
524  unsigned int node = 0;
525  sbitmap_iterator sbi;
526
527  if (! nodes)
528    return;
529
530  fprintf (file, "%s { ", str);
531  EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, node, sbi)
532    fprintf (file, "%d ", node);
533  fputs ("}\n", file);
534}
535
536/* Dump the list of edges in the array EDGE_LIST.  */
537
538void
539flow_edge_list_print (const char *str, const edge *edge_list, int num_edges, FILE *file)
540{
541  int i;
542
543  if (! edge_list)
544    return;
545
546  fprintf (file, "%s { ", str);
547  for (i = 0; i < num_edges; i++)
548    fprintf (file, "%d->%d ", edge_list[i]->src->index,
549	     edge_list[i]->dest->index);
550
551  fputs ("}\n", file);
552}
553
554
555/* This routine will remove any fake predecessor edges for a basic block.
556   When the edge is removed, it is also removed from whatever successor
557   list it is in.  */
558
559static void
560remove_fake_predecessors (basic_block bb)
561{
562  edge e;
563  edge_iterator ei;
564
565  for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
566    {
567      if ((e->flags & EDGE_FAKE) == EDGE_FAKE)
568	remove_edge (e);
569      else
570	ei_next (&ei);
571    }
572}
573
574/* This routine will remove all fake edges from the flow graph.  If
575   we remove all fake successors, it will automatically remove all
576   fake predecessors.  */
577
578void
579remove_fake_edges (void)
580{
581  basic_block bb;
582
583  FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb, NULL, next_bb)
584    remove_fake_predecessors (bb);
585}
586
587/* This routine will remove all fake edges to the EXIT_BLOCK.  */
588
589void
590remove_fake_exit_edges (void)
591{
592  remove_fake_predecessors (EXIT_BLOCK_PTR);
593}
594
595
596/* This function will add a fake edge between any block which has no
597   successors, and the exit block. Some data flow equations require these
598   edges to exist.  */
599
600void
601add_noreturn_fake_exit_edges (void)
602{
603  basic_block bb;
604
605  FOR_EACH_BB (bb)
606    if (EDGE_COUNT (bb->succs) == 0)
607      make_single_succ_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
608}
609
610/* This function adds a fake edge between any infinite loops to the
611   exit block.  Some optimizations require a path from each node to
612   the exit node.
613
614   See also Morgan, Figure 3.10, pp. 82-83.
615
616   The current implementation is ugly, not attempting to minimize the
617   number of inserted fake edges.  To reduce the number of fake edges
618   to insert, add fake edges from _innermost_ loops containing only
619   nodes not reachable from the exit block.  */
620
621void
622connect_infinite_loops_to_exit (void)
623{
624  basic_block unvisited_block = EXIT_BLOCK_PTR;
625  struct depth_first_search_dsS dfs_ds;
626
627  /* Perform depth-first search in the reverse graph to find nodes
628     reachable from the exit block.  */
629  flow_dfs_compute_reverse_init (&dfs_ds);
630  flow_dfs_compute_reverse_add_bb (&dfs_ds, EXIT_BLOCK_PTR);
631
632  /* Repeatedly add fake edges, updating the unreachable nodes.  */
633  while (1)
634    {
635      unvisited_block = flow_dfs_compute_reverse_execute (&dfs_ds,
636							  unvisited_block);
637      if (!unvisited_block)
638	break;
639
640      make_edge (unvisited_block, EXIT_BLOCK_PTR, EDGE_FAKE);
641      flow_dfs_compute_reverse_add_bb (&dfs_ds, unvisited_block);
642    }
643
644  flow_dfs_compute_reverse_finish (&dfs_ds);
645  return;
646}
647
648/* Compute reverse top sort order.  */
649
650void
651flow_reverse_top_sort_order_compute (int *rts_order)
652{
653  edge_iterator *stack;
654  int sp;
655  int postnum = 0;
656  sbitmap visited;
657
658  /* Allocate stack for back-tracking up CFG.  */
659  stack = xmalloc ((n_basic_blocks + 1) * sizeof (edge_iterator));
660  sp = 0;
661
662  /* Allocate bitmap to track nodes that have been visited.  */
663  visited = sbitmap_alloc (last_basic_block);
664
665  /* None of the nodes in the CFG have been visited yet.  */
666  sbitmap_zero (visited);
667
668  /* Push the first edge on to the stack.  */
669  stack[sp++] = ei_start (ENTRY_BLOCK_PTR->succs);
670
671  while (sp)
672    {
673      edge_iterator ei;
674      basic_block src;
675      basic_block dest;
676
677      /* Look at the edge on the top of the stack.  */
678      ei = stack[sp - 1];
679      src = ei_edge (ei)->src;
680      dest = ei_edge (ei)->dest;
681
682      /* Check if the edge destination has been visited yet.  */
683      if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
684	{
685	  /* Mark that we have visited the destination.  */
686	  SET_BIT (visited, dest->index);
687
688	  if (EDGE_COUNT (dest->succs) > 0)
689	    /* Since the DEST node has been visited for the first
690	       time, check its successors.  */
691	    stack[sp++] = ei_start (dest->succs);
692	  else
693	    rts_order[postnum++] = dest->index;
694	}
695      else
696	{
697	  if (ei_one_before_end_p (ei) && src != ENTRY_BLOCK_PTR)
698	   rts_order[postnum++] = src->index;
699
700	  if (!ei_one_before_end_p (ei))
701	    ei_next (&stack[sp - 1]);
702	  else
703	    sp--;
704	}
705    }
706
707  free (stack);
708  sbitmap_free (visited);
709}
710
711/* Compute the depth first search order and store in the array
712  DFS_ORDER if nonzero, marking the nodes visited in VISITED.  If
713  RC_ORDER is nonzero, return the reverse completion number for each
714  node.  Returns the number of nodes visited.  A depth first search
715  tries to get as far away from the starting point as quickly as
716  possible.  */
717
718int
719flow_depth_first_order_compute (int *dfs_order, int *rc_order)
720{
721  edge_iterator *stack;
722  int sp;
723  int dfsnum = 0;
724  int rcnum = n_basic_blocks - 1;
725  sbitmap visited;
726
727  /* Allocate stack for back-tracking up CFG.  */
728  stack = xmalloc ((n_basic_blocks + 1) * sizeof (edge_iterator));
729  sp = 0;
730
731  /* Allocate bitmap to track nodes that have been visited.  */
732  visited = sbitmap_alloc (last_basic_block);
733
734  /* None of the nodes in the CFG have been visited yet.  */
735  sbitmap_zero (visited);
736
737  /* Push the first edge on to the stack.  */
738  stack[sp++] = ei_start (ENTRY_BLOCK_PTR->succs);
739
740  while (sp)
741    {
742      edge_iterator ei;
743      basic_block src;
744      basic_block dest;
745
746      /* Look at the edge on the top of the stack.  */
747      ei = stack[sp - 1];
748      src = ei_edge (ei)->src;
749      dest = ei_edge (ei)->dest;
750
751      /* Check if the edge destination has been visited yet.  */
752      if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
753	{
754	  /* Mark that we have visited the destination.  */
755	  SET_BIT (visited, dest->index);
756
757	  if (dfs_order)
758	    dfs_order[dfsnum] = dest->index;
759
760	  dfsnum++;
761
762	  if (EDGE_COUNT (dest->succs) > 0)
763	    /* Since the DEST node has been visited for the first
764	       time, check its successors.  */
765	    stack[sp++] = ei_start (dest->succs);
766	  else if (rc_order)
767	    /* There are no successors for the DEST node so assign
768	       its reverse completion number.  */
769	    rc_order[rcnum--] = dest->index;
770	}
771      else
772	{
773	  if (ei_one_before_end_p (ei) && src != ENTRY_BLOCK_PTR
774	      && rc_order)
775	    /* There are no more successors for the SRC node
776	       so assign its reverse completion number.  */
777	    rc_order[rcnum--] = src->index;
778
779	  if (!ei_one_before_end_p (ei))
780	    ei_next (&stack[sp - 1]);
781	  else
782	    sp--;
783	}
784    }
785
786  free (stack);
787  sbitmap_free (visited);
788
789  /* The number of nodes visited should be the number of blocks.  */
790  gcc_assert (dfsnum == n_basic_blocks);
791
792  return dfsnum;
793}
794
795/* Compute the depth first search order on the _reverse_ graph and
796   store in the array DFS_ORDER, marking the nodes visited in VISITED.
797   Returns the number of nodes visited.
798
799   The computation is split into three pieces:
800
801   flow_dfs_compute_reverse_init () creates the necessary data
802   structures.
803
804   flow_dfs_compute_reverse_add_bb () adds a basic block to the data
805   structures.  The block will start the search.
806
807   flow_dfs_compute_reverse_execute () continues (or starts) the
808   search using the block on the top of the stack, stopping when the
809   stack is empty.
810
811   flow_dfs_compute_reverse_finish () destroys the necessary data
812   structures.
813
814   Thus, the user will probably call ..._init(), call ..._add_bb() to
815   add a beginning basic block to the stack, call ..._execute(),
816   possibly add another bb to the stack and again call ..._execute(),
817   ..., and finally call _finish().  */
818
819/* Initialize the data structures used for depth-first search on the
820   reverse graph.  If INITIALIZE_STACK is nonzero, the exit block is
821   added to the basic block stack.  DATA is the current depth-first
822   search context.  If INITIALIZE_STACK is nonzero, there is an
823   element on the stack.  */
824
825static void
826flow_dfs_compute_reverse_init (depth_first_search_ds data)
827{
828  /* Allocate stack for back-tracking up CFG.  */
829  data->stack = xmalloc ((n_basic_blocks - (INVALID_BLOCK + 1))
830			 * sizeof (basic_block));
831  data->sp = 0;
832
833  /* Allocate bitmap to track nodes that have been visited.  */
834  data->visited_blocks = sbitmap_alloc (last_basic_block - (INVALID_BLOCK + 1));
835
836  /* None of the nodes in the CFG have been visited yet.  */
837  sbitmap_zero (data->visited_blocks);
838
839  return;
840}
841
842/* Add the specified basic block to the top of the dfs data
843   structures.  When the search continues, it will start at the
844   block.  */
845
846static void
847flow_dfs_compute_reverse_add_bb (depth_first_search_ds data, basic_block bb)
848{
849  data->stack[data->sp++] = bb;
850  SET_BIT (data->visited_blocks, bb->index - (INVALID_BLOCK + 1));
851}
852
853/* Continue the depth-first search through the reverse graph starting with the
854   block at the stack's top and ending when the stack is empty.  Visited nodes
855   are marked.  Returns an unvisited basic block, or NULL if there is none
856   available.  */
857
858static basic_block
859flow_dfs_compute_reverse_execute (depth_first_search_ds data,
860				  basic_block last_unvisited)
861{
862  basic_block bb;
863  edge e;
864  edge_iterator ei;
865
866  while (data->sp > 0)
867    {
868      bb = data->stack[--data->sp];
869
870      /* Perform depth-first search on adjacent vertices.  */
871      FOR_EACH_EDGE (e, ei, bb->preds)
872	if (!TEST_BIT (data->visited_blocks,
873		       e->src->index - (INVALID_BLOCK + 1)))
874	  flow_dfs_compute_reverse_add_bb (data, e->src);
875    }
876
877  /* Determine if there are unvisited basic blocks.  */
878  FOR_BB_BETWEEN (bb, last_unvisited, NULL, prev_bb)
879    if (!TEST_BIT (data->visited_blocks, bb->index - (INVALID_BLOCK + 1)))
880      return bb;
881
882  return NULL;
883}
884
885/* Destroy the data structures needed for depth-first search on the
886   reverse graph.  */
887
888static void
889flow_dfs_compute_reverse_finish (depth_first_search_ds data)
890{
891  free (data->stack);
892  sbitmap_free (data->visited_blocks);
893}
894
895/* Performs dfs search from BB over vertices satisfying PREDICATE;
896   if REVERSE, go against direction of edges.  Returns number of blocks
897   found and their list in RSLT.  RSLT can contain at most RSLT_MAX items.  */
898int
899dfs_enumerate_from (basic_block bb, int reverse,
900		    bool (*predicate) (basic_block, void *),
901		    basic_block *rslt, int rslt_max, void *data)
902{
903  basic_block *st, lbb;
904  int sp = 0, tv = 0;
905  unsigned size;
906
907  /* A bitmap to keep track of visited blocks.  Allocating it each time
908     this function is called is not possible, since dfs_enumerate_from
909     is often used on small (almost) disjoint parts of cfg (bodies of
910     loops), and allocating a large sbitmap would lead to quadratic
911     behavior.  */
912  static sbitmap visited;
913  static unsigned v_size;
914
915#define MARK_VISITED(BB) (SET_BIT (visited, (BB)->index + 2))
916#define UNMARK_VISITED(BB) (RESET_BIT (visited, (BB)->index + 2))
917#define VISITED_P(BB) (TEST_BIT (visited, (BB)->index + 2))
918
919  /* Resize the VISITED sbitmap if necessary.  */
920  size = last_basic_block + 2;
921  if (size < 10)
922    size = 10;
923
924  if (!visited)
925    {
926
927      visited = sbitmap_alloc (size);
928      sbitmap_zero (visited);
929      v_size = size;
930    }
931  else if (v_size < size)
932    {
933      /* Ensure that we increase the size of the sbitmap exponentially.  */
934      if (2 * v_size > size)
935	size = 2 * v_size;
936
937      visited = sbitmap_resize (visited, size, 0);
938      v_size = size;
939    }
940
941  st = xcalloc (rslt_max, sizeof (basic_block));
942  rslt[tv++] = st[sp++] = bb;
943  MARK_VISITED (bb);
944  while (sp)
945    {
946      edge e;
947      edge_iterator ei;
948      lbb = st[--sp];
949      if (reverse)
950        {
951	  FOR_EACH_EDGE (e, ei, lbb->preds)
952	    if (!VISITED_P (e->src) && predicate (e->src, data))
953	      {
954	        gcc_assert (tv != rslt_max);
955	        rslt[tv++] = st[sp++] = e->src;
956	        MARK_VISITED (e->src);
957	      }
958        }
959      else
960        {
961	  FOR_EACH_EDGE (e, ei, lbb->succs)
962	    if (!VISITED_P (e->dest) && predicate (e->dest, data))
963	      {
964	        gcc_assert (tv != rslt_max);
965	        rslt[tv++] = st[sp++] = e->dest;
966	        MARK_VISITED (e->dest);
967	      }
968	}
969    }
970  free (st);
971  for (sp = 0; sp < tv; sp++)
972    UNMARK_VISITED (rslt[sp]);
973  return tv;
974#undef MARK_VISITED
975#undef UNMARK_VISITED
976#undef VISITED_P
977}
978
979
980/* Compute dominance frontiers, ala Harvey, Ferrante, et al.
981
982   This algorithm can be found in Timothy Harvey's PhD thesis, at
983   http://www.cs.rice.edu/~harv/dissertation.pdf in the section on iterative
984   dominance algorithms.
985
986   First, we identify each join point, j (any node with more than one
987   incoming edge is a join point).
988
989   We then examine each predecessor, p, of j and walk up the dominator tree
990   starting at p.
991
992   We stop the walk when we reach j's immediate dominator - j is in the
993   dominance frontier of each of  the nodes in the walk, except for j's
994   immediate dominator. Intuitively, all of the rest of j's dominators are
995   shared by j's predecessors as well.
996   Since they dominate j, they will not have j in their dominance frontiers.
997
998   The number of nodes touched by this algorithm is equal to the size
999   of the dominance frontiers, no more, no less.
1000*/
1001
1002
1003static void
1004compute_dominance_frontiers_1 (bitmap *frontiers)
1005{
1006  edge p;
1007  edge_iterator ei;
1008  basic_block b;
1009  FOR_EACH_BB (b)
1010    {
1011      if (EDGE_COUNT (b->preds) >= 2)
1012	{
1013	  FOR_EACH_EDGE (p, ei, b->preds)
1014	    {
1015	      basic_block runner = p->src;
1016	      basic_block domsb;
1017	      if (runner == ENTRY_BLOCK_PTR)
1018		continue;
1019
1020	      domsb = get_immediate_dominator (CDI_DOMINATORS, b);
1021	      while (runner != domsb)
1022		{
1023		  bitmap_set_bit (frontiers[runner->index],
1024				  b->index);
1025		  runner = get_immediate_dominator (CDI_DOMINATORS,
1026						    runner);
1027		}
1028	    }
1029	}
1030    }
1031}
1032
1033
1034void
1035compute_dominance_frontiers (bitmap *frontiers)
1036{
1037  timevar_push (TV_DOM_FRONTIERS);
1038
1039  compute_dominance_frontiers_1 (frontiers);
1040
1041  timevar_pop (TV_DOM_FRONTIERS);
1042}
1043
1044