1/* Build expressions with type checking for C compiler.
2   Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3   1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 2, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING.  If not, write to the Free
19Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
2002110-1301, USA.  */
21
22
23/* This file is part of the C front end.
24   It contains routines to build C expressions given their operands,
25   including computing the types of the result, C-specific error checks,
26   and some optimization.  */
27
28#include "config.h"
29#include "system.h"
30#include "coretypes.h"
31#include "tm.h"
32#include "rtl.h"
33#include "tree.h"
34#include "langhooks.h"
35#include "c-tree.h"
36#include "tm_p.h"
37#include "flags.h"
38#include "output.h"
39#include "expr.h"
40#include "toplev.h"
41#include "intl.h"
42#include "ggc.h"
43#include "target.h"
44#include "tree-iterator.h"
45#include "tree-gimple.h"
46#include "tree-flow.h"
47
48/* Possible cases of implicit bad conversions.  Used to select
49   diagnostic messages in convert_for_assignment.  */
50enum impl_conv {
51  ic_argpass,
52  ic_argpass_nonproto,
53  ic_assign,
54  ic_init,
55  ic_return
56};
57
58/* The level of nesting inside "__alignof__".  */
59int in_alignof;
60
61/* The level of nesting inside "sizeof".  */
62int in_sizeof;
63
64/* The level of nesting inside "typeof".  */
65int in_typeof;
66
67struct c_label_context_se *label_context_stack_se;
68struct c_label_context_vm *label_context_stack_vm;
69
70/* Nonzero if we've already printed a "missing braces around initializer"
71   message within this initializer.  */
72static int missing_braces_mentioned;
73
74static int require_constant_value;
75static int require_constant_elements;
76
77static tree qualify_type (tree, tree);
78static int tagged_types_tu_compatible_p (tree, tree);
79static int comp_target_types (tree, tree);
80static int function_types_compatible_p (tree, tree);
81static int type_lists_compatible_p (tree, tree);
82static tree decl_constant_value_for_broken_optimization (tree);
83static tree lookup_field (tree, tree);
84static tree convert_arguments (tree, tree, tree, tree);
85static tree pointer_diff (tree, tree);
86static tree convert_for_assignment (tree, tree, enum impl_conv, tree, tree,
87				    int);
88static tree valid_compound_expr_initializer (tree, tree);
89static void push_string (const char *);
90static void push_member_name (tree);
91static int spelling_length (void);
92static char *print_spelling (char *);
93static void warning_init (const char *);
94static tree digest_init (tree, tree, bool, int);
95static void output_init_element (tree, bool, tree, tree, int);
96static void output_pending_init_elements (int);
97static int set_designator (int);
98static void push_range_stack (tree);
99static void add_pending_init (tree, tree);
100static void set_nonincremental_init (void);
101static void set_nonincremental_init_from_string (tree);
102static tree find_init_member (tree);
103static void readonly_error (tree, enum lvalue_use);
104static int lvalue_or_else (tree, enum lvalue_use);
105static int lvalue_p (tree);
106static void record_maybe_used_decl (tree);
107static int comptypes_internal (tree, tree);
108/* This is a cache to hold if two types are compatible or not.  */
109
110struct tagged_tu_seen_cache {
111  const struct tagged_tu_seen_cache * next;
112  tree t1;
113  tree t2;
114  /* The return value of tagged_types_tu_compatible_p if we had seen
115     these two types already.  */
116  int val;
117};
118
119static const struct tagged_tu_seen_cache * tagged_tu_seen_base;
120static void free_all_tagged_tu_seen_up_to (const struct tagged_tu_seen_cache *);
121
122/* Do `exp = require_complete_type (exp);' to make sure exp
123   does not have an incomplete type.  (That includes void types.)  */
124
125tree
126require_complete_type (tree value)
127{
128  tree type = TREE_TYPE (value);
129
130  if (value == error_mark_node || type == error_mark_node)
131    return error_mark_node;
132
133  /* First, detect a valid value with a complete type.  */
134  if (COMPLETE_TYPE_P (type))
135    return value;
136
137  c_incomplete_type_error (value, type);
138  return error_mark_node;
139}
140
141/* Print an error message for invalid use of an incomplete type.
142   VALUE is the expression that was used (or 0 if that isn't known)
143   and TYPE is the type that was invalid.  */
144
145void
146c_incomplete_type_error (tree value, tree type)
147{
148  const char *type_code_string;
149
150  /* Avoid duplicate error message.  */
151  if (TREE_CODE (type) == ERROR_MARK)
152    return;
153
154  if (value != 0 && (TREE_CODE (value) == VAR_DECL
155		     || TREE_CODE (value) == PARM_DECL))
156    error ("%qD has an incomplete type", value);
157  else
158    {
159    retry:
160      /* We must print an error message.  Be clever about what it says.  */
161
162      switch (TREE_CODE (type))
163	{
164	case RECORD_TYPE:
165	  type_code_string = "struct";
166	  break;
167
168	case UNION_TYPE:
169	  type_code_string = "union";
170	  break;
171
172	case ENUMERAL_TYPE:
173	  type_code_string = "enum";
174	  break;
175
176	case VOID_TYPE:
177	  error ("invalid use of void expression");
178	  return;
179
180	case ARRAY_TYPE:
181	  if (TYPE_DOMAIN (type))
182	    {
183	      if (TYPE_MAX_VALUE (TYPE_DOMAIN (type)) == NULL)
184		{
185		  error ("invalid use of flexible array member");
186		  return;
187		}
188	      type = TREE_TYPE (type);
189	      goto retry;
190	    }
191	  error ("invalid use of array with unspecified bounds");
192	  return;
193
194	default:
195	  gcc_unreachable ();
196	}
197
198      if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
199	error ("invalid use of undefined type %<%s %E%>",
200	       type_code_string, TYPE_NAME (type));
201      else
202	/* If this type has a typedef-name, the TYPE_NAME is a TYPE_DECL.  */
203	error ("invalid use of incomplete typedef %qD", TYPE_NAME (type));
204    }
205}
206
207/* Given a type, apply default promotions wrt unnamed function
208   arguments and return the new type.  */
209
210tree
211c_type_promotes_to (tree type)
212{
213  if (TYPE_MAIN_VARIANT (type) == float_type_node)
214    return double_type_node;
215
216  if (c_promoting_integer_type_p (type))
217    {
218      /* Preserve unsignedness if not really getting any wider.  */
219      if (TYPE_UNSIGNED (type)
220          && (TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node)))
221        return unsigned_type_node;
222      return integer_type_node;
223    }
224
225  return type;
226}
227
228/* Return a variant of TYPE which has all the type qualifiers of LIKE
229   as well as those of TYPE.  */
230
231static tree
232qualify_type (tree type, tree like)
233{
234  return c_build_qualified_type (type,
235				 TYPE_QUALS (type) | TYPE_QUALS (like));
236}
237
238/* Return the composite type of two compatible types.
239
240   We assume that comptypes has already been done and returned
241   nonzero; if that isn't so, this may crash.  In particular, we
242   assume that qualifiers match.  */
243
244tree
245composite_type (tree t1, tree t2)
246{
247  enum tree_code code1;
248  enum tree_code code2;
249  tree attributes;
250
251  /* Save time if the two types are the same.  */
252
253  if (t1 == t2) return t1;
254
255  /* If one type is nonsense, use the other.  */
256  if (t1 == error_mark_node)
257    return t2;
258  if (t2 == error_mark_node)
259    return t1;
260
261  code1 = TREE_CODE (t1);
262  code2 = TREE_CODE (t2);
263
264  /* Merge the attributes.  */
265  attributes = targetm.merge_type_attributes (t1, t2);
266
267  /* If one is an enumerated type and the other is the compatible
268     integer type, the composite type might be either of the two
269     (DR#013 question 3).  For consistency, use the enumerated type as
270     the composite type.  */
271
272  if (code1 == ENUMERAL_TYPE && code2 == INTEGER_TYPE)
273    return t1;
274  if (code2 == ENUMERAL_TYPE && code1 == INTEGER_TYPE)
275    return t2;
276
277  gcc_assert (code1 == code2);
278
279  switch (code1)
280    {
281    case POINTER_TYPE:
282      /* For two pointers, do this recursively on the target type.  */
283      {
284	tree pointed_to_1 = TREE_TYPE (t1);
285	tree pointed_to_2 = TREE_TYPE (t2);
286	tree target = composite_type (pointed_to_1, pointed_to_2);
287	t1 = build_pointer_type (target);
288	t1 = build_type_attribute_variant (t1, attributes);
289	return qualify_type (t1, t2);
290      }
291
292    case ARRAY_TYPE:
293      {
294	tree elt = composite_type (TREE_TYPE (t1), TREE_TYPE (t2));
295	int quals;
296	tree unqual_elt;
297	tree d1 = TYPE_DOMAIN (t1);
298	tree d2 = TYPE_DOMAIN (t2);
299	bool d1_variable, d2_variable;
300	bool d1_zero, d2_zero;
301
302	/* We should not have any type quals on arrays at all.  */
303	gcc_assert (!TYPE_QUALS (t1) && !TYPE_QUALS (t2));
304
305	d1_zero = d1 == 0 || !TYPE_MAX_VALUE (d1);
306	d2_zero = d2 == 0 || !TYPE_MAX_VALUE (d2);
307
308	d1_variable = (!d1_zero
309		       && (TREE_CODE (TYPE_MIN_VALUE (d1)) != INTEGER_CST
310			   || TREE_CODE (TYPE_MAX_VALUE (d1)) != INTEGER_CST));
311	d2_variable = (!d2_zero
312		       && (TREE_CODE (TYPE_MIN_VALUE (d2)) != INTEGER_CST
313			   || TREE_CODE (TYPE_MAX_VALUE (d2)) != INTEGER_CST));
314
315	/* Save space: see if the result is identical to one of the args.  */
316	if (elt == TREE_TYPE (t1) && TYPE_DOMAIN (t1)
317	    && (d2_variable || d2_zero || !d1_variable))
318	  return build_type_attribute_variant (t1, attributes);
319	if (elt == TREE_TYPE (t2) && TYPE_DOMAIN (t2)
320	    && (d1_variable || d1_zero || !d2_variable))
321	  return build_type_attribute_variant (t2, attributes);
322
323	if (elt == TREE_TYPE (t1) && !TYPE_DOMAIN (t2) && !TYPE_DOMAIN (t1))
324	  return build_type_attribute_variant (t1, attributes);
325	if (elt == TREE_TYPE (t2) && !TYPE_DOMAIN (t2) && !TYPE_DOMAIN (t1))
326	  return build_type_attribute_variant (t2, attributes);
327
328	/* Merge the element types, and have a size if either arg has
329	   one.  We may have qualifiers on the element types.  To set
330	   up TYPE_MAIN_VARIANT correctly, we need to form the
331	   composite of the unqualified types and add the qualifiers
332	   back at the end.  */
333	quals = TYPE_QUALS (strip_array_types (elt));
334	unqual_elt = c_build_qualified_type (elt, TYPE_UNQUALIFIED);
335	t1 = build_array_type (unqual_elt,
336			       TYPE_DOMAIN ((TYPE_DOMAIN (t1)
337					     && (d2_variable
338						 || d2_zero
339						 || !d1_variable))
340					    ? t1
341					    : t2));
342	t1 = c_build_qualified_type (t1, quals);
343	return build_type_attribute_variant (t1, attributes);
344      }
345
346    case FUNCTION_TYPE:
347      /* Function types: prefer the one that specified arg types.
348	 If both do, merge the arg types.  Also merge the return types.  */
349      {
350	tree valtype = composite_type (TREE_TYPE (t1), TREE_TYPE (t2));
351	tree p1 = TYPE_ARG_TYPES (t1);
352	tree p2 = TYPE_ARG_TYPES (t2);
353	int len;
354	tree newargs, n;
355	int i;
356
357	/* Save space: see if the result is identical to one of the args.  */
358	if (valtype == TREE_TYPE (t1) && !TYPE_ARG_TYPES (t2))
359	  return build_type_attribute_variant (t1, attributes);
360	if (valtype == TREE_TYPE (t2) && !TYPE_ARG_TYPES (t1))
361	  return build_type_attribute_variant (t2, attributes);
362
363	/* Simple way if one arg fails to specify argument types.  */
364	if (TYPE_ARG_TYPES (t1) == 0)
365	 {
366	    t1 = build_function_type (valtype, TYPE_ARG_TYPES (t2));
367	    t1 = build_type_attribute_variant (t1, attributes);
368	    return qualify_type (t1, t2);
369	 }
370	if (TYPE_ARG_TYPES (t2) == 0)
371	 {
372	   t1 = build_function_type (valtype, TYPE_ARG_TYPES (t1));
373	   t1 = build_type_attribute_variant (t1, attributes);
374	   return qualify_type (t1, t2);
375	 }
376
377	/* If both args specify argument types, we must merge the two
378	   lists, argument by argument.  */
379	/* Tell global_bindings_p to return false so that variable_size
380	   doesn't die on VLAs in parameter types.  */
381	c_override_global_bindings_to_false = true;
382
383	len = list_length (p1);
384	newargs = 0;
385
386	for (i = 0; i < len; i++)
387	  newargs = tree_cons (NULL_TREE, NULL_TREE, newargs);
388
389	n = newargs;
390
391	for (; p1;
392	     p1 = TREE_CHAIN (p1), p2 = TREE_CHAIN (p2), n = TREE_CHAIN (n))
393	  {
394	    /* A null type means arg type is not specified.
395	       Take whatever the other function type has.  */
396	    if (TREE_VALUE (p1) == 0)
397	      {
398		TREE_VALUE (n) = TREE_VALUE (p2);
399		goto parm_done;
400	      }
401	    if (TREE_VALUE (p2) == 0)
402	      {
403		TREE_VALUE (n) = TREE_VALUE (p1);
404		goto parm_done;
405	      }
406
407	    /* Given  wait (union {union wait *u; int *i} *)
408	       and  wait (union wait *),
409	       prefer  union wait *  as type of parm.  */
410	    if (TREE_CODE (TREE_VALUE (p1)) == UNION_TYPE
411		&& TREE_VALUE (p1) != TREE_VALUE (p2))
412	      {
413		tree memb;
414		tree mv2 = TREE_VALUE (p2);
415		if (mv2 && mv2 != error_mark_node
416		    && TREE_CODE (mv2) != ARRAY_TYPE)
417		  mv2 = TYPE_MAIN_VARIANT (mv2);
418		for (memb = TYPE_FIELDS (TREE_VALUE (p1));
419		     memb; memb = TREE_CHAIN (memb))
420		  {
421		    tree mv3 = TREE_TYPE (memb);
422		    if (mv3 && mv3 != error_mark_node
423			&& TREE_CODE (mv3) != ARRAY_TYPE)
424		      mv3 = TYPE_MAIN_VARIANT (mv3);
425		    if (comptypes (mv3, mv2))
426		      {
427			TREE_VALUE (n) = composite_type (TREE_TYPE (memb),
428							 TREE_VALUE (p2));
429			if (pedantic)
430			  pedwarn ("function types not truly compatible in ISO C");
431			goto parm_done;
432		      }
433		  }
434	      }
435	    if (TREE_CODE (TREE_VALUE (p2)) == UNION_TYPE
436		&& TREE_VALUE (p2) != TREE_VALUE (p1))
437	      {
438		tree memb;
439		tree mv1 = TREE_VALUE (p1);
440		if (mv1 && mv1 != error_mark_node
441		    && TREE_CODE (mv1) != ARRAY_TYPE)
442		  mv1 = TYPE_MAIN_VARIANT (mv1);
443		for (memb = TYPE_FIELDS (TREE_VALUE (p2));
444		     memb; memb = TREE_CHAIN (memb))
445		  {
446		    tree mv3 = TREE_TYPE (memb);
447		    if (mv3 && mv3 != error_mark_node
448			&& TREE_CODE (mv3) != ARRAY_TYPE)
449		      mv3 = TYPE_MAIN_VARIANT (mv3);
450		    if (comptypes (mv3, mv1))
451		      {
452			TREE_VALUE (n) = composite_type (TREE_TYPE (memb),
453							 TREE_VALUE (p1));
454			if (pedantic)
455			  pedwarn ("function types not truly compatible in ISO C");
456			goto parm_done;
457		      }
458		  }
459	      }
460	    TREE_VALUE (n) = composite_type (TREE_VALUE (p1), TREE_VALUE (p2));
461	  parm_done: ;
462	  }
463
464	c_override_global_bindings_to_false = false;
465	t1 = build_function_type (valtype, newargs);
466	t1 = qualify_type (t1, t2);
467	/* ... falls through ...  */
468      }
469
470    default:
471      return build_type_attribute_variant (t1, attributes);
472    }
473
474}
475
476/* Return the type of a conditional expression between pointers to
477   possibly differently qualified versions of compatible types.
478
479   We assume that comp_target_types has already been done and returned
480   nonzero; if that isn't so, this may crash.  */
481
482static tree
483common_pointer_type (tree t1, tree t2)
484{
485  tree attributes;
486  tree pointed_to_1, mv1;
487  tree pointed_to_2, mv2;
488  tree target;
489
490  /* Save time if the two types are the same.  */
491
492  if (t1 == t2) return t1;
493
494  /* If one type is nonsense, use the other.  */
495  if (t1 == error_mark_node)
496    return t2;
497  if (t2 == error_mark_node)
498    return t1;
499
500  gcc_assert (TREE_CODE (t1) == POINTER_TYPE
501 	      && TREE_CODE (t2) == POINTER_TYPE);
502
503  /* Merge the attributes.  */
504  attributes = targetm.merge_type_attributes (t1, t2);
505
506  /* Find the composite type of the target types, and combine the
507     qualifiers of the two types' targets.  Do not lose qualifiers on
508     array element types by taking the TYPE_MAIN_VARIANT.  */
509  mv1 = pointed_to_1 = TREE_TYPE (t1);
510  mv2 = pointed_to_2 = TREE_TYPE (t2);
511  if (TREE_CODE (mv1) != ARRAY_TYPE)
512    mv1 = TYPE_MAIN_VARIANT (pointed_to_1);
513  if (TREE_CODE (mv2) != ARRAY_TYPE)
514    mv2 = TYPE_MAIN_VARIANT (pointed_to_2);
515  target = composite_type (mv1, mv2);
516  t1 = build_pointer_type (c_build_qualified_type
517			   (target,
518			    TYPE_QUALS (pointed_to_1) |
519			    TYPE_QUALS (pointed_to_2)));
520  return build_type_attribute_variant (t1, attributes);
521}
522
523/* Return the common type for two arithmetic types under the usual
524   arithmetic conversions.  The default conversions have already been
525   applied, and enumerated types converted to their compatible integer
526   types.  The resulting type is unqualified and has no attributes.
527
528   This is the type for the result of most arithmetic operations
529   if the operands have the given two types.  */
530
531static tree
532c_common_type (tree t1, tree t2)
533{
534  enum tree_code code1;
535  enum tree_code code2;
536
537  /* If one type is nonsense, use the other.  */
538  if (t1 == error_mark_node)
539    return t2;
540  if (t2 == error_mark_node)
541    return t1;
542
543  if (TYPE_QUALS (t1) != TYPE_UNQUALIFIED)
544    t1 = TYPE_MAIN_VARIANT (t1);
545
546  if (TYPE_QUALS (t2) != TYPE_UNQUALIFIED)
547    t2 = TYPE_MAIN_VARIANT (t2);
548
549  if (TYPE_ATTRIBUTES (t1) != NULL_TREE)
550    t1 = build_type_attribute_variant (t1, NULL_TREE);
551
552  if (TYPE_ATTRIBUTES (t2) != NULL_TREE)
553    t2 = build_type_attribute_variant (t2, NULL_TREE);
554
555  /* Save time if the two types are the same.  */
556
557  if (t1 == t2) return t1;
558
559  code1 = TREE_CODE (t1);
560  code2 = TREE_CODE (t2);
561
562  gcc_assert (code1 == VECTOR_TYPE || code1 == COMPLEX_TYPE
563	      || code1 == REAL_TYPE || code1 == INTEGER_TYPE);
564  gcc_assert (code2 == VECTOR_TYPE || code2 == COMPLEX_TYPE
565	      || code2 == REAL_TYPE || code2 == INTEGER_TYPE);
566
567  /* If one type is a vector type, return that type.  (How the usual
568     arithmetic conversions apply to the vector types extension is not
569     precisely specified.)  */
570  if (code1 == VECTOR_TYPE)
571    return t1;
572
573  if (code2 == VECTOR_TYPE)
574    return t2;
575
576  /* If one type is complex, form the common type of the non-complex
577     components, then make that complex.  Use T1 or T2 if it is the
578     required type.  */
579  if (code1 == COMPLEX_TYPE || code2 == COMPLEX_TYPE)
580    {
581      tree subtype1 = code1 == COMPLEX_TYPE ? TREE_TYPE (t1) : t1;
582      tree subtype2 = code2 == COMPLEX_TYPE ? TREE_TYPE (t2) : t2;
583      tree subtype = c_common_type (subtype1, subtype2);
584
585      if (code1 == COMPLEX_TYPE && TREE_TYPE (t1) == subtype)
586	return t1;
587      else if (code2 == COMPLEX_TYPE && TREE_TYPE (t2) == subtype)
588	return t2;
589      else
590	return build_complex_type (subtype);
591    }
592
593  /* If only one is real, use it as the result.  */
594
595  if (code1 == REAL_TYPE && code2 != REAL_TYPE)
596    return t1;
597
598  if (code2 == REAL_TYPE && code1 != REAL_TYPE)
599    return t2;
600
601  /* Both real or both integers; use the one with greater precision.  */
602
603  if (TYPE_PRECISION (t1) > TYPE_PRECISION (t2))
604    return t1;
605  else if (TYPE_PRECISION (t2) > TYPE_PRECISION (t1))
606    return t2;
607
608  /* Same precision.  Prefer long longs to longs to ints when the
609     same precision, following the C99 rules on integer type rank
610     (which are equivalent to the C90 rules for C90 types).  */
611
612  if (TYPE_MAIN_VARIANT (t1) == long_long_unsigned_type_node
613      || TYPE_MAIN_VARIANT (t2) == long_long_unsigned_type_node)
614    return long_long_unsigned_type_node;
615
616  if (TYPE_MAIN_VARIANT (t1) == long_long_integer_type_node
617      || TYPE_MAIN_VARIANT (t2) == long_long_integer_type_node)
618    {
619      if (TYPE_UNSIGNED (t1) || TYPE_UNSIGNED (t2))
620	return long_long_unsigned_type_node;
621      else
622        return long_long_integer_type_node;
623    }
624
625  if (TYPE_MAIN_VARIANT (t1) == long_unsigned_type_node
626      || TYPE_MAIN_VARIANT (t2) == long_unsigned_type_node)
627    return long_unsigned_type_node;
628
629  if (TYPE_MAIN_VARIANT (t1) == long_integer_type_node
630      || TYPE_MAIN_VARIANT (t2) == long_integer_type_node)
631    {
632      /* But preserve unsignedness from the other type,
633	 since long cannot hold all the values of an unsigned int.  */
634      if (TYPE_UNSIGNED (t1) || TYPE_UNSIGNED (t2))
635	return long_unsigned_type_node;
636      else
637	return long_integer_type_node;
638    }
639
640  /* Likewise, prefer long double to double even if same size.  */
641  if (TYPE_MAIN_VARIANT (t1) == long_double_type_node
642      || TYPE_MAIN_VARIANT (t2) == long_double_type_node)
643    return long_double_type_node;
644
645  /* Otherwise prefer the unsigned one.  */
646
647  if (TYPE_UNSIGNED (t1))
648    return t1;
649  else
650    return t2;
651}
652
653/* Wrapper around c_common_type that is used by c-common.c and other
654   front end optimizations that remove promotions.  ENUMERAL_TYPEs
655   are allowed here and are converted to their compatible integer types.
656   BOOLEAN_TYPEs are allowed here and return either boolean_type_node or
657   preferably a non-Boolean type as the common type.  */
658tree
659common_type (tree t1, tree t2)
660{
661  if (TREE_CODE (t1) == ENUMERAL_TYPE)
662    t1 = c_common_type_for_size (TYPE_PRECISION (t1), 1);
663  if (TREE_CODE (t2) == ENUMERAL_TYPE)
664    t2 = c_common_type_for_size (TYPE_PRECISION (t2), 1);
665
666  /* If both types are BOOLEAN_TYPE, then return boolean_type_node.  */
667  if (TREE_CODE (t1) == BOOLEAN_TYPE
668      && TREE_CODE (t2) == BOOLEAN_TYPE)
669    return boolean_type_node;
670
671  /* If either type is BOOLEAN_TYPE, then return the other.  */
672  if (TREE_CODE (t1) == BOOLEAN_TYPE)
673    return t2;
674  if (TREE_CODE (t2) == BOOLEAN_TYPE)
675    return t1;
676
677  return c_common_type (t1, t2);
678}
679
680/* Return 1 if TYPE1 and TYPE2 are compatible types for assignment
681   or various other operations.  Return 2 if they are compatible
682   but a warning may be needed if you use them together.  */
683
684int
685comptypes (tree type1, tree type2)
686{
687  const struct tagged_tu_seen_cache * tagged_tu_seen_base1 = tagged_tu_seen_base;
688  int val;
689
690  val = comptypes_internal (type1, type2);
691  free_all_tagged_tu_seen_up_to (tagged_tu_seen_base1);
692
693  return val;
694}
695/* Return 1 if TYPE1 and TYPE2 are compatible types for assignment
696   or various other operations.  Return 2 if they are compatible
697   but a warning may be needed if you use them together.  This
698   differs from comptypes, in that we don't free the seen types.  */
699
700static int
701comptypes_internal (tree type1, tree type2)
702{
703  tree t1 = type1;
704  tree t2 = type2;
705  int attrval, val;
706
707  /* Suppress errors caused by previously reported errors.  */
708
709  if (t1 == t2 || !t1 || !t2
710      || TREE_CODE (t1) == ERROR_MARK || TREE_CODE (t2) == ERROR_MARK)
711    return 1;
712
713  /* If either type is the internal version of sizetype, return the
714     language version.  */
715  if (TREE_CODE (t1) == INTEGER_TYPE && TYPE_IS_SIZETYPE (t1)
716      && TYPE_ORIG_SIZE_TYPE (t1))
717    t1 = TYPE_ORIG_SIZE_TYPE (t1);
718
719  if (TREE_CODE (t2) == INTEGER_TYPE && TYPE_IS_SIZETYPE (t2)
720      && TYPE_ORIG_SIZE_TYPE (t2))
721    t2 = TYPE_ORIG_SIZE_TYPE (t2);
722
723
724  /* Enumerated types are compatible with integer types, but this is
725     not transitive: two enumerated types in the same translation unit
726     are compatible with each other only if they are the same type.  */
727
728  if (TREE_CODE (t1) == ENUMERAL_TYPE && TREE_CODE (t2) != ENUMERAL_TYPE)
729    t1 = c_common_type_for_size (TYPE_PRECISION (t1), TYPE_UNSIGNED (t1));
730  else if (TREE_CODE (t2) == ENUMERAL_TYPE && TREE_CODE (t1) != ENUMERAL_TYPE)
731    t2 = c_common_type_for_size (TYPE_PRECISION (t2), TYPE_UNSIGNED (t2));
732
733  if (t1 == t2)
734    return 1;
735
736  /* Different classes of types can't be compatible.  */
737
738  if (TREE_CODE (t1) != TREE_CODE (t2))
739    return 0;
740
741  /* Qualifiers must match. C99 6.7.3p9 */
742
743  if (TYPE_QUALS (t1) != TYPE_QUALS (t2))
744    return 0;
745
746  /* Allow for two different type nodes which have essentially the same
747     definition.  Note that we already checked for equality of the type
748     qualifiers (just above).  */
749
750  if (TREE_CODE (t1) != ARRAY_TYPE
751      && TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
752    return 1;
753
754  /* 1 if no need for warning yet, 2 if warning cause has been seen.  */
755  if (!(attrval = targetm.comp_type_attributes (t1, t2)))
756     return 0;
757
758  /* 1 if no need for warning yet, 2 if warning cause has been seen.  */
759  val = 0;
760
761  switch (TREE_CODE (t1))
762    {
763    case POINTER_TYPE:
764      /* Do not remove mode or aliasing information.  */
765      if (TYPE_MODE (t1) != TYPE_MODE (t2)
766	  || TYPE_REF_CAN_ALIAS_ALL (t1) != TYPE_REF_CAN_ALIAS_ALL (t2))
767	break;
768      val = (TREE_TYPE (t1) == TREE_TYPE (t2)
769	     ? 1 : comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2)));
770      break;
771
772    case FUNCTION_TYPE:
773      val = function_types_compatible_p (t1, t2);
774      break;
775
776    case ARRAY_TYPE:
777      {
778	tree d1 = TYPE_DOMAIN (t1);
779	tree d2 = TYPE_DOMAIN (t2);
780	bool d1_variable, d2_variable;
781	bool d1_zero, d2_zero;
782	val = 1;
783
784	/* Target types must match incl. qualifiers.  */
785	if (TREE_TYPE (t1) != TREE_TYPE (t2)
786	    && 0 == (val = comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2))))
787	  return 0;
788
789	/* Sizes must match unless one is missing or variable.  */
790	if (d1 == 0 || d2 == 0 || d1 == d2)
791	  break;
792
793	d1_zero = !TYPE_MAX_VALUE (d1);
794	d2_zero = !TYPE_MAX_VALUE (d2);
795
796	d1_variable = (!d1_zero
797		       && (TREE_CODE (TYPE_MIN_VALUE (d1)) != INTEGER_CST
798			   || TREE_CODE (TYPE_MAX_VALUE (d1)) != INTEGER_CST));
799	d2_variable = (!d2_zero
800		       && (TREE_CODE (TYPE_MIN_VALUE (d2)) != INTEGER_CST
801			   || TREE_CODE (TYPE_MAX_VALUE (d2)) != INTEGER_CST));
802
803	if (d1_variable || d2_variable)
804	  break;
805	if (d1_zero && d2_zero)
806	  break;
807	if (d1_zero || d2_zero
808	    || !tree_int_cst_equal (TYPE_MIN_VALUE (d1), TYPE_MIN_VALUE (d2))
809	    || !tree_int_cst_equal (TYPE_MAX_VALUE (d1), TYPE_MAX_VALUE (d2)))
810	  val = 0;
811
812        break;
813      }
814
815    case ENUMERAL_TYPE:
816    case RECORD_TYPE:
817    case UNION_TYPE:
818      if (val != 1 && !same_translation_unit_p (t1, t2))
819        {
820	  if (attrval != 2)
821	    return tagged_types_tu_compatible_p (t1, t2);
822	  val = tagged_types_tu_compatible_p (t1, t2);
823	}
824      break;
825
826    case VECTOR_TYPE:
827      val = TYPE_VECTOR_SUBPARTS (t1) == TYPE_VECTOR_SUBPARTS (t2)
828	    && comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2));
829      break;
830
831    default:
832      break;
833    }
834  return attrval == 2 && val == 1 ? 2 : val;
835}
836
837/* Return 1 if TTL and TTR are pointers to types that are equivalent,
838   ignoring their qualifiers.  */
839
840static int
841comp_target_types (tree ttl, tree ttr)
842{
843  int val;
844  tree mvl, mvr;
845
846  /* Do not lose qualifiers on element types of array types that are
847     pointer targets by taking their TYPE_MAIN_VARIANT.  */
848  mvl = TREE_TYPE (ttl);
849  mvr = TREE_TYPE (ttr);
850  if (TREE_CODE (mvl) != ARRAY_TYPE)
851    mvl = TYPE_MAIN_VARIANT (mvl);
852  if (TREE_CODE (mvr) != ARRAY_TYPE)
853    mvr = TYPE_MAIN_VARIANT (mvr);
854  val = comptypes (mvl, mvr);
855
856  if (val == 2 && pedantic)
857    pedwarn ("types are not quite compatible");
858  return val;
859}
860
861/* Subroutines of `comptypes'.  */
862
863/* Determine whether two trees derive from the same translation unit.
864   If the CONTEXT chain ends in a null, that tree's context is still
865   being parsed, so if two trees have context chains ending in null,
866   they're in the same translation unit.  */
867int
868same_translation_unit_p (tree t1, tree t2)
869{
870  while (t1 && TREE_CODE (t1) != TRANSLATION_UNIT_DECL)
871    switch (TREE_CODE_CLASS (TREE_CODE (t1)))
872      {
873      case tcc_declaration:
874	t1 = DECL_CONTEXT (t1); break;
875      case tcc_type:
876	t1 = TYPE_CONTEXT (t1); break;
877      case tcc_exceptional:
878	t1 = BLOCK_SUPERCONTEXT (t1); break;  /* assume block */
879      default: gcc_unreachable ();
880      }
881
882  while (t2 && TREE_CODE (t2) != TRANSLATION_UNIT_DECL)
883    switch (TREE_CODE_CLASS (TREE_CODE (t2)))
884      {
885      case tcc_declaration:
886	t2 = DECL_CONTEXT (t2); break;
887      case tcc_type:
888	t2 = TYPE_CONTEXT (t2); break;
889      case tcc_exceptional:
890	t2 = BLOCK_SUPERCONTEXT (t2); break;  /* assume block */
891      default: gcc_unreachable ();
892      }
893
894  return t1 == t2;
895}
896
897/* Allocate the seen two types, assuming that they are compatible. */
898
899static struct tagged_tu_seen_cache *
900alloc_tagged_tu_seen_cache (tree t1, tree t2)
901{
902  struct tagged_tu_seen_cache *tu = xmalloc (sizeof (struct tagged_tu_seen_cache));
903  tu->next = tagged_tu_seen_base;
904  tu->t1 = t1;
905  tu->t2 = t2;
906
907  tagged_tu_seen_base = tu;
908
909  /* The C standard says that two structures in different translation
910     units are compatible with each other only if the types of their
911     fields are compatible (among other things).  We assume that they
912     are compatible until proven otherwise when building the cache.
913     An example where this can occur is:
914     struct a
915     {
916       struct a *next;
917     };
918     If we are comparing this against a similar struct in another TU,
919     and did not assume they were compatible, we end up with an infinite
920     loop.  */
921  tu->val = 1;
922  return tu;
923}
924
925/* Free the seen types until we get to TU_TIL. */
926
927static void
928free_all_tagged_tu_seen_up_to (const struct tagged_tu_seen_cache *tu_til)
929{
930  const struct tagged_tu_seen_cache *tu = tagged_tu_seen_base;
931  while (tu != tu_til)
932    {
933      struct tagged_tu_seen_cache *tu1 = (struct tagged_tu_seen_cache*)tu;
934      tu = tu1->next;
935      free (tu1);
936    }
937  tagged_tu_seen_base = tu_til;
938}
939
940/* Return 1 if two 'struct', 'union', or 'enum' types T1 and T2 are
941   compatible.  If the two types are not the same (which has been
942   checked earlier), this can only happen when multiple translation
943   units are being compiled.  See C99 6.2.7 paragraph 1 for the exact
944   rules.  */
945
946static int
947tagged_types_tu_compatible_p (tree t1, tree t2)
948{
949  tree s1, s2;
950  bool needs_warning = false;
951
952  /* We have to verify that the tags of the types are the same.  This
953     is harder than it looks because this may be a typedef, so we have
954     to go look at the original type.  It may even be a typedef of a
955     typedef...
956     In the case of compiler-created builtin structs the TYPE_DECL
957     may be a dummy, with no DECL_ORIGINAL_TYPE.  Don't fault.  */
958  while (TYPE_NAME (t1)
959	 && TREE_CODE (TYPE_NAME (t1)) == TYPE_DECL
960	 && DECL_ORIGINAL_TYPE (TYPE_NAME (t1)))
961    t1 = DECL_ORIGINAL_TYPE (TYPE_NAME (t1));
962
963  while (TYPE_NAME (t2)
964	 && TREE_CODE (TYPE_NAME (t2)) == TYPE_DECL
965	 && DECL_ORIGINAL_TYPE (TYPE_NAME (t2)))
966    t2 = DECL_ORIGINAL_TYPE (TYPE_NAME (t2));
967
968  /* C90 didn't have the requirement that the two tags be the same.  */
969  if (flag_isoc99 && TYPE_NAME (t1) != TYPE_NAME (t2))
970    return 0;
971
972  /* C90 didn't say what happened if one or both of the types were
973     incomplete; we choose to follow C99 rules here, which is that they
974     are compatible.  */
975  if (TYPE_SIZE (t1) == NULL
976      || TYPE_SIZE (t2) == NULL)
977    return 1;
978
979  {
980    const struct tagged_tu_seen_cache * tts_i;
981    for (tts_i = tagged_tu_seen_base; tts_i != NULL; tts_i = tts_i->next)
982      if (tts_i->t1 == t1 && tts_i->t2 == t2)
983	return tts_i->val;
984  }
985
986  switch (TREE_CODE (t1))
987    {
988    case ENUMERAL_TYPE:
989      {
990	struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
991        /* Speed up the case where the type values are in the same order.  */
992        tree tv1 = TYPE_VALUES (t1);
993        tree tv2 = TYPE_VALUES (t2);
994
995        if (tv1 == tv2)
996	  {
997	    return 1;
998	  }
999
1000        for (;tv1 && tv2; tv1 = TREE_CHAIN (tv1), tv2 = TREE_CHAIN (tv2))
1001          {
1002            if (TREE_PURPOSE (tv1) != TREE_PURPOSE (tv2))
1003              break;
1004            if (simple_cst_equal (TREE_VALUE (tv1), TREE_VALUE (tv2)) != 1)
1005	      {
1006	        tu->val = 0;
1007		return 0;
1008	      }
1009          }
1010
1011        if (tv1 == NULL_TREE && tv2 == NULL_TREE)
1012	  {
1013	    return 1;
1014	  }
1015        if (tv1 == NULL_TREE || tv2 == NULL_TREE)
1016	  {
1017	    tu->val = 0;
1018	    return 0;
1019	  }
1020
1021	if (list_length (TYPE_VALUES (t1)) != list_length (TYPE_VALUES (t2)))
1022	  {
1023	    tu->val = 0;
1024	    return 0;
1025	  }
1026
1027	for (s1 = TYPE_VALUES (t1); s1; s1 = TREE_CHAIN (s1))
1028	  {
1029	    s2 = purpose_member (TREE_PURPOSE (s1), TYPE_VALUES (t2));
1030	    if (s2 == NULL
1031		|| simple_cst_equal (TREE_VALUE (s1), TREE_VALUE (s2)) != 1)
1032	      {
1033		tu->val = 0;
1034		return 0;
1035	      }
1036	  }
1037	return 1;
1038      }
1039
1040    case UNION_TYPE:
1041      {
1042	struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
1043	if (list_length (TYPE_FIELDS (t1)) != list_length (TYPE_FIELDS (t2)))
1044	  {
1045	    tu->val = 0;
1046	    return 0;
1047	  }
1048
1049	/*  Speed up the common case where the fields are in the same order. */
1050	for (s1 = TYPE_FIELDS (t1), s2 = TYPE_FIELDS (t2); s1 && s2;
1051	     s1 = TREE_CHAIN (s1), s2 = TREE_CHAIN (s2))
1052	  {
1053	    int result;
1054
1055
1056	    if (DECL_NAME (s1) == NULL
1057	        || DECL_NAME (s1) != DECL_NAME (s2))
1058	      break;
1059	    result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2));
1060	    if (result == 0)
1061	      {
1062		tu->val = 0;
1063		return 0;
1064	      }
1065	    if (result == 2)
1066	      needs_warning = true;
1067
1068	    if (TREE_CODE (s1) == FIELD_DECL
1069		&& simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
1070				     DECL_FIELD_BIT_OFFSET (s2)) != 1)
1071	      {
1072		tu->val = 0;
1073		return 0;
1074	      }
1075	  }
1076	if (!s1 && !s2)
1077	  {
1078	    tu->val = needs_warning ? 2 : 1;
1079	    return tu->val;
1080	  }
1081
1082	for (s1 = TYPE_FIELDS (t1); s1; s1 = TREE_CHAIN (s1))
1083	  {
1084	    bool ok = false;
1085
1086	    if (DECL_NAME (s1) != NULL)
1087	      for (s2 = TYPE_FIELDS (t2); s2; s2 = TREE_CHAIN (s2))
1088		if (DECL_NAME (s1) == DECL_NAME (s2))
1089		  {
1090		    int result;
1091		    result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2));
1092		    if (result == 0)
1093		      {
1094			tu->val = 0;
1095			return 0;
1096		      }
1097		    if (result == 2)
1098		      needs_warning = true;
1099
1100		    if (TREE_CODE (s1) == FIELD_DECL
1101			&& simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
1102					     DECL_FIELD_BIT_OFFSET (s2)) != 1)
1103		      break;
1104
1105		    ok = true;
1106		    break;
1107		  }
1108	    if (!ok)
1109	      {
1110		tu->val = 0;
1111		return 0;
1112	      }
1113	  }
1114	tu->val = needs_warning ? 2 : 10;
1115	return tu->val;
1116      }
1117
1118    case RECORD_TYPE:
1119      {
1120        struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
1121
1122	for (s1 = TYPE_FIELDS (t1), s2 = TYPE_FIELDS (t2);
1123	     s1 && s2;
1124	     s1 = TREE_CHAIN (s1), s2 = TREE_CHAIN (s2))
1125	  {
1126	    int result;
1127	    if (TREE_CODE (s1) != TREE_CODE (s2)
1128		|| DECL_NAME (s1) != DECL_NAME (s2))
1129	      break;
1130	    result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2));
1131	    if (result == 0)
1132	      break;
1133	    if (result == 2)
1134	      needs_warning = true;
1135
1136	    if (TREE_CODE (s1) == FIELD_DECL
1137		&& simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
1138				     DECL_FIELD_BIT_OFFSET (s2)) != 1)
1139	      break;
1140	  }
1141	if (s1 && s2)
1142	  tu->val = 0;
1143	else
1144	  tu->val = needs_warning ? 2 : 1;
1145	return tu->val;
1146      }
1147
1148    default:
1149      gcc_unreachable ();
1150    }
1151}
1152
1153/* Return 1 if two function types F1 and F2 are compatible.
1154   If either type specifies no argument types,
1155   the other must specify a fixed number of self-promoting arg types.
1156   Otherwise, if one type specifies only the number of arguments,
1157   the other must specify that number of self-promoting arg types.
1158   Otherwise, the argument types must match.  */
1159
1160static int
1161function_types_compatible_p (tree f1, tree f2)
1162{
1163  tree args1, args2;
1164  /* 1 if no need for warning yet, 2 if warning cause has been seen.  */
1165  int val = 1;
1166  int val1;
1167  tree ret1, ret2;
1168
1169  ret1 = TREE_TYPE (f1);
1170  ret2 = TREE_TYPE (f2);
1171
1172  /* 'volatile' qualifiers on a function's return type used to mean
1173     the function is noreturn.  */
1174  if (TYPE_VOLATILE (ret1) != TYPE_VOLATILE (ret2))
1175    pedwarn ("function return types not compatible due to %<volatile%>");
1176  if (TYPE_VOLATILE (ret1))
1177    ret1 = build_qualified_type (TYPE_MAIN_VARIANT (ret1),
1178				 TYPE_QUALS (ret1) & ~TYPE_QUAL_VOLATILE);
1179  if (TYPE_VOLATILE (ret2))
1180    ret2 = build_qualified_type (TYPE_MAIN_VARIANT (ret2),
1181				 TYPE_QUALS (ret2) & ~TYPE_QUAL_VOLATILE);
1182  val = comptypes_internal (ret1, ret2);
1183  if (val == 0)
1184    return 0;
1185
1186  args1 = TYPE_ARG_TYPES (f1);
1187  args2 = TYPE_ARG_TYPES (f2);
1188
1189  /* An unspecified parmlist matches any specified parmlist
1190     whose argument types don't need default promotions.  */
1191
1192  if (args1 == 0)
1193    {
1194      if (!self_promoting_args_p (args2))
1195	return 0;
1196      /* If one of these types comes from a non-prototype fn definition,
1197	 compare that with the other type's arglist.
1198	 If they don't match, ask for a warning (but no error).  */
1199      if (TYPE_ACTUAL_ARG_TYPES (f1)
1200	  && 1 != type_lists_compatible_p (args2, TYPE_ACTUAL_ARG_TYPES (f1)))
1201	val = 2;
1202      return val;
1203    }
1204  if (args2 == 0)
1205    {
1206      if (!self_promoting_args_p (args1))
1207	return 0;
1208      if (TYPE_ACTUAL_ARG_TYPES (f2)
1209	  && 1 != type_lists_compatible_p (args1, TYPE_ACTUAL_ARG_TYPES (f2)))
1210	val = 2;
1211      return val;
1212    }
1213
1214  /* Both types have argument lists: compare them and propagate results.  */
1215  val1 = type_lists_compatible_p (args1, args2);
1216  return val1 != 1 ? val1 : val;
1217}
1218
1219/* Check two lists of types for compatibility,
1220   returning 0 for incompatible, 1 for compatible,
1221   or 2 for compatible with warning.  */
1222
1223static int
1224type_lists_compatible_p (tree args1, tree args2)
1225{
1226  /* 1 if no need for warning yet, 2 if warning cause has been seen.  */
1227  int val = 1;
1228  int newval = 0;
1229
1230  while (1)
1231    {
1232      tree a1, mv1, a2, mv2;
1233      if (args1 == 0 && args2 == 0)
1234	return val;
1235      /* If one list is shorter than the other,
1236	 they fail to match.  */
1237      if (args1 == 0 || args2 == 0)
1238	return 0;
1239      mv1 = a1 = TREE_VALUE (args1);
1240      mv2 = a2 = TREE_VALUE (args2);
1241      if (mv1 && mv1 != error_mark_node && TREE_CODE (mv1) != ARRAY_TYPE)
1242	mv1 = TYPE_MAIN_VARIANT (mv1);
1243      if (mv2 && mv2 != error_mark_node && TREE_CODE (mv2) != ARRAY_TYPE)
1244	mv2 = TYPE_MAIN_VARIANT (mv2);
1245      /* A null pointer instead of a type
1246	 means there is supposed to be an argument
1247	 but nothing is specified about what type it has.
1248	 So match anything that self-promotes.  */
1249      if (a1 == 0)
1250	{
1251	  if (c_type_promotes_to (a2) != a2)
1252	    return 0;
1253	}
1254      else if (a2 == 0)
1255	{
1256	  if (c_type_promotes_to (a1) != a1)
1257	    return 0;
1258	}
1259      /* If one of the lists has an error marker, ignore this arg.  */
1260      else if (TREE_CODE (a1) == ERROR_MARK
1261	       || TREE_CODE (a2) == ERROR_MARK)
1262	;
1263      else if (!(newval = comptypes_internal (mv1, mv2)))
1264	{
1265	  /* Allow  wait (union {union wait *u; int *i} *)
1266	     and  wait (union wait *)  to be compatible.  */
1267	  if (TREE_CODE (a1) == UNION_TYPE
1268	      && (TYPE_NAME (a1) == 0
1269		  || TYPE_TRANSPARENT_UNION (a1))
1270	      && TREE_CODE (TYPE_SIZE (a1)) == INTEGER_CST
1271	      && tree_int_cst_equal (TYPE_SIZE (a1),
1272				     TYPE_SIZE (a2)))
1273	    {
1274	      tree memb;
1275	      for (memb = TYPE_FIELDS (a1);
1276		   memb; memb = TREE_CHAIN (memb))
1277		{
1278		  tree mv3 = TREE_TYPE (memb);
1279		  if (mv3 && mv3 != error_mark_node
1280		      && TREE_CODE (mv3) != ARRAY_TYPE)
1281		    mv3 = TYPE_MAIN_VARIANT (mv3);
1282		  if (comptypes_internal (mv3, mv2))
1283		    break;
1284		}
1285	      if (memb == 0)
1286		return 0;
1287	    }
1288	  else if (TREE_CODE (a2) == UNION_TYPE
1289		   && (TYPE_NAME (a2) == 0
1290		       || TYPE_TRANSPARENT_UNION (a2))
1291		   && TREE_CODE (TYPE_SIZE (a2)) == INTEGER_CST
1292		   && tree_int_cst_equal (TYPE_SIZE (a2),
1293					  TYPE_SIZE (a1)))
1294	    {
1295	      tree memb;
1296	      for (memb = TYPE_FIELDS (a2);
1297		   memb; memb = TREE_CHAIN (memb))
1298		{
1299		  tree mv3 = TREE_TYPE (memb);
1300		  if (mv3 && mv3 != error_mark_node
1301		      && TREE_CODE (mv3) != ARRAY_TYPE)
1302		    mv3 = TYPE_MAIN_VARIANT (mv3);
1303		  if (comptypes_internal (mv3, mv1))
1304		    break;
1305		}
1306	      if (memb == 0)
1307		return 0;
1308	    }
1309	  else
1310	    return 0;
1311	}
1312
1313      /* comptypes said ok, but record if it said to warn.  */
1314      if (newval > val)
1315	val = newval;
1316
1317      args1 = TREE_CHAIN (args1);
1318      args2 = TREE_CHAIN (args2);
1319    }
1320}
1321
1322/* Compute the size to increment a pointer by.  */
1323
1324static tree
1325c_size_in_bytes (tree type)
1326{
1327  enum tree_code code = TREE_CODE (type);
1328
1329  if (code == FUNCTION_TYPE || code == VOID_TYPE || code == ERROR_MARK)
1330    return size_one_node;
1331
1332  if (!COMPLETE_OR_VOID_TYPE_P (type))
1333    {
1334      error ("arithmetic on pointer to an incomplete type");
1335      return size_one_node;
1336    }
1337
1338  /* Convert in case a char is more than one unit.  */
1339  return size_binop (CEIL_DIV_EXPR, TYPE_SIZE_UNIT (type),
1340		     size_int (TYPE_PRECISION (char_type_node)
1341			       / BITS_PER_UNIT));
1342}
1343
1344/* Return either DECL or its known constant value (if it has one).  */
1345
1346tree
1347decl_constant_value (tree decl)
1348{
1349  if (/* Don't change a variable array bound or initial value to a constant
1350	 in a place where a variable is invalid.  Note that DECL_INITIAL
1351	 isn't valid for a PARM_DECL.  */
1352      current_function_decl != 0
1353      && TREE_CODE (decl) != PARM_DECL
1354      && !TREE_THIS_VOLATILE (decl)
1355      && TREE_READONLY (decl)
1356      && DECL_INITIAL (decl) != 0
1357      && TREE_CODE (DECL_INITIAL (decl)) != ERROR_MARK
1358      /* This is invalid if initial value is not constant.
1359	 If it has either a function call, a memory reference,
1360	 or a variable, then re-evaluating it could give different results.  */
1361      && TREE_CONSTANT (DECL_INITIAL (decl))
1362      /* Check for cases where this is sub-optimal, even though valid.  */
1363      && TREE_CODE (DECL_INITIAL (decl)) != CONSTRUCTOR)
1364    return DECL_INITIAL (decl);
1365  return decl;
1366}
1367
1368/* Return either DECL or its known constant value (if it has one), but
1369   return DECL if pedantic or DECL has mode BLKmode.  This is for
1370   bug-compatibility with the old behavior of decl_constant_value
1371   (before GCC 3.0); every use of this function is a bug and it should
1372   be removed before GCC 3.1.  It is not appropriate to use pedantic
1373   in a way that affects optimization, and BLKmode is probably not the
1374   right test for avoiding misoptimizations either.  */
1375
1376static tree
1377decl_constant_value_for_broken_optimization (tree decl)
1378{
1379  tree ret;
1380
1381  if (pedantic || DECL_MODE (decl) == BLKmode)
1382    return decl;
1383
1384  ret = decl_constant_value (decl);
1385  /* Avoid unwanted tree sharing between the initializer and current
1386     function's body where the tree can be modified e.g. by the
1387     gimplifier.  */
1388  if (ret != decl && TREE_STATIC (decl))
1389    ret = unshare_expr (ret);
1390  return ret;
1391}
1392
1393/* Convert the array expression EXP to a pointer.  */
1394static tree
1395array_to_pointer_conversion (tree exp)
1396{
1397  tree orig_exp = exp;
1398  tree type = TREE_TYPE (exp);
1399  tree adr;
1400  tree restype = TREE_TYPE (type);
1401  tree ptrtype;
1402
1403  gcc_assert (TREE_CODE (type) == ARRAY_TYPE);
1404
1405  STRIP_TYPE_NOPS (exp);
1406
1407  if (TREE_NO_WARNING (orig_exp))
1408    TREE_NO_WARNING (exp) = 1;
1409
1410  ptrtype = build_pointer_type (restype);
1411
1412  if (TREE_CODE (exp) == INDIRECT_REF)
1413    return convert (ptrtype, TREE_OPERAND (exp, 0));
1414
1415  if (TREE_CODE (exp) == VAR_DECL)
1416    {
1417      /* We are making an ADDR_EXPR of ptrtype.  This is a valid
1418	 ADDR_EXPR because it's the best way of representing what
1419	 happens in C when we take the address of an array and place
1420	 it in a pointer to the element type.  */
1421      adr = build1 (ADDR_EXPR, ptrtype, exp);
1422      if (!c_mark_addressable (exp))
1423	return error_mark_node;
1424      TREE_SIDE_EFFECTS (adr) = 0;   /* Default would be, same as EXP.  */
1425      return adr;
1426    }
1427
1428  /* This way is better for a COMPONENT_REF since it can
1429     simplify the offset for a component.  */
1430  adr = build_unary_op (ADDR_EXPR, exp, 1);
1431  return convert (ptrtype, adr);
1432}
1433
1434/* Convert the function expression EXP to a pointer.  */
1435static tree
1436function_to_pointer_conversion (tree exp)
1437{
1438  tree orig_exp = exp;
1439
1440  gcc_assert (TREE_CODE (TREE_TYPE (exp)) == FUNCTION_TYPE);
1441
1442  STRIP_TYPE_NOPS (exp);
1443
1444  if (TREE_NO_WARNING (orig_exp))
1445    TREE_NO_WARNING (exp) = 1;
1446
1447  return build_unary_op (ADDR_EXPR, exp, 0);
1448}
1449
1450/* Perform the default conversion of arrays and functions to pointers.
1451   Return the result of converting EXP.  For any other expression, just
1452   return EXP after removing NOPs.  */
1453
1454struct c_expr
1455default_function_array_conversion (struct c_expr exp)
1456{
1457  tree orig_exp = exp.value;
1458  tree type = TREE_TYPE (exp.value);
1459  enum tree_code code = TREE_CODE (type);
1460
1461  switch (code)
1462    {
1463    case ARRAY_TYPE:
1464      {
1465	bool not_lvalue = false;
1466	bool lvalue_array_p;
1467
1468	while ((TREE_CODE (exp.value) == NON_LVALUE_EXPR
1469		|| TREE_CODE (exp.value) == NOP_EXPR)
1470	       && TREE_TYPE (TREE_OPERAND (exp.value, 0)) == type)
1471	  {
1472	    if (TREE_CODE (exp.value) == NON_LVALUE_EXPR)
1473	      not_lvalue = true;
1474	    exp.value = TREE_OPERAND (exp.value, 0);
1475	  }
1476
1477	if (TREE_NO_WARNING (orig_exp))
1478	  TREE_NO_WARNING (exp.value) = 1;
1479
1480	lvalue_array_p = !not_lvalue && lvalue_p (exp.value);
1481	if (!flag_isoc99 && !lvalue_array_p)
1482	  {
1483	    /* Before C99, non-lvalue arrays do not decay to pointers.
1484	       Normally, using such an array would be invalid; but it can
1485	       be used correctly inside sizeof or as a statement expression.
1486	       Thus, do not give an error here; an error will result later.  */
1487	    return exp;
1488	  }
1489
1490	exp.value = array_to_pointer_conversion (exp.value);
1491      }
1492      break;
1493    case FUNCTION_TYPE:
1494      exp.value = function_to_pointer_conversion (exp.value);
1495      break;
1496    default:
1497      STRIP_TYPE_NOPS (exp.value);
1498      if (TREE_NO_WARNING (orig_exp))
1499	TREE_NO_WARNING (exp.value) = 1;
1500      break;
1501    }
1502
1503  return exp;
1504}
1505
1506
1507/* EXP is an expression of integer type.  Apply the integer promotions
1508   to it and return the promoted value.  */
1509
1510tree
1511perform_integral_promotions (tree exp)
1512{
1513  tree type = TREE_TYPE (exp);
1514  enum tree_code code = TREE_CODE (type);
1515
1516  gcc_assert (INTEGRAL_TYPE_P (type));
1517
1518  /* Normally convert enums to int,
1519     but convert wide enums to something wider.  */
1520  if (code == ENUMERAL_TYPE)
1521    {
1522      type = c_common_type_for_size (MAX (TYPE_PRECISION (type),
1523					  TYPE_PRECISION (integer_type_node)),
1524				     ((TYPE_PRECISION (type)
1525				       >= TYPE_PRECISION (integer_type_node))
1526				      && TYPE_UNSIGNED (type)));
1527
1528      return convert (type, exp);
1529    }
1530
1531  /* ??? This should no longer be needed now bit-fields have their
1532     proper types.  */
1533  if (TREE_CODE (exp) == COMPONENT_REF
1534      && DECL_C_BIT_FIELD (TREE_OPERAND (exp, 1))
1535      /* If it's thinner than an int, promote it like a
1536	 c_promoting_integer_type_p, otherwise leave it alone.  */
1537      && 0 > compare_tree_int (DECL_SIZE (TREE_OPERAND (exp, 1)),
1538			       TYPE_PRECISION (integer_type_node)))
1539    return convert (integer_type_node, exp);
1540
1541  if (c_promoting_integer_type_p (type))
1542    {
1543      /* Preserve unsignedness if not really getting any wider.  */
1544      if (TYPE_UNSIGNED (type)
1545	  && TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node))
1546	return convert (unsigned_type_node, exp);
1547
1548      return convert (integer_type_node, exp);
1549    }
1550
1551  return exp;
1552}
1553
1554
1555/* Perform default promotions for C data used in expressions.
1556   Enumeral types or short or char are converted to int.
1557   In addition, manifest constants symbols are replaced by their values.  */
1558
1559tree
1560default_conversion (tree exp)
1561{
1562  tree orig_exp;
1563  tree type = TREE_TYPE (exp);
1564  enum tree_code code = TREE_CODE (type);
1565
1566  /* Functions and arrays have been converted during parsing.  */
1567  gcc_assert (code != FUNCTION_TYPE);
1568  if (code == ARRAY_TYPE)
1569    return exp;
1570
1571  /* Constants can be used directly unless they're not loadable.  */
1572  if (TREE_CODE (exp) == CONST_DECL)
1573    exp = DECL_INITIAL (exp);
1574
1575  /* Replace a nonvolatile const static variable with its value unless
1576     it is an array, in which case we must be sure that taking the
1577     address of the array produces consistent results.  */
1578  else if (optimize && TREE_CODE (exp) == VAR_DECL && code != ARRAY_TYPE)
1579    {
1580      exp = decl_constant_value_for_broken_optimization (exp);
1581      type = TREE_TYPE (exp);
1582    }
1583
1584  /* Strip no-op conversions.  */
1585  orig_exp = exp;
1586  STRIP_TYPE_NOPS (exp);
1587
1588  if (TREE_NO_WARNING (orig_exp))
1589    TREE_NO_WARNING (exp) = 1;
1590
1591  if (INTEGRAL_TYPE_P (type))
1592    return perform_integral_promotions (exp);
1593
1594  if (code == VOID_TYPE)
1595    {
1596      error ("void value not ignored as it ought to be");
1597      return error_mark_node;
1598    }
1599  return exp;
1600}
1601
1602/* Look up COMPONENT in a structure or union DECL.
1603
1604   If the component name is not found, returns NULL_TREE.  Otherwise,
1605   the return value is a TREE_LIST, with each TREE_VALUE a FIELD_DECL
1606   stepping down the chain to the component, which is in the last
1607   TREE_VALUE of the list.  Normally the list is of length one, but if
1608   the component is embedded within (nested) anonymous structures or
1609   unions, the list steps down the chain to the component.  */
1610
1611static tree
1612lookup_field (tree decl, tree component)
1613{
1614  tree type = TREE_TYPE (decl);
1615  tree field;
1616
1617  /* If TYPE_LANG_SPECIFIC is set, then it is a sorted array of pointers
1618     to the field elements.  Use a binary search on this array to quickly
1619     find the element.  Otherwise, do a linear search.  TYPE_LANG_SPECIFIC
1620     will always be set for structures which have many elements.  */
1621
1622  if (TYPE_LANG_SPECIFIC (type) && TYPE_LANG_SPECIFIC (type)->s)
1623    {
1624      int bot, top, half;
1625      tree *field_array = &TYPE_LANG_SPECIFIC (type)->s->elts[0];
1626
1627      field = TYPE_FIELDS (type);
1628      bot = 0;
1629      top = TYPE_LANG_SPECIFIC (type)->s->len;
1630      while (top - bot > 1)
1631	{
1632	  half = (top - bot + 1) >> 1;
1633	  field = field_array[bot+half];
1634
1635	  if (DECL_NAME (field) == NULL_TREE)
1636	    {
1637	      /* Step through all anon unions in linear fashion.  */
1638	      while (DECL_NAME (field_array[bot]) == NULL_TREE)
1639		{
1640		  field = field_array[bot++];
1641		  if (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
1642		      || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE)
1643		    {
1644		      tree anon = lookup_field (field, component);
1645
1646		      if (anon)
1647			return tree_cons (NULL_TREE, field, anon);
1648		    }
1649		}
1650
1651	      /* Entire record is only anon unions.  */
1652	      if (bot > top)
1653		return NULL_TREE;
1654
1655	      /* Restart the binary search, with new lower bound.  */
1656	      continue;
1657	    }
1658
1659	  if (DECL_NAME (field) == component)
1660	    break;
1661	  if (DECL_NAME (field) < component)
1662	    bot += half;
1663	  else
1664	    top = bot + half;
1665	}
1666
1667      if (DECL_NAME (field_array[bot]) == component)
1668	field = field_array[bot];
1669      else if (DECL_NAME (field) != component)
1670	return NULL_TREE;
1671    }
1672  else
1673    {
1674      for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1675	{
1676	  if (DECL_NAME (field) == NULL_TREE
1677	      && (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
1678		  || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE))
1679	    {
1680	      tree anon = lookup_field (field, component);
1681
1682	      if (anon)
1683		return tree_cons (NULL_TREE, field, anon);
1684	    }
1685
1686	  if (DECL_NAME (field) == component)
1687	    break;
1688	}
1689
1690      if (field == NULL_TREE)
1691	return NULL_TREE;
1692    }
1693
1694  return tree_cons (NULL_TREE, field, NULL_TREE);
1695}
1696
1697/* Make an expression to refer to the COMPONENT field of
1698   structure or union value DATUM.  COMPONENT is an IDENTIFIER_NODE.  */
1699
1700tree
1701build_component_ref (tree datum, tree component)
1702{
1703  tree type = TREE_TYPE (datum);
1704  enum tree_code code = TREE_CODE (type);
1705  tree field = NULL;
1706  tree ref;
1707
1708  if (!objc_is_public (datum, component))
1709    return error_mark_node;
1710
1711  /* See if there is a field or component with name COMPONENT.  */
1712
1713  if (code == RECORD_TYPE || code == UNION_TYPE)
1714    {
1715      if (!COMPLETE_TYPE_P (type))
1716	{
1717	  c_incomplete_type_error (NULL_TREE, type);
1718	  return error_mark_node;
1719	}
1720
1721      field = lookup_field (datum, component);
1722
1723      if (!field)
1724	{
1725	  error ("%qT has no member named %qE", type, component);
1726	  return error_mark_node;
1727	}
1728
1729      /* Chain the COMPONENT_REFs if necessary down to the FIELD.
1730	 This might be better solved in future the way the C++ front
1731	 end does it - by giving the anonymous entities each a
1732	 separate name and type, and then have build_component_ref
1733	 recursively call itself.  We can't do that here.  */
1734      do
1735	{
1736	  tree subdatum = TREE_VALUE (field);
1737	  int quals;
1738	  tree subtype;
1739
1740	  if (TREE_TYPE (subdatum) == error_mark_node)
1741	    return error_mark_node;
1742
1743	  quals = TYPE_QUALS (strip_array_types (TREE_TYPE (subdatum)));
1744	  quals |= TYPE_QUALS (TREE_TYPE (datum));
1745	  subtype = c_build_qualified_type (TREE_TYPE (subdatum), quals);
1746
1747	  ref = build3 (COMPONENT_REF, subtype, datum, subdatum,
1748			NULL_TREE);
1749	  if (TREE_READONLY (datum) || TREE_READONLY (subdatum))
1750	    TREE_READONLY (ref) = 1;
1751	  if (TREE_THIS_VOLATILE (datum) || TREE_THIS_VOLATILE (subdatum))
1752	    TREE_THIS_VOLATILE (ref) = 1;
1753
1754	  if (TREE_DEPRECATED (subdatum))
1755	    warn_deprecated_use (subdatum);
1756
1757	  datum = ref;
1758
1759	  field = TREE_CHAIN (field);
1760	}
1761      while (field);
1762
1763      return ref;
1764    }
1765  else if (code != ERROR_MARK)
1766    error ("request for member %qE in something not a structure or union",
1767	   component);
1768
1769  return error_mark_node;
1770}
1771
1772/* Given an expression PTR for a pointer, return an expression
1773   for the value pointed to.
1774   ERRORSTRING is the name of the operator to appear in error messages.  */
1775
1776tree
1777build_indirect_ref (tree ptr, const char *errorstring)
1778{
1779  tree pointer = default_conversion (ptr);
1780  tree type = TREE_TYPE (pointer);
1781
1782  if (TREE_CODE (type) == POINTER_TYPE)
1783    {
1784      if (TREE_CODE (pointer) == ADDR_EXPR
1785	  && (TREE_TYPE (TREE_OPERAND (pointer, 0))
1786	      == TREE_TYPE (type)))
1787	return TREE_OPERAND (pointer, 0);
1788      else
1789	{
1790	  tree t = TREE_TYPE (type);
1791	  tree ref;
1792
1793	  ref = build1 (INDIRECT_REF, t, pointer);
1794
1795	  if (!COMPLETE_OR_VOID_TYPE_P (t) && TREE_CODE (t) != ARRAY_TYPE)
1796	    {
1797	      error ("dereferencing pointer to incomplete type");
1798	      return error_mark_node;
1799	    }
1800	  if (VOID_TYPE_P (t) && skip_evaluation == 0)
1801	    warning (0, "dereferencing %<void *%> pointer");
1802
1803	  /* We *must* set TREE_READONLY when dereferencing a pointer to const,
1804	     so that we get the proper error message if the result is used
1805	     to assign to.  Also, &* is supposed to be a no-op.
1806	     And ANSI C seems to specify that the type of the result
1807	     should be the const type.  */
1808	  /* A de-reference of a pointer to const is not a const.  It is valid
1809	     to change it via some other pointer.  */
1810	  TREE_READONLY (ref) = TYPE_READONLY (t);
1811	  TREE_SIDE_EFFECTS (ref)
1812	    = TYPE_VOLATILE (t) || TREE_SIDE_EFFECTS (pointer);
1813	  TREE_THIS_VOLATILE (ref) = TYPE_VOLATILE (t);
1814	  return ref;
1815	}
1816    }
1817  else if (TREE_CODE (pointer) != ERROR_MARK)
1818    error ("invalid type argument of %qs", errorstring);
1819  return error_mark_node;
1820}
1821
1822/* This handles expressions of the form "a[i]", which denotes
1823   an array reference.
1824
1825   This is logically equivalent in C to *(a+i), but we may do it differently.
1826   If A is a variable or a member, we generate a primitive ARRAY_REF.
1827   This avoids forcing the array out of registers, and can work on
1828   arrays that are not lvalues (for example, members of structures returned
1829   by functions).  */
1830
1831tree
1832build_array_ref (tree array, tree index)
1833{
1834  bool swapped = false;
1835  if (TREE_TYPE (array) == error_mark_node
1836      || TREE_TYPE (index) == error_mark_node)
1837    return error_mark_node;
1838
1839  if (TREE_CODE (TREE_TYPE (array)) != ARRAY_TYPE
1840      && TREE_CODE (TREE_TYPE (array)) != POINTER_TYPE)
1841    {
1842      tree temp;
1843      if (TREE_CODE (TREE_TYPE (index)) != ARRAY_TYPE
1844	  && TREE_CODE (TREE_TYPE (index)) != POINTER_TYPE)
1845	{
1846	  error ("subscripted value is neither array nor pointer");
1847	  return error_mark_node;
1848	}
1849      temp = array;
1850      array = index;
1851      index = temp;
1852      swapped = true;
1853    }
1854
1855  if (!INTEGRAL_TYPE_P (TREE_TYPE (index)))
1856    {
1857      error ("array subscript is not an integer");
1858      return error_mark_node;
1859    }
1860
1861  if (TREE_CODE (TREE_TYPE (TREE_TYPE (array))) == FUNCTION_TYPE)
1862    {
1863      error ("subscripted value is pointer to function");
1864      return error_mark_node;
1865    }
1866
1867  /* Subscripting with type char is likely to lose on a machine where
1868     chars are signed.  So warn on any machine, but optionally.  Don't
1869     warn for unsigned char since that type is safe.  Don't warn for
1870     signed char because anyone who uses that must have done so
1871     deliberately.  ??? Existing practice has also been to warn only
1872     when the char index is syntactically the index, not for
1873     char[array].  */
1874  if (!swapped
1875      && TYPE_MAIN_VARIANT (TREE_TYPE (index)) == char_type_node)
1876    warning (OPT_Wchar_subscripts, "array subscript has type %<char%>");
1877
1878  /* Apply default promotions *after* noticing character types.  */
1879  index = default_conversion (index);
1880
1881  gcc_assert (TREE_CODE (TREE_TYPE (index)) == INTEGER_TYPE);
1882
1883  if (TREE_CODE (TREE_TYPE (array)) == ARRAY_TYPE)
1884    {
1885      tree rval, type;
1886
1887      /* An array that is indexed by a non-constant
1888	 cannot be stored in a register; we must be able to do
1889	 address arithmetic on its address.
1890	 Likewise an array of elements of variable size.  */
1891      if (TREE_CODE (index) != INTEGER_CST
1892	  || (COMPLETE_TYPE_P (TREE_TYPE (TREE_TYPE (array)))
1893	      && TREE_CODE (TYPE_SIZE (TREE_TYPE (TREE_TYPE (array)))) != INTEGER_CST))
1894	{
1895	  if (!c_mark_addressable (array))
1896	    return error_mark_node;
1897	}
1898      /* An array that is indexed by a constant value which is not within
1899	 the array bounds cannot be stored in a register either; because we
1900	 would get a crash in store_bit_field/extract_bit_field when trying
1901	 to access a non-existent part of the register.  */
1902      if (TREE_CODE (index) == INTEGER_CST
1903	  && TYPE_DOMAIN (TREE_TYPE (array))
1904	  && !int_fits_type_p (index, TYPE_DOMAIN (TREE_TYPE (array))))
1905	{
1906	  if (!c_mark_addressable (array))
1907	    return error_mark_node;
1908	}
1909
1910      if (pedantic)
1911	{
1912	  tree foo = array;
1913	  while (TREE_CODE (foo) == COMPONENT_REF)
1914	    foo = TREE_OPERAND (foo, 0);
1915	  if (TREE_CODE (foo) == VAR_DECL && C_DECL_REGISTER (foo))
1916	    pedwarn ("ISO C forbids subscripting %<register%> array");
1917	  else if (!flag_isoc99 && !lvalue_p (foo))
1918	    pedwarn ("ISO C90 forbids subscripting non-lvalue array");
1919	}
1920
1921      type = TREE_TYPE (TREE_TYPE (array));
1922      if (TREE_CODE (type) != ARRAY_TYPE)
1923	type = TYPE_MAIN_VARIANT (type);
1924      rval = build4 (ARRAY_REF, type, array, index, NULL_TREE, NULL_TREE);
1925      /* Array ref is const/volatile if the array elements are
1926         or if the array is.  */
1927      TREE_READONLY (rval)
1928	|= (TYPE_READONLY (TREE_TYPE (TREE_TYPE (array)))
1929	    | TREE_READONLY (array));
1930      TREE_SIDE_EFFECTS (rval)
1931	|= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array)))
1932	    | TREE_SIDE_EFFECTS (array));
1933      TREE_THIS_VOLATILE (rval)
1934	|= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array)))
1935	    /* This was added by rms on 16 Nov 91.
1936	       It fixes  vol struct foo *a;  a->elts[1]
1937	       in an inline function.
1938	       Hope it doesn't break something else.  */
1939	    | TREE_THIS_VOLATILE (array));
1940      return require_complete_type (fold (rval));
1941    }
1942  else
1943    {
1944      tree ar = default_conversion (array);
1945
1946      if (ar == error_mark_node)
1947	return ar;
1948
1949      gcc_assert (TREE_CODE (TREE_TYPE (ar)) == POINTER_TYPE);
1950      gcc_assert (TREE_CODE (TREE_TYPE (TREE_TYPE (ar))) != FUNCTION_TYPE);
1951
1952      return build_indirect_ref (build_binary_op (PLUS_EXPR, ar, index, 0),
1953				 "array indexing");
1954    }
1955}
1956
1957/* Build an external reference to identifier ID.  FUN indicates
1958   whether this will be used for a function call.  LOC is the source
1959   location of the identifier.  */
1960tree
1961build_external_ref (tree id, int fun, location_t loc)
1962{
1963  tree ref;
1964  tree decl = lookup_name (id);
1965
1966  /* In Objective-C, an instance variable (ivar) may be preferred to
1967     whatever lookup_name() found.  */
1968  decl = objc_lookup_ivar (decl, id);
1969
1970  if (decl && decl != error_mark_node)
1971    ref = decl;
1972  else if (fun)
1973    /* Implicit function declaration.  */
1974    ref = implicitly_declare (id);
1975  else if (decl == error_mark_node)
1976    /* Don't complain about something that's already been
1977       complained about.  */
1978    return error_mark_node;
1979  else
1980    {
1981      undeclared_variable (id, loc);
1982      return error_mark_node;
1983    }
1984
1985  if (TREE_TYPE (ref) == error_mark_node)
1986    return error_mark_node;
1987
1988  if (TREE_DEPRECATED (ref))
1989    warn_deprecated_use (ref);
1990
1991  if (!skip_evaluation)
1992    assemble_external (ref);
1993  TREE_USED (ref) = 1;
1994
1995  if (TREE_CODE (ref) == FUNCTION_DECL && !in_alignof)
1996    {
1997      if (!in_sizeof && !in_typeof)
1998	C_DECL_USED (ref) = 1;
1999      else if (DECL_INITIAL (ref) == 0
2000	       && DECL_EXTERNAL (ref)
2001	       && !TREE_PUBLIC (ref))
2002	record_maybe_used_decl (ref);
2003    }
2004
2005  if (TREE_CODE (ref) == CONST_DECL)
2006    {
2007      ref = DECL_INITIAL (ref);
2008      TREE_CONSTANT (ref) = 1;
2009      TREE_INVARIANT (ref) = 1;
2010    }
2011  else if (current_function_decl != 0
2012	   && !DECL_FILE_SCOPE_P (current_function_decl)
2013	   && (TREE_CODE (ref) == VAR_DECL
2014	       || TREE_CODE (ref) == PARM_DECL
2015	       || TREE_CODE (ref) == FUNCTION_DECL))
2016    {
2017      tree context = decl_function_context (ref);
2018
2019      if (context != 0 && context != current_function_decl)
2020	DECL_NONLOCAL (ref) = 1;
2021    }
2022
2023  return ref;
2024}
2025
2026/* Record details of decls possibly used inside sizeof or typeof.  */
2027struct maybe_used_decl
2028{
2029  /* The decl.  */
2030  tree decl;
2031  /* The level seen at (in_sizeof + in_typeof).  */
2032  int level;
2033  /* The next one at this level or above, or NULL.  */
2034  struct maybe_used_decl *next;
2035};
2036
2037static struct maybe_used_decl *maybe_used_decls;
2038
2039/* Record that DECL, an undefined static function reference seen
2040   inside sizeof or typeof, might be used if the operand of sizeof is
2041   a VLA type or the operand of typeof is a variably modified
2042   type.  */
2043
2044static void
2045record_maybe_used_decl (tree decl)
2046{
2047  struct maybe_used_decl *t = XOBNEW (&parser_obstack, struct maybe_used_decl);
2048  t->decl = decl;
2049  t->level = in_sizeof + in_typeof;
2050  t->next = maybe_used_decls;
2051  maybe_used_decls = t;
2052}
2053
2054/* Pop the stack of decls possibly used inside sizeof or typeof.  If
2055   USED is false, just discard them.  If it is true, mark them used
2056   (if no longer inside sizeof or typeof) or move them to the next
2057   level up (if still inside sizeof or typeof).  */
2058
2059void
2060pop_maybe_used (bool used)
2061{
2062  struct maybe_used_decl *p = maybe_used_decls;
2063  int cur_level = in_sizeof + in_typeof;
2064  while (p && p->level > cur_level)
2065    {
2066      if (used)
2067	{
2068	  if (cur_level == 0)
2069	    C_DECL_USED (p->decl) = 1;
2070	  else
2071	    p->level = cur_level;
2072	}
2073      p = p->next;
2074    }
2075  if (!used || cur_level == 0)
2076    maybe_used_decls = p;
2077}
2078
2079/* Return the result of sizeof applied to EXPR.  */
2080
2081struct c_expr
2082c_expr_sizeof_expr (struct c_expr expr)
2083{
2084  struct c_expr ret;
2085  if (expr.value == error_mark_node)
2086    {
2087      ret.value = error_mark_node;
2088      ret.original_code = ERROR_MARK;
2089      pop_maybe_used (false);
2090    }
2091  else
2092    {
2093      ret.value = c_sizeof (TREE_TYPE (expr.value));
2094      ret.original_code = ERROR_MARK;
2095      pop_maybe_used (C_TYPE_VARIABLE_SIZE (TREE_TYPE (expr.value)));
2096    }
2097  return ret;
2098}
2099
2100/* Return the result of sizeof applied to T, a structure for the type
2101   name passed to sizeof (rather than the type itself).  */
2102
2103struct c_expr
2104c_expr_sizeof_type (struct c_type_name *t)
2105{
2106  tree type;
2107  struct c_expr ret;
2108  type = groktypename (t);
2109  ret.value = c_sizeof (type);
2110  ret.original_code = ERROR_MARK;
2111  pop_maybe_used (type != error_mark_node
2112		  ? C_TYPE_VARIABLE_SIZE (type) : false);
2113  return ret;
2114}
2115
2116/* Build a function call to function FUNCTION with parameters PARAMS.
2117   PARAMS is a list--a chain of TREE_LIST nodes--in which the
2118   TREE_VALUE of each node is a parameter-expression.
2119   FUNCTION's data type may be a function type or a pointer-to-function.  */
2120
2121tree
2122build_function_call (tree function, tree params)
2123{
2124  tree fntype, fundecl = 0;
2125  tree coerced_params;
2126  tree name = NULL_TREE, result;
2127  tree tem;
2128
2129  /* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue.  */
2130  STRIP_TYPE_NOPS (function);
2131
2132  /* Convert anything with function type to a pointer-to-function.  */
2133  if (TREE_CODE (function) == FUNCTION_DECL)
2134    {
2135      /* Implement type-directed function overloading for builtins.
2136	 resolve_overloaded_builtin and targetm.resolve_overloaded_builtin
2137	 handle all the type checking.  The result is a complete expression
2138	 that implements this function call.  */
2139      tem = resolve_overloaded_builtin (function, params);
2140      if (tem)
2141	return tem;
2142
2143      name = DECL_NAME (function);
2144      fundecl = function;
2145    }
2146  if (TREE_CODE (TREE_TYPE (function)) == FUNCTION_TYPE)
2147    function = function_to_pointer_conversion (function);
2148
2149  /* For Objective-C, convert any calls via a cast to OBJC_TYPE_REF
2150     expressions, like those used for ObjC messenger dispatches.  */
2151  function = objc_rewrite_function_call (function, params);
2152
2153  fntype = TREE_TYPE (function);
2154
2155  if (TREE_CODE (fntype) == ERROR_MARK)
2156    return error_mark_node;
2157
2158  if (!(TREE_CODE (fntype) == POINTER_TYPE
2159	&& TREE_CODE (TREE_TYPE (fntype)) == FUNCTION_TYPE))
2160    {
2161      error ("called object %qE is not a function", function);
2162      return error_mark_node;
2163    }
2164
2165  if (fundecl && TREE_THIS_VOLATILE (fundecl))
2166    current_function_returns_abnormally = 1;
2167
2168  /* fntype now gets the type of function pointed to.  */
2169  fntype = TREE_TYPE (fntype);
2170
2171  /* Check that the function is called through a compatible prototype.
2172     If it is not, replace the call by a trap, wrapped up in a compound
2173     expression if necessary.  This has the nice side-effect to prevent
2174     the tree-inliner from generating invalid assignment trees which may
2175     blow up in the RTL expander later.  */
2176  if (TREE_CODE (function) == NOP_EXPR
2177      && TREE_CODE (tem = TREE_OPERAND (function, 0)) == ADDR_EXPR
2178      && TREE_CODE (tem = TREE_OPERAND (tem, 0)) == FUNCTION_DECL
2179      && !comptypes (fntype, TREE_TYPE (tem)))
2180    {
2181      tree return_type = TREE_TYPE (fntype);
2182      tree trap = build_function_call (built_in_decls[BUILT_IN_TRAP],
2183				       NULL_TREE);
2184
2185      /* This situation leads to run-time undefined behavior.  We can't,
2186	 therefore, simply error unless we can prove that all possible
2187	 executions of the program must execute the code.  */
2188      warning (0, "function called through a non-compatible type");
2189
2190      /* We can, however, treat "undefined" any way we please.
2191	 Call abort to encourage the user to fix the program.  */
2192      inform ("if this code is reached, the program will abort");
2193
2194      if (VOID_TYPE_P (return_type))
2195	return trap;
2196      else
2197	{
2198	  tree rhs;
2199
2200	  if (AGGREGATE_TYPE_P (return_type))
2201	    rhs = build_compound_literal (return_type,
2202					  build_constructor (return_type, 0));
2203	  else
2204	    rhs = fold_build1 (NOP_EXPR, return_type, integer_zero_node);
2205
2206	  return build2 (COMPOUND_EXPR, return_type, trap, rhs);
2207	}
2208    }
2209
2210  /* Convert the parameters to the types declared in the
2211     function prototype, or apply default promotions.  */
2212
2213  coerced_params
2214    = convert_arguments (TYPE_ARG_TYPES (fntype), params, function, fundecl);
2215
2216  if (coerced_params == error_mark_node)
2217    return error_mark_node;
2218
2219  /* Check that the arguments to the function are valid.  */
2220
2221  check_function_arguments (TYPE_ATTRIBUTES (fntype), coerced_params,
2222			    TYPE_ARG_TYPES (fntype));
2223
2224  if (require_constant_value)
2225    {
2226      result = fold_build3_initializer (CALL_EXPR, TREE_TYPE (fntype),
2227		      			function, coerced_params, NULL_TREE);
2228
2229      if (TREE_CONSTANT (result)
2230	  && (name == NULL_TREE
2231	      || strncmp (IDENTIFIER_POINTER (name), "__builtin_", 10) != 0))
2232	pedwarn_init ("initializer element is not constant");
2233    }
2234  else
2235    result = fold_build3 (CALL_EXPR, TREE_TYPE (fntype),
2236		      	  function, coerced_params, NULL_TREE);
2237
2238  if (VOID_TYPE_P (TREE_TYPE (result)))
2239    return result;
2240  return require_complete_type (result);
2241}
2242
2243/* Convert the argument expressions in the list VALUES
2244   to the types in the list TYPELIST.  The result is a list of converted
2245   argument expressions, unless there are too few arguments in which
2246   case it is error_mark_node.
2247
2248   If TYPELIST is exhausted, or when an element has NULL as its type,
2249   perform the default conversions.
2250
2251   PARMLIST is the chain of parm decls for the function being called.
2252   It may be 0, if that info is not available.
2253   It is used only for generating error messages.
2254
2255   FUNCTION is a tree for the called function.  It is used only for
2256   error messages, where it is formatted with %qE.
2257
2258   This is also where warnings about wrong number of args are generated.
2259
2260   Both VALUES and the returned value are chains of TREE_LIST nodes
2261   with the elements of the list in the TREE_VALUE slots of those nodes.  */
2262
2263static tree
2264convert_arguments (tree typelist, tree values, tree function, tree fundecl)
2265{
2266  tree typetail, valtail;
2267  tree result = NULL;
2268  int parmnum;
2269  tree selector;
2270
2271  /* Change pointer to function to the function itself for
2272     diagnostics.  */
2273  if (TREE_CODE (function) == ADDR_EXPR
2274      && TREE_CODE (TREE_OPERAND (function, 0)) == FUNCTION_DECL)
2275    function = TREE_OPERAND (function, 0);
2276
2277  /* Handle an ObjC selector specially for diagnostics.  */
2278  selector = objc_message_selector ();
2279
2280  /* Scan the given expressions and types, producing individual
2281     converted arguments and pushing them on RESULT in reverse order.  */
2282
2283  for (valtail = values, typetail = typelist, parmnum = 0;
2284       valtail;
2285       valtail = TREE_CHAIN (valtail), parmnum++)
2286    {
2287      tree type = typetail ? TREE_VALUE (typetail) : 0;
2288      tree val = TREE_VALUE (valtail);
2289      tree rname = function;
2290      int argnum = parmnum + 1;
2291      const char *invalid_func_diag;
2292
2293      if (type == void_type_node)
2294	{
2295	  error ("too many arguments to function %qE", function);
2296	  break;
2297	}
2298
2299      if (selector && argnum > 2)
2300	{
2301	  rname = selector;
2302	  argnum -= 2;
2303	}
2304
2305      STRIP_TYPE_NOPS (val);
2306
2307      val = require_complete_type (val);
2308
2309      if (type != 0)
2310	{
2311	  /* Formal parm type is specified by a function prototype.  */
2312	  tree parmval;
2313
2314	  if (type == error_mark_node || !COMPLETE_TYPE_P (type))
2315	    {
2316	      error ("type of formal parameter %d is incomplete", parmnum + 1);
2317	      parmval = val;
2318	    }
2319	  else
2320	    {
2321	      /* Optionally warn about conversions that
2322		 differ from the default conversions.  */
2323	      if (warn_conversion || warn_traditional)
2324		{
2325		  unsigned int formal_prec = TYPE_PRECISION (type);
2326
2327		  if (INTEGRAL_TYPE_P (type)
2328		      && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
2329		    warning (0, "passing argument %d of %qE as integer "
2330			     "rather than floating due to prototype",
2331			     argnum, rname);
2332		  if (INTEGRAL_TYPE_P (type)
2333		      && TREE_CODE (TREE_TYPE (val)) == COMPLEX_TYPE)
2334		    warning (0, "passing argument %d of %qE as integer "
2335			     "rather than complex due to prototype",
2336			     argnum, rname);
2337		  else if (TREE_CODE (type) == COMPLEX_TYPE
2338			   && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
2339		    warning (0, "passing argument %d of %qE as complex "
2340			     "rather than floating due to prototype",
2341			     argnum, rname);
2342		  else if (TREE_CODE (type) == REAL_TYPE
2343			   && INTEGRAL_TYPE_P (TREE_TYPE (val)))
2344		    warning (0, "passing argument %d of %qE as floating "
2345			     "rather than integer due to prototype",
2346			     argnum, rname);
2347		  else if (TREE_CODE (type) == COMPLEX_TYPE
2348			   && INTEGRAL_TYPE_P (TREE_TYPE (val)))
2349		    warning (0, "passing argument %d of %qE as complex "
2350			     "rather than integer due to prototype",
2351			     argnum, rname);
2352		  else if (TREE_CODE (type) == REAL_TYPE
2353			   && TREE_CODE (TREE_TYPE (val)) == COMPLEX_TYPE)
2354		    warning (0, "passing argument %d of %qE as floating "
2355			     "rather than complex due to prototype",
2356			     argnum, rname);
2357		  /* ??? At some point, messages should be written about
2358		     conversions between complex types, but that's too messy
2359		     to do now.  */
2360		  else if (TREE_CODE (type) == REAL_TYPE
2361			   && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
2362		    {
2363		      /* Warn if any argument is passed as `float',
2364			 since without a prototype it would be `double'.  */
2365		      if (formal_prec == TYPE_PRECISION (float_type_node))
2366			warning (0, "passing argument %d of %qE as %<float%> "
2367				 "rather than %<double%> due to prototype",
2368				 argnum, rname);
2369		    }
2370		  /* Detect integer changing in width or signedness.
2371		     These warnings are only activated with
2372		     -Wconversion, not with -Wtraditional.  */
2373		  else if (warn_conversion && INTEGRAL_TYPE_P (type)
2374			   && INTEGRAL_TYPE_P (TREE_TYPE (val)))
2375		    {
2376		      tree would_have_been = default_conversion (val);
2377		      tree type1 = TREE_TYPE (would_have_been);
2378
2379		      if (TREE_CODE (type) == ENUMERAL_TYPE
2380			  && (TYPE_MAIN_VARIANT (type)
2381			      == TYPE_MAIN_VARIANT (TREE_TYPE (val))))
2382			/* No warning if function asks for enum
2383			   and the actual arg is that enum type.  */
2384			;
2385		      else if (formal_prec != TYPE_PRECISION (type1))
2386			warning (OPT_Wconversion, "passing argument %d of %qE "
2387				 "with different width due to prototype",
2388				 argnum, rname);
2389		      else if (TYPE_UNSIGNED (type) == TYPE_UNSIGNED (type1))
2390			;
2391		      /* Don't complain if the formal parameter type
2392			 is an enum, because we can't tell now whether
2393			 the value was an enum--even the same enum.  */
2394		      else if (TREE_CODE (type) == ENUMERAL_TYPE)
2395			;
2396		      else if (TREE_CODE (val) == INTEGER_CST
2397			       && int_fits_type_p (val, type))
2398			/* Change in signedness doesn't matter
2399			   if a constant value is unaffected.  */
2400			;
2401		      /* If the value is extended from a narrower
2402			 unsigned type, it doesn't matter whether we
2403			 pass it as signed or unsigned; the value
2404			 certainly is the same either way.  */
2405		      else if (TYPE_PRECISION (TREE_TYPE (val)) < TYPE_PRECISION (type)
2406			       && TYPE_UNSIGNED (TREE_TYPE (val)))
2407			;
2408		      else if (TYPE_UNSIGNED (type))
2409			warning (OPT_Wconversion, "passing argument %d of %qE "
2410				 "as unsigned due to prototype",
2411				 argnum, rname);
2412		      else
2413			warning (OPT_Wconversion, "passing argument %d of %qE "
2414				 "as signed due to prototype", argnum, rname);
2415		    }
2416		}
2417
2418	      parmval = convert_for_assignment (type, val, ic_argpass,
2419						fundecl, function,
2420						parmnum + 1);
2421
2422	      if (targetm.calls.promote_prototypes (fundecl ? TREE_TYPE (fundecl) : 0)
2423		  && INTEGRAL_TYPE_P (type)
2424		  && (TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)))
2425		parmval = default_conversion (parmval);
2426	    }
2427	  result = tree_cons (NULL_TREE, parmval, result);
2428	}
2429      else if (TREE_CODE (TREE_TYPE (val)) == REAL_TYPE
2430               && (TYPE_PRECISION (TREE_TYPE (val))
2431	           < TYPE_PRECISION (double_type_node)))
2432	/* Convert `float' to `double'.  */
2433	result = tree_cons (NULL_TREE, convert (double_type_node, val), result);
2434      else if ((invalid_func_diag =
2435	        targetm.calls.invalid_arg_for_unprototyped_fn (typelist, fundecl, val)))
2436	{
2437	  error (invalid_func_diag);
2438	  return error_mark_node;
2439	}
2440      else
2441	/* Convert `short' and `char' to full-size `int'.  */
2442	result = tree_cons (NULL_TREE, default_conversion (val), result);
2443
2444      if (typetail)
2445	typetail = TREE_CHAIN (typetail);
2446    }
2447
2448  if (typetail != 0 && TREE_VALUE (typetail) != void_type_node)
2449    {
2450      error ("too few arguments to function %qE", function);
2451      return error_mark_node;
2452    }
2453
2454  return nreverse (result);
2455}
2456
2457/* This is the entry point used by the parser to build unary operators
2458   in the input.  CODE, a tree_code, specifies the unary operator, and
2459   ARG is the operand.  For unary plus, the C parser currently uses
2460   CONVERT_EXPR for code.  */
2461
2462struct c_expr
2463parser_build_unary_op (enum tree_code code, struct c_expr arg)
2464{
2465  struct c_expr result;
2466
2467  result.original_code = ERROR_MARK;
2468  result.value = build_unary_op (code, arg.value, 0);
2469  overflow_warning (result.value);
2470  return result;
2471}
2472
2473/* This is the entry point used by the parser to build binary operators
2474   in the input.  CODE, a tree_code, specifies the binary operator, and
2475   ARG1 and ARG2 are the operands.  In addition to constructing the
2476   expression, we check for operands that were written with other binary
2477   operators in a way that is likely to confuse the user.  */
2478
2479struct c_expr
2480parser_build_binary_op (enum tree_code code, struct c_expr arg1,
2481			struct c_expr arg2)
2482{
2483  struct c_expr result;
2484
2485  enum tree_code code1 = arg1.original_code;
2486  enum tree_code code2 = arg2.original_code;
2487
2488  result.value = build_binary_op (code, arg1.value, arg2.value, 1);
2489  result.original_code = code;
2490
2491  if (TREE_CODE (result.value) == ERROR_MARK)
2492    return result;
2493
2494  /* Check for cases such as x+y<<z which users are likely
2495     to misinterpret.  */
2496  if (warn_parentheses)
2497    {
2498      if (code == LSHIFT_EXPR || code == RSHIFT_EXPR)
2499	{
2500	  if (code1 == PLUS_EXPR || code1 == MINUS_EXPR
2501	      || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
2502	    warning (OPT_Wparentheses,
2503		     "suggest parentheses around + or - inside shift");
2504	}
2505
2506      if (code == TRUTH_ORIF_EXPR)
2507	{
2508	  if (code1 == TRUTH_ANDIF_EXPR
2509	      || code2 == TRUTH_ANDIF_EXPR)
2510	    warning (OPT_Wparentheses,
2511		     "suggest parentheses around && within ||");
2512	}
2513
2514      if (code == BIT_IOR_EXPR)
2515	{
2516	  if (code1 == BIT_AND_EXPR || code1 == BIT_XOR_EXPR
2517	      || code1 == PLUS_EXPR || code1 == MINUS_EXPR
2518	      || code2 == BIT_AND_EXPR || code2 == BIT_XOR_EXPR
2519	      || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
2520	    warning (OPT_Wparentheses,
2521		     "suggest parentheses around arithmetic in operand of |");
2522	  /* Check cases like x|y==z */
2523	  if (TREE_CODE_CLASS (code1) == tcc_comparison
2524	      || TREE_CODE_CLASS (code2) == tcc_comparison)
2525	    warning (OPT_Wparentheses,
2526		     "suggest parentheses around comparison in operand of |");
2527	}
2528
2529      if (code == BIT_XOR_EXPR)
2530	{
2531	  if (code1 == BIT_AND_EXPR
2532	      || code1 == PLUS_EXPR || code1 == MINUS_EXPR
2533	      || code2 == BIT_AND_EXPR
2534	      || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
2535	    warning (OPT_Wparentheses,
2536		     "suggest parentheses around arithmetic in operand of ^");
2537	  /* Check cases like x^y==z */
2538	  if (TREE_CODE_CLASS (code1) == tcc_comparison
2539	      || TREE_CODE_CLASS (code2) == tcc_comparison)
2540	    warning (OPT_Wparentheses,
2541		     "suggest parentheses around comparison in operand of ^");
2542	}
2543
2544      if (code == BIT_AND_EXPR)
2545	{
2546	  if (code1 == PLUS_EXPR || code1 == MINUS_EXPR
2547	      || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
2548	    warning (OPT_Wparentheses,
2549		     "suggest parentheses around + or - in operand of &");
2550	  /* Check cases like x&y==z */
2551	  if (TREE_CODE_CLASS (code1) == tcc_comparison
2552	      || TREE_CODE_CLASS (code2) == tcc_comparison)
2553	    warning (OPT_Wparentheses,
2554		     "suggest parentheses around comparison in operand of &");
2555	}
2556      /* Similarly, check for cases like 1<=i<=10 that are probably errors.  */
2557      if (TREE_CODE_CLASS (code) == tcc_comparison
2558	  && (TREE_CODE_CLASS (code1) == tcc_comparison
2559	      || TREE_CODE_CLASS (code2) == tcc_comparison))
2560	warning (OPT_Wparentheses, "comparisons like X<=Y<=Z do not "
2561		 "have their mathematical meaning");
2562
2563    }
2564
2565  unsigned_conversion_warning (result.value, arg1.value);
2566  unsigned_conversion_warning (result.value, arg2.value);
2567  overflow_warning (result.value);
2568
2569  return result;
2570}
2571
2572/* Return a tree for the difference of pointers OP0 and OP1.
2573   The resulting tree has type int.  */
2574
2575static tree
2576pointer_diff (tree op0, tree op1)
2577{
2578  tree restype = ptrdiff_type_node;
2579
2580  tree target_type = TREE_TYPE (TREE_TYPE (op0));
2581  tree con0, con1, lit0, lit1;
2582  tree orig_op1 = op1;
2583
2584  if (pedantic || warn_pointer_arith)
2585    {
2586      if (TREE_CODE (target_type) == VOID_TYPE)
2587	pedwarn ("pointer of type %<void *%> used in subtraction");
2588      if (TREE_CODE (target_type) == FUNCTION_TYPE)
2589	pedwarn ("pointer to a function used in subtraction");
2590    }
2591
2592  /* If the conversion to ptrdiff_type does anything like widening or
2593     converting a partial to an integral mode, we get a convert_expression
2594     that is in the way to do any simplifications.
2595     (fold-const.c doesn't know that the extra bits won't be needed.
2596     split_tree uses STRIP_SIGN_NOPS, which leaves conversions to a
2597     different mode in place.)
2598     So first try to find a common term here 'by hand'; we want to cover
2599     at least the cases that occur in legal static initializers.  */
2600  con0 = TREE_CODE (op0) == NOP_EXPR ? TREE_OPERAND (op0, 0) : op0;
2601  con1 = TREE_CODE (op1) == NOP_EXPR ? TREE_OPERAND (op1, 0) : op1;
2602
2603  if (TREE_CODE (con0) == PLUS_EXPR)
2604    {
2605      lit0 = TREE_OPERAND (con0, 1);
2606      con0 = TREE_OPERAND (con0, 0);
2607    }
2608  else
2609    lit0 = integer_zero_node;
2610
2611  if (TREE_CODE (con1) == PLUS_EXPR)
2612    {
2613      lit1 = TREE_OPERAND (con1, 1);
2614      con1 = TREE_OPERAND (con1, 0);
2615    }
2616  else
2617    lit1 = integer_zero_node;
2618
2619  if (operand_equal_p (con0, con1, 0))
2620    {
2621      op0 = lit0;
2622      op1 = lit1;
2623    }
2624
2625
2626  /* First do the subtraction as integers;
2627     then drop through to build the divide operator.
2628     Do not do default conversions on the minus operator
2629     in case restype is a short type.  */
2630
2631  op0 = build_binary_op (MINUS_EXPR, convert (restype, op0),
2632			 convert (restype, op1), 0);
2633  /* This generates an error if op1 is pointer to incomplete type.  */
2634  if (!COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (TREE_TYPE (orig_op1))))
2635    error ("arithmetic on pointer to an incomplete type");
2636
2637  /* This generates an error if op0 is pointer to incomplete type.  */
2638  op1 = c_size_in_bytes (target_type);
2639
2640  /* Divide by the size, in easiest possible way.  */
2641  return fold_build2 (EXACT_DIV_EXPR, restype, op0, convert (restype, op1));
2642}
2643
2644/* Construct and perhaps optimize a tree representation
2645   for a unary operation.  CODE, a tree_code, specifies the operation
2646   and XARG is the operand.
2647   For any CODE other than ADDR_EXPR, FLAG nonzero suppresses
2648   the default promotions (such as from short to int).
2649   For ADDR_EXPR, the default promotions are not applied; FLAG nonzero
2650   allows non-lvalues; this is only used to handle conversion of non-lvalue
2651   arrays to pointers in C99.  */
2652
2653tree
2654build_unary_op (enum tree_code code, tree xarg, int flag)
2655{
2656  /* No default_conversion here.  It causes trouble for ADDR_EXPR.  */
2657  tree arg = xarg;
2658  tree argtype = 0;
2659  enum tree_code typecode = TREE_CODE (TREE_TYPE (arg));
2660  tree val;
2661  int noconvert = flag;
2662  const char *invalid_op_diag;
2663
2664  if (typecode == ERROR_MARK)
2665    return error_mark_node;
2666  if (typecode == ENUMERAL_TYPE || typecode == BOOLEAN_TYPE)
2667    typecode = INTEGER_TYPE;
2668
2669  if ((invalid_op_diag
2670       = targetm.invalid_unary_op (code, TREE_TYPE (xarg))))
2671    {
2672      error (invalid_op_diag);
2673      return error_mark_node;
2674    }
2675
2676  switch (code)
2677    {
2678    case CONVERT_EXPR:
2679      /* This is used for unary plus, because a CONVERT_EXPR
2680	 is enough to prevent anybody from looking inside for
2681	 associativity, but won't generate any code.  */
2682      if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2683	    || typecode == COMPLEX_TYPE
2684	    || typecode == VECTOR_TYPE))
2685	{
2686	  error ("wrong type argument to unary plus");
2687	  return error_mark_node;
2688	}
2689      else if (!noconvert)
2690	arg = default_conversion (arg);
2691      arg = non_lvalue (arg);
2692      break;
2693
2694    case NEGATE_EXPR:
2695      if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2696	    || typecode == COMPLEX_TYPE
2697	    || typecode == VECTOR_TYPE))
2698	{
2699	  error ("wrong type argument to unary minus");
2700	  return error_mark_node;
2701	}
2702      else if (!noconvert)
2703	arg = default_conversion (arg);
2704      break;
2705
2706    case BIT_NOT_EXPR:
2707      if (typecode == INTEGER_TYPE || typecode == VECTOR_TYPE)
2708	{
2709	  if (!noconvert)
2710	    arg = default_conversion (arg);
2711	}
2712      else if (typecode == COMPLEX_TYPE)
2713	{
2714	  code = CONJ_EXPR;
2715	  if (pedantic)
2716	    pedwarn ("ISO C does not support %<~%> for complex conjugation");
2717	  if (!noconvert)
2718	    arg = default_conversion (arg);
2719	}
2720      else
2721	{
2722	  error ("wrong type argument to bit-complement");
2723	  return error_mark_node;
2724	}
2725      break;
2726
2727    case ABS_EXPR:
2728      if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE))
2729	{
2730	  error ("wrong type argument to abs");
2731	  return error_mark_node;
2732	}
2733      else if (!noconvert)
2734	arg = default_conversion (arg);
2735      break;
2736
2737    case CONJ_EXPR:
2738      /* Conjugating a real value is a no-op, but allow it anyway.  */
2739      if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2740	    || typecode == COMPLEX_TYPE))
2741	{
2742	  error ("wrong type argument to conjugation");
2743	  return error_mark_node;
2744	}
2745      else if (!noconvert)
2746	arg = default_conversion (arg);
2747      break;
2748
2749    case TRUTH_NOT_EXPR:
2750      if (typecode != INTEGER_TYPE
2751	  && typecode != REAL_TYPE && typecode != POINTER_TYPE
2752	  && typecode != COMPLEX_TYPE)
2753	{
2754	  error ("wrong type argument to unary exclamation mark");
2755	  return error_mark_node;
2756	}
2757      arg = c_objc_common_truthvalue_conversion (arg);
2758      return invert_truthvalue (arg);
2759
2760    case NOP_EXPR:
2761      break;
2762
2763    case REALPART_EXPR:
2764      if (TREE_CODE (arg) == COMPLEX_CST)
2765	return TREE_REALPART (arg);
2766      else if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE)
2767	return fold_build1 (REALPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg);
2768      else
2769	return arg;
2770
2771    case IMAGPART_EXPR:
2772      if (TREE_CODE (arg) == COMPLEX_CST)
2773	return TREE_IMAGPART (arg);
2774      else if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE)
2775	return fold_build1 (IMAGPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg);
2776      else
2777	return convert (TREE_TYPE (arg), integer_zero_node);
2778
2779    case PREINCREMENT_EXPR:
2780    case POSTINCREMENT_EXPR:
2781    case PREDECREMENT_EXPR:
2782    case POSTDECREMENT_EXPR:
2783
2784      /* Increment or decrement the real part of the value,
2785	 and don't change the imaginary part.  */
2786      if (typecode == COMPLEX_TYPE)
2787	{
2788	  tree real, imag;
2789
2790	  if (pedantic)
2791	    pedwarn ("ISO C does not support %<++%> and %<--%>"
2792		     " on complex types");
2793
2794	  arg = stabilize_reference (arg);
2795	  real = build_unary_op (REALPART_EXPR, arg, 1);
2796	  imag = build_unary_op (IMAGPART_EXPR, arg, 1);
2797	  return build2 (COMPLEX_EXPR, TREE_TYPE (arg),
2798			 build_unary_op (code, real, 1), imag);
2799	}
2800
2801      /* Report invalid types.  */
2802
2803      if (typecode != POINTER_TYPE
2804	  && typecode != INTEGER_TYPE && typecode != REAL_TYPE)
2805	{
2806	  if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
2807            error ("wrong type argument to increment");
2808          else
2809            error ("wrong type argument to decrement");
2810
2811	  return error_mark_node;
2812	}
2813
2814      {
2815	tree inc;
2816	tree result_type = TREE_TYPE (arg);
2817
2818	arg = get_unwidened (arg, 0);
2819	argtype = TREE_TYPE (arg);
2820
2821	/* Compute the increment.  */
2822
2823	if (typecode == POINTER_TYPE)
2824	  {
2825	    /* If pointer target is an undefined struct,
2826	       we just cannot know how to do the arithmetic.  */
2827	    if (!COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (result_type)))
2828	      {
2829		if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
2830		  error ("increment of pointer to unknown structure");
2831		else
2832		  error ("decrement of pointer to unknown structure");
2833	      }
2834	    else if ((pedantic || warn_pointer_arith)
2835		     && (TREE_CODE (TREE_TYPE (result_type)) == FUNCTION_TYPE
2836			 || TREE_CODE (TREE_TYPE (result_type)) == VOID_TYPE))
2837              {
2838		if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
2839		  pedwarn ("wrong type argument to increment");
2840		else
2841		  pedwarn ("wrong type argument to decrement");
2842	      }
2843
2844	    inc = c_size_in_bytes (TREE_TYPE (result_type));
2845	  }
2846	else
2847	  inc = integer_one_node;
2848
2849	inc = convert (argtype, inc);
2850
2851	/* Complain about anything else that is not a true lvalue.  */
2852	if (!lvalue_or_else (arg, ((code == PREINCREMENT_EXPR
2853				    || code == POSTINCREMENT_EXPR)
2854				   ? lv_increment
2855				   : lv_decrement)))
2856	  return error_mark_node;
2857
2858	/* Report a read-only lvalue.  */
2859	if (TREE_READONLY (arg))
2860	  readonly_error (arg,
2861			  ((code == PREINCREMENT_EXPR
2862			    || code == POSTINCREMENT_EXPR)
2863			   ? lv_increment : lv_decrement));
2864
2865	if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE)
2866	  val = boolean_increment (code, arg);
2867	else
2868	  val = build2 (code, TREE_TYPE (arg), arg, inc);
2869	TREE_SIDE_EFFECTS (val) = 1;
2870	val = convert (result_type, val);
2871	if (TREE_CODE (val) != code)
2872	  TREE_NO_WARNING (val) = 1;
2873	return val;
2874      }
2875
2876    case ADDR_EXPR:
2877      /* Note that this operation never does default_conversion.  */
2878
2879      /* Let &* cancel out to simplify resulting code.  */
2880      if (TREE_CODE (arg) == INDIRECT_REF)
2881	{
2882	  /* Don't let this be an lvalue.  */
2883	  if (lvalue_p (TREE_OPERAND (arg, 0)))
2884	    return non_lvalue (TREE_OPERAND (arg, 0));
2885	  return TREE_OPERAND (arg, 0);
2886	}
2887
2888      /* For &x[y], return x+y */
2889      if (TREE_CODE (arg) == ARRAY_REF)
2890	{
2891	  tree op0 = TREE_OPERAND (arg, 0);
2892	  if (!c_mark_addressable (op0))
2893	    return error_mark_node;
2894	  return build_binary_op (PLUS_EXPR,
2895				  (TREE_CODE (TREE_TYPE (op0)) == ARRAY_TYPE
2896				   ? array_to_pointer_conversion (op0)
2897				   : op0),
2898				  TREE_OPERAND (arg, 1), 1);
2899	}
2900
2901      /* Anything not already handled and not a true memory reference
2902	 or a non-lvalue array is an error.  */
2903      else if (typecode != FUNCTION_TYPE && !flag
2904	       && !lvalue_or_else (arg, lv_addressof))
2905	return error_mark_node;
2906
2907      /* Ordinary case; arg is a COMPONENT_REF or a decl.  */
2908      argtype = TREE_TYPE (arg);
2909
2910      /* If the lvalue is const or volatile, merge that into the type
2911         to which the address will point.  Note that you can't get a
2912	 restricted pointer by taking the address of something, so we
2913	 only have to deal with `const' and `volatile' here.  */
2914      if ((DECL_P (arg) || REFERENCE_CLASS_P (arg))
2915	  && (TREE_READONLY (arg) || TREE_THIS_VOLATILE (arg)))
2916	  argtype = c_build_type_variant (argtype,
2917					  TREE_READONLY (arg),
2918					  TREE_THIS_VOLATILE (arg));
2919
2920      if (!c_mark_addressable (arg))
2921	return error_mark_node;
2922
2923      gcc_assert (TREE_CODE (arg) != COMPONENT_REF
2924		  || !DECL_C_BIT_FIELD (TREE_OPERAND (arg, 1)));
2925
2926      argtype = build_pointer_type (argtype);
2927
2928      /* ??? Cope with user tricks that amount to offsetof.  Delete this
2929	 when we have proper support for integer constant expressions.  */
2930      val = get_base_address (arg);
2931      if (val && TREE_CODE (val) == INDIRECT_REF
2932          && TREE_CONSTANT (TREE_OPERAND (val, 0)))
2933	{
2934	  tree op0 = fold_convert (argtype, fold_offsetof (arg)), op1;
2935
2936	  op1 = fold_convert (argtype, TREE_OPERAND (val, 0));
2937	  return fold_build2 (PLUS_EXPR, argtype, op0, op1);
2938	}
2939
2940      val = build1 (ADDR_EXPR, argtype, arg);
2941
2942      return val;
2943
2944    default:
2945      break;
2946    }
2947
2948  if (argtype == 0)
2949    argtype = TREE_TYPE (arg);
2950  return require_constant_value ? fold_build1_initializer (code, argtype, arg)
2951	  			: fold_build1 (code, argtype, arg);
2952}
2953
2954/* Return nonzero if REF is an lvalue valid for this language.
2955   Lvalues can be assigned, unless their type has TYPE_READONLY.
2956   Lvalues can have their address taken, unless they have C_DECL_REGISTER.  */
2957
2958static int
2959lvalue_p (tree ref)
2960{
2961  enum tree_code code = TREE_CODE (ref);
2962
2963  switch (code)
2964    {
2965    case REALPART_EXPR:
2966    case IMAGPART_EXPR:
2967    case COMPONENT_REF:
2968      return lvalue_p (TREE_OPERAND (ref, 0));
2969
2970    case COMPOUND_LITERAL_EXPR:
2971    case STRING_CST:
2972      return 1;
2973
2974    case INDIRECT_REF:
2975    case ARRAY_REF:
2976    case VAR_DECL:
2977    case PARM_DECL:
2978    case RESULT_DECL:
2979    case ERROR_MARK:
2980      return (TREE_CODE (TREE_TYPE (ref)) != FUNCTION_TYPE
2981	      && TREE_CODE (TREE_TYPE (ref)) != METHOD_TYPE);
2982
2983    case BIND_EXPR:
2984      return TREE_CODE (TREE_TYPE (ref)) == ARRAY_TYPE;
2985
2986    default:
2987      return 0;
2988    }
2989}
2990
2991/* Give an error for storing in something that is 'const'.  */
2992
2993static void
2994readonly_error (tree arg, enum lvalue_use use)
2995{
2996  gcc_assert (use == lv_assign || use == lv_increment || use == lv_decrement
2997	      || use == lv_asm);
2998  /* Using this macro rather than (for example) arrays of messages
2999     ensures that all the format strings are checked at compile
3000     time.  */
3001#define READONLY_MSG(A, I, D, AS) (use == lv_assign ? (A)		\
3002			           : (use == lv_increment ? (I)		\
3003				   : (use == lv_decrement ? (D) : (AS))))
3004  if (TREE_CODE (arg) == COMPONENT_REF)
3005    {
3006      if (TYPE_READONLY (TREE_TYPE (TREE_OPERAND (arg, 0))))
3007	readonly_error (TREE_OPERAND (arg, 0), use);
3008      else
3009	error (READONLY_MSG (G_("assignment of read-only member %qD"),
3010			     G_("increment of read-only member %qD"),
3011			     G_("decrement of read-only member %qD"),
3012			     G_("read-only member %qD used as %<asm%> output")),
3013	       TREE_OPERAND (arg, 1));
3014    }
3015  else if (TREE_CODE (arg) == VAR_DECL)
3016    error (READONLY_MSG (G_("assignment of read-only variable %qD"),
3017			 G_("increment of read-only variable %qD"),
3018			 G_("decrement of read-only variable %qD"),
3019			 G_("read-only variable %qD used as %<asm%> output")),
3020	   arg);
3021  else
3022    error (READONLY_MSG (G_("assignment of read-only location"),
3023			 G_("increment of read-only location"),
3024			 G_("decrement of read-only location"),
3025			 G_("read-only location used as %<asm%> output")));
3026}
3027
3028
3029/* Return nonzero if REF is an lvalue valid for this language;
3030   otherwise, print an error message and return zero.  USE says
3031   how the lvalue is being used and so selects the error message.  */
3032
3033static int
3034lvalue_or_else (tree ref, enum lvalue_use use)
3035{
3036  int win = lvalue_p (ref);
3037
3038  if (!win)
3039    lvalue_error (use);
3040
3041  return win;
3042}
3043
3044/* Mark EXP saying that we need to be able to take the
3045   address of it; it should not be allocated in a register.
3046   Returns true if successful.  */
3047
3048bool
3049c_mark_addressable (tree exp)
3050{
3051  tree x = exp;
3052
3053  while (1)
3054    switch (TREE_CODE (x))
3055      {
3056      case COMPONENT_REF:
3057	if (DECL_C_BIT_FIELD (TREE_OPERAND (x, 1)))
3058	  {
3059	    error
3060	      ("cannot take address of bit-field %qD", TREE_OPERAND (x, 1));
3061	    return false;
3062	  }
3063
3064	/* ... fall through ...  */
3065
3066      case ADDR_EXPR:
3067      case ARRAY_REF:
3068      case REALPART_EXPR:
3069      case IMAGPART_EXPR:
3070	x = TREE_OPERAND (x, 0);
3071	break;
3072
3073      case COMPOUND_LITERAL_EXPR:
3074      case CONSTRUCTOR:
3075	TREE_ADDRESSABLE (x) = 1;
3076	return true;
3077
3078      case VAR_DECL:
3079      case CONST_DECL:
3080      case PARM_DECL:
3081      case RESULT_DECL:
3082	if (C_DECL_REGISTER (x)
3083	    && DECL_NONLOCAL (x))
3084	  {
3085	    if (TREE_PUBLIC (x) || TREE_STATIC (x) || DECL_EXTERNAL (x))
3086	      {
3087		error
3088		  ("global register variable %qD used in nested function", x);
3089		return false;
3090	      }
3091	    pedwarn ("register variable %qD used in nested function", x);
3092	  }
3093	else if (C_DECL_REGISTER (x))
3094	  {
3095	    if (TREE_PUBLIC (x) || TREE_STATIC (x) || DECL_EXTERNAL (x))
3096	      error ("address of global register variable %qD requested", x);
3097	    else
3098	      error ("address of register variable %qD requested", x);
3099	    return false;
3100	  }
3101
3102	/* drops in */
3103      case FUNCTION_DECL:
3104	TREE_ADDRESSABLE (x) = 1;
3105	/* drops out */
3106      default:
3107	return true;
3108    }
3109}
3110
3111/* Build and return a conditional expression IFEXP ? OP1 : OP2.  */
3112
3113tree
3114build_conditional_expr (tree ifexp, tree op1, tree op2)
3115{
3116  tree type1;
3117  tree type2;
3118  enum tree_code code1;
3119  enum tree_code code2;
3120  tree result_type = NULL;
3121  tree orig_op1 = op1, orig_op2 = op2;
3122
3123  /* Promote both alternatives.  */
3124
3125  if (TREE_CODE (TREE_TYPE (op1)) != VOID_TYPE)
3126    op1 = default_conversion (op1);
3127  if (TREE_CODE (TREE_TYPE (op2)) != VOID_TYPE)
3128    op2 = default_conversion (op2);
3129
3130  if (TREE_CODE (ifexp) == ERROR_MARK
3131      || TREE_CODE (TREE_TYPE (op1)) == ERROR_MARK
3132      || TREE_CODE (TREE_TYPE (op2)) == ERROR_MARK)
3133    return error_mark_node;
3134
3135  type1 = TREE_TYPE (op1);
3136  code1 = TREE_CODE (type1);
3137  type2 = TREE_TYPE (op2);
3138  code2 = TREE_CODE (type2);
3139
3140  /* C90 does not permit non-lvalue arrays in conditional expressions.
3141     In C99 they will be pointers by now.  */
3142  if (code1 == ARRAY_TYPE || code2 == ARRAY_TYPE)
3143    {
3144      error ("non-lvalue array in conditional expression");
3145      return error_mark_node;
3146    }
3147
3148  /* Quickly detect the usual case where op1 and op2 have the same type
3149     after promotion.  */
3150  if (TYPE_MAIN_VARIANT (type1) == TYPE_MAIN_VARIANT (type2))
3151    {
3152      if (type1 == type2)
3153	result_type = type1;
3154      else
3155	result_type = TYPE_MAIN_VARIANT (type1);
3156    }
3157  else if ((code1 == INTEGER_TYPE || code1 == REAL_TYPE
3158            || code1 == COMPLEX_TYPE)
3159           && (code2 == INTEGER_TYPE || code2 == REAL_TYPE
3160               || code2 == COMPLEX_TYPE))
3161    {
3162      result_type = c_common_type (type1, type2);
3163
3164      /* If -Wsign-compare, warn here if type1 and type2 have
3165	 different signedness.  We'll promote the signed to unsigned
3166	 and later code won't know it used to be different.
3167	 Do this check on the original types, so that explicit casts
3168	 will be considered, but default promotions won't.  */
3169      if (warn_sign_compare && !skip_evaluation)
3170	{
3171	  int unsigned_op1 = TYPE_UNSIGNED (TREE_TYPE (orig_op1));
3172	  int unsigned_op2 = TYPE_UNSIGNED (TREE_TYPE (orig_op2));
3173
3174	  if (unsigned_op1 ^ unsigned_op2)
3175	    {
3176	      /* Do not warn if the result type is signed, since the
3177		 signed type will only be chosen if it can represent
3178		 all the values of the unsigned type.  */
3179	      if (!TYPE_UNSIGNED (result_type))
3180		/* OK */;
3181	      /* Do not warn if the signed quantity is an unsuffixed
3182		 integer literal (or some static constant expression
3183		 involving such literals) and it is non-negative.  */
3184	      else if ((unsigned_op2 && tree_expr_nonnegative_p (op1))
3185		       || (unsigned_op1 && tree_expr_nonnegative_p (op2)))
3186		/* OK */;
3187	      else
3188		warning (0, "signed and unsigned type in conditional expression");
3189	    }
3190	}
3191    }
3192  else if (code1 == VOID_TYPE || code2 == VOID_TYPE)
3193    {
3194      if (pedantic && (code1 != VOID_TYPE || code2 != VOID_TYPE))
3195	pedwarn ("ISO C forbids conditional expr with only one void side");
3196      result_type = void_type_node;
3197    }
3198  else if (code1 == POINTER_TYPE && code2 == POINTER_TYPE)
3199    {
3200      if (comp_target_types (type1, type2))
3201	result_type = common_pointer_type (type1, type2);
3202      else if (integer_zerop (op1) && TREE_TYPE (type1) == void_type_node
3203	       && TREE_CODE (orig_op1) != NOP_EXPR)
3204	result_type = qualify_type (type2, type1);
3205      else if (integer_zerop (op2) && TREE_TYPE (type2) == void_type_node
3206	       && TREE_CODE (orig_op2) != NOP_EXPR)
3207	result_type = qualify_type (type1, type2);
3208      else if (VOID_TYPE_P (TREE_TYPE (type1)))
3209	{
3210	  if (pedantic && TREE_CODE (TREE_TYPE (type2)) == FUNCTION_TYPE)
3211	    pedwarn ("ISO C forbids conditional expr between "
3212		     "%<void *%> and function pointer");
3213	  result_type = build_pointer_type (qualify_type (TREE_TYPE (type1),
3214							  TREE_TYPE (type2)));
3215	}
3216      else if (VOID_TYPE_P (TREE_TYPE (type2)))
3217	{
3218	  if (pedantic && TREE_CODE (TREE_TYPE (type1)) == FUNCTION_TYPE)
3219	    pedwarn ("ISO C forbids conditional expr between "
3220		     "%<void *%> and function pointer");
3221	  result_type = build_pointer_type (qualify_type (TREE_TYPE (type2),
3222							  TREE_TYPE (type1)));
3223	}
3224      else
3225	{
3226	  pedwarn ("pointer type mismatch in conditional expression");
3227	  result_type = build_pointer_type (void_type_node);
3228	}
3229    }
3230  else if (code1 == POINTER_TYPE && code2 == INTEGER_TYPE)
3231    {
3232      if (!integer_zerop (op2))
3233	pedwarn ("pointer/integer type mismatch in conditional expression");
3234      else
3235	{
3236	  op2 = null_pointer_node;
3237	}
3238      result_type = type1;
3239    }
3240  else if (code2 == POINTER_TYPE && code1 == INTEGER_TYPE)
3241    {
3242      if (!integer_zerop (op1))
3243	pedwarn ("pointer/integer type mismatch in conditional expression");
3244      else
3245	{
3246	  op1 = null_pointer_node;
3247	}
3248      result_type = type2;
3249    }
3250
3251  if (!result_type)
3252    {
3253      if (flag_cond_mismatch)
3254	result_type = void_type_node;
3255      else
3256	{
3257	  error ("type mismatch in conditional expression");
3258	  return error_mark_node;
3259	}
3260    }
3261
3262  /* Merge const and volatile flags of the incoming types.  */
3263  result_type
3264    = build_type_variant (result_type,
3265			  TREE_READONLY (op1) || TREE_READONLY (op2),
3266			  TREE_THIS_VOLATILE (op1) || TREE_THIS_VOLATILE (op2));
3267
3268  if (result_type != TREE_TYPE (op1))
3269    op1 = convert_and_check (result_type, op1);
3270  if (result_type != TREE_TYPE (op2))
3271    op2 = convert_and_check (result_type, op2);
3272
3273  return fold_build3 (COND_EXPR, result_type, ifexp, op1, op2);
3274}
3275
3276/* Return a compound expression that performs two expressions and
3277   returns the value of the second of them.  */
3278
3279tree
3280build_compound_expr (tree expr1, tree expr2)
3281{
3282  if (!TREE_SIDE_EFFECTS (expr1))
3283    {
3284      /* The left-hand operand of a comma expression is like an expression
3285         statement: with -Wextra or -Wunused, we should warn if it doesn't have
3286	 any side-effects, unless it was explicitly cast to (void).  */
3287      if (warn_unused_value)
3288	{
3289	  if (VOID_TYPE_P (TREE_TYPE (expr1))
3290	      && TREE_CODE (expr1) == CONVERT_EXPR)
3291	    ; /* (void) a, b */
3292	  else if (VOID_TYPE_P (TREE_TYPE (expr1))
3293		   && TREE_CODE (expr1) == COMPOUND_EXPR
3294		   && TREE_CODE (TREE_OPERAND (expr1, 1)) == CONVERT_EXPR)
3295	    ; /* (void) a, (void) b, c */
3296	  else
3297	    warning (0, "left-hand operand of comma expression has no effect");
3298	}
3299    }
3300
3301  /* With -Wunused, we should also warn if the left-hand operand does have
3302     side-effects, but computes a value which is not used.  For example, in
3303     `foo() + bar(), baz()' the result of the `+' operator is not used,
3304     so we should issue a warning.  */
3305  else if (warn_unused_value)
3306    warn_if_unused_value (expr1, input_location);
3307
3308  if (expr2 == error_mark_node)
3309    return error_mark_node;
3310
3311  return build2 (COMPOUND_EXPR, TREE_TYPE (expr2), expr1, expr2);
3312}
3313
3314/* Build an expression representing a cast to type TYPE of expression EXPR.  */
3315
3316tree
3317build_c_cast (tree type, tree expr)
3318{
3319  tree value = expr;
3320
3321  if (type == error_mark_node || expr == error_mark_node)
3322    return error_mark_node;
3323
3324  /* The ObjC front-end uses TYPE_MAIN_VARIANT to tie together types differing
3325     only in <protocol> qualifications.  But when constructing cast expressions,
3326     the protocols do matter and must be kept around.  */
3327  if (objc_is_object_ptr (type) && objc_is_object_ptr (TREE_TYPE (expr)))
3328    return build1 (NOP_EXPR, type, expr);
3329
3330  type = TYPE_MAIN_VARIANT (type);
3331
3332  if (TREE_CODE (type) == ARRAY_TYPE)
3333    {
3334      error ("cast specifies array type");
3335      return error_mark_node;
3336    }
3337
3338  if (TREE_CODE (type) == FUNCTION_TYPE)
3339    {
3340      error ("cast specifies function type");
3341      return error_mark_node;
3342    }
3343
3344  if (type == TYPE_MAIN_VARIANT (TREE_TYPE (value)))
3345    {
3346      if (pedantic)
3347	{
3348	  if (TREE_CODE (type) == RECORD_TYPE
3349	      || TREE_CODE (type) == UNION_TYPE)
3350	    pedwarn ("ISO C forbids casting nonscalar to the same type");
3351	}
3352    }
3353  else if (TREE_CODE (type) == UNION_TYPE)
3354    {
3355      tree field;
3356
3357      for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
3358	if (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (field)),
3359		       TYPE_MAIN_VARIANT (TREE_TYPE (value))))
3360	  break;
3361
3362      if (field)
3363	{
3364	  tree t;
3365
3366	  if (pedantic)
3367	    pedwarn ("ISO C forbids casts to union type");
3368	  t = digest_init (type,
3369			   build_constructor_single (type, field, value),
3370			   true, 0);
3371	  TREE_CONSTANT (t) = TREE_CONSTANT (value);
3372	  TREE_INVARIANT (t) = TREE_INVARIANT (value);
3373	  return t;
3374	}
3375      error ("cast to union type from type not present in union");
3376      return error_mark_node;
3377    }
3378  else
3379    {
3380      tree otype, ovalue;
3381
3382      if (type == void_type_node)
3383	return build1 (CONVERT_EXPR, type, value);
3384
3385      otype = TREE_TYPE (value);
3386
3387      /* Optionally warn about potentially worrisome casts.  */
3388
3389      if (warn_cast_qual
3390	  && TREE_CODE (type) == POINTER_TYPE
3391	  && TREE_CODE (otype) == POINTER_TYPE)
3392	{
3393	  tree in_type = type;
3394	  tree in_otype = otype;
3395	  int added = 0;
3396	  int discarded = 0;
3397
3398	  /* Check that the qualifiers on IN_TYPE are a superset of
3399	     the qualifiers of IN_OTYPE.  The outermost level of
3400	     POINTER_TYPE nodes is uninteresting and we stop as soon
3401	     as we hit a non-POINTER_TYPE node on either type.  */
3402	  do
3403	    {
3404	      in_otype = TREE_TYPE (in_otype);
3405	      in_type = TREE_TYPE (in_type);
3406
3407	      /* GNU C allows cv-qualified function types.  'const'
3408		 means the function is very pure, 'volatile' means it
3409		 can't return.  We need to warn when such qualifiers
3410		 are added, not when they're taken away.  */
3411	      if (TREE_CODE (in_otype) == FUNCTION_TYPE
3412		  && TREE_CODE (in_type) == FUNCTION_TYPE)
3413		added |= (TYPE_QUALS (in_type) & ~TYPE_QUALS (in_otype));
3414	      else
3415		discarded |= (TYPE_QUALS (in_otype) & ~TYPE_QUALS (in_type));
3416	    }
3417	  while (TREE_CODE (in_type) == POINTER_TYPE
3418		 && TREE_CODE (in_otype) == POINTER_TYPE);
3419
3420	  if (added)
3421	    warning (0, "cast adds new qualifiers to function type");
3422
3423	  if (discarded)
3424	    /* There are qualifiers present in IN_OTYPE that are not
3425	       present in IN_TYPE.  */
3426	    warning (0, "cast discards qualifiers from pointer target type");
3427	}
3428
3429      /* Warn about possible alignment problems.  */
3430      if (STRICT_ALIGNMENT
3431	  && TREE_CODE (type) == POINTER_TYPE
3432	  && TREE_CODE (otype) == POINTER_TYPE
3433	  && TREE_CODE (TREE_TYPE (otype)) != VOID_TYPE
3434	  && TREE_CODE (TREE_TYPE (otype)) != FUNCTION_TYPE
3435	  /* Don't warn about opaque types, where the actual alignment
3436	     restriction is unknown.  */
3437	  && !((TREE_CODE (TREE_TYPE (otype)) == UNION_TYPE
3438		|| TREE_CODE (TREE_TYPE (otype)) == RECORD_TYPE)
3439	       && TYPE_MODE (TREE_TYPE (otype)) == VOIDmode)
3440	  && TYPE_ALIGN (TREE_TYPE (type)) > TYPE_ALIGN (TREE_TYPE (otype)))
3441	warning (OPT_Wcast_align,
3442		 "cast increases required alignment of target type");
3443
3444      if (TREE_CODE (type) == INTEGER_TYPE
3445	  && TREE_CODE (otype) == POINTER_TYPE
3446	  && TYPE_PRECISION (type) != TYPE_PRECISION (otype)
3447	  && !TREE_CONSTANT (value))
3448	warning (OPT_Wpointer_to_int_cast,
3449		 "cast from pointer to integer of different size");
3450
3451      if (TREE_CODE (value) == CALL_EXPR
3452	  && TREE_CODE (type) != TREE_CODE (otype))
3453	warning (OPT_Wbad_function_cast, "cast from function call of type %qT "
3454		 "to non-matching type %qT", otype, type);
3455
3456      if (TREE_CODE (type) == POINTER_TYPE
3457	  && TREE_CODE (otype) == INTEGER_TYPE
3458	  && TYPE_PRECISION (type) != TYPE_PRECISION (otype)
3459	  /* Don't warn about converting any constant.  */
3460	  && !TREE_CONSTANT (value))
3461	warning (OPT_Wint_to_pointer_cast, "cast to pointer from integer "
3462		 "of different size");
3463
3464      strict_aliasing_warning (otype, type, expr);
3465
3466      /* If pedantic, warn for conversions between function and object
3467	 pointer types, except for converting a null pointer constant
3468	 to function pointer type.  */
3469      if (pedantic
3470	  && TREE_CODE (type) == POINTER_TYPE
3471	  && TREE_CODE (otype) == POINTER_TYPE
3472	  && TREE_CODE (TREE_TYPE (otype)) == FUNCTION_TYPE
3473	  && TREE_CODE (TREE_TYPE (type)) != FUNCTION_TYPE)
3474	pedwarn ("ISO C forbids conversion of function pointer to object pointer type");
3475
3476      if (pedantic
3477	  && TREE_CODE (type) == POINTER_TYPE
3478	  && TREE_CODE (otype) == POINTER_TYPE
3479	  && TREE_CODE (TREE_TYPE (type)) == FUNCTION_TYPE
3480	  && TREE_CODE (TREE_TYPE (otype)) != FUNCTION_TYPE
3481	  && !(integer_zerop (value) && TREE_TYPE (otype) == void_type_node
3482	       && TREE_CODE (expr) != NOP_EXPR))
3483	pedwarn ("ISO C forbids conversion of object pointer to function pointer type");
3484
3485      ovalue = value;
3486      value = convert (type, value);
3487
3488      /* Ignore any integer overflow caused by the cast.  */
3489      if (TREE_CODE (value) == INTEGER_CST)
3490	{
3491	  if (CONSTANT_CLASS_P (ovalue)
3492	      && (TREE_OVERFLOW (ovalue) || TREE_CONSTANT_OVERFLOW (ovalue)))
3493	    {
3494	      /* Avoid clobbering a shared constant.  */
3495	      value = copy_node (value);
3496	      TREE_OVERFLOW (value) = TREE_OVERFLOW (ovalue);
3497	      TREE_CONSTANT_OVERFLOW (value) = TREE_CONSTANT_OVERFLOW (ovalue);
3498	    }
3499	  else if (TREE_OVERFLOW (value) || TREE_CONSTANT_OVERFLOW (value))
3500	    /* Reset VALUE's overflow flags, ensuring constant sharing.  */
3501	    value = build_int_cst_wide (TREE_TYPE (value),
3502					TREE_INT_CST_LOW (value),
3503					TREE_INT_CST_HIGH (value));
3504	}
3505    }
3506
3507  /* Don't let a cast be an lvalue.  */
3508  if (value == expr)
3509    value = non_lvalue (value);
3510
3511  return value;
3512}
3513
3514/* Interpret a cast of expression EXPR to type TYPE.  */
3515tree
3516c_cast_expr (struct c_type_name *type_name, tree expr)
3517{
3518  tree type;
3519  int saved_wsp = warn_strict_prototypes;
3520
3521  /* This avoids warnings about unprototyped casts on
3522     integers.  E.g. "#define SIG_DFL (void(*)())0".  */
3523  if (TREE_CODE (expr) == INTEGER_CST)
3524    warn_strict_prototypes = 0;
3525  type = groktypename (type_name);
3526  warn_strict_prototypes = saved_wsp;
3527
3528  return build_c_cast (type, expr);
3529}
3530
3531
3532/* Build an assignment expression of lvalue LHS from value RHS.
3533   MODIFYCODE is the code for a binary operator that we use
3534   to combine the old value of LHS with RHS to get the new value.
3535   Or else MODIFYCODE is NOP_EXPR meaning do a simple assignment.  */
3536
3537tree
3538build_modify_expr (tree lhs, enum tree_code modifycode, tree rhs)
3539{
3540  tree result;
3541  tree newrhs;
3542  tree lhstype = TREE_TYPE (lhs);
3543  tree olhstype = lhstype;
3544
3545  /* Types that aren't fully specified cannot be used in assignments.  */
3546  lhs = require_complete_type (lhs);
3547
3548  /* Avoid duplicate error messages from operands that had errors.  */
3549  if (TREE_CODE (lhs) == ERROR_MARK || TREE_CODE (rhs) == ERROR_MARK)
3550    return error_mark_node;
3551
3552  if (!lvalue_or_else (lhs, lv_assign))
3553    return error_mark_node;
3554
3555  STRIP_TYPE_NOPS (rhs);
3556
3557  newrhs = rhs;
3558
3559  /* If a binary op has been requested, combine the old LHS value with the RHS
3560     producing the value we should actually store into the LHS.  */
3561
3562  if (modifycode != NOP_EXPR)
3563    {
3564      lhs = stabilize_reference (lhs);
3565      newrhs = build_binary_op (modifycode, lhs, rhs, 1);
3566    }
3567
3568  /* Give an error for storing in something that is 'const'.  */
3569
3570  if (TREE_READONLY (lhs) || TYPE_READONLY (lhstype)
3571      || ((TREE_CODE (lhstype) == RECORD_TYPE
3572	   || TREE_CODE (lhstype) == UNION_TYPE)
3573	  && C_TYPE_FIELDS_READONLY (lhstype)))
3574    readonly_error (lhs, lv_assign);
3575
3576  /* If storing into a structure or union member,
3577     it has probably been given type `int'.
3578     Compute the type that would go with
3579     the actual amount of storage the member occupies.  */
3580
3581  if (TREE_CODE (lhs) == COMPONENT_REF
3582      && (TREE_CODE (lhstype) == INTEGER_TYPE
3583	  || TREE_CODE (lhstype) == BOOLEAN_TYPE
3584	  || TREE_CODE (lhstype) == REAL_TYPE
3585	  || TREE_CODE (lhstype) == ENUMERAL_TYPE))
3586    lhstype = TREE_TYPE (get_unwidened (lhs, 0));
3587
3588  /* If storing in a field that is in actuality a short or narrower than one,
3589     we must store in the field in its actual type.  */
3590
3591  if (lhstype != TREE_TYPE (lhs))
3592    {
3593      lhs = copy_node (lhs);
3594      TREE_TYPE (lhs) = lhstype;
3595    }
3596
3597  /* Convert new value to destination type.  */
3598
3599  newrhs = convert_for_assignment (lhstype, newrhs, ic_assign,
3600				   NULL_TREE, NULL_TREE, 0);
3601  if (TREE_CODE (newrhs) == ERROR_MARK)
3602    return error_mark_node;
3603
3604  /* Emit ObjC write barrier, if necessary.  */
3605  if (c_dialect_objc () && flag_objc_gc)
3606    {
3607      result = objc_generate_write_barrier (lhs, modifycode, newrhs);
3608      if (result)
3609	return result;
3610    }
3611
3612  /* Scan operands.  */
3613
3614  result = build2 (MODIFY_EXPR, lhstype, lhs, newrhs);
3615  TREE_SIDE_EFFECTS (result) = 1;
3616
3617  /* If we got the LHS in a different type for storing in,
3618     convert the result back to the nominal type of LHS
3619     so that the value we return always has the same type
3620     as the LHS argument.  */
3621
3622  if (olhstype == TREE_TYPE (result))
3623    return result;
3624  return convert_for_assignment (olhstype, result, ic_assign,
3625				 NULL_TREE, NULL_TREE, 0);
3626}
3627
3628/* Convert value RHS to type TYPE as preparation for an assignment
3629   to an lvalue of type TYPE.
3630   The real work of conversion is done by `convert'.
3631   The purpose of this function is to generate error messages
3632   for assignments that are not allowed in C.
3633   ERRTYPE says whether it is argument passing, assignment,
3634   initialization or return.
3635
3636   FUNCTION is a tree for the function being called.
3637   PARMNUM is the number of the argument, for printing in error messages.  */
3638
3639static tree
3640convert_for_assignment (tree type, tree rhs, enum impl_conv errtype,
3641			tree fundecl, tree function, int parmnum)
3642{
3643  enum tree_code codel = TREE_CODE (type);
3644  tree rhstype;
3645  enum tree_code coder;
3646  tree rname = NULL_TREE;
3647  bool objc_ok = false;
3648
3649  if (errtype == ic_argpass || errtype == ic_argpass_nonproto)
3650    {
3651      tree selector;
3652      /* Change pointer to function to the function itself for
3653	 diagnostics.  */
3654      if (TREE_CODE (function) == ADDR_EXPR
3655	  && TREE_CODE (TREE_OPERAND (function, 0)) == FUNCTION_DECL)
3656	function = TREE_OPERAND (function, 0);
3657
3658      /* Handle an ObjC selector specially for diagnostics.  */
3659      selector = objc_message_selector ();
3660      rname = function;
3661      if (selector && parmnum > 2)
3662	{
3663	  rname = selector;
3664	  parmnum -= 2;
3665	}
3666    }
3667
3668  /* This macro is used to emit diagnostics to ensure that all format
3669     strings are complete sentences, visible to gettext and checked at
3670     compile time.  */
3671#define WARN_FOR_ASSIGNMENT(AR, AS, IN, RE)	\
3672  do {						\
3673    switch (errtype)				\
3674      {						\
3675      case ic_argpass:				\
3676	pedwarn (AR, parmnum, rname);		\
3677	break;					\
3678      case ic_argpass_nonproto:			\
3679	warning (0, AR, parmnum, rname);		\
3680	break;					\
3681      case ic_assign:				\
3682	pedwarn (AS);				\
3683	break;					\
3684      case ic_init:				\
3685	pedwarn (IN);				\
3686	break;					\
3687      case ic_return:				\
3688	pedwarn (RE);				\
3689	break;					\
3690      default:					\
3691	gcc_unreachable ();			\
3692      }						\
3693  } while (0)
3694
3695  STRIP_TYPE_NOPS (rhs);
3696
3697  if (optimize && TREE_CODE (rhs) == VAR_DECL
3698	   && TREE_CODE (TREE_TYPE (rhs)) != ARRAY_TYPE)
3699    rhs = decl_constant_value_for_broken_optimization (rhs);
3700
3701  rhstype = TREE_TYPE (rhs);
3702  coder = TREE_CODE (rhstype);
3703
3704  if (coder == ERROR_MARK)
3705    return error_mark_node;
3706
3707  if (c_dialect_objc ())
3708    {
3709      int parmno;
3710
3711      switch (errtype)
3712	{
3713	case ic_return:
3714	  parmno = 0;
3715	  break;
3716
3717	case ic_assign:
3718	  parmno = -1;
3719	  break;
3720
3721	case ic_init:
3722	  parmno = -2;
3723	  break;
3724
3725	default:
3726	  parmno = parmnum;
3727	  break;
3728	}
3729
3730      objc_ok = objc_compare_types (type, rhstype, parmno, rname);
3731    }
3732
3733  if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (rhstype))
3734    {
3735      overflow_warning (rhs);
3736      return rhs;
3737    }
3738
3739  if (coder == VOID_TYPE)
3740    {
3741      /* Except for passing an argument to an unprototyped function,
3742	 this is a constraint violation.  When passing an argument to
3743	 an unprototyped function, it is compile-time undefined;
3744	 making it a constraint in that case was rejected in
3745	 DR#252.  */
3746      error ("void value not ignored as it ought to be");
3747      return error_mark_node;
3748    }
3749  /* A type converts to a reference to it.
3750     This code doesn't fully support references, it's just for the
3751     special case of va_start and va_copy.  */
3752  if (codel == REFERENCE_TYPE
3753      && comptypes (TREE_TYPE (type), TREE_TYPE (rhs)) == 1)
3754    {
3755      if (!lvalue_p (rhs))
3756	{
3757	  error ("cannot pass rvalue to reference parameter");
3758	  return error_mark_node;
3759	}
3760      if (!c_mark_addressable (rhs))
3761	return error_mark_node;
3762      rhs = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (rhs)), rhs);
3763
3764      /* We already know that these two types are compatible, but they
3765	 may not be exactly identical.  In fact, `TREE_TYPE (type)' is
3766	 likely to be __builtin_va_list and `TREE_TYPE (rhs)' is
3767	 likely to be va_list, a typedef to __builtin_va_list, which
3768	 is different enough that it will cause problems later.  */
3769      if (TREE_TYPE (TREE_TYPE (rhs)) != TREE_TYPE (type))
3770	rhs = build1 (NOP_EXPR, build_pointer_type (TREE_TYPE (type)), rhs);
3771
3772      rhs = build1 (NOP_EXPR, type, rhs);
3773      return rhs;
3774    }
3775  /* Some types can interconvert without explicit casts.  */
3776  else if (codel == VECTOR_TYPE && coder == VECTOR_TYPE
3777           && vector_types_convertible_p (type, TREE_TYPE (rhs)))
3778    return convert (type, rhs);
3779  /* Arithmetic types all interconvert, and enum is treated like int.  */
3780  else if ((codel == INTEGER_TYPE || codel == REAL_TYPE
3781	    || codel == ENUMERAL_TYPE || codel == COMPLEX_TYPE
3782	    || codel == BOOLEAN_TYPE)
3783	   && (coder == INTEGER_TYPE || coder == REAL_TYPE
3784	       || coder == ENUMERAL_TYPE || coder == COMPLEX_TYPE
3785	       || coder == BOOLEAN_TYPE))
3786    return convert_and_check (type, rhs);
3787
3788  /* Conversion to a transparent union from its member types.
3789     This applies only to function arguments.  */
3790  else if (codel == UNION_TYPE && TYPE_TRANSPARENT_UNION (type)
3791	   && (errtype == ic_argpass || errtype == ic_argpass_nonproto))
3792    {
3793      tree memb, marginal_memb = NULL_TREE;
3794
3795      for (memb = TYPE_FIELDS (type); memb ; memb = TREE_CHAIN (memb))
3796	{
3797	  tree memb_type = TREE_TYPE (memb);
3798
3799	  if (comptypes (TYPE_MAIN_VARIANT (memb_type),
3800			 TYPE_MAIN_VARIANT (rhstype)))
3801	    break;
3802
3803	  if (TREE_CODE (memb_type) != POINTER_TYPE)
3804	    continue;
3805
3806	  if (coder == POINTER_TYPE)
3807	    {
3808	      tree ttl = TREE_TYPE (memb_type);
3809	      tree ttr = TREE_TYPE (rhstype);
3810
3811	      /* Any non-function converts to a [const][volatile] void *
3812		 and vice versa; otherwise, targets must be the same.
3813		 Meanwhile, the lhs target must have all the qualifiers of
3814		 the rhs.  */
3815	      if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
3816		  || comp_target_types (memb_type, rhstype))
3817		{
3818		  /* If this type won't generate any warnings, use it.  */
3819		  if (TYPE_QUALS (ttl) == TYPE_QUALS (ttr)
3820		      || ((TREE_CODE (ttr) == FUNCTION_TYPE
3821			   && TREE_CODE (ttl) == FUNCTION_TYPE)
3822			  ? ((TYPE_QUALS (ttl) | TYPE_QUALS (ttr))
3823			     == TYPE_QUALS (ttr))
3824			  : ((TYPE_QUALS (ttl) | TYPE_QUALS (ttr))
3825			     == TYPE_QUALS (ttl))))
3826		    break;
3827
3828		  /* Keep looking for a better type, but remember this one.  */
3829		  if (!marginal_memb)
3830		    marginal_memb = memb;
3831		}
3832	    }
3833
3834	  /* Can convert integer zero to any pointer type.  */
3835	  if (integer_zerop (rhs)
3836	      || (TREE_CODE (rhs) == NOP_EXPR
3837		  && integer_zerop (TREE_OPERAND (rhs, 0))))
3838	    {
3839	      rhs = null_pointer_node;
3840	      break;
3841	    }
3842	}
3843
3844      if (memb || marginal_memb)
3845	{
3846	  if (!memb)
3847	    {
3848	      /* We have only a marginally acceptable member type;
3849		 it needs a warning.  */
3850	      tree ttl = TREE_TYPE (TREE_TYPE (marginal_memb));
3851	      tree ttr = TREE_TYPE (rhstype);
3852
3853	      /* Const and volatile mean something different for function
3854		 types, so the usual warnings are not appropriate.  */
3855	      if (TREE_CODE (ttr) == FUNCTION_TYPE
3856		  && TREE_CODE (ttl) == FUNCTION_TYPE)
3857		{
3858		  /* Because const and volatile on functions are
3859		     restrictions that say the function will not do
3860		     certain things, it is okay to use a const or volatile
3861		     function where an ordinary one is wanted, but not
3862		     vice-versa.  */
3863		  if (TYPE_QUALS (ttl) & ~TYPE_QUALS (ttr))
3864		    WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE "
3865					    "makes qualified function "
3866					    "pointer from unqualified"),
3867					 G_("assignment makes qualified "
3868					    "function pointer from "
3869					    "unqualified"),
3870					 G_("initialization makes qualified "
3871					    "function pointer from "
3872					    "unqualified"),
3873					 G_("return makes qualified function "
3874					    "pointer from unqualified"));
3875		}
3876	      else if (TYPE_QUALS (ttr) & ~TYPE_QUALS (ttl))
3877		WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE discards "
3878					"qualifiers from pointer target type"),
3879				     G_("assignment discards qualifiers "
3880					"from pointer target type"),
3881				     G_("initialization discards qualifiers "
3882					"from pointer target type"),
3883				     G_("return discards qualifiers from "
3884					"pointer target type"));
3885
3886	      memb = marginal_memb;
3887	    }
3888
3889	  if (pedantic && (!fundecl || !DECL_IN_SYSTEM_HEADER (fundecl)))
3890	    pedwarn ("ISO C prohibits argument conversion to union type");
3891
3892	  return build_constructor_single (type, memb, rhs);
3893	}
3894    }
3895
3896  /* Conversions among pointers */
3897  else if ((codel == POINTER_TYPE || codel == REFERENCE_TYPE)
3898	   && (coder == codel))
3899    {
3900      tree ttl = TREE_TYPE (type);
3901      tree ttr = TREE_TYPE (rhstype);
3902      tree mvl = ttl;
3903      tree mvr = ttr;
3904      bool is_opaque_pointer;
3905      int target_cmp = 0;   /* Cache comp_target_types () result.  */
3906
3907      if (TREE_CODE (mvl) != ARRAY_TYPE)
3908	mvl = TYPE_MAIN_VARIANT (mvl);
3909      if (TREE_CODE (mvr) != ARRAY_TYPE)
3910	mvr = TYPE_MAIN_VARIANT (mvr);
3911      /* Opaque pointers are treated like void pointers.  */
3912      is_opaque_pointer = (targetm.vector_opaque_p (type)
3913                           || targetm.vector_opaque_p (rhstype))
3914        && TREE_CODE (ttl) == VECTOR_TYPE
3915        && TREE_CODE (ttr) == VECTOR_TYPE;
3916
3917      /* C++ does not allow the implicit conversion void* -> T*.  However,
3918         for the purpose of reducing the number of false positives, we
3919         tolerate the special case of
3920
3921                int *p = NULL;
3922
3923         where NULL is typically defined in C to be '(void *) 0'.  */
3924      if (VOID_TYPE_P (ttr) && rhs != null_pointer_node && !VOID_TYPE_P (ttl))
3925        warning (OPT_Wc___compat, "request for implicit conversion from "
3926                 "%qT to %qT not permitted in C++", rhstype, type);
3927
3928      /* Check if the right-hand side has a format attribute but the
3929	 left-hand side doesn't.  */
3930      if (warn_missing_format_attribute
3931	  && check_missing_format_attribute (type, rhstype))
3932        {
3933	  switch (errtype)
3934	  {
3935	  case ic_argpass:
3936	  case ic_argpass_nonproto:
3937	    warning (OPT_Wmissing_format_attribute,
3938		     "argument %d of %qE might be "
3939		     "a candidate for a format attribute",
3940		     parmnum, rname);
3941	    break;
3942	  case ic_assign:
3943	    warning (OPT_Wmissing_format_attribute,
3944		     "assignment left-hand side might be "
3945		     "a candidate for a format attribute");
3946	    break;
3947	  case ic_init:
3948	    warning (OPT_Wmissing_format_attribute,
3949		     "initialization left-hand side might be "
3950		     "a candidate for a format attribute");
3951	    break;
3952	  case ic_return:
3953	    warning (OPT_Wmissing_format_attribute,
3954		     "return type might be "
3955		     "a candidate for a format attribute");
3956	    break;
3957	  default:
3958	    gcc_unreachable ();
3959	  }
3960	}
3961
3962      /* Any non-function converts to a [const][volatile] void *
3963	 and vice versa; otherwise, targets must be the same.
3964	 Meanwhile, the lhs target must have all the qualifiers of the rhs.  */
3965      if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
3966	  || (target_cmp = comp_target_types (type, rhstype))
3967	  || is_opaque_pointer
3968	  || (c_common_unsigned_type (mvl)
3969	      == c_common_unsigned_type (mvr)))
3970	{
3971	  if (pedantic
3972	      && ((VOID_TYPE_P (ttl) && TREE_CODE (ttr) == FUNCTION_TYPE)
3973		  ||
3974		  (VOID_TYPE_P (ttr)
3975		   /* Check TREE_CODE to catch cases like (void *) (char *) 0
3976		      which are not ANSI null ptr constants.  */
3977		   && (!integer_zerop (rhs) || TREE_CODE (rhs) == NOP_EXPR)
3978		   && TREE_CODE (ttl) == FUNCTION_TYPE)))
3979	    WARN_FOR_ASSIGNMENT (G_("ISO C forbids passing argument %d of "
3980				    "%qE between function pointer "
3981				    "and %<void *%>"),
3982				 G_("ISO C forbids assignment between "
3983				    "function pointer and %<void *%>"),
3984				 G_("ISO C forbids initialization between "
3985				    "function pointer and %<void *%>"),
3986				 G_("ISO C forbids return between function "
3987				    "pointer and %<void *%>"));
3988	  /* Const and volatile mean something different for function types,
3989	     so the usual warnings are not appropriate.  */
3990	  else if (TREE_CODE (ttr) != FUNCTION_TYPE
3991		   && TREE_CODE (ttl) != FUNCTION_TYPE)
3992	    {
3993	      if (TYPE_QUALS (ttr) & ~TYPE_QUALS (ttl))
3994		{
3995		  /* Types differing only by the presence of the 'volatile'
3996		     qualifier are acceptable if the 'volatile' has been added
3997		     in by the Objective-C EH machinery.  */
3998		  if (!objc_type_quals_match (ttl, ttr))
3999		    WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE discards "
4000					    "qualifiers from pointer target type"),
4001					 G_("assignment discards qualifiers "
4002					    "from pointer target type"),
4003					 G_("initialization discards qualifiers "
4004					    "from pointer target type"),
4005					 G_("return discards qualifiers from "
4006					    "pointer target type"));
4007		}
4008	      /* If this is not a case of ignoring a mismatch in signedness,
4009		 no warning.  */
4010	      else if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
4011		       || target_cmp)
4012		;
4013	      /* If there is a mismatch, do warn.  */
4014	      else if (warn_pointer_sign)
4015		WARN_FOR_ASSIGNMENT (G_("pointer targets in passing argument "
4016					"%d of %qE differ in signedness"),
4017				     G_("pointer targets in assignment "
4018					"differ in signedness"),
4019				     G_("pointer targets in initialization "
4020					"differ in signedness"),
4021				     G_("pointer targets in return differ "
4022					"in signedness"));
4023	    }
4024	  else if (TREE_CODE (ttl) == FUNCTION_TYPE
4025		   && TREE_CODE (ttr) == FUNCTION_TYPE)
4026	    {
4027	      /* Because const and volatile on functions are restrictions
4028		 that say the function will not do certain things,
4029		 it is okay to use a const or volatile function
4030		 where an ordinary one is wanted, but not vice-versa.  */
4031	      if (TYPE_QUALS (ttl) & ~TYPE_QUALS (ttr))
4032		WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE makes "
4033					"qualified function pointer "
4034					"from unqualified"),
4035				     G_("assignment makes qualified function "
4036					"pointer from unqualified"),
4037				     G_("initialization makes qualified "
4038					"function pointer from unqualified"),
4039				     G_("return makes qualified function "
4040					"pointer from unqualified"));
4041	    }
4042	}
4043      else
4044	/* Avoid warning about the volatile ObjC EH puts on decls.  */
4045	if (!objc_ok)
4046	  WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE from "
4047				  "incompatible pointer type"),
4048			       G_("assignment from incompatible pointer type"),
4049			       G_("initialization from incompatible "
4050				  "pointer type"),
4051			       G_("return from incompatible pointer type"));
4052
4053      return convert (type, rhs);
4054    }
4055  else if (codel == POINTER_TYPE && coder == ARRAY_TYPE)
4056    {
4057      /* ??? This should not be an error when inlining calls to
4058	 unprototyped functions.  */
4059      error ("invalid use of non-lvalue array");
4060      return error_mark_node;
4061    }
4062  else if (codel == POINTER_TYPE && coder == INTEGER_TYPE)
4063    {
4064      /* An explicit constant 0 can convert to a pointer,
4065	 or one that results from arithmetic, even including
4066	 a cast to integer type.  */
4067      if (!(TREE_CODE (rhs) == INTEGER_CST && integer_zerop (rhs))
4068	  &&
4069	  !(TREE_CODE (rhs) == NOP_EXPR
4070	    && TREE_CODE (TREE_TYPE (rhs)) == INTEGER_TYPE
4071	    && TREE_CODE (TREE_OPERAND (rhs, 0)) == INTEGER_CST
4072	    && integer_zerop (TREE_OPERAND (rhs, 0))))
4073	WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE makes "
4074				"pointer from integer without a cast"),
4075			     G_("assignment makes pointer from integer "
4076				"without a cast"),
4077			     G_("initialization makes pointer from "
4078				"integer without a cast"),
4079			     G_("return makes pointer from integer "
4080				"without a cast"));
4081
4082      return convert (type, rhs);
4083    }
4084  else if (codel == INTEGER_TYPE && coder == POINTER_TYPE)
4085    {
4086      WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE makes integer "
4087			      "from pointer without a cast"),
4088			   G_("assignment makes integer from pointer "
4089			      "without a cast"),
4090			   G_("initialization makes integer from pointer "
4091			      "without a cast"),
4092			   G_("return makes integer from pointer "
4093			      "without a cast"));
4094      return convert (type, rhs);
4095    }
4096  else if (codel == BOOLEAN_TYPE && coder == POINTER_TYPE)
4097    return convert (type, rhs);
4098
4099  switch (errtype)
4100    {
4101    case ic_argpass:
4102    case ic_argpass_nonproto:
4103      /* ??? This should not be an error when inlining calls to
4104	 unprototyped functions.  */
4105      error ("incompatible type for argument %d of %qE", parmnum, rname);
4106      break;
4107    case ic_assign:
4108      error ("incompatible types in assignment");
4109      break;
4110    case ic_init:
4111      error ("incompatible types in initialization");
4112      break;
4113    case ic_return:
4114      error ("incompatible types in return");
4115      break;
4116    default:
4117      gcc_unreachable ();
4118    }
4119
4120  return error_mark_node;
4121}
4122
4123/* Convert VALUE for assignment into inlined parameter PARM.  ARGNUM
4124   is used for error and waring reporting and indicates which argument
4125   is being processed.  */
4126
4127tree
4128c_convert_parm_for_inlining (tree parm, tree value, tree fn, int argnum)
4129{
4130  tree ret, type;
4131
4132  /* If FN was prototyped, the value has been converted already
4133     in convert_arguments.  */
4134  if (!value || TYPE_ARG_TYPES (TREE_TYPE (fn)))
4135    return value;
4136
4137  type = TREE_TYPE (parm);
4138  ret = convert_for_assignment (type, value,
4139				ic_argpass_nonproto, fn,
4140				fn, argnum);
4141  if (targetm.calls.promote_prototypes (TREE_TYPE (fn))
4142      && INTEGRAL_TYPE_P (type)
4143      && (TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)))
4144    ret = default_conversion (ret);
4145  return ret;
4146}
4147
4148/* If VALUE is a compound expr all of whose expressions are constant, then
4149   return its value.  Otherwise, return error_mark_node.
4150
4151   This is for handling COMPOUND_EXPRs as initializer elements
4152   which is allowed with a warning when -pedantic is specified.  */
4153
4154static tree
4155valid_compound_expr_initializer (tree value, tree endtype)
4156{
4157  if (TREE_CODE (value) == COMPOUND_EXPR)
4158    {
4159      if (valid_compound_expr_initializer (TREE_OPERAND (value, 0), endtype)
4160	  == error_mark_node)
4161	return error_mark_node;
4162      return valid_compound_expr_initializer (TREE_OPERAND (value, 1),
4163					      endtype);
4164    }
4165  else if (!initializer_constant_valid_p (value, endtype))
4166    return error_mark_node;
4167  else
4168    return value;
4169}
4170
4171/* Perform appropriate conversions on the initial value of a variable,
4172   store it in the declaration DECL,
4173   and print any error messages that are appropriate.
4174   If the init is invalid, store an ERROR_MARK.  */
4175
4176void
4177store_init_value (tree decl, tree init)
4178{
4179  tree value, type;
4180
4181  /* If variable's type was invalidly declared, just ignore it.  */
4182
4183  type = TREE_TYPE (decl);
4184  if (TREE_CODE (type) == ERROR_MARK)
4185    return;
4186
4187  /* Digest the specified initializer into an expression.  */
4188
4189  value = digest_init (type, init, true, TREE_STATIC (decl));
4190
4191  /* Store the expression if valid; else report error.  */
4192
4193  if (!in_system_header
4194      && AGGREGATE_TYPE_P (TREE_TYPE (decl)) && !TREE_STATIC (decl))
4195    warning (OPT_Wtraditional, "traditional C rejects automatic "
4196	     "aggregate initialization");
4197
4198  DECL_INITIAL (decl) = value;
4199
4200  /* ANSI wants warnings about out-of-range constant initializers.  */
4201  STRIP_TYPE_NOPS (value);
4202  constant_expression_warning (value);
4203
4204  /* Check if we need to set array size from compound literal size.  */
4205  if (TREE_CODE (type) == ARRAY_TYPE
4206      && TYPE_DOMAIN (type) == 0
4207      && value != error_mark_node)
4208    {
4209      tree inside_init = init;
4210
4211      STRIP_TYPE_NOPS (inside_init);
4212      inside_init = fold (inside_init);
4213
4214      if (TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
4215	{
4216	  tree cldecl = COMPOUND_LITERAL_EXPR_DECL (inside_init);
4217
4218	  if (TYPE_DOMAIN (TREE_TYPE (cldecl)))
4219	    {
4220	      /* For int foo[] = (int [3]){1}; we need to set array size
4221		 now since later on array initializer will be just the
4222		 brace enclosed list of the compound literal.  */
4223	      type = build_distinct_type_copy (TYPE_MAIN_VARIANT (type));
4224	      TREE_TYPE (decl) = type;
4225	      TYPE_DOMAIN (type) = TYPE_DOMAIN (TREE_TYPE (cldecl));
4226	      layout_type (type);
4227	      layout_decl (cldecl, 0);
4228	    }
4229	}
4230    }
4231}
4232
4233/* Methods for storing and printing names for error messages.  */
4234
4235/* Implement a spelling stack that allows components of a name to be pushed
4236   and popped.  Each element on the stack is this structure.  */
4237
4238struct spelling
4239{
4240  int kind;
4241  union
4242    {
4243      unsigned HOST_WIDE_INT i;
4244      const char *s;
4245    } u;
4246};
4247
4248#define SPELLING_STRING 1
4249#define SPELLING_MEMBER 2
4250#define SPELLING_BOUNDS 3
4251
4252static struct spelling *spelling;	/* Next stack element (unused).  */
4253static struct spelling *spelling_base;	/* Spelling stack base.  */
4254static int spelling_size;		/* Size of the spelling stack.  */
4255
4256/* Macros to save and restore the spelling stack around push_... functions.
4257   Alternative to SAVE_SPELLING_STACK.  */
4258
4259#define SPELLING_DEPTH() (spelling - spelling_base)
4260#define RESTORE_SPELLING_DEPTH(DEPTH) (spelling = spelling_base + (DEPTH))
4261
4262/* Push an element on the spelling stack with type KIND and assign VALUE
4263   to MEMBER.  */
4264
4265#define PUSH_SPELLING(KIND, VALUE, MEMBER)				\
4266{									\
4267  int depth = SPELLING_DEPTH ();					\
4268									\
4269  if (depth >= spelling_size)						\
4270    {									\
4271      spelling_size += 10;						\
4272      spelling_base = XRESIZEVEC (struct spelling, spelling_base,	\
4273				  spelling_size);			\
4274      RESTORE_SPELLING_DEPTH (depth);					\
4275    }									\
4276									\
4277  spelling->kind = (KIND);						\
4278  spelling->MEMBER = (VALUE);						\
4279  spelling++;								\
4280}
4281
4282/* Push STRING on the stack.  Printed literally.  */
4283
4284static void
4285push_string (const char *string)
4286{
4287  PUSH_SPELLING (SPELLING_STRING, string, u.s);
4288}
4289
4290/* Push a member name on the stack.  Printed as '.' STRING.  */
4291
4292static void
4293push_member_name (tree decl)
4294{
4295  const char *const string
4296    = DECL_NAME (decl) ? IDENTIFIER_POINTER (DECL_NAME (decl)) : "<anonymous>";
4297  PUSH_SPELLING (SPELLING_MEMBER, string, u.s);
4298}
4299
4300/* Push an array bounds on the stack.  Printed as [BOUNDS].  */
4301
4302static void
4303push_array_bounds (unsigned HOST_WIDE_INT bounds)
4304{
4305  PUSH_SPELLING (SPELLING_BOUNDS, bounds, u.i);
4306}
4307
4308/* Compute the maximum size in bytes of the printed spelling.  */
4309
4310static int
4311spelling_length (void)
4312{
4313  int size = 0;
4314  struct spelling *p;
4315
4316  for (p = spelling_base; p < spelling; p++)
4317    {
4318      if (p->kind == SPELLING_BOUNDS)
4319	size += 25;
4320      else
4321	size += strlen (p->u.s) + 1;
4322    }
4323
4324  return size;
4325}
4326
4327/* Print the spelling to BUFFER and return it.  */
4328
4329static char *
4330print_spelling (char *buffer)
4331{
4332  char *d = buffer;
4333  struct spelling *p;
4334
4335  for (p = spelling_base; p < spelling; p++)
4336    if (p->kind == SPELLING_BOUNDS)
4337      {
4338	sprintf (d, "[" HOST_WIDE_INT_PRINT_UNSIGNED "]", p->u.i);
4339	d += strlen (d);
4340      }
4341    else
4342      {
4343	const char *s;
4344	if (p->kind == SPELLING_MEMBER)
4345	  *d++ = '.';
4346	for (s = p->u.s; (*d = *s++); d++)
4347	  ;
4348      }
4349  *d++ = '\0';
4350  return buffer;
4351}
4352
4353/* Issue an error message for a bad initializer component.
4354   MSGID identifies the message.
4355   The component name is taken from the spelling stack.  */
4356
4357void
4358error_init (const char *msgid)
4359{
4360  char *ofwhat;
4361
4362  error ("%s", _(msgid));
4363  ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4364  if (*ofwhat)
4365    error ("(near initialization for %qs)", ofwhat);
4366}
4367
4368/* Issue a pedantic warning for a bad initializer component.
4369   MSGID identifies the message.
4370   The component name is taken from the spelling stack.  */
4371
4372void
4373pedwarn_init (const char *msgid)
4374{
4375  char *ofwhat;
4376
4377  pedwarn ("%s", _(msgid));
4378  ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4379  if (*ofwhat)
4380    pedwarn ("(near initialization for %qs)", ofwhat);
4381}
4382
4383/* Issue a warning for a bad initializer component.
4384   MSGID identifies the message.
4385   The component name is taken from the spelling stack.  */
4386
4387static void
4388warning_init (const char *msgid)
4389{
4390  char *ofwhat;
4391
4392  warning (0, "%s", _(msgid));
4393  ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4394  if (*ofwhat)
4395    warning (0, "(near initialization for %qs)", ofwhat);
4396}
4397
4398/* If TYPE is an array type and EXPR is a parenthesized string
4399   constant, warn if pedantic that EXPR is being used to initialize an
4400   object of type TYPE.  */
4401
4402void
4403maybe_warn_string_init (tree type, struct c_expr expr)
4404{
4405  if (pedantic
4406      && TREE_CODE (type) == ARRAY_TYPE
4407      && TREE_CODE (expr.value) == STRING_CST
4408      && expr.original_code != STRING_CST)
4409    pedwarn_init ("array initialized from parenthesized string constant");
4410}
4411
4412/* Digest the parser output INIT as an initializer for type TYPE.
4413   Return a C expression of type TYPE to represent the initial value.
4414
4415   If INIT is a string constant, STRICT_STRING is true if it is
4416   unparenthesized or we should not warn here for it being parenthesized.
4417   For other types of INIT, STRICT_STRING is not used.
4418
4419   REQUIRE_CONSTANT requests an error if non-constant initializers or
4420   elements are seen.  */
4421
4422static tree
4423digest_init (tree type, tree init, bool strict_string, int require_constant)
4424{
4425  enum tree_code code = TREE_CODE (type);
4426  tree inside_init = init;
4427
4428  if (type == error_mark_node
4429      || !init
4430      || init == error_mark_node
4431      || TREE_TYPE (init) == error_mark_node)
4432    return error_mark_node;
4433
4434  STRIP_TYPE_NOPS (inside_init);
4435
4436  inside_init = fold (inside_init);
4437
4438  /* Initialization of an array of chars from a string constant
4439     optionally enclosed in braces.  */
4440
4441  if (code == ARRAY_TYPE && inside_init
4442      && TREE_CODE (inside_init) == STRING_CST)
4443    {
4444      tree typ1 = TYPE_MAIN_VARIANT (TREE_TYPE (type));
4445      /* Note that an array could be both an array of character type
4446	 and an array of wchar_t if wchar_t is signed char or unsigned
4447	 char.  */
4448      bool char_array = (typ1 == char_type_node
4449			 || typ1 == signed_char_type_node
4450			 || typ1 == unsigned_char_type_node);
4451      bool wchar_array = !!comptypes (typ1, wchar_type_node);
4452      if (char_array || wchar_array)
4453	{
4454	  struct c_expr expr;
4455	  bool char_string;
4456	  expr.value = inside_init;
4457	  expr.original_code = (strict_string ? STRING_CST : ERROR_MARK);
4458	  maybe_warn_string_init (type, expr);
4459
4460	  char_string
4461	    = (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (inside_init)))
4462	       == char_type_node);
4463
4464	  if (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4465			 TYPE_MAIN_VARIANT (type)))
4466	    return inside_init;
4467
4468	  if (!wchar_array && !char_string)
4469	    {
4470	      error_init ("char-array initialized from wide string");
4471	      return error_mark_node;
4472	    }
4473	  if (char_string && !char_array)
4474	    {
4475	      error_init ("wchar_t-array initialized from non-wide string");
4476	      return error_mark_node;
4477	    }
4478
4479	  TREE_TYPE (inside_init) = type;
4480	  if (TYPE_DOMAIN (type) != 0
4481	      && TYPE_SIZE (type) != 0
4482	      && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
4483	      /* Subtract 1 (or sizeof (wchar_t))
4484		 because it's ok to ignore the terminating null char
4485		 that is counted in the length of the constant.  */
4486	      && 0 > compare_tree_int (TYPE_SIZE_UNIT (type),
4487				       TREE_STRING_LENGTH (inside_init)
4488				       - ((TYPE_PRECISION (typ1)
4489					   != TYPE_PRECISION (char_type_node))
4490					  ? (TYPE_PRECISION (wchar_type_node)
4491					     / BITS_PER_UNIT)
4492					  : 1)))
4493	    pedwarn_init ("initializer-string for array of chars is too long");
4494
4495	  return inside_init;
4496	}
4497      else if (INTEGRAL_TYPE_P (typ1))
4498	{
4499	  error_init ("array of inappropriate type initialized "
4500		      "from string constant");
4501	  return error_mark_node;
4502	}
4503    }
4504
4505  /* Build a VECTOR_CST from a *constant* vector constructor.  If the
4506     vector constructor is not constant (e.g. {1,2,3,foo()}) then punt
4507     below and handle as a constructor.  */
4508  if (code == VECTOR_TYPE
4509      && TREE_CODE (TREE_TYPE (inside_init)) == VECTOR_TYPE
4510      && vector_types_convertible_p (TREE_TYPE (inside_init), type)
4511      && TREE_CONSTANT (inside_init))
4512    {
4513      if (TREE_CODE (inside_init) == VECTOR_CST
4514	  && comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4515			TYPE_MAIN_VARIANT (type)))
4516	return inside_init;
4517
4518      if (TREE_CODE (inside_init) == CONSTRUCTOR)
4519	{
4520	  unsigned HOST_WIDE_INT ix;
4521	  tree value;
4522	  bool constant_p = true;
4523
4524	  /* Iterate through elements and check if all constructor
4525	     elements are *_CSTs.  */
4526	  FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (inside_init), ix, value)
4527	    if (!CONSTANT_CLASS_P (value))
4528	      {
4529		constant_p = false;
4530		break;
4531	      }
4532
4533	  if (constant_p)
4534	    return build_vector_from_ctor (type,
4535					   CONSTRUCTOR_ELTS (inside_init));
4536	}
4537    }
4538
4539  /* Any type can be initialized
4540     from an expression of the same type, optionally with braces.  */
4541
4542  if (inside_init && TREE_TYPE (inside_init) != 0
4543      && (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4544		     TYPE_MAIN_VARIANT (type))
4545	  || (code == ARRAY_TYPE
4546	      && comptypes (TREE_TYPE (inside_init), type))
4547	  || (code == VECTOR_TYPE
4548	      && comptypes (TREE_TYPE (inside_init), type))
4549	  || (code == POINTER_TYPE
4550	      && TREE_CODE (TREE_TYPE (inside_init)) == ARRAY_TYPE
4551	      && comptypes (TREE_TYPE (TREE_TYPE (inside_init)),
4552			    TREE_TYPE (type)))))
4553    {
4554      if (code == POINTER_TYPE)
4555	{
4556	  if (TREE_CODE (TREE_TYPE (inside_init)) == ARRAY_TYPE)
4557	    {
4558	      if (TREE_CODE (inside_init) == STRING_CST
4559		  || TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
4560		inside_init = array_to_pointer_conversion (inside_init);
4561	      else
4562		{
4563		  error_init ("invalid use of non-lvalue array");
4564		  return error_mark_node;
4565		}
4566	    }
4567	}
4568
4569      if (code == VECTOR_TYPE)
4570	/* Although the types are compatible, we may require a
4571	   conversion.  */
4572	inside_init = convert (type, inside_init);
4573
4574      if (require_constant
4575	  && (code == VECTOR_TYPE || !flag_isoc99)
4576	  && TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
4577	{
4578	  /* As an extension, allow initializing objects with static storage
4579	     duration with compound literals (which are then treated just as
4580	     the brace enclosed list they contain).  Also allow this for
4581	     vectors, as we can only assign them with compound literals.  */
4582	  tree decl = COMPOUND_LITERAL_EXPR_DECL (inside_init);
4583	  inside_init = DECL_INITIAL (decl);
4584	}
4585
4586      if (code == ARRAY_TYPE && TREE_CODE (inside_init) != STRING_CST
4587	  && TREE_CODE (inside_init) != CONSTRUCTOR)
4588	{
4589	  error_init ("array initialized from non-constant array expression");
4590	  return error_mark_node;
4591	}
4592
4593      if (optimize && TREE_CODE (inside_init) == VAR_DECL)
4594	inside_init = decl_constant_value_for_broken_optimization (inside_init);
4595
4596      /* Compound expressions can only occur here if -pedantic or
4597	 -pedantic-errors is specified.  In the later case, we always want
4598	 an error.  In the former case, we simply want a warning.  */
4599      if (require_constant && pedantic
4600	  && TREE_CODE (inside_init) == COMPOUND_EXPR)
4601	{
4602	  inside_init
4603	    = valid_compound_expr_initializer (inside_init,
4604					       TREE_TYPE (inside_init));
4605	  if (inside_init == error_mark_node)
4606	    error_init ("initializer element is not constant");
4607	  else
4608	    pedwarn_init ("initializer element is not constant");
4609	  if (flag_pedantic_errors)
4610	    inside_init = error_mark_node;
4611	}
4612      else if (require_constant
4613	       && !initializer_constant_valid_p (inside_init,
4614						 TREE_TYPE (inside_init)))
4615	{
4616	  error_init ("initializer element is not constant");
4617	  inside_init = error_mark_node;
4618	}
4619
4620      /* Added to enable additional -Wmissing-format-attribute warnings.  */
4621      if (TREE_CODE (TREE_TYPE (inside_init)) == POINTER_TYPE)
4622	inside_init = convert_for_assignment (type, inside_init, ic_init, NULL_TREE,
4623					      NULL_TREE, 0);
4624      return inside_init;
4625    }
4626
4627  /* Handle scalar types, including conversions.  */
4628
4629  if (code == INTEGER_TYPE || code == REAL_TYPE || code == POINTER_TYPE
4630      || code == ENUMERAL_TYPE || code == BOOLEAN_TYPE || code == COMPLEX_TYPE
4631      || code == VECTOR_TYPE)
4632    {
4633      if (TREE_CODE (TREE_TYPE (init)) == ARRAY_TYPE
4634	  && (TREE_CODE (init) == STRING_CST
4635	      || TREE_CODE (init) == COMPOUND_LITERAL_EXPR))
4636	init = array_to_pointer_conversion (init);
4637      inside_init
4638	= convert_for_assignment (type, init, ic_init,
4639				  NULL_TREE, NULL_TREE, 0);
4640
4641      /* Check to see if we have already given an error message.  */
4642      if (inside_init == error_mark_node)
4643	;
4644      else if (require_constant && !TREE_CONSTANT (inside_init))
4645	{
4646	  error_init ("initializer element is not constant");
4647	  inside_init = error_mark_node;
4648	}
4649      else if (require_constant
4650	       && !initializer_constant_valid_p (inside_init,
4651						 TREE_TYPE (inside_init)))
4652	{
4653	  error_init ("initializer element is not computable at load time");
4654	  inside_init = error_mark_node;
4655	}
4656
4657      return inside_init;
4658    }
4659
4660  /* Come here only for records and arrays.  */
4661
4662  if (COMPLETE_TYPE_P (type) && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4663    {
4664      error_init ("variable-sized object may not be initialized");
4665      return error_mark_node;
4666    }
4667
4668  error_init ("invalid initializer");
4669  return error_mark_node;
4670}
4671
4672/* Handle initializers that use braces.  */
4673
4674/* Type of object we are accumulating a constructor for.
4675   This type is always a RECORD_TYPE, UNION_TYPE or ARRAY_TYPE.  */
4676static tree constructor_type;
4677
4678/* For a RECORD_TYPE or UNION_TYPE, this is the chain of fields
4679   left to fill.  */
4680static tree constructor_fields;
4681
4682/* For an ARRAY_TYPE, this is the specified index
4683   at which to store the next element we get.  */
4684static tree constructor_index;
4685
4686/* For an ARRAY_TYPE, this is the maximum index.  */
4687static tree constructor_max_index;
4688
4689/* For a RECORD_TYPE, this is the first field not yet written out.  */
4690static tree constructor_unfilled_fields;
4691
4692/* For an ARRAY_TYPE, this is the index of the first element
4693   not yet written out.  */
4694static tree constructor_unfilled_index;
4695
4696/* In a RECORD_TYPE, the byte index of the next consecutive field.
4697   This is so we can generate gaps between fields, when appropriate.  */
4698static tree constructor_bit_index;
4699
4700/* If we are saving up the elements rather than allocating them,
4701   this is the list of elements so far (in reverse order,
4702   most recent first).  */
4703static VEC(constructor_elt,gc) *constructor_elements;
4704
4705/* 1 if constructor should be incrementally stored into a constructor chain,
4706   0 if all the elements should be kept in AVL tree.  */
4707static int constructor_incremental;
4708
4709/* 1 if so far this constructor's elements are all compile-time constants.  */
4710static int constructor_constant;
4711
4712/* 1 if so far this constructor's elements are all valid address constants.  */
4713static int constructor_simple;
4714
4715/* 1 if this constructor is erroneous so far.  */
4716static int constructor_erroneous;
4717
4718/* Structure for managing pending initializer elements, organized as an
4719   AVL tree.  */
4720
4721struct init_node
4722{
4723  struct init_node *left, *right;
4724  struct init_node *parent;
4725  int balance;
4726  tree purpose;
4727  tree value;
4728};
4729
4730/* Tree of pending elements at this constructor level.
4731   These are elements encountered out of order
4732   which belong at places we haven't reached yet in actually
4733   writing the output.
4734   Will never hold tree nodes across GC runs.  */
4735static struct init_node *constructor_pending_elts;
4736
4737/* The SPELLING_DEPTH of this constructor.  */
4738static int constructor_depth;
4739
4740/* DECL node for which an initializer is being read.
4741   0 means we are reading a constructor expression
4742   such as (struct foo) {...}.  */
4743static tree constructor_decl;
4744
4745/* Nonzero if this is an initializer for a top-level decl.  */
4746static int constructor_top_level;
4747
4748/* Nonzero if there were any member designators in this initializer.  */
4749static int constructor_designated;
4750
4751/* Nesting depth of designator list.  */
4752static int designator_depth;
4753
4754/* Nonzero if there were diagnosed errors in this designator list.  */
4755static int designator_erroneous;
4756
4757
4758/* This stack has a level for each implicit or explicit level of
4759   structuring in the initializer, including the outermost one.  It
4760   saves the values of most of the variables above.  */
4761
4762struct constructor_range_stack;
4763
4764struct constructor_stack
4765{
4766  struct constructor_stack *next;
4767  tree type;
4768  tree fields;
4769  tree index;
4770  tree max_index;
4771  tree unfilled_index;
4772  tree unfilled_fields;
4773  tree bit_index;
4774  VEC(constructor_elt,gc) *elements;
4775  struct init_node *pending_elts;
4776  int offset;
4777  int depth;
4778  /* If value nonzero, this value should replace the entire
4779     constructor at this level.  */
4780  struct c_expr replacement_value;
4781  struct constructor_range_stack *range_stack;
4782  char constant;
4783  char simple;
4784  char implicit;
4785  char erroneous;
4786  char outer;
4787  char incremental;
4788  char designated;
4789};
4790
4791static struct constructor_stack *constructor_stack;
4792
4793/* This stack represents designators from some range designator up to
4794   the last designator in the list.  */
4795
4796struct constructor_range_stack
4797{
4798  struct constructor_range_stack *next, *prev;
4799  struct constructor_stack *stack;
4800  tree range_start;
4801  tree index;
4802  tree range_end;
4803  tree fields;
4804};
4805
4806static struct constructor_range_stack *constructor_range_stack;
4807
4808/* This stack records separate initializers that are nested.
4809   Nested initializers can't happen in ANSI C, but GNU C allows them
4810   in cases like { ... (struct foo) { ... } ... }.  */
4811
4812struct initializer_stack
4813{
4814  struct initializer_stack *next;
4815  tree decl;
4816  struct constructor_stack *constructor_stack;
4817  struct constructor_range_stack *constructor_range_stack;
4818  VEC(constructor_elt,gc) *elements;
4819  struct spelling *spelling;
4820  struct spelling *spelling_base;
4821  int spelling_size;
4822  char top_level;
4823  char require_constant_value;
4824  char require_constant_elements;
4825};
4826
4827static struct initializer_stack *initializer_stack;
4828
4829/* Prepare to parse and output the initializer for variable DECL.  */
4830
4831void
4832start_init (tree decl, tree asmspec_tree ATTRIBUTE_UNUSED, int top_level)
4833{
4834  const char *locus;
4835  struct initializer_stack *p = xmalloc (sizeof (struct initializer_stack));
4836
4837  p->decl = constructor_decl;
4838  p->require_constant_value = require_constant_value;
4839  p->require_constant_elements = require_constant_elements;
4840  p->constructor_stack = constructor_stack;
4841  p->constructor_range_stack = constructor_range_stack;
4842  p->elements = constructor_elements;
4843  p->spelling = spelling;
4844  p->spelling_base = spelling_base;
4845  p->spelling_size = spelling_size;
4846  p->top_level = constructor_top_level;
4847  p->next = initializer_stack;
4848  initializer_stack = p;
4849
4850  constructor_decl = decl;
4851  constructor_designated = 0;
4852  constructor_top_level = top_level;
4853
4854  if (decl != 0 && decl != error_mark_node)
4855    {
4856      require_constant_value = TREE_STATIC (decl);
4857      require_constant_elements
4858	= ((TREE_STATIC (decl) || (pedantic && !flag_isoc99))
4859	   /* For a scalar, you can always use any value to initialize,
4860	      even within braces.  */
4861	   && (TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE
4862	       || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE
4863	       || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
4864	       || TREE_CODE (TREE_TYPE (decl)) == QUAL_UNION_TYPE));
4865      locus = IDENTIFIER_POINTER (DECL_NAME (decl));
4866    }
4867  else
4868    {
4869      require_constant_value = 0;
4870      require_constant_elements = 0;
4871      locus = "(anonymous)";
4872    }
4873
4874  constructor_stack = 0;
4875  constructor_range_stack = 0;
4876
4877  missing_braces_mentioned = 0;
4878
4879  spelling_base = 0;
4880  spelling_size = 0;
4881  RESTORE_SPELLING_DEPTH (0);
4882
4883  if (locus)
4884    push_string (locus);
4885}
4886
4887void
4888finish_init (void)
4889{
4890  struct initializer_stack *p = initializer_stack;
4891
4892  /* Free the whole constructor stack of this initializer.  */
4893  while (constructor_stack)
4894    {
4895      struct constructor_stack *q = constructor_stack;
4896      constructor_stack = q->next;
4897      free (q);
4898    }
4899
4900  gcc_assert (!constructor_range_stack);
4901
4902  /* Pop back to the data of the outer initializer (if any).  */
4903  free (spelling_base);
4904
4905  constructor_decl = p->decl;
4906  require_constant_value = p->require_constant_value;
4907  require_constant_elements = p->require_constant_elements;
4908  constructor_stack = p->constructor_stack;
4909  constructor_range_stack = p->constructor_range_stack;
4910  constructor_elements = p->elements;
4911  spelling = p->spelling;
4912  spelling_base = p->spelling_base;
4913  spelling_size = p->spelling_size;
4914  constructor_top_level = p->top_level;
4915  initializer_stack = p->next;
4916  free (p);
4917}
4918
4919/* Call here when we see the initializer is surrounded by braces.
4920   This is instead of a call to push_init_level;
4921   it is matched by a call to pop_init_level.
4922
4923   TYPE is the type to initialize, for a constructor expression.
4924   For an initializer for a decl, TYPE is zero.  */
4925
4926void
4927really_start_incremental_init (tree type)
4928{
4929  struct constructor_stack *p = XNEW (struct constructor_stack);
4930
4931  if (type == 0)
4932    type = TREE_TYPE (constructor_decl);
4933
4934  if (targetm.vector_opaque_p (type))
4935    error ("opaque vector types cannot be initialized");
4936
4937  p->type = constructor_type;
4938  p->fields = constructor_fields;
4939  p->index = constructor_index;
4940  p->max_index = constructor_max_index;
4941  p->unfilled_index = constructor_unfilled_index;
4942  p->unfilled_fields = constructor_unfilled_fields;
4943  p->bit_index = constructor_bit_index;
4944  p->elements = constructor_elements;
4945  p->constant = constructor_constant;
4946  p->simple = constructor_simple;
4947  p->erroneous = constructor_erroneous;
4948  p->pending_elts = constructor_pending_elts;
4949  p->depth = constructor_depth;
4950  p->replacement_value.value = 0;
4951  p->replacement_value.original_code = ERROR_MARK;
4952  p->implicit = 0;
4953  p->range_stack = 0;
4954  p->outer = 0;
4955  p->incremental = constructor_incremental;
4956  p->designated = constructor_designated;
4957  p->next = 0;
4958  constructor_stack = p;
4959
4960  constructor_constant = 1;
4961  constructor_simple = 1;
4962  constructor_depth = SPELLING_DEPTH ();
4963  constructor_elements = 0;
4964  constructor_pending_elts = 0;
4965  constructor_type = type;
4966  constructor_incremental = 1;
4967  constructor_designated = 0;
4968  designator_depth = 0;
4969  designator_erroneous = 0;
4970
4971  if (TREE_CODE (constructor_type) == RECORD_TYPE
4972      || TREE_CODE (constructor_type) == UNION_TYPE)
4973    {
4974      constructor_fields = TYPE_FIELDS (constructor_type);
4975      /* Skip any nameless bit fields at the beginning.  */
4976      while (constructor_fields != 0 && DECL_C_BIT_FIELD (constructor_fields)
4977	     && DECL_NAME (constructor_fields) == 0)
4978	constructor_fields = TREE_CHAIN (constructor_fields);
4979
4980      constructor_unfilled_fields = constructor_fields;
4981      constructor_bit_index = bitsize_zero_node;
4982    }
4983  else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
4984    {
4985      if (TYPE_DOMAIN (constructor_type))
4986	{
4987	  constructor_max_index
4988	    = TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type));
4989
4990	  /* Detect non-empty initializations of zero-length arrays.  */
4991	  if (constructor_max_index == NULL_TREE
4992	      && TYPE_SIZE (constructor_type))
4993	    constructor_max_index = build_int_cst (NULL_TREE, -1);
4994
4995	  /* constructor_max_index needs to be an INTEGER_CST.  Attempts
4996	     to initialize VLAs will cause a proper error; avoid tree
4997	     checking errors as well by setting a safe value.  */
4998	  if (constructor_max_index
4999	      && TREE_CODE (constructor_max_index) != INTEGER_CST)
5000	    constructor_max_index = build_int_cst (NULL_TREE, -1);
5001
5002	  constructor_index
5003	    = convert (bitsizetype,
5004		       TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
5005	}
5006      else
5007	{
5008	  constructor_index = bitsize_zero_node;
5009	  constructor_max_index = NULL_TREE;
5010	}
5011
5012      constructor_unfilled_index = constructor_index;
5013    }
5014  else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
5015    {
5016      /* Vectors are like simple fixed-size arrays.  */
5017      constructor_max_index =
5018	build_int_cst (NULL_TREE, TYPE_VECTOR_SUBPARTS (constructor_type) - 1);
5019      constructor_index = bitsize_zero_node;
5020      constructor_unfilled_index = constructor_index;
5021    }
5022  else
5023    {
5024      /* Handle the case of int x = {5}; */
5025      constructor_fields = constructor_type;
5026      constructor_unfilled_fields = constructor_type;
5027    }
5028}
5029
5030/* Push down into a subobject, for initialization.
5031   If this is for an explicit set of braces, IMPLICIT is 0.
5032   If it is because the next element belongs at a lower level,
5033   IMPLICIT is 1 (or 2 if the push is because of designator list).  */
5034
5035void
5036push_init_level (int implicit)
5037{
5038  struct constructor_stack *p;
5039  tree value = NULL_TREE;
5040
5041  /* If we've exhausted any levels that didn't have braces,
5042     pop them now.  If implicit == 1, this will have been done in
5043     process_init_element; do not repeat it here because in the case
5044     of excess initializers for an empty aggregate this leads to an
5045     infinite cycle of popping a level and immediately recreating
5046     it.  */
5047  if (implicit != 1)
5048    {
5049      while (constructor_stack->implicit)
5050	{
5051	  if ((TREE_CODE (constructor_type) == RECORD_TYPE
5052	       || TREE_CODE (constructor_type) == UNION_TYPE)
5053	      && constructor_fields == 0)
5054	    process_init_element (pop_init_level (1));
5055	  else if (TREE_CODE (constructor_type) == ARRAY_TYPE
5056		   && constructor_max_index
5057		   && tree_int_cst_lt (constructor_max_index,
5058				       constructor_index))
5059	    process_init_element (pop_init_level (1));
5060	  else
5061	    break;
5062	}
5063    }
5064
5065  /* Unless this is an explicit brace, we need to preserve previous
5066     content if any.  */
5067  if (implicit)
5068    {
5069      if ((TREE_CODE (constructor_type) == RECORD_TYPE
5070	   || TREE_CODE (constructor_type) == UNION_TYPE)
5071	  && constructor_fields)
5072	value = find_init_member (constructor_fields);
5073      else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5074	value = find_init_member (constructor_index);
5075    }
5076
5077  p = XNEW (struct constructor_stack);
5078  p->type = constructor_type;
5079  p->fields = constructor_fields;
5080  p->index = constructor_index;
5081  p->max_index = constructor_max_index;
5082  p->unfilled_index = constructor_unfilled_index;
5083  p->unfilled_fields = constructor_unfilled_fields;
5084  p->bit_index = constructor_bit_index;
5085  p->elements = constructor_elements;
5086  p->constant = constructor_constant;
5087  p->simple = constructor_simple;
5088  p->erroneous = constructor_erroneous;
5089  p->pending_elts = constructor_pending_elts;
5090  p->depth = constructor_depth;
5091  p->replacement_value.value = 0;
5092  p->replacement_value.original_code = ERROR_MARK;
5093  p->implicit = implicit;
5094  p->outer = 0;
5095  p->incremental = constructor_incremental;
5096  p->designated = constructor_designated;
5097  p->next = constructor_stack;
5098  p->range_stack = 0;
5099  constructor_stack = p;
5100
5101  constructor_constant = 1;
5102  constructor_simple = 1;
5103  constructor_depth = SPELLING_DEPTH ();
5104  constructor_elements = 0;
5105  constructor_incremental = 1;
5106  constructor_designated = 0;
5107  constructor_pending_elts = 0;
5108  if (!implicit)
5109    {
5110      p->range_stack = constructor_range_stack;
5111      constructor_range_stack = 0;
5112      designator_depth = 0;
5113      designator_erroneous = 0;
5114    }
5115
5116  /* Don't die if an entire brace-pair level is superfluous
5117     in the containing level.  */
5118  if (constructor_type == 0)
5119    ;
5120  else if (TREE_CODE (constructor_type) == RECORD_TYPE
5121	   || TREE_CODE (constructor_type) == UNION_TYPE)
5122    {
5123      /* Don't die if there are extra init elts at the end.  */
5124      if (constructor_fields == 0)
5125	constructor_type = 0;
5126      else
5127	{
5128	  constructor_type = TREE_TYPE (constructor_fields);
5129	  push_member_name (constructor_fields);
5130	  constructor_depth++;
5131	}
5132    }
5133  else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5134    {
5135      constructor_type = TREE_TYPE (constructor_type);
5136      push_array_bounds (tree_low_cst (constructor_index, 1));
5137      constructor_depth++;
5138    }
5139
5140  if (constructor_type == 0)
5141    {
5142      error_init ("extra brace group at end of initializer");
5143      constructor_fields = 0;
5144      constructor_unfilled_fields = 0;
5145      return;
5146    }
5147
5148  if (value && TREE_CODE (value) == CONSTRUCTOR)
5149    {
5150      constructor_constant = TREE_CONSTANT (value);
5151      constructor_simple = TREE_STATIC (value);
5152      constructor_elements = CONSTRUCTOR_ELTS (value);
5153      if (!VEC_empty (constructor_elt, constructor_elements)
5154	  && (TREE_CODE (constructor_type) == RECORD_TYPE
5155	      || TREE_CODE (constructor_type) == ARRAY_TYPE))
5156	set_nonincremental_init ();
5157    }
5158
5159  if (implicit == 1 && warn_missing_braces && !missing_braces_mentioned)
5160    {
5161      missing_braces_mentioned = 1;
5162      warning_init ("missing braces around initializer");
5163    }
5164
5165  if (TREE_CODE (constructor_type) == RECORD_TYPE
5166	   || TREE_CODE (constructor_type) == UNION_TYPE)
5167    {
5168      constructor_fields = TYPE_FIELDS (constructor_type);
5169      /* Skip any nameless bit fields at the beginning.  */
5170      while (constructor_fields != 0 && DECL_C_BIT_FIELD (constructor_fields)
5171	     && DECL_NAME (constructor_fields) == 0)
5172	constructor_fields = TREE_CHAIN (constructor_fields);
5173
5174      constructor_unfilled_fields = constructor_fields;
5175      constructor_bit_index = bitsize_zero_node;
5176    }
5177  else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
5178    {
5179      /* Vectors are like simple fixed-size arrays.  */
5180      constructor_max_index =
5181	build_int_cst (NULL_TREE, TYPE_VECTOR_SUBPARTS (constructor_type) - 1);
5182      constructor_index = convert (bitsizetype, integer_zero_node);
5183      constructor_unfilled_index = constructor_index;
5184    }
5185  else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5186    {
5187      if (TYPE_DOMAIN (constructor_type))
5188	{
5189	  constructor_max_index
5190	    = TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type));
5191
5192	  /* Detect non-empty initializations of zero-length arrays.  */
5193	  if (constructor_max_index == NULL_TREE
5194	      && TYPE_SIZE (constructor_type))
5195	    constructor_max_index = build_int_cst (NULL_TREE, -1);
5196
5197	  /* constructor_max_index needs to be an INTEGER_CST.  Attempts
5198	     to initialize VLAs will cause a proper error; avoid tree
5199	     checking errors as well by setting a safe value.  */
5200	  if (constructor_max_index
5201	      && TREE_CODE (constructor_max_index) != INTEGER_CST)
5202	    constructor_max_index = build_int_cst (NULL_TREE, -1);
5203
5204	  constructor_index
5205	    = convert (bitsizetype,
5206		       TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
5207	}
5208      else
5209	constructor_index = bitsize_zero_node;
5210
5211      constructor_unfilled_index = constructor_index;
5212      if (value && TREE_CODE (value) == STRING_CST)
5213	{
5214	  /* We need to split the char/wchar array into individual
5215	     characters, so that we don't have to special case it
5216	     everywhere.  */
5217	  set_nonincremental_init_from_string (value);
5218	}
5219    }
5220  else
5221    {
5222      if (constructor_type != error_mark_node)
5223	warning_init ("braces around scalar initializer");
5224      constructor_fields = constructor_type;
5225      constructor_unfilled_fields = constructor_type;
5226    }
5227}
5228
5229/* At the end of an implicit or explicit brace level,
5230   finish up that level of constructor.  If a single expression
5231   with redundant braces initialized that level, return the
5232   c_expr structure for that expression.  Otherwise, the original_code
5233   element is set to ERROR_MARK.
5234   If we were outputting the elements as they are read, return 0 as the value
5235   from inner levels (process_init_element ignores that),
5236   but return error_mark_node as the value from the outermost level
5237   (that's what we want to put in DECL_INITIAL).
5238   Otherwise, return a CONSTRUCTOR expression as the value.  */
5239
5240struct c_expr
5241pop_init_level (int implicit)
5242{
5243  struct constructor_stack *p;
5244  struct c_expr ret;
5245  ret.value = 0;
5246  ret.original_code = ERROR_MARK;
5247
5248  if (implicit == 0)
5249    {
5250      /* When we come to an explicit close brace,
5251	 pop any inner levels that didn't have explicit braces.  */
5252      while (constructor_stack->implicit)
5253	process_init_element (pop_init_level (1));
5254
5255      gcc_assert (!constructor_range_stack);
5256    }
5257
5258  /* Now output all pending elements.  */
5259  constructor_incremental = 1;
5260  output_pending_init_elements (1);
5261
5262  p = constructor_stack;
5263
5264  /* Error for initializing a flexible array member, or a zero-length
5265     array member in an inappropriate context.  */
5266  if (constructor_type && constructor_fields
5267      && TREE_CODE (constructor_type) == ARRAY_TYPE
5268      && TYPE_DOMAIN (constructor_type)
5269      && !TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type)))
5270    {
5271      /* Silently discard empty initializations.  The parser will
5272	 already have pedwarned for empty brackets.  */
5273      if (integer_zerop (constructor_unfilled_index))
5274	constructor_type = NULL_TREE;
5275      else
5276	{
5277	  gcc_assert (!TYPE_SIZE (constructor_type));
5278
5279	  if (constructor_depth > 2)
5280	    error_init ("initialization of flexible array member in a nested context");
5281	  else if (pedantic)
5282	    pedwarn_init ("initialization of a flexible array member");
5283
5284	  /* We have already issued an error message for the existence
5285	     of a flexible array member not at the end of the structure.
5286	     Discard the initializer so that we do not die later.  */
5287	  if (TREE_CHAIN (constructor_fields) != NULL_TREE)
5288	    constructor_type = NULL_TREE;
5289	}
5290    }
5291
5292  /* Warn when some struct elements are implicitly initialized to zero.  */
5293  if (warn_missing_field_initializers
5294      && constructor_type
5295      && TREE_CODE (constructor_type) == RECORD_TYPE
5296      && constructor_unfilled_fields)
5297    {
5298	/* Do not warn for flexible array members or zero-length arrays.  */
5299	while (constructor_unfilled_fields
5300	       && (!DECL_SIZE (constructor_unfilled_fields)
5301		   || integer_zerop (DECL_SIZE (constructor_unfilled_fields))))
5302	  constructor_unfilled_fields = TREE_CHAIN (constructor_unfilled_fields);
5303
5304	/* Do not warn if this level of the initializer uses member
5305	   designators; it is likely to be deliberate.  */
5306	if (constructor_unfilled_fields && !constructor_designated)
5307	  {
5308	    push_member_name (constructor_unfilled_fields);
5309	    warning_init ("missing initializer");
5310	    RESTORE_SPELLING_DEPTH (constructor_depth);
5311	  }
5312    }
5313
5314  /* Pad out the end of the structure.  */
5315  if (p->replacement_value.value)
5316    /* If this closes a superfluous brace pair,
5317       just pass out the element between them.  */
5318    ret = p->replacement_value;
5319  else if (constructor_type == 0)
5320    ;
5321  else if (TREE_CODE (constructor_type) != RECORD_TYPE
5322	   && TREE_CODE (constructor_type) != UNION_TYPE
5323	   && TREE_CODE (constructor_type) != ARRAY_TYPE
5324	   && TREE_CODE (constructor_type) != VECTOR_TYPE)
5325    {
5326      /* A nonincremental scalar initializer--just return
5327	 the element, after verifying there is just one.  */
5328      if (VEC_empty (constructor_elt,constructor_elements))
5329	{
5330	  if (!constructor_erroneous)
5331	    error_init ("empty scalar initializer");
5332	  ret.value = error_mark_node;
5333	}
5334      else if (VEC_length (constructor_elt,constructor_elements) != 1)
5335	{
5336	  error_init ("extra elements in scalar initializer");
5337	  ret.value = VEC_index (constructor_elt,constructor_elements,0)->value;
5338	}
5339      else
5340	ret.value = VEC_index (constructor_elt,constructor_elements,0)->value;
5341    }
5342  else
5343    {
5344      if (constructor_erroneous)
5345	ret.value = error_mark_node;
5346      else
5347	{
5348	  ret.value = build_constructor (constructor_type,
5349					 constructor_elements);
5350	  if (constructor_constant)
5351	    TREE_CONSTANT (ret.value) = TREE_INVARIANT (ret.value) = 1;
5352	  if (constructor_constant && constructor_simple)
5353	    TREE_STATIC (ret.value) = 1;
5354	}
5355    }
5356
5357  constructor_type = p->type;
5358  constructor_fields = p->fields;
5359  constructor_index = p->index;
5360  constructor_max_index = p->max_index;
5361  constructor_unfilled_index = p->unfilled_index;
5362  constructor_unfilled_fields = p->unfilled_fields;
5363  constructor_bit_index = p->bit_index;
5364  constructor_elements = p->elements;
5365  constructor_constant = p->constant;
5366  constructor_simple = p->simple;
5367  constructor_erroneous = p->erroneous;
5368  constructor_incremental = p->incremental;
5369  constructor_designated = p->designated;
5370  constructor_pending_elts = p->pending_elts;
5371  constructor_depth = p->depth;
5372  if (!p->implicit)
5373    constructor_range_stack = p->range_stack;
5374  RESTORE_SPELLING_DEPTH (constructor_depth);
5375
5376  constructor_stack = p->next;
5377  free (p);
5378
5379  if (ret.value == 0)
5380    {
5381      if (constructor_stack == 0)
5382	{
5383	  ret.value = error_mark_node;
5384	  return ret;
5385	}
5386      return ret;
5387    }
5388  return ret;
5389}
5390
5391/* Common handling for both array range and field name designators.
5392   ARRAY argument is nonzero for array ranges.  Returns zero for success.  */
5393
5394static int
5395set_designator (int array)
5396{
5397  tree subtype;
5398  enum tree_code subcode;
5399
5400  /* Don't die if an entire brace-pair level is superfluous
5401     in the containing level.  */
5402  if (constructor_type == 0)
5403    return 1;
5404
5405  /* If there were errors in this designator list already, bail out
5406     silently.  */
5407  if (designator_erroneous)
5408    return 1;
5409
5410  if (!designator_depth)
5411    {
5412      gcc_assert (!constructor_range_stack);
5413
5414      /* Designator list starts at the level of closest explicit
5415	 braces.  */
5416      while (constructor_stack->implicit)
5417	process_init_element (pop_init_level (1));
5418      constructor_designated = 1;
5419      return 0;
5420    }
5421
5422  switch (TREE_CODE (constructor_type))
5423    {
5424    case  RECORD_TYPE:
5425    case  UNION_TYPE:
5426      subtype = TREE_TYPE (constructor_fields);
5427      if (subtype != error_mark_node)
5428	subtype = TYPE_MAIN_VARIANT (subtype);
5429      break;
5430    case ARRAY_TYPE:
5431      subtype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
5432      break;
5433    default:
5434      gcc_unreachable ();
5435    }
5436
5437  subcode = TREE_CODE (subtype);
5438  if (array && subcode != ARRAY_TYPE)
5439    {
5440      error_init ("array index in non-array initializer");
5441      return 1;
5442    }
5443  else if (!array && subcode != RECORD_TYPE && subcode != UNION_TYPE)
5444    {
5445      error_init ("field name not in record or union initializer");
5446      return 1;
5447    }
5448
5449  constructor_designated = 1;
5450  push_init_level (2);
5451  return 0;
5452}
5453
5454/* If there are range designators in designator list, push a new designator
5455   to constructor_range_stack.  RANGE_END is end of such stack range or
5456   NULL_TREE if there is no range designator at this level.  */
5457
5458static void
5459push_range_stack (tree range_end)
5460{
5461  struct constructor_range_stack *p;
5462
5463  p = GGC_NEW (struct constructor_range_stack);
5464  p->prev = constructor_range_stack;
5465  p->next = 0;
5466  p->fields = constructor_fields;
5467  p->range_start = constructor_index;
5468  p->index = constructor_index;
5469  p->stack = constructor_stack;
5470  p->range_end = range_end;
5471  if (constructor_range_stack)
5472    constructor_range_stack->next = p;
5473  constructor_range_stack = p;
5474}
5475
5476/* Within an array initializer, specify the next index to be initialized.
5477   FIRST is that index.  If LAST is nonzero, then initialize a range
5478   of indices, running from FIRST through LAST.  */
5479
5480void
5481set_init_index (tree first, tree last)
5482{
5483  if (set_designator (1))
5484    return;
5485
5486  designator_erroneous = 1;
5487
5488  if (!INTEGRAL_TYPE_P (TREE_TYPE (first))
5489      || (last && !INTEGRAL_TYPE_P (TREE_TYPE (last))))
5490    {
5491      error_init ("array index in initializer not of integer type");
5492      return;
5493    }
5494
5495  if (TREE_CODE (first) != INTEGER_CST)
5496    error_init ("nonconstant array index in initializer");
5497  else if (last != 0 && TREE_CODE (last) != INTEGER_CST)
5498    error_init ("nonconstant array index in initializer");
5499  else if (TREE_CODE (constructor_type) != ARRAY_TYPE)
5500    error_init ("array index in non-array initializer");
5501  else if (tree_int_cst_sgn (first) == -1)
5502    error_init ("array index in initializer exceeds array bounds");
5503  else if (constructor_max_index
5504	   && tree_int_cst_lt (constructor_max_index, first))
5505    error_init ("array index in initializer exceeds array bounds");
5506  else
5507    {
5508      constructor_index = convert (bitsizetype, first);
5509
5510      if (last)
5511	{
5512	  if (tree_int_cst_equal (first, last))
5513	    last = 0;
5514	  else if (tree_int_cst_lt (last, first))
5515	    {
5516	      error_init ("empty index range in initializer");
5517	      last = 0;
5518	    }
5519	  else
5520	    {
5521	      last = convert (bitsizetype, last);
5522	      if (constructor_max_index != 0
5523		  && tree_int_cst_lt (constructor_max_index, last))
5524		{
5525		  error_init ("array index range in initializer exceeds array bounds");
5526		  last = 0;
5527		}
5528	    }
5529	}
5530
5531      designator_depth++;
5532      designator_erroneous = 0;
5533      if (constructor_range_stack || last)
5534	push_range_stack (last);
5535    }
5536}
5537
5538/* Within a struct initializer, specify the next field to be initialized.  */
5539
5540void
5541set_init_label (tree fieldname)
5542{
5543  tree tail;
5544
5545  if (set_designator (0))
5546    return;
5547
5548  designator_erroneous = 1;
5549
5550  if (TREE_CODE (constructor_type) != RECORD_TYPE
5551      && TREE_CODE (constructor_type) != UNION_TYPE)
5552    {
5553      error_init ("field name not in record or union initializer");
5554      return;
5555    }
5556
5557  for (tail = TYPE_FIELDS (constructor_type); tail;
5558       tail = TREE_CHAIN (tail))
5559    {
5560      if (DECL_NAME (tail) == fieldname)
5561	break;
5562    }
5563
5564  if (tail == 0)
5565    error ("unknown field %qE specified in initializer", fieldname);
5566  else
5567    {
5568      constructor_fields = tail;
5569      designator_depth++;
5570      designator_erroneous = 0;
5571      if (constructor_range_stack)
5572	push_range_stack (NULL_TREE);
5573    }
5574}
5575
5576/* Add a new initializer to the tree of pending initializers.  PURPOSE
5577   identifies the initializer, either array index or field in a structure.
5578   VALUE is the value of that index or field.  */
5579
5580static void
5581add_pending_init (tree purpose, tree value)
5582{
5583  struct init_node *p, **q, *r;
5584
5585  q = &constructor_pending_elts;
5586  p = 0;
5587
5588  if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5589    {
5590      while (*q != 0)
5591	{
5592	  p = *q;
5593	  if (tree_int_cst_lt (purpose, p->purpose))
5594	    q = &p->left;
5595	  else if (tree_int_cst_lt (p->purpose, purpose))
5596	    q = &p->right;
5597	  else
5598	    {
5599	      if (TREE_SIDE_EFFECTS (p->value))
5600		warning_init ("initialized field with side-effects overwritten");
5601	      p->value = value;
5602	      return;
5603	    }
5604	}
5605    }
5606  else
5607    {
5608      tree bitpos;
5609
5610      bitpos = bit_position (purpose);
5611      while (*q != NULL)
5612	{
5613	  p = *q;
5614	  if (tree_int_cst_lt (bitpos, bit_position (p->purpose)))
5615	    q = &p->left;
5616	  else if (p->purpose != purpose)
5617	    q = &p->right;
5618	  else
5619	    {
5620	      if (TREE_SIDE_EFFECTS (p->value))
5621		warning_init ("initialized field with side-effects overwritten");
5622	      p->value = value;
5623	      return;
5624	    }
5625	}
5626    }
5627
5628  r = GGC_NEW (struct init_node);
5629  r->purpose = purpose;
5630  r->value = value;
5631
5632  *q = r;
5633  r->parent = p;
5634  r->left = 0;
5635  r->right = 0;
5636  r->balance = 0;
5637
5638  while (p)
5639    {
5640      struct init_node *s;
5641
5642      if (r == p->left)
5643	{
5644	  if (p->balance == 0)
5645	    p->balance = -1;
5646	  else if (p->balance < 0)
5647	    {
5648	      if (r->balance < 0)
5649		{
5650		  /* L rotation.  */
5651		  p->left = r->right;
5652		  if (p->left)
5653		    p->left->parent = p;
5654		  r->right = p;
5655
5656		  p->balance = 0;
5657		  r->balance = 0;
5658
5659		  s = p->parent;
5660		  p->parent = r;
5661		  r->parent = s;
5662		  if (s)
5663		    {
5664		      if (s->left == p)
5665			s->left = r;
5666		      else
5667			s->right = r;
5668		    }
5669		  else
5670		    constructor_pending_elts = r;
5671		}
5672	      else
5673		{
5674		  /* LR rotation.  */
5675		  struct init_node *t = r->right;
5676
5677		  r->right = t->left;
5678		  if (r->right)
5679		    r->right->parent = r;
5680		  t->left = r;
5681
5682		  p->left = t->right;
5683		  if (p->left)
5684		    p->left->parent = p;
5685		  t->right = p;
5686
5687		  p->balance = t->balance < 0;
5688		  r->balance = -(t->balance > 0);
5689		  t->balance = 0;
5690
5691		  s = p->parent;
5692		  p->parent = t;
5693		  r->parent = t;
5694		  t->parent = s;
5695		  if (s)
5696		    {
5697		      if (s->left == p)
5698			s->left = t;
5699		      else
5700			s->right = t;
5701		    }
5702		  else
5703		    constructor_pending_elts = t;
5704		}
5705	      break;
5706	    }
5707	  else
5708	    {
5709	      /* p->balance == +1; growth of left side balances the node.  */
5710	      p->balance = 0;
5711	      break;
5712	    }
5713	}
5714      else /* r == p->right */
5715	{
5716	  if (p->balance == 0)
5717	    /* Growth propagation from right side.  */
5718	    p->balance++;
5719	  else if (p->balance > 0)
5720	    {
5721	      if (r->balance > 0)
5722		{
5723		  /* R rotation.  */
5724		  p->right = r->left;
5725		  if (p->right)
5726		    p->right->parent = p;
5727		  r->left = p;
5728
5729		  p->balance = 0;
5730		  r->balance = 0;
5731
5732		  s = p->parent;
5733		  p->parent = r;
5734		  r->parent = s;
5735		  if (s)
5736		    {
5737		      if (s->left == p)
5738			s->left = r;
5739		      else
5740			s->right = r;
5741		    }
5742		  else
5743		    constructor_pending_elts = r;
5744		}
5745	      else /* r->balance == -1 */
5746		{
5747		  /* RL rotation */
5748		  struct init_node *t = r->left;
5749
5750		  r->left = t->right;
5751		  if (r->left)
5752		    r->left->parent = r;
5753		  t->right = r;
5754
5755		  p->right = t->left;
5756		  if (p->right)
5757		    p->right->parent = p;
5758		  t->left = p;
5759
5760		  r->balance = (t->balance < 0);
5761		  p->balance = -(t->balance > 0);
5762		  t->balance = 0;
5763
5764		  s = p->parent;
5765		  p->parent = t;
5766		  r->parent = t;
5767		  t->parent = s;
5768		  if (s)
5769		    {
5770		      if (s->left == p)
5771			s->left = t;
5772		      else
5773			s->right = t;
5774		    }
5775		  else
5776		    constructor_pending_elts = t;
5777		}
5778	      break;
5779	    }
5780	  else
5781	    {
5782	      /* p->balance == -1; growth of right side balances the node.  */
5783	      p->balance = 0;
5784	      break;
5785	    }
5786	}
5787
5788      r = p;
5789      p = p->parent;
5790    }
5791}
5792
5793/* Build AVL tree from a sorted chain.  */
5794
5795static void
5796set_nonincremental_init (void)
5797{
5798  unsigned HOST_WIDE_INT ix;
5799  tree index, value;
5800
5801  if (TREE_CODE (constructor_type) != RECORD_TYPE
5802      && TREE_CODE (constructor_type) != ARRAY_TYPE)
5803    return;
5804
5805  FOR_EACH_CONSTRUCTOR_ELT (constructor_elements, ix, index, value)
5806    add_pending_init (index, value);
5807  constructor_elements = 0;
5808  if (TREE_CODE (constructor_type) == RECORD_TYPE)
5809    {
5810      constructor_unfilled_fields = TYPE_FIELDS (constructor_type);
5811      /* Skip any nameless bit fields at the beginning.  */
5812      while (constructor_unfilled_fields != 0
5813	     && DECL_C_BIT_FIELD (constructor_unfilled_fields)
5814	     && DECL_NAME (constructor_unfilled_fields) == 0)
5815	constructor_unfilled_fields = TREE_CHAIN (constructor_unfilled_fields);
5816
5817    }
5818  else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5819    {
5820      if (TYPE_DOMAIN (constructor_type))
5821	constructor_unfilled_index
5822	    = convert (bitsizetype,
5823		       TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
5824      else
5825	constructor_unfilled_index = bitsize_zero_node;
5826    }
5827  constructor_incremental = 0;
5828}
5829
5830/* Build AVL tree from a string constant.  */
5831
5832static void
5833set_nonincremental_init_from_string (tree str)
5834{
5835  tree value, purpose, type;
5836  HOST_WIDE_INT val[2];
5837  const char *p, *end;
5838  int byte, wchar_bytes, charwidth, bitpos;
5839
5840  gcc_assert (TREE_CODE (constructor_type) == ARRAY_TYPE);
5841
5842  if (TYPE_PRECISION (TREE_TYPE (TREE_TYPE (str)))
5843      == TYPE_PRECISION (char_type_node))
5844    wchar_bytes = 1;
5845  else
5846    {
5847      gcc_assert (TYPE_PRECISION (TREE_TYPE (TREE_TYPE (str)))
5848		  == TYPE_PRECISION (wchar_type_node));
5849      wchar_bytes = TYPE_PRECISION (wchar_type_node) / BITS_PER_UNIT;
5850    }
5851  charwidth = TYPE_PRECISION (char_type_node);
5852  type = TREE_TYPE (constructor_type);
5853  p = TREE_STRING_POINTER (str);
5854  end = p + TREE_STRING_LENGTH (str);
5855
5856  for (purpose = bitsize_zero_node;
5857       p < end && !tree_int_cst_lt (constructor_max_index, purpose);
5858       purpose = size_binop (PLUS_EXPR, purpose, bitsize_one_node))
5859    {
5860      if (wchar_bytes == 1)
5861	{
5862	  val[1] = (unsigned char) *p++;
5863	  val[0] = 0;
5864	}
5865      else
5866	{
5867	  val[0] = 0;
5868	  val[1] = 0;
5869	  for (byte = 0; byte < wchar_bytes; byte++)
5870	    {
5871	      if (BYTES_BIG_ENDIAN)
5872		bitpos = (wchar_bytes - byte - 1) * charwidth;
5873	      else
5874		bitpos = byte * charwidth;
5875	      val[bitpos < HOST_BITS_PER_WIDE_INT]
5876		|= ((unsigned HOST_WIDE_INT) ((unsigned char) *p++))
5877		   << (bitpos % HOST_BITS_PER_WIDE_INT);
5878	    }
5879	}
5880
5881      if (!TYPE_UNSIGNED (type))
5882	{
5883	  bitpos = ((wchar_bytes - 1) * charwidth) + HOST_BITS_PER_CHAR;
5884	  if (bitpos < HOST_BITS_PER_WIDE_INT)
5885	    {
5886	      if (val[1] & (((HOST_WIDE_INT) 1) << (bitpos - 1)))
5887		{
5888		  val[1] |= ((HOST_WIDE_INT) -1) << bitpos;
5889		  val[0] = -1;
5890		}
5891	    }
5892	  else if (bitpos == HOST_BITS_PER_WIDE_INT)
5893	    {
5894	      if (val[1] < 0)
5895	        val[0] = -1;
5896	    }
5897	  else if (val[0] & (((HOST_WIDE_INT) 1)
5898			     << (bitpos - 1 - HOST_BITS_PER_WIDE_INT)))
5899	    val[0] |= ((HOST_WIDE_INT) -1)
5900		      << (bitpos - HOST_BITS_PER_WIDE_INT);
5901	}
5902
5903      value = build_int_cst_wide (type, val[1], val[0]);
5904      add_pending_init (purpose, value);
5905    }
5906
5907  constructor_incremental = 0;
5908}
5909
5910/* Return value of FIELD in pending initializer or zero if the field was
5911   not initialized yet.  */
5912
5913static tree
5914find_init_member (tree field)
5915{
5916  struct init_node *p;
5917
5918  if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5919    {
5920      if (constructor_incremental
5921	  && tree_int_cst_lt (field, constructor_unfilled_index))
5922	set_nonincremental_init ();
5923
5924      p = constructor_pending_elts;
5925      while (p)
5926	{
5927	  if (tree_int_cst_lt (field, p->purpose))
5928	    p = p->left;
5929	  else if (tree_int_cst_lt (p->purpose, field))
5930	    p = p->right;
5931	  else
5932	    return p->value;
5933	}
5934    }
5935  else if (TREE_CODE (constructor_type) == RECORD_TYPE)
5936    {
5937      tree bitpos = bit_position (field);
5938
5939      if (constructor_incremental
5940	  && (!constructor_unfilled_fields
5941	      || tree_int_cst_lt (bitpos,
5942				  bit_position (constructor_unfilled_fields))))
5943	set_nonincremental_init ();
5944
5945      p = constructor_pending_elts;
5946      while (p)
5947	{
5948	  if (field == p->purpose)
5949	    return p->value;
5950	  else if (tree_int_cst_lt (bitpos, bit_position (p->purpose)))
5951	    p = p->left;
5952	  else
5953	    p = p->right;
5954	}
5955    }
5956  else if (TREE_CODE (constructor_type) == UNION_TYPE)
5957    {
5958      if (!VEC_empty (constructor_elt, constructor_elements)
5959	  && (VEC_last (constructor_elt, constructor_elements)->index
5960	      == field))
5961	return VEC_last (constructor_elt, constructor_elements)->value;
5962    }
5963  return 0;
5964}
5965
5966/* "Output" the next constructor element.
5967   At top level, really output it to assembler code now.
5968   Otherwise, collect it in a list from which we will make a CONSTRUCTOR.
5969   TYPE is the data type that the containing data type wants here.
5970   FIELD is the field (a FIELD_DECL) or the index that this element fills.
5971   If VALUE is a string constant, STRICT_STRING is true if it is
5972   unparenthesized or we should not warn here for it being parenthesized.
5973   For other types of VALUE, STRICT_STRING is not used.
5974
5975   PENDING if non-nil means output pending elements that belong
5976   right after this element.  (PENDING is normally 1;
5977   it is 0 while outputting pending elements, to avoid recursion.)  */
5978
5979static void
5980output_init_element (tree value, bool strict_string, tree type, tree field,
5981		     int pending)
5982{
5983  constructor_elt *celt;
5984
5985  if (type == error_mark_node || value == error_mark_node)
5986    {
5987      constructor_erroneous = 1;
5988      return;
5989    }
5990  if (TREE_CODE (TREE_TYPE (value)) == ARRAY_TYPE
5991      && (TREE_CODE (value) == STRING_CST
5992	  || TREE_CODE (value) == COMPOUND_LITERAL_EXPR)
5993      && !(TREE_CODE (value) == STRING_CST
5994	   && TREE_CODE (type) == ARRAY_TYPE
5995	   && INTEGRAL_TYPE_P (TREE_TYPE (type)))
5996      && !comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (value)),
5997		     TYPE_MAIN_VARIANT (type)))
5998    value = array_to_pointer_conversion (value);
5999
6000  if (TREE_CODE (value) == COMPOUND_LITERAL_EXPR
6001      && require_constant_value && !flag_isoc99 && pending)
6002    {
6003      /* As an extension, allow initializing objects with static storage
6004	 duration with compound literals (which are then treated just as
6005	 the brace enclosed list they contain).  */
6006      tree decl = COMPOUND_LITERAL_EXPR_DECL (value);
6007      value = DECL_INITIAL (decl);
6008    }
6009
6010  if (value == error_mark_node)
6011    constructor_erroneous = 1;
6012  else if (!TREE_CONSTANT (value))
6013    constructor_constant = 0;
6014  else if (!initializer_constant_valid_p (value, TREE_TYPE (value))
6015	   || ((TREE_CODE (constructor_type) == RECORD_TYPE
6016		|| TREE_CODE (constructor_type) == UNION_TYPE)
6017	       && DECL_C_BIT_FIELD (field)
6018	       && TREE_CODE (value) != INTEGER_CST))
6019    constructor_simple = 0;
6020
6021  if (!initializer_constant_valid_p (value, TREE_TYPE (value)))
6022    {
6023      if (require_constant_value)
6024	{
6025	  error_init ("initializer element is not constant");
6026	  value = error_mark_node;
6027	}
6028      else if (require_constant_elements)
6029	pedwarn ("initializer element is not computable at load time");
6030    }
6031
6032  /* If this field is empty (and not at the end of structure),
6033     don't do anything other than checking the initializer.  */
6034  if (field
6035      && (TREE_TYPE (field) == error_mark_node
6036	  || (COMPLETE_TYPE_P (TREE_TYPE (field))
6037	      && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))
6038	      && (TREE_CODE (constructor_type) == ARRAY_TYPE
6039		  || TREE_CHAIN (field)))))
6040    return;
6041
6042  value = digest_init (type, value, strict_string, require_constant_value);
6043  if (value == error_mark_node)
6044    {
6045      constructor_erroneous = 1;
6046      return;
6047    }
6048
6049  /* If this element doesn't come next in sequence,
6050     put it on constructor_pending_elts.  */
6051  if (TREE_CODE (constructor_type) == ARRAY_TYPE
6052      && (!constructor_incremental
6053	  || !tree_int_cst_equal (field, constructor_unfilled_index)))
6054    {
6055      if (constructor_incremental
6056	  && tree_int_cst_lt (field, constructor_unfilled_index))
6057	set_nonincremental_init ();
6058
6059      add_pending_init (field, value);
6060      return;
6061    }
6062  else if (TREE_CODE (constructor_type) == RECORD_TYPE
6063	   && (!constructor_incremental
6064	       || field != constructor_unfilled_fields))
6065    {
6066      /* We do this for records but not for unions.  In a union,
6067	 no matter which field is specified, it can be initialized
6068	 right away since it starts at the beginning of the union.  */
6069      if (constructor_incremental)
6070	{
6071	  if (!constructor_unfilled_fields)
6072	    set_nonincremental_init ();
6073	  else
6074	    {
6075	      tree bitpos, unfillpos;
6076
6077	      bitpos = bit_position (field);
6078	      unfillpos = bit_position (constructor_unfilled_fields);
6079
6080	      if (tree_int_cst_lt (bitpos, unfillpos))
6081		set_nonincremental_init ();
6082	    }
6083	}
6084
6085      add_pending_init (field, value);
6086      return;
6087    }
6088  else if (TREE_CODE (constructor_type) == UNION_TYPE
6089	   && !VEC_empty (constructor_elt, constructor_elements))
6090    {
6091      if (TREE_SIDE_EFFECTS (VEC_last (constructor_elt,
6092				       constructor_elements)->value))
6093	warning_init ("initialized field with side-effects overwritten");
6094
6095      /* We can have just one union field set.  */
6096      constructor_elements = 0;
6097    }
6098
6099  /* Otherwise, output this element either to
6100     constructor_elements or to the assembler file.  */
6101
6102  celt = VEC_safe_push (constructor_elt, gc, constructor_elements, NULL);
6103  celt->index = field;
6104  celt->value = value;
6105
6106  /* Advance the variable that indicates sequential elements output.  */
6107  if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6108    constructor_unfilled_index
6109      = size_binop (PLUS_EXPR, constructor_unfilled_index,
6110		    bitsize_one_node);
6111  else if (TREE_CODE (constructor_type) == RECORD_TYPE)
6112    {
6113      constructor_unfilled_fields
6114	= TREE_CHAIN (constructor_unfilled_fields);
6115
6116      /* Skip any nameless bit fields.  */
6117      while (constructor_unfilled_fields != 0
6118	     && DECL_C_BIT_FIELD (constructor_unfilled_fields)
6119	     && DECL_NAME (constructor_unfilled_fields) == 0)
6120	constructor_unfilled_fields =
6121	  TREE_CHAIN (constructor_unfilled_fields);
6122    }
6123  else if (TREE_CODE (constructor_type) == UNION_TYPE)
6124    constructor_unfilled_fields = 0;
6125
6126  /* Now output any pending elements which have become next.  */
6127  if (pending)
6128    output_pending_init_elements (0);
6129}
6130
6131/* Output any pending elements which have become next.
6132   As we output elements, constructor_unfilled_{fields,index}
6133   advances, which may cause other elements to become next;
6134   if so, they too are output.
6135
6136   If ALL is 0, we return when there are
6137   no more pending elements to output now.
6138
6139   If ALL is 1, we output space as necessary so that
6140   we can output all the pending elements.  */
6141
6142static void
6143output_pending_init_elements (int all)
6144{
6145  struct init_node *elt = constructor_pending_elts;
6146  tree next;
6147
6148 retry:
6149
6150  /* Look through the whole pending tree.
6151     If we find an element that should be output now,
6152     output it.  Otherwise, set NEXT to the element
6153     that comes first among those still pending.  */
6154
6155  next = 0;
6156  while (elt)
6157    {
6158      if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6159	{
6160	  if (tree_int_cst_equal (elt->purpose,
6161				  constructor_unfilled_index))
6162	    output_init_element (elt->value, true,
6163				 TREE_TYPE (constructor_type),
6164				 constructor_unfilled_index, 0);
6165	  else if (tree_int_cst_lt (constructor_unfilled_index,
6166				    elt->purpose))
6167	    {
6168	      /* Advance to the next smaller node.  */
6169	      if (elt->left)
6170		elt = elt->left;
6171	      else
6172		{
6173		  /* We have reached the smallest node bigger than the
6174		     current unfilled index.  Fill the space first.  */
6175		  next = elt->purpose;
6176		  break;
6177		}
6178	    }
6179	  else
6180	    {
6181	      /* Advance to the next bigger node.  */
6182	      if (elt->right)
6183		elt = elt->right;
6184	      else
6185		{
6186		  /* We have reached the biggest node in a subtree.  Find
6187		     the parent of it, which is the next bigger node.  */
6188		  while (elt->parent && elt->parent->right == elt)
6189		    elt = elt->parent;
6190		  elt = elt->parent;
6191		  if (elt && tree_int_cst_lt (constructor_unfilled_index,
6192					      elt->purpose))
6193		    {
6194		      next = elt->purpose;
6195		      break;
6196		    }
6197		}
6198	    }
6199	}
6200      else if (TREE_CODE (constructor_type) == RECORD_TYPE
6201	       || TREE_CODE (constructor_type) == UNION_TYPE)
6202	{
6203	  tree ctor_unfilled_bitpos, elt_bitpos;
6204
6205	  /* If the current record is complete we are done.  */
6206	  if (constructor_unfilled_fields == 0)
6207	    break;
6208
6209	  ctor_unfilled_bitpos = bit_position (constructor_unfilled_fields);
6210	  elt_bitpos = bit_position (elt->purpose);
6211	  /* We can't compare fields here because there might be empty
6212	     fields in between.  */
6213	  if (tree_int_cst_equal (elt_bitpos, ctor_unfilled_bitpos))
6214	    {
6215	      constructor_unfilled_fields = elt->purpose;
6216	      output_init_element (elt->value, true, TREE_TYPE (elt->purpose),
6217				   elt->purpose, 0);
6218	    }
6219	  else if (tree_int_cst_lt (ctor_unfilled_bitpos, elt_bitpos))
6220	    {
6221	      /* Advance to the next smaller node.  */
6222	      if (elt->left)
6223		elt = elt->left;
6224	      else
6225		{
6226		  /* We have reached the smallest node bigger than the
6227		     current unfilled field.  Fill the space first.  */
6228		  next = elt->purpose;
6229		  break;
6230		}
6231	    }
6232	  else
6233	    {
6234	      /* Advance to the next bigger node.  */
6235	      if (elt->right)
6236		elt = elt->right;
6237	      else
6238		{
6239		  /* We have reached the biggest node in a subtree.  Find
6240		     the parent of it, which is the next bigger node.  */
6241		  while (elt->parent && elt->parent->right == elt)
6242		    elt = elt->parent;
6243		  elt = elt->parent;
6244		  if (elt
6245		      && (tree_int_cst_lt (ctor_unfilled_bitpos,
6246					   bit_position (elt->purpose))))
6247		    {
6248		      next = elt->purpose;
6249		      break;
6250		    }
6251		}
6252	    }
6253	}
6254    }
6255
6256  /* Ordinarily return, but not if we want to output all
6257     and there are elements left.  */
6258  if (!(all && next != 0))
6259    return;
6260
6261  /* If it's not incremental, just skip over the gap, so that after
6262     jumping to retry we will output the next successive element.  */
6263  if (TREE_CODE (constructor_type) == RECORD_TYPE
6264      || TREE_CODE (constructor_type) == UNION_TYPE)
6265    constructor_unfilled_fields = next;
6266  else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6267    constructor_unfilled_index = next;
6268
6269  /* ELT now points to the node in the pending tree with the next
6270     initializer to output.  */
6271  goto retry;
6272}
6273
6274/* Add one non-braced element to the current constructor level.
6275   This adjusts the current position within the constructor's type.
6276   This may also start or terminate implicit levels
6277   to handle a partly-braced initializer.
6278
6279   Once this has found the correct level for the new element,
6280   it calls output_init_element.  */
6281
6282void
6283process_init_element (struct c_expr value)
6284{
6285  tree orig_value = value.value;
6286  int string_flag = orig_value != 0 && TREE_CODE (orig_value) == STRING_CST;
6287  bool strict_string = value.original_code == STRING_CST;
6288
6289  designator_depth = 0;
6290  designator_erroneous = 0;
6291
6292  /* Handle superfluous braces around string cst as in
6293     char x[] = {"foo"}; */
6294  if (string_flag
6295      && constructor_type
6296      && TREE_CODE (constructor_type) == ARRAY_TYPE
6297      && INTEGRAL_TYPE_P (TREE_TYPE (constructor_type))
6298      && integer_zerop (constructor_unfilled_index))
6299    {
6300      if (constructor_stack->replacement_value.value)
6301        error_init ("excess elements in char array initializer");
6302      constructor_stack->replacement_value = value;
6303      return;
6304    }
6305
6306  if (constructor_stack->replacement_value.value != 0)
6307    {
6308      error_init ("excess elements in struct initializer");
6309      return;
6310    }
6311
6312  /* Ignore elements of a brace group if it is entirely superfluous
6313     and has already been diagnosed.  */
6314  if (constructor_type == 0)
6315    return;
6316
6317  /* If we've exhausted any levels that didn't have braces,
6318     pop them now.  */
6319  while (constructor_stack->implicit)
6320    {
6321      if ((TREE_CODE (constructor_type) == RECORD_TYPE
6322	   || TREE_CODE (constructor_type) == UNION_TYPE)
6323	  && constructor_fields == 0)
6324	process_init_element (pop_init_level (1));
6325      else if (TREE_CODE (constructor_type) == ARRAY_TYPE
6326	       && (constructor_max_index == 0
6327		   || tree_int_cst_lt (constructor_max_index,
6328				       constructor_index)))
6329	process_init_element (pop_init_level (1));
6330      else
6331	break;
6332    }
6333
6334  /* In the case of [LO ... HI] = VALUE, only evaluate VALUE once.  */
6335  if (constructor_range_stack)
6336    {
6337      /* If value is a compound literal and we'll be just using its
6338	 content, don't put it into a SAVE_EXPR.  */
6339      if (TREE_CODE (value.value) != COMPOUND_LITERAL_EXPR
6340	  || !require_constant_value
6341	  || flag_isoc99)
6342	value.value = save_expr (value.value);
6343    }
6344
6345  while (1)
6346    {
6347      if (TREE_CODE (constructor_type) == RECORD_TYPE)
6348	{
6349	  tree fieldtype;
6350	  enum tree_code fieldcode;
6351
6352	  if (constructor_fields == 0)
6353	    {
6354	      pedwarn_init ("excess elements in struct initializer");
6355	      break;
6356	    }
6357
6358	  fieldtype = TREE_TYPE (constructor_fields);
6359	  if (fieldtype != error_mark_node)
6360	    fieldtype = TYPE_MAIN_VARIANT (fieldtype);
6361	  fieldcode = TREE_CODE (fieldtype);
6362
6363	  /* Error for non-static initialization of a flexible array member.  */
6364	  if (fieldcode == ARRAY_TYPE
6365	      && !require_constant_value
6366	      && TYPE_SIZE (fieldtype) == NULL_TREE
6367	      && TREE_CHAIN (constructor_fields) == NULL_TREE)
6368	    {
6369	      error_init ("non-static initialization of a flexible array member");
6370	      break;
6371	    }
6372
6373	  /* Accept a string constant to initialize a subarray.  */
6374	  if (value.value != 0
6375	      && fieldcode == ARRAY_TYPE
6376	      && INTEGRAL_TYPE_P (TREE_TYPE (fieldtype))
6377	      && string_flag)
6378	    value.value = orig_value;
6379	  /* Otherwise, if we have come to a subaggregate,
6380	     and we don't have an element of its type, push into it.  */
6381	  else if (value.value != 0
6382		   && value.value != error_mark_node
6383		   && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != fieldtype
6384		   && (fieldcode == RECORD_TYPE || fieldcode == ARRAY_TYPE
6385		       || fieldcode == UNION_TYPE))
6386	    {
6387	      push_init_level (1);
6388	      continue;
6389	    }
6390
6391	  if (value.value)
6392	    {
6393	      push_member_name (constructor_fields);
6394	      output_init_element (value.value, strict_string,
6395				   fieldtype, constructor_fields, 1);
6396	      RESTORE_SPELLING_DEPTH (constructor_depth);
6397	    }
6398	  else
6399	    /* Do the bookkeeping for an element that was
6400	       directly output as a constructor.  */
6401	    {
6402	      /* For a record, keep track of end position of last field.  */
6403	      if (DECL_SIZE (constructor_fields))
6404	        constructor_bit_index
6405		  = size_binop (PLUS_EXPR,
6406			        bit_position (constructor_fields),
6407			        DECL_SIZE (constructor_fields));
6408
6409	      /* If the current field was the first one not yet written out,
6410		 it isn't now, so update.  */
6411	      if (constructor_unfilled_fields == constructor_fields)
6412		{
6413		  constructor_unfilled_fields = TREE_CHAIN (constructor_fields);
6414		  /* Skip any nameless bit fields.  */
6415		  while (constructor_unfilled_fields != 0
6416			 && DECL_C_BIT_FIELD (constructor_unfilled_fields)
6417			 && DECL_NAME (constructor_unfilled_fields) == 0)
6418		    constructor_unfilled_fields =
6419		      TREE_CHAIN (constructor_unfilled_fields);
6420		}
6421	    }
6422
6423	  constructor_fields = TREE_CHAIN (constructor_fields);
6424	  /* Skip any nameless bit fields at the beginning.  */
6425	  while (constructor_fields != 0
6426		 && DECL_C_BIT_FIELD (constructor_fields)
6427		 && DECL_NAME (constructor_fields) == 0)
6428	    constructor_fields = TREE_CHAIN (constructor_fields);
6429	}
6430      else if (TREE_CODE (constructor_type) == UNION_TYPE)
6431	{
6432	  tree fieldtype;
6433	  enum tree_code fieldcode;
6434
6435	  if (constructor_fields == 0)
6436	    {
6437	      pedwarn_init ("excess elements in union initializer");
6438	      break;
6439	    }
6440
6441	  fieldtype = TREE_TYPE (constructor_fields);
6442	  if (fieldtype != error_mark_node)
6443	    fieldtype = TYPE_MAIN_VARIANT (fieldtype);
6444	  fieldcode = TREE_CODE (fieldtype);
6445
6446	  /* Warn that traditional C rejects initialization of unions.
6447	     We skip the warning if the value is zero.  This is done
6448	     under the assumption that the zero initializer in user
6449	     code appears conditioned on e.g. __STDC__ to avoid
6450	     "missing initializer" warnings and relies on default
6451	     initialization to zero in the traditional C case.
6452	     We also skip the warning if the initializer is designated,
6453	     again on the assumption that this must be conditional on
6454	     __STDC__ anyway (and we've already complained about the
6455	     member-designator already).  */
6456	  if (!in_system_header && !constructor_designated
6457	      && !(value.value && (integer_zerop (value.value)
6458				   || real_zerop (value.value))))
6459	    warning (OPT_Wtraditional, "traditional C rejects initialization "
6460		     "of unions");
6461
6462	  /* Accept a string constant to initialize a subarray.  */
6463	  if (value.value != 0
6464	      && fieldcode == ARRAY_TYPE
6465	      && INTEGRAL_TYPE_P (TREE_TYPE (fieldtype))
6466	      && string_flag)
6467	    value.value = orig_value;
6468	  /* Otherwise, if we have come to a subaggregate,
6469	     and we don't have an element of its type, push into it.  */
6470	  else if (value.value != 0
6471		   && value.value != error_mark_node
6472		   && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != fieldtype
6473		   && (fieldcode == RECORD_TYPE || fieldcode == ARRAY_TYPE
6474		       || fieldcode == UNION_TYPE))
6475	    {
6476	      push_init_level (1);
6477	      continue;
6478	    }
6479
6480	  if (value.value)
6481	    {
6482	      push_member_name (constructor_fields);
6483	      output_init_element (value.value, strict_string,
6484				   fieldtype, constructor_fields, 1);
6485	      RESTORE_SPELLING_DEPTH (constructor_depth);
6486	    }
6487	  else
6488	    /* Do the bookkeeping for an element that was
6489	       directly output as a constructor.  */
6490	    {
6491	      constructor_bit_index = DECL_SIZE (constructor_fields);
6492	      constructor_unfilled_fields = TREE_CHAIN (constructor_fields);
6493	    }
6494
6495	  constructor_fields = 0;
6496	}
6497      else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6498	{
6499	  tree elttype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
6500	  enum tree_code eltcode = TREE_CODE (elttype);
6501
6502	  /* Accept a string constant to initialize a subarray.  */
6503	  if (value.value != 0
6504	      && eltcode == ARRAY_TYPE
6505	      && INTEGRAL_TYPE_P (TREE_TYPE (elttype))
6506	      && string_flag)
6507	    value.value = orig_value;
6508	  /* Otherwise, if we have come to a subaggregate,
6509	     and we don't have an element of its type, push into it.  */
6510	  else if (value.value != 0
6511		   && value.value != error_mark_node
6512		   && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != elttype
6513		   && (eltcode == RECORD_TYPE || eltcode == ARRAY_TYPE
6514		       || eltcode == UNION_TYPE))
6515	    {
6516	      push_init_level (1);
6517	      continue;
6518	    }
6519
6520	  if (constructor_max_index != 0
6521	      && (tree_int_cst_lt (constructor_max_index, constructor_index)
6522		  || integer_all_onesp (constructor_max_index)))
6523	    {
6524	      pedwarn_init ("excess elements in array initializer");
6525	      break;
6526	    }
6527
6528	  /* Now output the actual element.  */
6529	  if (value.value)
6530	    {
6531	      push_array_bounds (tree_low_cst (constructor_index, 1));
6532	      output_init_element (value.value, strict_string,
6533				   elttype, constructor_index, 1);
6534	      RESTORE_SPELLING_DEPTH (constructor_depth);
6535	    }
6536
6537	  constructor_index
6538	    = size_binop (PLUS_EXPR, constructor_index, bitsize_one_node);
6539
6540	  if (!value.value)
6541	    /* If we are doing the bookkeeping for an element that was
6542	       directly output as a constructor, we must update
6543	       constructor_unfilled_index.  */
6544	    constructor_unfilled_index = constructor_index;
6545	}
6546      else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
6547	{
6548	  tree elttype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
6549
6550         /* Do a basic check of initializer size.  Note that vectors
6551            always have a fixed size derived from their type.  */
6552	  if (tree_int_cst_lt (constructor_max_index, constructor_index))
6553	    {
6554	      pedwarn_init ("excess elements in vector initializer");
6555	      break;
6556	    }
6557
6558	  /* Now output the actual element.  */
6559	  if (value.value)
6560	    output_init_element (value.value, strict_string,
6561				 elttype, constructor_index, 1);
6562
6563	  constructor_index
6564	    = size_binop (PLUS_EXPR, constructor_index, bitsize_one_node);
6565
6566	  if (!value.value)
6567	    /* If we are doing the bookkeeping for an element that was
6568	       directly output as a constructor, we must update
6569	       constructor_unfilled_index.  */
6570	    constructor_unfilled_index = constructor_index;
6571	}
6572
6573      /* Handle the sole element allowed in a braced initializer
6574	 for a scalar variable.  */
6575      else if (constructor_type != error_mark_node
6576	       && constructor_fields == 0)
6577	{
6578	  pedwarn_init ("excess elements in scalar initializer");
6579	  break;
6580	}
6581      else
6582	{
6583	  if (value.value)
6584	    output_init_element (value.value, strict_string,
6585				 constructor_type, NULL_TREE, 1);
6586	  constructor_fields = 0;
6587	}
6588
6589      /* Handle range initializers either at this level or anywhere higher
6590	 in the designator stack.  */
6591      if (constructor_range_stack)
6592	{
6593	  struct constructor_range_stack *p, *range_stack;
6594	  int finish = 0;
6595
6596	  range_stack = constructor_range_stack;
6597	  constructor_range_stack = 0;
6598	  while (constructor_stack != range_stack->stack)
6599	    {
6600	      gcc_assert (constructor_stack->implicit);
6601	      process_init_element (pop_init_level (1));
6602	    }
6603	  for (p = range_stack;
6604	       !p->range_end || tree_int_cst_equal (p->index, p->range_end);
6605	       p = p->prev)
6606	    {
6607	      gcc_assert (constructor_stack->implicit);
6608	      process_init_element (pop_init_level (1));
6609	    }
6610
6611	  p->index = size_binop (PLUS_EXPR, p->index, bitsize_one_node);
6612	  if (tree_int_cst_equal (p->index, p->range_end) && !p->prev)
6613	    finish = 1;
6614
6615	  while (1)
6616	    {
6617	      constructor_index = p->index;
6618	      constructor_fields = p->fields;
6619	      if (finish && p->range_end && p->index == p->range_start)
6620		{
6621		  finish = 0;
6622		  p->prev = 0;
6623		}
6624	      p = p->next;
6625	      if (!p)
6626		break;
6627	      push_init_level (2);
6628	      p->stack = constructor_stack;
6629	      if (p->range_end && tree_int_cst_equal (p->index, p->range_end))
6630		p->index = p->range_start;
6631	    }
6632
6633	  if (!finish)
6634	    constructor_range_stack = range_stack;
6635	  continue;
6636	}
6637
6638      break;
6639    }
6640
6641  constructor_range_stack = 0;
6642}
6643
6644/* Build a complete asm-statement, whose components are a CV_QUALIFIER
6645   (guaranteed to be 'volatile' or null) and ARGS (represented using
6646   an ASM_EXPR node).  */
6647tree
6648build_asm_stmt (tree cv_qualifier, tree args)
6649{
6650  if (!ASM_VOLATILE_P (args) && cv_qualifier)
6651    ASM_VOLATILE_P (args) = 1;
6652  return add_stmt (args);
6653}
6654
6655/* Build an asm-expr, whose components are a STRING, some OUTPUTS,
6656   some INPUTS, and some CLOBBERS.  The latter three may be NULL.
6657   SIMPLE indicates whether there was anything at all after the
6658   string in the asm expression -- asm("blah") and asm("blah" : )
6659   are subtly different.  We use a ASM_EXPR node to represent this.  */
6660tree
6661build_asm_expr (tree string, tree outputs, tree inputs, tree clobbers,
6662		bool simple)
6663{
6664  tree tail;
6665  tree args;
6666  int i;
6667  const char *constraint;
6668  const char **oconstraints;
6669  bool allows_mem, allows_reg, is_inout;
6670  int ninputs, noutputs;
6671
6672  ninputs = list_length (inputs);
6673  noutputs = list_length (outputs);
6674  oconstraints = (const char **) alloca (noutputs * sizeof (const char *));
6675
6676  string = resolve_asm_operand_names (string, outputs, inputs);
6677
6678  /* Remove output conversions that change the type but not the mode.  */
6679  for (i = 0, tail = outputs; tail; ++i, tail = TREE_CHAIN (tail))
6680    {
6681      tree output = TREE_VALUE (tail);
6682
6683      /* ??? Really, this should not be here.  Users should be using a
6684	 proper lvalue, dammit.  But there's a long history of using casts
6685	 in the output operands.  In cases like longlong.h, this becomes a
6686	 primitive form of typechecking -- if the cast can be removed, then
6687	 the output operand had a type of the proper width; otherwise we'll
6688	 get an error.  Gross, but ...  */
6689      STRIP_NOPS (output);
6690
6691      if (!lvalue_or_else (output, lv_asm))
6692	output = error_mark_node;
6693
6694      if (output != error_mark_node
6695	  && (TREE_READONLY (output)
6696	      || TYPE_READONLY (TREE_TYPE (output))
6697	      || ((TREE_CODE (TREE_TYPE (output)) == RECORD_TYPE
6698		   || TREE_CODE (TREE_TYPE (output)) == UNION_TYPE)
6699		  && C_TYPE_FIELDS_READONLY (TREE_TYPE (output)))))
6700	readonly_error (output, lv_asm);
6701
6702      constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (tail)));
6703      oconstraints[i] = constraint;
6704
6705      if (parse_output_constraint (&constraint, i, ninputs, noutputs,
6706				   &allows_mem, &allows_reg, &is_inout))
6707	{
6708	  /* If the operand is going to end up in memory,
6709	     mark it addressable.  */
6710	  if (!allows_reg && !c_mark_addressable (output))
6711	    output = error_mark_node;
6712	}
6713      else
6714        output = error_mark_node;
6715
6716      TREE_VALUE (tail) = output;
6717    }
6718
6719  for (i = 0, tail = inputs; tail; ++i, tail = TREE_CHAIN (tail))
6720    {
6721      tree input;
6722
6723      constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (tail)));
6724      input = TREE_VALUE (tail);
6725
6726      if (parse_input_constraint (&constraint, i, ninputs, noutputs, 0,
6727				  oconstraints, &allows_mem, &allows_reg))
6728	{
6729	  /* If the operand is going to end up in memory,
6730	     mark it addressable.  */
6731	  if (!allows_reg && allows_mem)
6732	    {
6733	      /* Strip the nops as we allow this case.  FIXME, this really
6734		 should be rejected or made deprecated.  */
6735	      STRIP_NOPS (input);
6736	      if (!c_mark_addressable (input))
6737		input = error_mark_node;
6738	  }
6739	}
6740      else
6741	input = error_mark_node;
6742
6743      TREE_VALUE (tail) = input;
6744    }
6745
6746  args = build_stmt (ASM_EXPR, string, outputs, inputs, clobbers);
6747
6748  /* asm statements without outputs, including simple ones, are treated
6749     as volatile.  */
6750  ASM_INPUT_P (args) = simple;
6751  ASM_VOLATILE_P (args) = (noutputs == 0);
6752
6753  return args;
6754}
6755
6756/* Generate a goto statement to LABEL.  */
6757
6758tree
6759c_finish_goto_label (tree label)
6760{
6761  tree decl = lookup_label (label);
6762  if (!decl)
6763    return NULL_TREE;
6764
6765  if (C_DECL_UNJUMPABLE_STMT_EXPR (decl))
6766    {
6767      error ("jump into statement expression");
6768      return NULL_TREE;
6769    }
6770
6771  if (C_DECL_UNJUMPABLE_VM (decl))
6772    {
6773      error ("jump into scope of identifier with variably modified type");
6774      return NULL_TREE;
6775    }
6776
6777  if (!C_DECL_UNDEFINABLE_STMT_EXPR (decl))
6778    {
6779      /* No jump from outside this statement expression context, so
6780	 record that there is a jump from within this context.  */
6781      struct c_label_list *nlist;
6782      nlist = XOBNEW (&parser_obstack, struct c_label_list);
6783      nlist->next = label_context_stack_se->labels_used;
6784      nlist->label = decl;
6785      label_context_stack_se->labels_used = nlist;
6786    }
6787
6788  if (!C_DECL_UNDEFINABLE_VM (decl))
6789    {
6790      /* No jump from outside this context context of identifiers with
6791	 variably modified type, so record that there is a jump from
6792	 within this context.  */
6793      struct c_label_list *nlist;
6794      nlist = XOBNEW (&parser_obstack, struct c_label_list);
6795      nlist->next = label_context_stack_vm->labels_used;
6796      nlist->label = decl;
6797      label_context_stack_vm->labels_used = nlist;
6798    }
6799
6800  TREE_USED (decl) = 1;
6801  return add_stmt (build1 (GOTO_EXPR, void_type_node, decl));
6802}
6803
6804/* Generate a computed goto statement to EXPR.  */
6805
6806tree
6807c_finish_goto_ptr (tree expr)
6808{
6809  if (pedantic)
6810    pedwarn ("ISO C forbids %<goto *expr;%>");
6811  expr = convert (ptr_type_node, expr);
6812  return add_stmt (build1 (GOTO_EXPR, void_type_node, expr));
6813}
6814
6815/* Generate a C `return' statement.  RETVAL is the expression for what
6816   to return, or a null pointer for `return;' with no value.  */
6817
6818tree
6819c_finish_return (tree retval)
6820{
6821  tree valtype = TREE_TYPE (TREE_TYPE (current_function_decl)), ret_stmt;
6822  bool no_warning = false;
6823
6824  if (TREE_THIS_VOLATILE (current_function_decl))
6825    warning (0, "function declared %<noreturn%> has a %<return%> statement");
6826
6827  if (!retval)
6828    {
6829      current_function_returns_null = 1;
6830      if ((warn_return_type || flag_isoc99)
6831	  && valtype != 0 && TREE_CODE (valtype) != VOID_TYPE)
6832	{
6833	  pedwarn_c99 ("%<return%> with no value, in "
6834		       "function returning non-void");
6835	  no_warning = true;
6836	}
6837    }
6838  else if (valtype == 0 || TREE_CODE (valtype) == VOID_TYPE)
6839    {
6840      current_function_returns_null = 1;
6841      if (pedantic || TREE_CODE (TREE_TYPE (retval)) != VOID_TYPE)
6842	pedwarn ("%<return%> with a value, in function returning void");
6843    }
6844  else
6845    {
6846      tree t = convert_for_assignment (valtype, retval, ic_return,
6847				       NULL_TREE, NULL_TREE, 0);
6848      tree res = DECL_RESULT (current_function_decl);
6849      tree inner;
6850
6851      current_function_returns_value = 1;
6852      if (t == error_mark_node)
6853	return NULL_TREE;
6854
6855      inner = t = convert (TREE_TYPE (res), t);
6856
6857      /* Strip any conversions, additions, and subtractions, and see if
6858	 we are returning the address of a local variable.  Warn if so.  */
6859      while (1)
6860	{
6861	  switch (TREE_CODE (inner))
6862	    {
6863	    case NOP_EXPR:   case NON_LVALUE_EXPR:  case CONVERT_EXPR:
6864	    case PLUS_EXPR:
6865	      inner = TREE_OPERAND (inner, 0);
6866	      continue;
6867
6868	    case MINUS_EXPR:
6869	      /* If the second operand of the MINUS_EXPR has a pointer
6870		 type (or is converted from it), this may be valid, so
6871		 don't give a warning.  */
6872	      {
6873		tree op1 = TREE_OPERAND (inner, 1);
6874
6875		while (!POINTER_TYPE_P (TREE_TYPE (op1))
6876		       && (TREE_CODE (op1) == NOP_EXPR
6877			   || TREE_CODE (op1) == NON_LVALUE_EXPR
6878			   || TREE_CODE (op1) == CONVERT_EXPR))
6879		  op1 = TREE_OPERAND (op1, 0);
6880
6881		if (POINTER_TYPE_P (TREE_TYPE (op1)))
6882		  break;
6883
6884		inner = TREE_OPERAND (inner, 0);
6885		continue;
6886	      }
6887
6888	    case ADDR_EXPR:
6889	      inner = TREE_OPERAND (inner, 0);
6890
6891	      while (REFERENCE_CLASS_P (inner)
6892	             && TREE_CODE (inner) != INDIRECT_REF)
6893		inner = TREE_OPERAND (inner, 0);
6894
6895	      if (DECL_P (inner)
6896		  && !DECL_EXTERNAL (inner)
6897		  && !TREE_STATIC (inner)
6898		  && DECL_CONTEXT (inner) == current_function_decl)
6899		warning (0, "function returns address of local variable");
6900	      break;
6901
6902	    default:
6903	      break;
6904	    }
6905
6906	  break;
6907	}
6908
6909      retval = build2 (MODIFY_EXPR, TREE_TYPE (res), res, t);
6910    }
6911
6912  ret_stmt = build_stmt (RETURN_EXPR, retval);
6913  TREE_NO_WARNING (ret_stmt) |= no_warning;
6914  return add_stmt (ret_stmt);
6915}
6916
6917struct c_switch {
6918  /* The SWITCH_EXPR being built.  */
6919  tree switch_expr;
6920
6921  /* The original type of the testing expression, i.e. before the
6922     default conversion is applied.  */
6923  tree orig_type;
6924
6925  /* A splay-tree mapping the low element of a case range to the high
6926     element, or NULL_TREE if there is no high element.  Used to
6927     determine whether or not a new case label duplicates an old case
6928     label.  We need a tree, rather than simply a hash table, because
6929     of the GNU case range extension.  */
6930  splay_tree cases;
6931
6932  /* Number of nested statement expressions within this switch
6933     statement; if nonzero, case and default labels may not
6934     appear.  */
6935  unsigned int blocked_stmt_expr;
6936
6937  /* Scope of outermost declarations of identifiers with variably
6938     modified type within this switch statement; if nonzero, case and
6939     default labels may not appear.  */
6940  unsigned int blocked_vm;
6941
6942  /* The next node on the stack.  */
6943  struct c_switch *next;
6944};
6945
6946/* A stack of the currently active switch statements.  The innermost
6947   switch statement is on the top of the stack.  There is no need to
6948   mark the stack for garbage collection because it is only active
6949   during the processing of the body of a function, and we never
6950   collect at that point.  */
6951
6952struct c_switch *c_switch_stack;
6953
6954/* Start a C switch statement, testing expression EXP.  Return the new
6955   SWITCH_EXPR.  */
6956
6957tree
6958c_start_case (tree exp)
6959{
6960  enum tree_code code;
6961  tree type, orig_type = error_mark_node;
6962  struct c_switch *cs;
6963
6964  if (exp != error_mark_node)
6965    {
6966      code = TREE_CODE (TREE_TYPE (exp));
6967      orig_type = TREE_TYPE (exp);
6968
6969      if (!INTEGRAL_TYPE_P (orig_type)
6970	  && code != ERROR_MARK)
6971	{
6972	  error ("switch quantity not an integer");
6973	  exp = integer_zero_node;
6974	  orig_type = error_mark_node;
6975	}
6976      else
6977	{
6978	  type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
6979
6980	  if (!in_system_header
6981	      && (type == long_integer_type_node
6982		  || type == long_unsigned_type_node))
6983	    warning (OPT_Wtraditional, "%<long%> switch expression not "
6984		     "converted to %<int%> in ISO C");
6985
6986	  exp = default_conversion (exp);
6987	  type = TREE_TYPE (exp);
6988	}
6989    }
6990
6991  /* Add this new SWITCH_EXPR to the stack.  */
6992  cs = XNEW (struct c_switch);
6993  cs->switch_expr = build3 (SWITCH_EXPR, orig_type, exp, NULL_TREE, NULL_TREE);
6994  cs->orig_type = orig_type;
6995  cs->cases = splay_tree_new (case_compare, NULL, NULL);
6996  cs->blocked_stmt_expr = 0;
6997  cs->blocked_vm = 0;
6998  cs->next = c_switch_stack;
6999  c_switch_stack = cs;
7000
7001  return add_stmt (cs->switch_expr);
7002}
7003
7004/* Process a case label.  */
7005
7006tree
7007do_case (tree low_value, tree high_value)
7008{
7009  tree label = NULL_TREE;
7010
7011  if (c_switch_stack && !c_switch_stack->blocked_stmt_expr
7012      && !c_switch_stack->blocked_vm)
7013    {
7014      label = c_add_case_label (c_switch_stack->cases,
7015				SWITCH_COND (c_switch_stack->switch_expr),
7016				c_switch_stack->orig_type,
7017				low_value, high_value);
7018      if (label == error_mark_node)
7019	label = NULL_TREE;
7020    }
7021  else if (c_switch_stack && c_switch_stack->blocked_stmt_expr)
7022    {
7023      if (low_value)
7024	error ("case label in statement expression not containing "
7025	       "enclosing switch statement");
7026      else
7027	error ("%<default%> label in statement expression not containing "
7028	       "enclosing switch statement");
7029    }
7030  else if (c_switch_stack && c_switch_stack->blocked_vm)
7031    {
7032      if (low_value)
7033	error ("case label in scope of identifier with variably modified "
7034	       "type not containing enclosing switch statement");
7035      else
7036	error ("%<default%> label in scope of identifier with variably "
7037	       "modified type not containing enclosing switch statement");
7038    }
7039  else if (low_value)
7040    error ("case label not within a switch statement");
7041  else
7042    error ("%<default%> label not within a switch statement");
7043
7044  return label;
7045}
7046
7047/* Finish the switch statement.  */
7048
7049void
7050c_finish_case (tree body)
7051{
7052  struct c_switch *cs = c_switch_stack;
7053  location_t switch_location;
7054
7055  SWITCH_BODY (cs->switch_expr) = body;
7056
7057  /* We must not be within a statement expression nested in the switch
7058     at this point; we might, however, be within the scope of an
7059     identifier with variably modified type nested in the switch.  */
7060  gcc_assert (!cs->blocked_stmt_expr);
7061
7062  /* Emit warnings as needed.  */
7063  if (EXPR_HAS_LOCATION (cs->switch_expr))
7064    switch_location = EXPR_LOCATION (cs->switch_expr);
7065  else
7066    switch_location = input_location;
7067  c_do_switch_warnings (cs->cases, switch_location,
7068			TREE_TYPE (cs->switch_expr),
7069			SWITCH_COND (cs->switch_expr));
7070
7071  /* Pop the stack.  */
7072  c_switch_stack = cs->next;
7073  splay_tree_delete (cs->cases);
7074  XDELETE (cs);
7075}
7076
7077/* Emit an if statement.  IF_LOCUS is the location of the 'if'.  COND,
7078   THEN_BLOCK and ELSE_BLOCK are expressions to be used; ELSE_BLOCK
7079   may be null.  NESTED_IF is true if THEN_BLOCK contains another IF
7080   statement, and was not surrounded with parenthesis.  */
7081
7082void
7083c_finish_if_stmt (location_t if_locus, tree cond, tree then_block,
7084		  tree else_block, bool nested_if)
7085{
7086  tree stmt;
7087
7088  /* Diagnose an ambiguous else if if-then-else is nested inside if-then.  */
7089  if (warn_parentheses && nested_if && else_block == NULL)
7090    {
7091      tree inner_if = then_block;
7092
7093      /* We know from the grammar productions that there is an IF nested
7094	 within THEN_BLOCK.  Due to labels and c99 conditional declarations,
7095	 it might not be exactly THEN_BLOCK, but should be the last
7096	 non-container statement within.  */
7097      while (1)
7098	switch (TREE_CODE (inner_if))
7099	  {
7100	  case COND_EXPR:
7101	    goto found;
7102	  case BIND_EXPR:
7103	    inner_if = BIND_EXPR_BODY (inner_if);
7104	    break;
7105	  case STATEMENT_LIST:
7106	    inner_if = expr_last (then_block);
7107	    break;
7108	  case TRY_FINALLY_EXPR:
7109	  case TRY_CATCH_EXPR:
7110	    inner_if = TREE_OPERAND (inner_if, 0);
7111	    break;
7112	  default:
7113	    gcc_unreachable ();
7114	  }
7115    found:
7116
7117      if (COND_EXPR_ELSE (inner_if))
7118	 warning (OPT_Wparentheses,
7119		  "%Hsuggest explicit braces to avoid ambiguous %<else%>",
7120		  &if_locus);
7121    }
7122
7123  /* Diagnose ";" via the special empty statement node that we create.  */
7124  if (extra_warnings)
7125    {
7126      tree *inner_then = &then_block, *inner_else = &else_block;
7127
7128      if (TREE_CODE (*inner_then) == STATEMENT_LIST
7129	  && STATEMENT_LIST_TAIL (*inner_then))
7130	inner_then = &STATEMENT_LIST_TAIL (*inner_then)->stmt;
7131      if (*inner_else && TREE_CODE (*inner_else) == STATEMENT_LIST
7132	  && STATEMENT_LIST_TAIL (*inner_else))
7133	inner_else = &STATEMENT_LIST_TAIL (*inner_else)->stmt;
7134
7135      if (TREE_CODE (*inner_then) == NOP_EXPR && !TREE_TYPE (*inner_then))
7136	{
7137	  if (!*inner_else)
7138	    warning (0, "%Hempty body in an if-statement",
7139		     EXPR_LOCUS (*inner_then));
7140
7141	  *inner_then = alloc_stmt_list ();
7142	}
7143      if (*inner_else
7144	  && TREE_CODE (*inner_else) == NOP_EXPR
7145	  && !TREE_TYPE (*inner_else))
7146	{
7147	  warning (0, "%Hempty body in an else-statement",
7148		   EXPR_LOCUS (*inner_else));
7149
7150	  *inner_else = alloc_stmt_list ();
7151	}
7152    }
7153
7154  stmt = build3 (COND_EXPR, void_type_node, cond, then_block, else_block);
7155  SET_EXPR_LOCATION (stmt, if_locus);
7156  add_stmt (stmt);
7157}
7158
7159/* Emit a general-purpose loop construct.  START_LOCUS is the location of
7160   the beginning of the loop.  COND is the loop condition.  COND_IS_FIRST
7161   is false for DO loops.  INCR is the FOR increment expression.  BODY is
7162   the statement controlled by the loop.  BLAB is the break label.  CLAB is
7163   the continue label.  Everything is allowed to be NULL.  */
7164
7165void
7166c_finish_loop (location_t start_locus, tree cond, tree incr, tree body,
7167	       tree blab, tree clab, bool cond_is_first)
7168{
7169  tree entry = NULL, exit = NULL, t;
7170
7171  /* If the condition is zero don't generate a loop construct.  */
7172  if (cond && integer_zerop (cond))
7173    {
7174      if (cond_is_first)
7175	{
7176	  t = build_and_jump (&blab);
7177	  SET_EXPR_LOCATION (t, start_locus);
7178	  add_stmt (t);
7179	}
7180    }
7181  else
7182    {
7183      tree top = build1 (LABEL_EXPR, void_type_node, NULL_TREE);
7184
7185      /* If we have an exit condition, then we build an IF with gotos either
7186         out of the loop, or to the top of it.  If there's no exit condition,
7187         then we just build a jump back to the top.  */
7188      exit = build_and_jump (&LABEL_EXPR_LABEL (top));
7189
7190      if (cond && !integer_nonzerop (cond))
7191        {
7192          /* Canonicalize the loop condition to the end.  This means
7193             generating a branch to the loop condition.  Reuse the
7194             continue label, if possible.  */
7195          if (cond_is_first)
7196            {
7197              if (incr || !clab)
7198                {
7199                  entry = build1 (LABEL_EXPR, void_type_node, NULL_TREE);
7200                  t = build_and_jump (&LABEL_EXPR_LABEL (entry));
7201                }
7202              else
7203                t = build1 (GOTO_EXPR, void_type_node, clab);
7204	      SET_EXPR_LOCATION (t, start_locus);
7205              add_stmt (t);
7206            }
7207
7208	  t = build_and_jump (&blab);
7209          exit = fold_build3 (COND_EXPR, void_type_node, cond, exit, t);
7210	  if (cond_is_first)
7211            SET_EXPR_LOCATION (exit, start_locus);
7212	  else
7213            SET_EXPR_LOCATION (exit, input_location);
7214        }
7215
7216      add_stmt (top);
7217    }
7218
7219  if (body)
7220    add_stmt (body);
7221  if (clab)
7222    add_stmt (build1 (LABEL_EXPR, void_type_node, clab));
7223  if (incr)
7224    add_stmt (incr);
7225  if (entry)
7226    add_stmt (entry);
7227  if (exit)
7228    add_stmt (exit);
7229  if (blab)
7230    add_stmt (build1 (LABEL_EXPR, void_type_node, blab));
7231}
7232
7233tree
7234c_finish_bc_stmt (tree *label_p, bool is_break)
7235{
7236  bool skip;
7237  tree label = *label_p;
7238
7239  /* In switch statements break is sometimes stylistically used after
7240     a return statement.  This can lead to spurious warnings about
7241     control reaching the end of a non-void function when it is
7242     inlined.  Note that we are calling block_may_fallthru with
7243     language specific tree nodes; this works because
7244     block_may_fallthru returns true when given something it does not
7245     understand.  */
7246  skip = !block_may_fallthru (cur_stmt_list);
7247
7248  if (!label)
7249    {
7250      if (!skip)
7251	*label_p = label = create_artificial_label ();
7252    }
7253  else if (TREE_CODE (label) != LABEL_DECL)
7254    {
7255      if (is_break)
7256	error ("break statement not within loop or switch");
7257      else
7258        error ("continue statement not within a loop");
7259      return NULL_TREE;
7260    }
7261
7262  if (skip)
7263    return NULL_TREE;
7264
7265  return add_stmt (build1 (GOTO_EXPR, void_type_node, label));
7266}
7267
7268/* A helper routine for c_process_expr_stmt and c_finish_stmt_expr.  */
7269
7270static void
7271emit_side_effect_warnings (tree expr)
7272{
7273  if (expr == error_mark_node)
7274    ;
7275  else if (!TREE_SIDE_EFFECTS (expr))
7276    {
7277      if (!VOID_TYPE_P (TREE_TYPE (expr)) && !TREE_NO_WARNING (expr))
7278	warning (0, "%Hstatement with no effect",
7279		 EXPR_HAS_LOCATION (expr) ? EXPR_LOCUS (expr) : &input_location);
7280    }
7281  else if (warn_unused_value)
7282    warn_if_unused_value (expr, input_location);
7283}
7284
7285/* Process an expression as if it were a complete statement.  Emit
7286   diagnostics, but do not call ADD_STMT.  */
7287
7288tree
7289c_process_expr_stmt (tree expr)
7290{
7291  if (!expr)
7292    return NULL_TREE;
7293
7294  if (warn_sequence_point)
7295    verify_sequence_points (expr);
7296
7297  if (TREE_TYPE (expr) != error_mark_node
7298      && !COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (expr))
7299      && TREE_CODE (TREE_TYPE (expr)) != ARRAY_TYPE)
7300    error ("expression statement has incomplete type");
7301
7302  /* If we're not processing a statement expression, warn about unused values.
7303     Warnings for statement expressions will be emitted later, once we figure
7304     out which is the result.  */
7305  if (!STATEMENT_LIST_STMT_EXPR (cur_stmt_list)
7306      && (extra_warnings || warn_unused_value))
7307    emit_side_effect_warnings (expr);
7308
7309  /* If the expression is not of a type to which we cannot assign a line
7310     number, wrap the thing in a no-op NOP_EXPR.  */
7311  if (DECL_P (expr) || CONSTANT_CLASS_P (expr))
7312    expr = build1 (NOP_EXPR, TREE_TYPE (expr), expr);
7313
7314  if (EXPR_P (expr))
7315    SET_EXPR_LOCATION (expr, input_location);
7316
7317  return expr;
7318}
7319
7320/* Emit an expression as a statement.  */
7321
7322tree
7323c_finish_expr_stmt (tree expr)
7324{
7325  if (expr)
7326    return add_stmt (c_process_expr_stmt (expr));
7327  else
7328    return NULL;
7329}
7330
7331/* Do the opposite and emit a statement as an expression.  To begin,
7332   create a new binding level and return it.  */
7333
7334tree
7335c_begin_stmt_expr (void)
7336{
7337  tree ret;
7338  struct c_label_context_se *nstack;
7339  struct c_label_list *glist;
7340
7341  /* We must force a BLOCK for this level so that, if it is not expanded
7342     later, there is a way to turn off the entire subtree of blocks that
7343     are contained in it.  */
7344  keep_next_level ();
7345  ret = c_begin_compound_stmt (true);
7346  if (c_switch_stack)
7347    {
7348      c_switch_stack->blocked_stmt_expr++;
7349      gcc_assert (c_switch_stack->blocked_stmt_expr != 0);
7350    }
7351  for (glist = label_context_stack_se->labels_used;
7352       glist != NULL;
7353       glist = glist->next)
7354    {
7355      C_DECL_UNDEFINABLE_STMT_EXPR (glist->label) = 1;
7356    }
7357  nstack = XOBNEW (&parser_obstack, struct c_label_context_se);
7358  nstack->labels_def = NULL;
7359  nstack->labels_used = NULL;
7360  nstack->next = label_context_stack_se;
7361  label_context_stack_se = nstack;
7362
7363  /* Mark the current statement list as belonging to a statement list.  */
7364  STATEMENT_LIST_STMT_EXPR (ret) = 1;
7365
7366  return ret;
7367}
7368
7369tree
7370c_finish_stmt_expr (tree body)
7371{
7372  tree last, type, tmp, val;
7373  tree *last_p;
7374  struct c_label_list *dlist, *glist, *glist_prev = NULL;
7375
7376  body = c_end_compound_stmt (body, true);
7377  if (c_switch_stack)
7378    {
7379      gcc_assert (c_switch_stack->blocked_stmt_expr != 0);
7380      c_switch_stack->blocked_stmt_expr--;
7381    }
7382  /* It is no longer possible to jump to labels defined within this
7383     statement expression.  */
7384  for (dlist = label_context_stack_se->labels_def;
7385       dlist != NULL;
7386       dlist = dlist->next)
7387    {
7388      C_DECL_UNJUMPABLE_STMT_EXPR (dlist->label) = 1;
7389    }
7390  /* It is again possible to define labels with a goto just outside
7391     this statement expression.  */
7392  for (glist = label_context_stack_se->next->labels_used;
7393       glist != NULL;
7394       glist = glist->next)
7395    {
7396      C_DECL_UNDEFINABLE_STMT_EXPR (glist->label) = 0;
7397      glist_prev = glist;
7398    }
7399  if (glist_prev != NULL)
7400    glist_prev->next = label_context_stack_se->labels_used;
7401  else
7402    label_context_stack_se->next->labels_used
7403      = label_context_stack_se->labels_used;
7404  label_context_stack_se = label_context_stack_se->next;
7405
7406  /* Locate the last statement in BODY.  See c_end_compound_stmt
7407     about always returning a BIND_EXPR.  */
7408  last_p = &BIND_EXPR_BODY (body);
7409  last = BIND_EXPR_BODY (body);
7410
7411 continue_searching:
7412  if (TREE_CODE (last) == STATEMENT_LIST)
7413    {
7414      tree_stmt_iterator i;
7415
7416      /* This can happen with degenerate cases like ({ }).  No value.  */
7417      if (!TREE_SIDE_EFFECTS (last))
7418	return body;
7419
7420      /* If we're supposed to generate side effects warnings, process
7421	 all of the statements except the last.  */
7422      if (extra_warnings || warn_unused_value)
7423	{
7424	  for (i = tsi_start (last); !tsi_one_before_end_p (i); tsi_next (&i))
7425	    emit_side_effect_warnings (tsi_stmt (i));
7426	}
7427      else
7428	i = tsi_last (last);
7429      last_p = tsi_stmt_ptr (i);
7430      last = *last_p;
7431    }
7432
7433  /* If the end of the list is exception related, then the list was split
7434     by a call to push_cleanup.  Continue searching.  */
7435  if (TREE_CODE (last) == TRY_FINALLY_EXPR
7436      || TREE_CODE (last) == TRY_CATCH_EXPR)
7437    {
7438      last_p = &TREE_OPERAND (last, 0);
7439      last = *last_p;
7440      goto continue_searching;
7441    }
7442
7443  /* In the case that the BIND_EXPR is not necessary, return the
7444     expression out from inside it.  */
7445  if (last == error_mark_node
7446      || (last == BIND_EXPR_BODY (body)
7447	  && BIND_EXPR_VARS (body) == NULL))
7448    {
7449      /* Do not warn if the return value of a statement expression is
7450	 unused.  */
7451      if (EXPR_P (last))
7452	TREE_NO_WARNING (last) = 1;
7453      return last;
7454    }
7455
7456  /* Extract the type of said expression.  */
7457  type = TREE_TYPE (last);
7458
7459  /* If we're not returning a value at all, then the BIND_EXPR that
7460     we already have is a fine expression to return.  */
7461  if (!type || VOID_TYPE_P (type))
7462    return body;
7463
7464  /* Now that we've located the expression containing the value, it seems
7465     silly to make voidify_wrapper_expr repeat the process.  Create a
7466     temporary of the appropriate type and stick it in a TARGET_EXPR.  */
7467  tmp = create_tmp_var_raw (type, NULL);
7468
7469  /* Unwrap a no-op NOP_EXPR as added by c_finish_expr_stmt.  This avoids
7470     tree_expr_nonnegative_p giving up immediately.  */
7471  val = last;
7472  if (TREE_CODE (val) == NOP_EXPR
7473      && TREE_TYPE (val) == TREE_TYPE (TREE_OPERAND (val, 0)))
7474    val = TREE_OPERAND (val, 0);
7475
7476  *last_p = build2 (MODIFY_EXPR, void_type_node, tmp, val);
7477  SET_EXPR_LOCUS (*last_p, EXPR_LOCUS (last));
7478
7479  return build4 (TARGET_EXPR, type, tmp, body, NULL_TREE, NULL_TREE);
7480}
7481
7482/* Begin the scope of an identifier of variably modified type, scope
7483   number SCOPE.  Jumping from outside this scope to inside it is not
7484   permitted.  */
7485
7486void
7487c_begin_vm_scope (unsigned int scope)
7488{
7489  struct c_label_context_vm *nstack;
7490  struct c_label_list *glist;
7491
7492  gcc_assert (scope > 0);
7493  if (c_switch_stack && !c_switch_stack->blocked_vm)
7494    c_switch_stack->blocked_vm = scope;
7495  for (glist = label_context_stack_vm->labels_used;
7496       glist != NULL;
7497       glist = glist->next)
7498    {
7499      C_DECL_UNDEFINABLE_VM (glist->label) = 1;
7500    }
7501  nstack = XOBNEW (&parser_obstack, struct c_label_context_vm);
7502  nstack->labels_def = NULL;
7503  nstack->labels_used = NULL;
7504  nstack->scope = scope;
7505  nstack->next = label_context_stack_vm;
7506  label_context_stack_vm = nstack;
7507}
7508
7509/* End a scope which may contain identifiers of variably modified
7510   type, scope number SCOPE.  */
7511
7512void
7513c_end_vm_scope (unsigned int scope)
7514{
7515  if (label_context_stack_vm == NULL)
7516    return;
7517  if (c_switch_stack && c_switch_stack->blocked_vm == scope)
7518    c_switch_stack->blocked_vm = 0;
7519  /* We may have a number of nested scopes of identifiers with
7520     variably modified type, all at this depth.  Pop each in turn.  */
7521  while (label_context_stack_vm->scope == scope)
7522    {
7523      struct c_label_list *dlist, *glist, *glist_prev = NULL;
7524
7525      /* It is no longer possible to jump to labels defined within this
7526	 scope.  */
7527      for (dlist = label_context_stack_vm->labels_def;
7528	   dlist != NULL;
7529	   dlist = dlist->next)
7530	{
7531	  C_DECL_UNJUMPABLE_VM (dlist->label) = 1;
7532	}
7533      /* It is again possible to define labels with a goto just outside
7534	 this scope.  */
7535      for (glist = label_context_stack_vm->next->labels_used;
7536	   glist != NULL;
7537	   glist = glist->next)
7538	{
7539	  C_DECL_UNDEFINABLE_VM (glist->label) = 0;
7540	  glist_prev = glist;
7541	}
7542      if (glist_prev != NULL)
7543	glist_prev->next = label_context_stack_vm->labels_used;
7544      else
7545	label_context_stack_vm->next->labels_used
7546	  = label_context_stack_vm->labels_used;
7547      label_context_stack_vm = label_context_stack_vm->next;
7548    }
7549}
7550
7551/* Begin and end compound statements.  This is as simple as pushing
7552   and popping new statement lists from the tree.  */
7553
7554tree
7555c_begin_compound_stmt (bool do_scope)
7556{
7557  tree stmt = push_stmt_list ();
7558  if (do_scope)
7559    push_scope ();
7560  return stmt;
7561}
7562
7563tree
7564c_end_compound_stmt (tree stmt, bool do_scope)
7565{
7566  tree block = NULL;
7567
7568  if (do_scope)
7569    {
7570      if (c_dialect_objc ())
7571	objc_clear_super_receiver ();
7572      block = pop_scope ();
7573    }
7574
7575  stmt = pop_stmt_list (stmt);
7576  stmt = c_build_bind_expr (block, stmt);
7577
7578  /* If this compound statement is nested immediately inside a statement
7579     expression, then force a BIND_EXPR to be created.  Otherwise we'll
7580     do the wrong thing for ({ { 1; } }) or ({ 1; { } }).  In particular,
7581     STATEMENT_LISTs merge, and thus we can lose track of what statement
7582     was really last.  */
7583  if (cur_stmt_list
7584      && STATEMENT_LIST_STMT_EXPR (cur_stmt_list)
7585      && TREE_CODE (stmt) != BIND_EXPR)
7586    {
7587      stmt = build3 (BIND_EXPR, void_type_node, NULL, stmt, NULL);
7588      TREE_SIDE_EFFECTS (stmt) = 1;
7589    }
7590
7591  return stmt;
7592}
7593
7594/* Queue a cleanup.  CLEANUP is an expression/statement to be executed
7595   when the current scope is exited.  EH_ONLY is true when this is not
7596   meant to apply to normal control flow transfer.  */
7597
7598void
7599push_cleanup (tree ARG_UNUSED (decl), tree cleanup, bool eh_only)
7600{
7601  enum tree_code code;
7602  tree stmt, list;
7603  bool stmt_expr;
7604
7605  code = eh_only ? TRY_CATCH_EXPR : TRY_FINALLY_EXPR;
7606  stmt = build_stmt (code, NULL, cleanup);
7607  add_stmt (stmt);
7608  stmt_expr = STATEMENT_LIST_STMT_EXPR (cur_stmt_list);
7609  list = push_stmt_list ();
7610  TREE_OPERAND (stmt, 0) = list;
7611  STATEMENT_LIST_STMT_EXPR (list) = stmt_expr;
7612}
7613
7614/* Build a binary-operation expression without default conversions.
7615   CODE is the kind of expression to build.
7616   This function differs from `build' in several ways:
7617   the data type of the result is computed and recorded in it,
7618   warnings are generated if arg data types are invalid,
7619   special handling for addition and subtraction of pointers is known,
7620   and some optimization is done (operations on narrow ints
7621   are done in the narrower type when that gives the same result).
7622   Constant folding is also done before the result is returned.
7623
7624   Note that the operands will never have enumeral types, or function
7625   or array types, because either they will have the default conversions
7626   performed or they have both just been converted to some other type in which
7627   the arithmetic is to be done.  */
7628
7629tree
7630build_binary_op (enum tree_code code, tree orig_op0, tree orig_op1,
7631		 int convert_p)
7632{
7633  tree type0, type1;
7634  enum tree_code code0, code1;
7635  tree op0, op1;
7636  const char *invalid_op_diag;
7637
7638  /* Expression code to give to the expression when it is built.
7639     Normally this is CODE, which is what the caller asked for,
7640     but in some special cases we change it.  */
7641  enum tree_code resultcode = code;
7642
7643  /* Data type in which the computation is to be performed.
7644     In the simplest cases this is the common type of the arguments.  */
7645  tree result_type = NULL;
7646
7647  /* Nonzero means operands have already been type-converted
7648     in whatever way is necessary.
7649     Zero means they need to be converted to RESULT_TYPE.  */
7650  int converted = 0;
7651
7652  /* Nonzero means create the expression with this type, rather than
7653     RESULT_TYPE.  */
7654  tree build_type = 0;
7655
7656  /* Nonzero means after finally constructing the expression
7657     convert it to this type.  */
7658  tree final_type = 0;
7659
7660  /* Nonzero if this is an operation like MIN or MAX which can
7661     safely be computed in short if both args are promoted shorts.
7662     Also implies COMMON.
7663     -1 indicates a bitwise operation; this makes a difference
7664     in the exact conditions for when it is safe to do the operation
7665     in a narrower mode.  */
7666  int shorten = 0;
7667
7668  /* Nonzero if this is a comparison operation;
7669     if both args are promoted shorts, compare the original shorts.
7670     Also implies COMMON.  */
7671  int short_compare = 0;
7672
7673  /* Nonzero if this is a right-shift operation, which can be computed on the
7674     original short and then promoted if the operand is a promoted short.  */
7675  int short_shift = 0;
7676
7677  /* Nonzero means set RESULT_TYPE to the common type of the args.  */
7678  int common = 0;
7679
7680  /* True means types are compatible as far as ObjC is concerned.  */
7681  bool objc_ok;
7682
7683  if (convert_p)
7684    {
7685      op0 = default_conversion (orig_op0);
7686      op1 = default_conversion (orig_op1);
7687    }
7688  else
7689    {
7690      op0 = orig_op0;
7691      op1 = orig_op1;
7692    }
7693
7694  type0 = TREE_TYPE (op0);
7695  type1 = TREE_TYPE (op1);
7696
7697  /* The expression codes of the data types of the arguments tell us
7698     whether the arguments are integers, floating, pointers, etc.  */
7699  code0 = TREE_CODE (type0);
7700  code1 = TREE_CODE (type1);
7701
7702  /* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue.  */
7703  STRIP_TYPE_NOPS (op0);
7704  STRIP_TYPE_NOPS (op1);
7705
7706  /* If an error was already reported for one of the arguments,
7707     avoid reporting another error.  */
7708
7709  if (code0 == ERROR_MARK || code1 == ERROR_MARK)
7710    return error_mark_node;
7711
7712  if ((invalid_op_diag
7713       = targetm.invalid_binary_op (code, type0, type1)))
7714    {
7715      error (invalid_op_diag);
7716      return error_mark_node;
7717    }
7718
7719  objc_ok = objc_compare_types (type0, type1, -3, NULL_TREE);
7720
7721  switch (code)
7722    {
7723    case PLUS_EXPR:
7724      /* Handle the pointer + int case.  */
7725      if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
7726	return pointer_int_sum (PLUS_EXPR, op0, op1);
7727      else if (code1 == POINTER_TYPE && code0 == INTEGER_TYPE)
7728	return pointer_int_sum (PLUS_EXPR, op1, op0);
7729      else
7730	common = 1;
7731      break;
7732
7733    case MINUS_EXPR:
7734      /* Subtraction of two similar pointers.
7735	 We must subtract them as integers, then divide by object size.  */
7736      if (code0 == POINTER_TYPE && code1 == POINTER_TYPE
7737	  && comp_target_types (type0, type1))
7738	return pointer_diff (op0, op1);
7739      /* Handle pointer minus int.  Just like pointer plus int.  */
7740      else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
7741	return pointer_int_sum (MINUS_EXPR, op0, op1);
7742      else
7743	common = 1;
7744      break;
7745
7746    case MULT_EXPR:
7747      common = 1;
7748      break;
7749
7750    case TRUNC_DIV_EXPR:
7751    case CEIL_DIV_EXPR:
7752    case FLOOR_DIV_EXPR:
7753    case ROUND_DIV_EXPR:
7754    case EXACT_DIV_EXPR:
7755      /* Floating point division by zero is a legitimate way to obtain
7756	 infinities and NaNs.  */
7757      if (skip_evaluation == 0 && integer_zerop (op1))
7758	warning (OPT_Wdiv_by_zero, "division by zero");
7759
7760      if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
7761	   || code0 == COMPLEX_TYPE || code0 == VECTOR_TYPE)
7762	  && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
7763	      || code1 == COMPLEX_TYPE || code1 == VECTOR_TYPE))
7764	{
7765	  enum tree_code tcode0 = code0, tcode1 = code1;
7766
7767	  if (code0 == COMPLEX_TYPE || code0 == VECTOR_TYPE)
7768	    tcode0 = TREE_CODE (TREE_TYPE (TREE_TYPE (op0)));
7769	  if (code1 == COMPLEX_TYPE || code1 == VECTOR_TYPE)
7770	    tcode1 = TREE_CODE (TREE_TYPE (TREE_TYPE (op1)));
7771
7772	  if (!(tcode0 == INTEGER_TYPE && tcode1 == INTEGER_TYPE))
7773	    resultcode = RDIV_EXPR;
7774	  else
7775	    /* Although it would be tempting to shorten always here, that
7776	       loses on some targets, since the modulo instruction is
7777	       undefined if the quotient can't be represented in the
7778	       computation mode.  We shorten only if unsigned or if
7779	       dividing by something we know != -1.  */
7780	    shorten = (TYPE_UNSIGNED (TREE_TYPE (orig_op0))
7781		       || (TREE_CODE (op1) == INTEGER_CST
7782			   && !integer_all_onesp (op1)));
7783	  common = 1;
7784	}
7785      break;
7786
7787    case BIT_AND_EXPR:
7788    case BIT_IOR_EXPR:
7789    case BIT_XOR_EXPR:
7790      if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
7791	shorten = -1;
7792      else if (code0 == VECTOR_TYPE && code1 == VECTOR_TYPE)
7793	common = 1;
7794      break;
7795
7796    case TRUNC_MOD_EXPR:
7797    case FLOOR_MOD_EXPR:
7798      if (skip_evaluation == 0 && integer_zerop (op1))
7799	warning (OPT_Wdiv_by_zero, "division by zero");
7800
7801      if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
7802	{
7803	  /* Although it would be tempting to shorten always here, that loses
7804	     on some targets, since the modulo instruction is undefined if the
7805	     quotient can't be represented in the computation mode.  We shorten
7806	     only if unsigned or if dividing by something we know != -1.  */
7807	  shorten = (TYPE_UNSIGNED (TREE_TYPE (orig_op0))
7808		     || (TREE_CODE (op1) == INTEGER_CST
7809			 && !integer_all_onesp (op1)));
7810	  common = 1;
7811	}
7812      break;
7813
7814    case TRUTH_ANDIF_EXPR:
7815    case TRUTH_ORIF_EXPR:
7816    case TRUTH_AND_EXPR:
7817    case TRUTH_OR_EXPR:
7818    case TRUTH_XOR_EXPR:
7819      if ((code0 == INTEGER_TYPE || code0 == POINTER_TYPE
7820	   || code0 == REAL_TYPE || code0 == COMPLEX_TYPE)
7821	  && (code1 == INTEGER_TYPE || code1 == POINTER_TYPE
7822	      || code1 == REAL_TYPE || code1 == COMPLEX_TYPE))
7823	{
7824	  /* Result of these operations is always an int,
7825	     but that does not mean the operands should be
7826	     converted to ints!  */
7827	  result_type = integer_type_node;
7828	  op0 = c_common_truthvalue_conversion (op0);
7829	  op1 = c_common_truthvalue_conversion (op1);
7830	  converted = 1;
7831	}
7832      break;
7833
7834      /* Shift operations: result has same type as first operand;
7835	 always convert second operand to int.
7836	 Also set SHORT_SHIFT if shifting rightward.  */
7837
7838    case RSHIFT_EXPR:
7839      if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
7840	{
7841	  if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
7842	    {
7843	      if (tree_int_cst_sgn (op1) < 0)
7844		warning (0, "right shift count is negative");
7845	      else
7846		{
7847		  if (!integer_zerop (op1))
7848		    short_shift = 1;
7849
7850		  if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0)
7851		    warning (0, "right shift count >= width of type");
7852		}
7853	    }
7854
7855	  /* Use the type of the value to be shifted.  */
7856	  result_type = type0;
7857	  /* Convert the shift-count to an integer, regardless of size
7858	     of value being shifted.  */
7859	  if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
7860	    op1 = convert (integer_type_node, op1);
7861	  /* Avoid converting op1 to result_type later.  */
7862	  converted = 1;
7863	}
7864      break;
7865
7866    case LSHIFT_EXPR:
7867      if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
7868	{
7869	  if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
7870	    {
7871	      if (tree_int_cst_sgn (op1) < 0)
7872		warning (0, "left shift count is negative");
7873
7874	      else if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0)
7875		warning (0, "left shift count >= width of type");
7876	    }
7877
7878	  /* Use the type of the value to be shifted.  */
7879	  result_type = type0;
7880	  /* Convert the shift-count to an integer, regardless of size
7881	     of value being shifted.  */
7882	  if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
7883	    op1 = convert (integer_type_node, op1);
7884	  /* Avoid converting op1 to result_type later.  */
7885	  converted = 1;
7886	}
7887      break;
7888
7889    case EQ_EXPR:
7890    case NE_EXPR:
7891      if (code0 == REAL_TYPE || code1 == REAL_TYPE)
7892	warning (OPT_Wfloat_equal,
7893		 "comparing floating point with == or != is unsafe");
7894      /* Result of comparison is always int,
7895	 but don't convert the args to int!  */
7896      build_type = integer_type_node;
7897      if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
7898	   || code0 == COMPLEX_TYPE)
7899	  && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
7900	      || code1 == COMPLEX_TYPE))
7901	short_compare = 1;
7902      else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
7903	{
7904	  tree tt0 = TREE_TYPE (type0);
7905	  tree tt1 = TREE_TYPE (type1);
7906	  /* Anything compares with void *.  void * compares with anything.
7907	     Otherwise, the targets must be compatible
7908	     and both must be object or both incomplete.  */
7909	  if (comp_target_types (type0, type1))
7910	    result_type = common_pointer_type (type0, type1);
7911	  else if (VOID_TYPE_P (tt0))
7912	    {
7913	      /* op0 != orig_op0 detects the case of something
7914		 whose value is 0 but which isn't a valid null ptr const.  */
7915	      if (pedantic && (!integer_zerop (op0) || op0 != orig_op0)
7916		  && TREE_CODE (tt1) == FUNCTION_TYPE)
7917		pedwarn ("ISO C forbids comparison of %<void *%>"
7918			 " with function pointer");
7919	    }
7920	  else if (VOID_TYPE_P (tt1))
7921	    {
7922	      if (pedantic && (!integer_zerop (op1) || op1 != orig_op1)
7923		  && TREE_CODE (tt0) == FUNCTION_TYPE)
7924		pedwarn ("ISO C forbids comparison of %<void *%>"
7925			 " with function pointer");
7926	    }
7927	  else
7928	    /* Avoid warning about the volatile ObjC EH puts on decls.  */
7929	    if (!objc_ok)
7930	      pedwarn ("comparison of distinct pointer types lacks a cast");
7931
7932	  if (result_type == NULL_TREE)
7933	    result_type = ptr_type_node;
7934	}
7935      else if (code0 == POINTER_TYPE && TREE_CODE (op1) == INTEGER_CST
7936	       && integer_zerop (op1))
7937	result_type = type0;
7938      else if (code1 == POINTER_TYPE && TREE_CODE (op0) == INTEGER_CST
7939	       && integer_zerop (op0))
7940	result_type = type1;
7941      else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
7942	{
7943	  result_type = type0;
7944	  pedwarn ("comparison between pointer and integer");
7945	}
7946      else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
7947	{
7948	  result_type = type1;
7949	  pedwarn ("comparison between pointer and integer");
7950	}
7951      break;
7952
7953    case LE_EXPR:
7954    case GE_EXPR:
7955    case LT_EXPR:
7956    case GT_EXPR:
7957      build_type = integer_type_node;
7958      if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE)
7959	  && (code1 == INTEGER_TYPE || code1 == REAL_TYPE))
7960	short_compare = 1;
7961      else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
7962	{
7963	  if (comp_target_types (type0, type1))
7964	    {
7965	      result_type = common_pointer_type (type0, type1);
7966	      if (!COMPLETE_TYPE_P (TREE_TYPE (type0))
7967		  != !COMPLETE_TYPE_P (TREE_TYPE (type1)))
7968		pedwarn ("comparison of complete and incomplete pointers");
7969	      else if (pedantic
7970		       && TREE_CODE (TREE_TYPE (type0)) == FUNCTION_TYPE)
7971		pedwarn ("ISO C forbids ordered comparisons of pointers to functions");
7972	    }
7973	  else
7974	    {
7975	      result_type = ptr_type_node;
7976	      pedwarn ("comparison of distinct pointer types lacks a cast");
7977	    }
7978	}
7979      else if (code0 == POINTER_TYPE && TREE_CODE (op1) == INTEGER_CST
7980	       && integer_zerop (op1))
7981	{
7982	  result_type = type0;
7983	  if (pedantic || extra_warnings)
7984	    pedwarn ("ordered comparison of pointer with integer zero");
7985	}
7986      else if (code1 == POINTER_TYPE && TREE_CODE (op0) == INTEGER_CST
7987	       && integer_zerop (op0))
7988	{
7989	  result_type = type1;
7990	  if (pedantic)
7991	    pedwarn ("ordered comparison of pointer with integer zero");
7992	}
7993      else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
7994	{
7995	  result_type = type0;
7996	  pedwarn ("comparison between pointer and integer");
7997	}
7998      else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
7999	{
8000	  result_type = type1;
8001	  pedwarn ("comparison between pointer and integer");
8002	}
8003      break;
8004
8005    default:
8006      gcc_unreachable ();
8007    }
8008
8009  if (code0 == ERROR_MARK || code1 == ERROR_MARK)
8010    return error_mark_node;
8011
8012  if (code0 == VECTOR_TYPE && code1 == VECTOR_TYPE
8013      && (!tree_int_cst_equal (TYPE_SIZE (type0), TYPE_SIZE (type1))
8014	  || !same_scalar_type_ignoring_signedness (TREE_TYPE (type0),
8015						    TREE_TYPE (type1))))
8016    {
8017      binary_op_error (code);
8018      return error_mark_node;
8019    }
8020
8021  if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE || code0 == COMPLEX_TYPE
8022       || code0 == VECTOR_TYPE)
8023      &&
8024      (code1 == INTEGER_TYPE || code1 == REAL_TYPE || code1 == COMPLEX_TYPE
8025       || code1 == VECTOR_TYPE))
8026    {
8027      int none_complex = (code0 != COMPLEX_TYPE && code1 != COMPLEX_TYPE);
8028
8029      if (shorten || common || short_compare)
8030	result_type = c_common_type (type0, type1);
8031
8032      /* For certain operations (which identify themselves by shorten != 0)
8033	 if both args were extended from the same smaller type,
8034	 do the arithmetic in that type and then extend.
8035
8036	 shorten !=0 and !=1 indicates a bitwise operation.
8037	 For them, this optimization is safe only if
8038	 both args are zero-extended or both are sign-extended.
8039	 Otherwise, we might change the result.
8040	 Eg, (short)-1 | (unsigned short)-1 is (int)-1
8041	 but calculated in (unsigned short) it would be (unsigned short)-1.  */
8042
8043      if (shorten && none_complex)
8044	{
8045	  int unsigned0, unsigned1;
8046	  tree arg0 = get_narrower (op0, &unsigned0);
8047	  tree arg1 = get_narrower (op1, &unsigned1);
8048	  /* UNS is 1 if the operation to be done is an unsigned one.  */
8049	  int uns = TYPE_UNSIGNED (result_type);
8050	  tree type;
8051
8052	  final_type = result_type;
8053
8054	  /* Handle the case that OP0 (or OP1) does not *contain* a conversion
8055	     but it *requires* conversion to FINAL_TYPE.  */
8056
8057	  if ((TYPE_PRECISION (TREE_TYPE (op0))
8058	       == TYPE_PRECISION (TREE_TYPE (arg0)))
8059	      && TREE_TYPE (op0) != final_type)
8060	    unsigned0 = TYPE_UNSIGNED (TREE_TYPE (op0));
8061	  if ((TYPE_PRECISION (TREE_TYPE (op1))
8062	       == TYPE_PRECISION (TREE_TYPE (arg1)))
8063	      && TREE_TYPE (op1) != final_type)
8064	    unsigned1 = TYPE_UNSIGNED (TREE_TYPE (op1));
8065
8066	  /* Now UNSIGNED0 is 1 if ARG0 zero-extends to FINAL_TYPE.  */
8067
8068	  /* For bitwise operations, signedness of nominal type
8069	     does not matter.  Consider only how operands were extended.  */
8070	  if (shorten == -1)
8071	    uns = unsigned0;
8072
8073	  /* Note that in all three cases below we refrain from optimizing
8074	     an unsigned operation on sign-extended args.
8075	     That would not be valid.  */
8076
8077	  /* Both args variable: if both extended in same way
8078	     from same width, do it in that width.
8079	     Do it unsigned if args were zero-extended.  */
8080	  if ((TYPE_PRECISION (TREE_TYPE (arg0))
8081	       < TYPE_PRECISION (result_type))
8082	      && (TYPE_PRECISION (TREE_TYPE (arg1))
8083		  == TYPE_PRECISION (TREE_TYPE (arg0)))
8084	      && unsigned0 == unsigned1
8085	      && (unsigned0 || !uns))
8086	    result_type
8087	      = c_common_signed_or_unsigned_type
8088	      (unsigned0, common_type (TREE_TYPE (arg0), TREE_TYPE (arg1)));
8089	  else if (TREE_CODE (arg0) == INTEGER_CST
8090		   && (unsigned1 || !uns)
8091		   && (TYPE_PRECISION (TREE_TYPE (arg1))
8092		       < TYPE_PRECISION (result_type))
8093		   && (type
8094		       = c_common_signed_or_unsigned_type (unsigned1,
8095							   TREE_TYPE (arg1)),
8096		       int_fits_type_p (arg0, type)))
8097	    result_type = type;
8098	  else if (TREE_CODE (arg1) == INTEGER_CST
8099		   && (unsigned0 || !uns)
8100		   && (TYPE_PRECISION (TREE_TYPE (arg0))
8101		       < TYPE_PRECISION (result_type))
8102		   && (type
8103		       = c_common_signed_or_unsigned_type (unsigned0,
8104							   TREE_TYPE (arg0)),
8105		       int_fits_type_p (arg1, type)))
8106	    result_type = type;
8107	}
8108
8109      /* Shifts can be shortened if shifting right.  */
8110
8111      if (short_shift)
8112	{
8113	  int unsigned_arg;
8114	  tree arg0 = get_narrower (op0, &unsigned_arg);
8115
8116	  final_type = result_type;
8117
8118	  if (arg0 == op0 && final_type == TREE_TYPE (op0))
8119	    unsigned_arg = TYPE_UNSIGNED (TREE_TYPE (op0));
8120
8121	  if (TYPE_PRECISION (TREE_TYPE (arg0)) < TYPE_PRECISION (result_type)
8122	      /* We can shorten only if the shift count is less than the
8123		 number of bits in the smaller type size.  */
8124	      && compare_tree_int (op1, TYPE_PRECISION (TREE_TYPE (arg0))) < 0
8125	      /* We cannot drop an unsigned shift after sign-extension.  */
8126	      && (!TYPE_UNSIGNED (final_type) || unsigned_arg))
8127	    {
8128	      /* Do an unsigned shift if the operand was zero-extended.  */
8129	      result_type
8130		= c_common_signed_or_unsigned_type (unsigned_arg,
8131						    TREE_TYPE (arg0));
8132	      /* Convert value-to-be-shifted to that type.  */
8133	      if (TREE_TYPE (op0) != result_type)
8134		op0 = convert (result_type, op0);
8135	      converted = 1;
8136	    }
8137	}
8138
8139      /* Comparison operations are shortened too but differently.
8140	 They identify themselves by setting short_compare = 1.  */
8141
8142      if (short_compare)
8143	{
8144	  /* Don't write &op0, etc., because that would prevent op0
8145	     from being kept in a register.
8146	     Instead, make copies of the our local variables and
8147	     pass the copies by reference, then copy them back afterward.  */
8148	  tree xop0 = op0, xop1 = op1, xresult_type = result_type;
8149	  enum tree_code xresultcode = resultcode;
8150	  tree val
8151	    = shorten_compare (&xop0, &xop1, &xresult_type, &xresultcode);
8152
8153	  if (val != 0)
8154	    return val;
8155
8156	  op0 = xop0, op1 = xop1;
8157	  converted = 1;
8158	  resultcode = xresultcode;
8159
8160	  if (warn_sign_compare && skip_evaluation == 0)
8161	    {
8162	      int op0_signed = !TYPE_UNSIGNED (TREE_TYPE (orig_op0));
8163	      int op1_signed = !TYPE_UNSIGNED (TREE_TYPE (orig_op1));
8164	      int unsignedp0, unsignedp1;
8165	      tree primop0 = get_narrower (op0, &unsignedp0);
8166	      tree primop1 = get_narrower (op1, &unsignedp1);
8167
8168	      xop0 = orig_op0;
8169	      xop1 = orig_op1;
8170	      STRIP_TYPE_NOPS (xop0);
8171	      STRIP_TYPE_NOPS (xop1);
8172
8173	      /* Give warnings for comparisons between signed and unsigned
8174		 quantities that may fail.
8175
8176		 Do the checking based on the original operand trees, so that
8177		 casts will be considered, but default promotions won't be.
8178
8179		 Do not warn if the comparison is being done in a signed type,
8180		 since the signed type will only be chosen if it can represent
8181		 all the values of the unsigned type.  */
8182	      if (!TYPE_UNSIGNED (result_type))
8183		/* OK */;
8184              /* Do not warn if both operands are the same signedness.  */
8185              else if (op0_signed == op1_signed)
8186                /* OK */;
8187	      else
8188		{
8189		  tree sop, uop;
8190
8191		  if (op0_signed)
8192		    sop = xop0, uop = xop1;
8193		  else
8194		    sop = xop1, uop = xop0;
8195
8196		  /* Do not warn if the signed quantity is an
8197		     unsuffixed integer literal (or some static
8198		     constant expression involving such literals or a
8199		     conditional expression involving such literals)
8200		     and it is non-negative.  */
8201		  if (tree_expr_nonnegative_p (sop))
8202		    /* OK */;
8203		  /* Do not warn if the comparison is an equality operation,
8204		     the unsigned quantity is an integral constant, and it
8205		     would fit in the result if the result were signed.  */
8206		  else if (TREE_CODE (uop) == INTEGER_CST
8207			   && (resultcode == EQ_EXPR || resultcode == NE_EXPR)
8208			   && int_fits_type_p
8209			   (uop, c_common_signed_type (result_type)))
8210		    /* OK */;
8211		  /* Do not warn if the unsigned quantity is an enumeration
8212		     constant and its maximum value would fit in the result
8213		     if the result were signed.  */
8214		  else if (TREE_CODE (uop) == INTEGER_CST
8215			   && TREE_CODE (TREE_TYPE (uop)) == ENUMERAL_TYPE
8216			   && int_fits_type_p
8217			   (TYPE_MAX_VALUE (TREE_TYPE (uop)),
8218			    c_common_signed_type (result_type)))
8219		    /* OK */;
8220		  else
8221		    warning (0, "comparison between signed and unsigned");
8222		}
8223
8224	      /* Warn if two unsigned values are being compared in a size
8225		 larger than their original size, and one (and only one) is the
8226		 result of a `~' operator.  This comparison will always fail.
8227
8228		 Also warn if one operand is a constant, and the constant
8229		 does not have all bits set that are set in the ~ operand
8230		 when it is extended.  */
8231
8232	      if ((TREE_CODE (primop0) == BIT_NOT_EXPR)
8233		  != (TREE_CODE (primop1) == BIT_NOT_EXPR))
8234		{
8235		  if (TREE_CODE (primop0) == BIT_NOT_EXPR)
8236		    primop0 = get_narrower (TREE_OPERAND (primop0, 0),
8237					    &unsignedp0);
8238		  else
8239		    primop1 = get_narrower (TREE_OPERAND (primop1, 0),
8240					    &unsignedp1);
8241
8242		  if (host_integerp (primop0, 0) || host_integerp (primop1, 0))
8243		    {
8244		      tree primop;
8245		      HOST_WIDE_INT constant, mask;
8246		      int unsignedp, bits;
8247
8248		      if (host_integerp (primop0, 0))
8249			{
8250			  primop = primop1;
8251			  unsignedp = unsignedp1;
8252			  constant = tree_low_cst (primop0, 0);
8253			}
8254		      else
8255			{
8256			  primop = primop0;
8257			  unsignedp = unsignedp0;
8258			  constant = tree_low_cst (primop1, 0);
8259			}
8260
8261		      bits = TYPE_PRECISION (TREE_TYPE (primop));
8262		      if (bits < TYPE_PRECISION (result_type)
8263			  && bits < HOST_BITS_PER_WIDE_INT && unsignedp)
8264			{
8265			  mask = (~(HOST_WIDE_INT) 0) << bits;
8266			  if ((mask & constant) != mask)
8267			    warning (0, "comparison of promoted ~unsigned with constant");
8268			}
8269		    }
8270		  else if (unsignedp0 && unsignedp1
8271			   && (TYPE_PRECISION (TREE_TYPE (primop0))
8272			       < TYPE_PRECISION (result_type))
8273			   && (TYPE_PRECISION (TREE_TYPE (primop1))
8274			       < TYPE_PRECISION (result_type)))
8275		    warning (0, "comparison of promoted ~unsigned with unsigned");
8276		}
8277	    }
8278	}
8279    }
8280
8281  /* At this point, RESULT_TYPE must be nonzero to avoid an error message.
8282     If CONVERTED is zero, both args will be converted to type RESULT_TYPE.
8283     Then the expression will be built.
8284     It will be given type FINAL_TYPE if that is nonzero;
8285     otherwise, it will be given type RESULT_TYPE.  */
8286
8287  if (!result_type)
8288    {
8289      binary_op_error (code);
8290      return error_mark_node;
8291    }
8292
8293  if (!converted)
8294    {
8295      if (TREE_TYPE (op0) != result_type)
8296	op0 = convert (result_type, op0);
8297      if (TREE_TYPE (op1) != result_type)
8298	op1 = convert (result_type, op1);
8299
8300      /* This can happen if one operand has a vector type, and the other
8301	 has a different type.  */
8302      if (TREE_CODE (op0) == ERROR_MARK || TREE_CODE (op1) == ERROR_MARK)
8303	return error_mark_node;
8304    }
8305
8306  if (build_type == NULL_TREE)
8307    build_type = result_type;
8308
8309  {
8310    /* Treat expressions in initializers specially as they can't trap.  */
8311    tree result = require_constant_value ? fold_build2_initializer (resultcode,
8312								    build_type,
8313								    op0, op1)
8314					 : fold_build2 (resultcode, build_type,
8315							op0, op1);
8316
8317    if (final_type != 0)
8318      result = convert (final_type, result);
8319    return result;
8320  }
8321}
8322
8323
8324/* Convert EXPR to be a truth-value, validating its type for this
8325   purpose.  */
8326
8327tree
8328c_objc_common_truthvalue_conversion (tree expr)
8329{
8330  switch (TREE_CODE (TREE_TYPE (expr)))
8331    {
8332    case ARRAY_TYPE:
8333      error ("used array that cannot be converted to pointer where scalar is required");
8334      return error_mark_node;
8335
8336    case RECORD_TYPE:
8337      error ("used struct type value where scalar is required");
8338      return error_mark_node;
8339
8340    case UNION_TYPE:
8341      error ("used union type value where scalar is required");
8342      return error_mark_node;
8343
8344    case FUNCTION_TYPE:
8345      gcc_unreachable ();
8346
8347    default:
8348      break;
8349    }
8350
8351  /* ??? Should we also give an error for void and vectors rather than
8352     leaving those to give errors later?  */
8353  return c_common_truthvalue_conversion (expr);
8354}
8355
8356
8357/* Convert EXPR to a contained DECL, updating *TC, *TI and *SE as
8358   required.  */
8359
8360tree
8361c_expr_to_decl (tree expr, bool *tc ATTRIBUTE_UNUSED,
8362		bool *ti ATTRIBUTE_UNUSED, bool *se)
8363{
8364  if (TREE_CODE (expr) == COMPOUND_LITERAL_EXPR)
8365    {
8366      tree decl = COMPOUND_LITERAL_EXPR_DECL (expr);
8367      /* Executing a compound literal inside a function reinitializes
8368	 it.  */
8369      if (!TREE_STATIC (decl))
8370	*se = true;
8371      return decl;
8372    }
8373  else
8374    return expr;
8375}
8376