1/* Perform branch target register load optimizations.
2   Copyright (C) 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8Software Foundation; either version 2, or (at your option) any later
9version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING.  If not, write to the Free
18Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
1902110-1301, USA.  */
20
21#include "config.h"
22#include "system.h"
23#include "coretypes.h"
24#include "tm.h"
25#include "rtl.h"
26#include "hard-reg-set.h"
27#include "regs.h"
28#include "fibheap.h"
29#include "output.h"
30#include "target.h"
31#include "expr.h"
32#include "flags.h"
33#include "insn-attr.h"
34#include "function.h"
35#include "except.h"
36#include "tm_p.h"
37#include "toplev.h"
38#include "tree-pass.h"
39
40/* Target register optimizations - these are performed after reload.  */
41
42typedef struct btr_def_group_s
43{
44  struct btr_def_group_s *next;
45  rtx src;
46  struct btr_def_s *members;
47} *btr_def_group;
48
49typedef struct btr_user_s
50{
51  struct btr_user_s *next;
52  basic_block bb;
53  int luid;
54  rtx insn;
55  /* If INSN has a single use of a single branch register, then
56     USE points to it within INSN.  If there is more than
57     one branch register use, or the use is in some way ambiguous,
58     then USE is NULL.  */
59  rtx use;
60  int n_reaching_defs;
61  int first_reaching_def;
62  char other_use_this_block;
63} *btr_user;
64
65/* btr_def structs appear on three lists:
66     1. A list of all btr_def structures (head is
67	ALL_BTR_DEFS, linked by the NEXT field).
68     2. A list of branch reg definitions per basic block (head is
69	BB_BTR_DEFS[i], linked by the NEXT_THIS_BB field).
70     3. A list of all branch reg definitions belonging to the same
71	group (head is in a BTR_DEF_GROUP struct, linked by
72	NEXT_THIS_GROUP field).  */
73
74typedef struct btr_def_s
75{
76  struct btr_def_s *next_this_bb;
77  struct btr_def_s *next_this_group;
78  basic_block bb;
79  int luid;
80  rtx insn;
81  int btr;
82  int cost;
83  /* For a branch register setting insn that has a constant
84     source (i.e. a label), group links together all the
85     insns with the same source.  For other branch register
86     setting insns, group is NULL.  */
87  btr_def_group group;
88  btr_user uses;
89  /* If this def has a reaching use which is not a simple use
90     in a branch instruction, then has_ambiguous_use will be true,
91     and we will not attempt to migrate this definition.  */
92  char has_ambiguous_use;
93  /* live_range is an approximation to the true live range for this
94     def/use web, because it records the set of blocks that contain
95     the live range.  There could be other live ranges for the same
96     branch register in that set of blocks, either in the block
97     containing the def (before the def), or in a block containing
98     a use (after the use).  If there are such other live ranges, then
99     other_btr_uses_before_def or other_btr_uses_after_use must be set true
100     as appropriate.  */
101  char other_btr_uses_before_def;
102  char other_btr_uses_after_use;
103  /* We set own_end when we have moved a definition into a dominator.
104     Thus, when a later combination removes this definition again, we know
105     to clear out trs_live_at_end again.  */
106  char own_end;
107  bitmap live_range;
108} *btr_def;
109
110static int issue_rate;
111
112static int basic_block_freq (basic_block);
113static int insn_sets_btr_p (rtx, int, int *);
114static rtx *find_btr_use (rtx);
115static int btr_referenced_p (rtx, rtx *);
116static int find_btr_reference (rtx *, void *);
117static void find_btr_def_group (btr_def_group *, btr_def);
118static btr_def add_btr_def (fibheap_t, basic_block, int, rtx,
119			    unsigned int, int, btr_def_group *);
120static btr_user new_btr_user (basic_block, int, rtx);
121static void dump_hard_reg_set (HARD_REG_SET);
122static void dump_btrs_live (int);
123static void note_other_use_this_block (unsigned int, btr_user);
124static void compute_defs_uses_and_gen (fibheap_t, btr_def *,btr_user *,
125				       sbitmap *, sbitmap *, HARD_REG_SET *);
126static void compute_kill (sbitmap *, sbitmap *, HARD_REG_SET *);
127static void compute_out (sbitmap *bb_out, sbitmap *, sbitmap *, int);
128static void link_btr_uses (btr_def *, btr_user *, sbitmap *, sbitmap *, int);
129static void build_btr_def_use_webs (fibheap_t);
130static int block_at_edge_of_live_range_p (int, btr_def);
131static void clear_btr_from_live_range (btr_def def);
132static void add_btr_to_live_range (btr_def, int);
133static void augment_live_range (bitmap, HARD_REG_SET *, basic_block,
134				basic_block, int);
135static int choose_btr (HARD_REG_SET);
136static void combine_btr_defs (btr_def, HARD_REG_SET *);
137static void btr_def_live_range (btr_def, HARD_REG_SET *);
138static void move_btr_def (basic_block, int, btr_def, bitmap, HARD_REG_SET *);
139static int migrate_btr_def (btr_def, int);
140static void migrate_btr_defs (enum reg_class, int);
141static int can_move_up (basic_block, rtx, int);
142static void note_btr_set (rtx, rtx, void *);
143
144/* The following code performs code motion of target load instructions
145   (instructions that set branch target registers), to move them
146   forward away from the branch instructions and out of loops (or,
147   more generally, from a more frequently executed place to a less
148   frequently executed place).
149   Moving target load instructions further in front of the branch
150   instruction that uses the target register value means that the hardware
151   has a better chance of preloading the instructions at the branch
152   target by the time the branch is reached.  This avoids bubbles
153   when a taken branch needs to flush out the pipeline.
154   Moving target load instructions out of loops means they are executed
155   less frequently.  */
156
157/* An obstack to hold the def-use web data structures built up for
158   migrating branch target load instructions.  */
159static struct obstack migrate_btrl_obstack;
160
161/* Array indexed by basic block number, giving the set of registers
162   live in that block.  */
163static HARD_REG_SET *btrs_live;
164
165/* Array indexed by basic block number, giving the set of registers live at
166  the end of that block, including any uses by a final jump insn, if any.  */
167static HARD_REG_SET *btrs_live_at_end;
168
169/* Set of all target registers that we are willing to allocate.  */
170static HARD_REG_SET all_btrs;
171
172/* Provide lower and upper bounds for target register numbers, so that
173   we don't need to search through all the hard registers all the time.  */
174static int first_btr, last_btr;
175
176
177
178/* Return an estimate of the frequency of execution of block bb.  */
179static int
180basic_block_freq (basic_block bb)
181{
182  return bb->frequency;
183}
184
185static rtx *btr_reference_found;
186
187/* A subroutine of btr_referenced_p, called through for_each_rtx.
188   PREG is a pointer to an rtx that is to be excluded from the
189   traversal.  If we find a reference to a target register anywhere
190   else, return 1, and put a pointer to it into btr_reference_found.  */
191static int
192find_btr_reference (rtx *px, void *preg)
193{
194  rtx x;
195  int regno, i;
196
197  if (px == preg)
198    return -1;
199  x = *px;
200  if (!REG_P (x))
201    return 0;
202  regno = REGNO (x);
203  for (i = hard_regno_nregs[regno][GET_MODE (x)] - 1; i >= 0; i--)
204    if (TEST_HARD_REG_BIT (all_btrs, regno+i))
205      {
206	btr_reference_found = px;
207	return 1;
208      }
209  return -1;
210}
211
212/* Return nonzero if X references (sets or reads) any branch target register.
213   If EXCLUDEP is set, disregard any references within the rtx pointed to
214   by it.  If returning nonzero, also set btr_reference_found as above.  */
215static int
216btr_referenced_p (rtx x, rtx *excludep)
217{
218  return for_each_rtx (&x, find_btr_reference, excludep);
219}
220
221/* Return true if insn is an instruction that sets a target register.
222   if CHECK_CONST is true, only return true if the source is constant.
223   If such a set is found and REGNO is nonzero, assign the register number
224   of the destination register to *REGNO.  */
225static int
226insn_sets_btr_p (rtx insn, int check_const, int *regno)
227{
228  rtx set;
229
230  if (NONJUMP_INSN_P (insn)
231      && (set = single_set (insn)))
232    {
233      rtx dest = SET_DEST (set);
234      rtx src = SET_SRC (set);
235
236      if (GET_CODE (dest) == SUBREG)
237	dest = XEXP (dest, 0);
238
239      if (REG_P (dest)
240	  && TEST_HARD_REG_BIT (all_btrs, REGNO (dest)))
241	{
242	  gcc_assert (!btr_referenced_p (src, NULL));
243
244	  if (!check_const || CONSTANT_P (src))
245	    {
246	      if (regno)
247		*regno = REGNO (dest);
248	      return 1;
249	    }
250	}
251    }
252  return 0;
253}
254
255/* Find and return a use of a target register within an instruction INSN.  */
256static rtx *
257find_btr_use (rtx insn)
258{
259  return btr_referenced_p (insn, NULL) ? btr_reference_found : NULL;
260}
261
262/* Find the group that the target register definition DEF belongs
263   to in the list starting with *ALL_BTR_DEF_GROUPS.  If no such
264   group exists, create one.  Add def to the group.  */
265static void
266find_btr_def_group (btr_def_group *all_btr_def_groups, btr_def def)
267{
268  if (insn_sets_btr_p (def->insn, 1, NULL))
269    {
270      btr_def_group this_group;
271      rtx def_src = SET_SRC (single_set (def->insn));
272
273      /* ?? This linear search is an efficiency concern, particularly
274	 as the search will almost always fail to find a match.  */
275      for (this_group = *all_btr_def_groups;
276	   this_group != NULL;
277	   this_group = this_group->next)
278	if (rtx_equal_p (def_src, this_group->src))
279	  break;
280
281      if (!this_group)
282	{
283	  this_group = obstack_alloc (&migrate_btrl_obstack,
284				      sizeof (struct btr_def_group_s));
285	  this_group->src = def_src;
286	  this_group->members = NULL;
287	  this_group->next = *all_btr_def_groups;
288	  *all_btr_def_groups = this_group;
289	}
290      def->group = this_group;
291      def->next_this_group = this_group->members;
292      this_group->members = def;
293    }
294  else
295    def->group = NULL;
296}
297
298/* Create a new target register definition structure, for a definition in
299   block BB, instruction INSN, and insert it into ALL_BTR_DEFS.  Return
300   the new definition.  */
301static btr_def
302add_btr_def (fibheap_t all_btr_defs, basic_block bb, int insn_luid, rtx insn,
303	     unsigned int dest_reg, int other_btr_uses_before_def,
304	     btr_def_group *all_btr_def_groups)
305{
306  btr_def this
307    = obstack_alloc (&migrate_btrl_obstack, sizeof (struct btr_def_s));
308  this->bb = bb;
309  this->luid = insn_luid;
310  this->insn = insn;
311  this->btr = dest_reg;
312  this->cost = basic_block_freq (bb);
313  this->has_ambiguous_use = 0;
314  this->other_btr_uses_before_def = other_btr_uses_before_def;
315  this->other_btr_uses_after_use = 0;
316  this->next_this_bb = NULL;
317  this->next_this_group = NULL;
318  this->uses = NULL;
319  this->live_range = NULL;
320  find_btr_def_group (all_btr_def_groups, this);
321
322  fibheap_insert (all_btr_defs, -this->cost, this);
323
324  if (dump_file)
325    fprintf (dump_file,
326      "Found target reg definition: sets %u { bb %d, insn %d }%s priority %d\n",
327      dest_reg, bb->index, INSN_UID (insn), (this->group ? "" : ":not const"),
328      this->cost);
329
330  return this;
331}
332
333/* Create a new target register user structure, for a use in block BB,
334   instruction INSN.  Return the new user.  */
335static btr_user
336new_btr_user (basic_block bb, int insn_luid, rtx insn)
337{
338  /* This instruction reads target registers.  We need
339     to decide whether we can replace all target register
340     uses easily.
341   */
342  rtx *usep = find_btr_use (PATTERN (insn));
343  rtx use;
344  btr_user user = NULL;
345
346  if (usep)
347    {
348      int unambiguous_single_use;
349
350      /* We want to ensure that USE is the only use of a target
351	 register in INSN, so that we know that to rewrite INSN to use
352	 a different target register, all we have to do is replace USE.  */
353      unambiguous_single_use = !btr_referenced_p (PATTERN (insn), usep);
354      if (!unambiguous_single_use)
355	usep = NULL;
356    }
357  use = usep ? *usep : NULL_RTX;
358  user = obstack_alloc (&migrate_btrl_obstack, sizeof (struct btr_user_s));
359  user->bb = bb;
360  user->luid = insn_luid;
361  user->insn = insn;
362  user->use = use;
363  user->other_use_this_block = 0;
364  user->next = NULL;
365  user->n_reaching_defs = 0;
366  user->first_reaching_def = -1;
367
368  if (dump_file)
369    {
370      fprintf (dump_file, "Uses target reg: { bb %d, insn %d }",
371	       bb->index, INSN_UID (insn));
372
373      if (user->use)
374	fprintf (dump_file, ": unambiguous use of reg %d\n",
375		 REGNO (user->use));
376    }
377
378  return user;
379}
380
381/* Write the contents of S to the dump file.  */
382static void
383dump_hard_reg_set (HARD_REG_SET s)
384{
385  int reg;
386  for (reg = 0; reg < FIRST_PSEUDO_REGISTER; reg++)
387    if (TEST_HARD_REG_BIT (s, reg))
388      fprintf (dump_file, " %d", reg);
389}
390
391/* Write the set of target regs live in block BB to the dump file.  */
392static void
393dump_btrs_live (int bb)
394{
395  fprintf (dump_file, "BB%d live:", bb);
396  dump_hard_reg_set (btrs_live[bb]);
397  fprintf (dump_file, "\n");
398}
399
400/* REGNO is the number of a branch target register that is being used or
401   set.  USERS_THIS_BB is a list of preceding branch target register users;
402   If any of them use the same register, set their other_use_this_block
403   flag.  */
404static void
405note_other_use_this_block (unsigned int regno, btr_user users_this_bb)
406{
407  btr_user user;
408
409  for (user = users_this_bb; user != NULL; user = user->next)
410    if (user->use && REGNO (user->use) == regno)
411      user->other_use_this_block = 1;
412}
413
414typedef struct {
415  btr_user users_this_bb;
416  HARD_REG_SET btrs_written_in_block;
417  HARD_REG_SET btrs_live_in_block;
418  sbitmap bb_gen;
419  sbitmap *btr_defset;
420} defs_uses_info;
421
422/* Called via note_stores or directly to register stores into /
423   clobbers of a branch target register DEST that are not recognized as
424   straightforward definitions.  DATA points to information about the
425   current basic block that needs updating.  */
426static void
427note_btr_set (rtx dest, rtx set ATTRIBUTE_UNUSED, void *data)
428{
429  defs_uses_info *info = data;
430  int regno, end_regno;
431
432  if (!REG_P (dest))
433    return;
434  regno = REGNO (dest);
435  end_regno = regno + hard_regno_nregs[regno][GET_MODE (dest)];
436  for (; regno < end_regno; regno++)
437    if (TEST_HARD_REG_BIT (all_btrs, regno))
438      {
439	note_other_use_this_block (regno, info->users_this_bb);
440	SET_HARD_REG_BIT (info->btrs_written_in_block, regno);
441	SET_HARD_REG_BIT (info->btrs_live_in_block, regno);
442	sbitmap_difference (info->bb_gen, info->bb_gen,
443			    info->btr_defset[regno - first_btr]);
444      }
445}
446
447static void
448compute_defs_uses_and_gen (fibheap_t all_btr_defs, btr_def *def_array,
449			   btr_user *use_array, sbitmap *btr_defset,
450			   sbitmap *bb_gen, HARD_REG_SET *btrs_written)
451{
452  /* Scan the code building up the set of all defs and all uses.
453     For each target register, build the set of defs of that register.
454     For each block, calculate the set of target registers
455     written in that block.
456     Also calculate the set of btrs ever live in that block.
457  */
458  int i;
459  int insn_luid = 0;
460  btr_def_group all_btr_def_groups = NULL;
461  defs_uses_info info;
462
463  sbitmap_vector_zero (bb_gen, n_basic_blocks);
464  for (i = 0; i < n_basic_blocks; i++)
465    {
466      basic_block bb = BASIC_BLOCK (i);
467      int reg;
468      btr_def defs_this_bb = NULL;
469      rtx insn;
470      rtx last;
471      int can_throw = 0;
472
473      info.users_this_bb = NULL;
474      info.bb_gen = bb_gen[i];
475      info.btr_defset = btr_defset;
476
477      CLEAR_HARD_REG_SET (info.btrs_live_in_block);
478      CLEAR_HARD_REG_SET (info.btrs_written_in_block);
479      for (reg = first_btr; reg <= last_btr; reg++)
480	if (TEST_HARD_REG_BIT (all_btrs, reg)
481	    && REGNO_REG_SET_P (bb->il.rtl->global_live_at_start, reg))
482	  SET_HARD_REG_BIT (info.btrs_live_in_block, reg);
483
484      for (insn = BB_HEAD (bb), last = NEXT_INSN (BB_END (bb));
485	   insn != last;
486	   insn = NEXT_INSN (insn), insn_luid++)
487	{
488	  if (INSN_P (insn))
489	    {
490	      int regno;
491	      int insn_uid = INSN_UID (insn);
492
493	      if (insn_sets_btr_p (insn, 0, &regno))
494		{
495		  btr_def def = add_btr_def (
496		      all_btr_defs, bb, insn_luid, insn, regno,
497		      TEST_HARD_REG_BIT (info.btrs_live_in_block, regno),
498		      &all_btr_def_groups);
499
500		  def_array[insn_uid] = def;
501		  SET_HARD_REG_BIT (info.btrs_written_in_block, regno);
502		  SET_HARD_REG_BIT (info.btrs_live_in_block, regno);
503		  sbitmap_difference (bb_gen[i], bb_gen[i],
504				      btr_defset[regno - first_btr]);
505		  SET_BIT (bb_gen[i], insn_uid);
506		  def->next_this_bb = defs_this_bb;
507		  defs_this_bb = def;
508		  SET_BIT (btr_defset[regno - first_btr], insn_uid);
509		  note_other_use_this_block (regno, info.users_this_bb);
510		}
511	      /* Check for the blockage emitted by expand_nl_goto_receiver.  */
512	      else if (current_function_has_nonlocal_label
513		       && GET_CODE (PATTERN (insn)) == ASM_INPUT)
514		{
515		  btr_user user;
516
517		  /* Do the equivalent of calling note_other_use_this_block
518		     for every target register.  */
519		  for (user = info.users_this_bb; user != NULL;
520		       user = user->next)
521		    if (user->use)
522		      user->other_use_this_block = 1;
523		  IOR_HARD_REG_SET (info.btrs_written_in_block, all_btrs);
524		  IOR_HARD_REG_SET (info.btrs_live_in_block, all_btrs);
525		  sbitmap_zero (info.bb_gen);
526		}
527	      else
528		{
529		  if (btr_referenced_p (PATTERN (insn), NULL))
530		    {
531		      btr_user user = new_btr_user (bb, insn_luid, insn);
532
533		      use_array[insn_uid] = user;
534		      if (user->use)
535			SET_HARD_REG_BIT (info.btrs_live_in_block,
536					  REGNO (user->use));
537		      else
538			{
539			  int reg;
540			  for (reg = first_btr; reg <= last_btr; reg++)
541			    if (TEST_HARD_REG_BIT (all_btrs, reg)
542				&& refers_to_regno_p (reg, reg + 1, user->insn,
543						      NULL))
544			      {
545				note_other_use_this_block (reg,
546							   info.users_this_bb);
547				SET_HARD_REG_BIT (info.btrs_live_in_block, reg);
548			      }
549			  note_stores (PATTERN (insn), note_btr_set, &info);
550			}
551		      user->next = info.users_this_bb;
552		      info.users_this_bb = user;
553		    }
554		  if (CALL_P (insn))
555		    {
556		      HARD_REG_SET *clobbered = &call_used_reg_set;
557		      HARD_REG_SET call_saved;
558		      rtx pat = PATTERN (insn);
559		      int i;
560
561		      /* Check for sibcall.  */
562		      if (GET_CODE (pat) == PARALLEL)
563			for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
564			  if (GET_CODE (XVECEXP (pat, 0, i)) == RETURN)
565			    {
566			      COMPL_HARD_REG_SET (call_saved,
567						  call_used_reg_set);
568			      clobbered = &call_saved;
569			    }
570
571		      for (regno = first_btr; regno <= last_btr; regno++)
572			if (TEST_HARD_REG_BIT (*clobbered, regno))
573			  note_btr_set (regno_reg_rtx[regno], NULL_RTX, &info);
574		    }
575		}
576	    }
577	}
578
579      COPY_HARD_REG_SET (btrs_live[i], info.btrs_live_in_block);
580      COPY_HARD_REG_SET (btrs_written[i], info.btrs_written_in_block);
581
582      REG_SET_TO_HARD_REG_SET (btrs_live_at_end[i], bb->il.rtl->global_live_at_end);
583      /* If this block ends in a jump insn, add any uses or even clobbers
584	 of branch target registers that it might have.  */
585      for (insn = BB_END (bb); insn != BB_HEAD (bb) && ! INSN_P (insn); )
586	insn = PREV_INSN (insn);
587      /* ??? for the fall-through edge, it would make sense to insert the
588	 btr set on the edge, but that would require to split the block
589	 early on so that we can distinguish between dominance from the fall
590	 through edge - which can use the call-clobbered registers - from
591	 dominance by the throw edge.  */
592      if (can_throw_internal (insn))
593	{
594	  HARD_REG_SET tmp;
595
596	  COPY_HARD_REG_SET (tmp, call_used_reg_set);
597	  AND_HARD_REG_SET (tmp, all_btrs);
598	  IOR_HARD_REG_SET (btrs_live_at_end[i], tmp);
599	  can_throw = 1;
600	}
601      if (can_throw || JUMP_P (insn))
602	{
603	  int regno;
604
605	  for (regno = first_btr; regno <= last_btr; regno++)
606	    if (refers_to_regno_p (regno, regno+1, insn, NULL))
607	      SET_HARD_REG_BIT (btrs_live_at_end[i], regno);
608	}
609
610      if (dump_file)
611	dump_btrs_live(i);
612    }
613}
614
615static void
616compute_kill (sbitmap *bb_kill, sbitmap *btr_defset,
617	      HARD_REG_SET *btrs_written)
618{
619  int i;
620  int regno;
621
622  /* For each basic block, form the set BB_KILL - the set
623     of definitions that the block kills.  */
624  sbitmap_vector_zero (bb_kill, n_basic_blocks);
625  for (i = 0; i < n_basic_blocks; i++)
626    {
627      for (regno = first_btr; regno <= last_btr; regno++)
628	if (TEST_HARD_REG_BIT (all_btrs, regno)
629	    && TEST_HARD_REG_BIT (btrs_written[i], regno))
630	  sbitmap_a_or_b (bb_kill[i], bb_kill[i],
631			  btr_defset[regno - first_btr]);
632    }
633}
634
635static void
636compute_out (sbitmap *bb_out, sbitmap *bb_gen, sbitmap *bb_kill, int max_uid)
637{
638  /* Perform iterative dataflow:
639      Initially, for all blocks, BB_OUT = BB_GEN.
640      For each block,
641	BB_IN  = union over predecessors of BB_OUT(pred)
642	BB_OUT = (BB_IN - BB_KILL) + BB_GEN
643     Iterate until the bb_out sets stop growing.  */
644  int i;
645  int changed;
646  sbitmap bb_in = sbitmap_alloc (max_uid);
647
648  for (i = 0; i < n_basic_blocks; i++)
649    sbitmap_copy (bb_out[i], bb_gen[i]);
650
651  changed = 1;
652  while (changed)
653    {
654      changed = 0;
655      for (i = 0; i < n_basic_blocks; i++)
656	{
657	  sbitmap_union_of_preds (bb_in, bb_out, i);
658	  changed |= sbitmap_union_of_diff_cg (bb_out[i], bb_gen[i],
659					       bb_in, bb_kill[i]);
660	}
661    }
662  sbitmap_free (bb_in);
663}
664
665static void
666link_btr_uses (btr_def *def_array, btr_user *use_array, sbitmap *bb_out,
667	       sbitmap *btr_defset, int max_uid)
668{
669  int i;
670  sbitmap reaching_defs = sbitmap_alloc (max_uid);
671
672  /* Link uses to the uses lists of all of their reaching defs.
673     Count up the number of reaching defs of each use.  */
674  for (i = 0; i < n_basic_blocks; i++)
675    {
676      basic_block bb = BASIC_BLOCK (i);
677      rtx insn;
678      rtx last;
679
680      sbitmap_union_of_preds (reaching_defs, bb_out, i);
681      for (insn = BB_HEAD (bb), last = NEXT_INSN (BB_END (bb));
682	   insn != last;
683	   insn = NEXT_INSN (insn))
684	{
685	  if (INSN_P (insn))
686	    {
687	      int insn_uid = INSN_UID (insn);
688
689	      btr_def def   = def_array[insn_uid];
690	      btr_user user = use_array[insn_uid];
691	      if (def != NULL)
692		{
693		  /* Remove all reaching defs of regno except
694		     for this one.  */
695		  sbitmap_difference (reaching_defs, reaching_defs,
696				      btr_defset[def->btr - first_btr]);
697		  SET_BIT(reaching_defs, insn_uid);
698		}
699
700	      if (user != NULL)
701		{
702		  /* Find all the reaching defs for this use.  */
703		  sbitmap reaching_defs_of_reg = sbitmap_alloc(max_uid);
704		  unsigned int uid = 0;
705		  sbitmap_iterator sbi;
706
707		  if (user->use)
708		    sbitmap_a_and_b (
709		      reaching_defs_of_reg,
710		      reaching_defs,
711		      btr_defset[REGNO (user->use) - first_btr]);
712		  else
713		    {
714		      int reg;
715
716		      sbitmap_zero (reaching_defs_of_reg);
717		      for (reg = first_btr; reg <= last_btr; reg++)
718			if (TEST_HARD_REG_BIT (all_btrs, reg)
719			    && refers_to_regno_p (reg, reg + 1, user->insn,
720						  NULL))
721			  sbitmap_a_or_b_and_c (reaching_defs_of_reg,
722			    reaching_defs_of_reg,
723			    reaching_defs,
724			    btr_defset[reg - first_btr]);
725		    }
726		  EXECUTE_IF_SET_IN_SBITMAP (reaching_defs_of_reg, 0, uid, sbi)
727		    {
728		      btr_def def = def_array[uid];
729
730		      /* We now know that def reaches user.  */
731
732		      if (dump_file)
733			fprintf (dump_file,
734			  "Def in insn %d reaches use in insn %d\n",
735			  uid, insn_uid);
736
737		      user->n_reaching_defs++;
738		      if (!user->use)
739			def->has_ambiguous_use = 1;
740		      if (user->first_reaching_def != -1)
741			{ /* There is more than one reaching def.  This is
742			     a rare case, so just give up on this def/use
743			     web when it occurs.  */
744			  def->has_ambiguous_use = 1;
745			  def_array[user->first_reaching_def]
746			    ->has_ambiguous_use = 1;
747			  if (dump_file)
748			    fprintf (dump_file,
749				     "(use %d has multiple reaching defs)\n",
750				     insn_uid);
751			}
752		      else
753			user->first_reaching_def = uid;
754		      if (user->other_use_this_block)
755			def->other_btr_uses_after_use = 1;
756		      user->next = def->uses;
757		      def->uses = user;
758		    }
759		  sbitmap_free (reaching_defs_of_reg);
760		}
761
762	      if (CALL_P (insn))
763		{
764		  int regno;
765
766		  for (regno = first_btr; regno <= last_btr; regno++)
767		    if (TEST_HARD_REG_BIT (all_btrs, regno)
768			&& TEST_HARD_REG_BIT (call_used_reg_set, regno))
769		      sbitmap_difference (reaching_defs, reaching_defs,
770					  btr_defset[regno - first_btr]);
771		}
772	    }
773	}
774    }
775  sbitmap_free (reaching_defs);
776}
777
778static void
779build_btr_def_use_webs (fibheap_t all_btr_defs)
780{
781  const int max_uid = get_max_uid ();
782  btr_def  *def_array   = xcalloc (max_uid, sizeof (btr_def));
783  btr_user *use_array   = xcalloc (max_uid, sizeof (btr_user));
784  sbitmap *btr_defset   = sbitmap_vector_alloc (
785			   (last_btr - first_btr) + 1, max_uid);
786  sbitmap *bb_gen      = sbitmap_vector_alloc (n_basic_blocks, max_uid);
787  HARD_REG_SET *btrs_written = xcalloc (n_basic_blocks, sizeof (HARD_REG_SET));
788  sbitmap *bb_kill;
789  sbitmap *bb_out;
790
791  sbitmap_vector_zero (btr_defset, (last_btr - first_btr) + 1);
792
793  compute_defs_uses_and_gen (all_btr_defs, def_array, use_array, btr_defset,
794			     bb_gen, btrs_written);
795
796  bb_kill = sbitmap_vector_alloc (n_basic_blocks, max_uid);
797  compute_kill (bb_kill, btr_defset, btrs_written);
798  free (btrs_written);
799
800  bb_out = sbitmap_vector_alloc (n_basic_blocks, max_uid);
801  compute_out (bb_out, bb_gen, bb_kill, max_uid);
802
803  sbitmap_vector_free (bb_gen);
804  sbitmap_vector_free (bb_kill);
805
806  link_btr_uses (def_array, use_array, bb_out, btr_defset, max_uid);
807
808  sbitmap_vector_free (bb_out);
809  sbitmap_vector_free (btr_defset);
810  free (use_array);
811  free (def_array);
812}
813
814/* Return true if basic block BB contains the start or end of the
815   live range of the definition DEF, AND there are other live
816   ranges of the same target register that include BB.  */
817static int
818block_at_edge_of_live_range_p (int bb, btr_def def)
819{
820  if (def->other_btr_uses_before_def && BASIC_BLOCK (bb) == def->bb)
821    return 1;
822  else if (def->other_btr_uses_after_use)
823    {
824      btr_user user;
825      for (user = def->uses; user != NULL; user = user->next)
826	if (BASIC_BLOCK (bb) == user->bb)
827	  return 1;
828    }
829  return 0;
830}
831
832/* We are removing the def/use web DEF.  The target register
833   used in this web is therefore no longer live in the live range
834   of this web, so remove it from the live set of all basic blocks
835   in the live range of the web.
836   Blocks at the boundary of the live range may contain other live
837   ranges for the same target register, so we have to be careful
838   to remove the target register from the live set of these blocks
839   only if they do not contain other live ranges for the same register.  */
840static void
841clear_btr_from_live_range (btr_def def)
842{
843  unsigned bb;
844  bitmap_iterator bi;
845
846  EXECUTE_IF_SET_IN_BITMAP (def->live_range, 0, bb, bi)
847    {
848      if ((!def->other_btr_uses_before_def
849	   && !def->other_btr_uses_after_use)
850	  || !block_at_edge_of_live_range_p (bb, def))
851	{
852	  CLEAR_HARD_REG_BIT (btrs_live[bb], def->btr);
853	  CLEAR_HARD_REG_BIT (btrs_live_at_end[bb], def->btr);
854	  if (dump_file)
855	    dump_btrs_live (bb);
856	}
857    }
858 if (def->own_end)
859   CLEAR_HARD_REG_BIT (btrs_live_at_end[def->bb->index], def->btr);
860}
861
862
863/* We are adding the def/use web DEF.  Add the target register used
864   in this web to the live set of all of the basic blocks that contain
865   the live range of the web.
866   If OWN_END is set, also show that the register is live from our
867   definitions at the end of the basic block where it is defined.  */
868static void
869add_btr_to_live_range (btr_def def, int own_end)
870{
871  unsigned bb;
872  bitmap_iterator bi;
873
874  EXECUTE_IF_SET_IN_BITMAP (def->live_range, 0, bb, bi)
875    {
876      SET_HARD_REG_BIT (btrs_live[bb], def->btr);
877      SET_HARD_REG_BIT (btrs_live_at_end[bb], def->btr);
878      if (dump_file)
879	dump_btrs_live (bb);
880    }
881  if (own_end)
882    {
883      SET_HARD_REG_BIT (btrs_live_at_end[def->bb->index], def->btr);
884      def->own_end = 1;
885    }
886}
887
888/* Update a live range to contain the basic block NEW_BLOCK, and all
889   blocks on paths between the existing live range and NEW_BLOCK.
890   HEAD is a block contained in the existing live range that dominates
891   all other blocks in the existing live range.
892   Also add to the set BTRS_LIVE_IN_RANGE all target registers that
893   are live in the blocks that we add to the live range.
894   If FULL_RANGE is set, include the full live range of NEW_BB;
895   otherwise, if NEW_BB dominates HEAD_BB, only add registers that
896   are life at the end of NEW_BB for NEW_BB itself.
897   It is a precondition that either NEW_BLOCK dominates HEAD,or
898   HEAD dom NEW_BLOCK.  This is used to speed up the
899   implementation of this function.  */
900static void
901augment_live_range (bitmap live_range, HARD_REG_SET *btrs_live_in_range,
902		    basic_block head_bb, basic_block new_bb, int full_range)
903{
904  basic_block *worklist, *tos;
905
906  tos = worklist = xmalloc (sizeof (basic_block) * (n_basic_blocks + 1));
907
908  if (dominated_by_p (CDI_DOMINATORS, new_bb, head_bb))
909    {
910      if (new_bb == head_bb)
911	{
912	  if (full_range)
913	    IOR_HARD_REG_SET (*btrs_live_in_range, btrs_live[new_bb->index]);
914	  return;
915	}
916      *tos++ = new_bb;
917    }
918  else
919    {
920      edge e;
921      edge_iterator ei;
922      int new_block = new_bb->index;
923
924      gcc_assert (dominated_by_p (CDI_DOMINATORS, head_bb, new_bb));
925
926      IOR_HARD_REG_SET (*btrs_live_in_range, btrs_live[head_bb->index]);
927      bitmap_set_bit (live_range, new_block);
928      /* A previous btr migration could have caused a register to be
929        live just at the end of new_block which we need in full, so
930        use trs_live_at_end even if full_range is set.  */
931      IOR_HARD_REG_SET (*btrs_live_in_range, btrs_live_at_end[new_block]);
932      if (full_range)
933	IOR_HARD_REG_SET (*btrs_live_in_range, btrs_live[new_block]);
934      if (dump_file)
935	{
936	  fprintf (dump_file,
937		   "Adding end of block %d and rest of %d to live range\n",
938		   new_block, head_bb->index);
939	  fprintf (dump_file,"Now live btrs are ");
940	  dump_hard_reg_set (*btrs_live_in_range);
941	  fprintf (dump_file, "\n");
942	}
943      FOR_EACH_EDGE (e, ei, head_bb->preds)
944	*tos++ = e->src;
945    }
946
947  while (tos != worklist)
948    {
949      basic_block bb = *--tos;
950      if (!bitmap_bit_p (live_range, bb->index))
951	{
952	  edge e;
953	  edge_iterator ei;
954
955	  bitmap_set_bit (live_range, bb->index);
956	  IOR_HARD_REG_SET (*btrs_live_in_range,
957	    btrs_live[bb->index]);
958	  /* A previous btr migration could have caused a register to be
959	     live just at the end of a block which we need in full.  */
960	  IOR_HARD_REG_SET (*btrs_live_in_range,
961	    btrs_live_at_end[bb->index]);
962	  if (dump_file)
963	    {
964	      fprintf (dump_file,
965		"Adding block %d to live range\n", bb->index);
966	      fprintf (dump_file,"Now live btrs are ");
967	      dump_hard_reg_set (*btrs_live_in_range);
968	      fprintf (dump_file, "\n");
969	    }
970
971	  FOR_EACH_EDGE (e, ei, bb->preds)
972	    {
973	      basic_block pred = e->src;
974	      if (!bitmap_bit_p (live_range, pred->index))
975		*tos++ = pred;
976	    }
977	}
978    }
979
980  free (worklist);
981}
982
983/*  Return the most desirable target register that is not in
984    the set USED_BTRS.  */
985static int
986choose_btr (HARD_REG_SET used_btrs)
987{
988  int i;
989  GO_IF_HARD_REG_SUBSET (all_btrs, used_btrs, give_up);
990
991  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
992    {
993#ifdef REG_ALLOC_ORDER
994      int regno = reg_alloc_order[i];
995#else
996      int regno = i;
997#endif
998      if (TEST_HARD_REG_BIT (all_btrs, regno)
999	  && !TEST_HARD_REG_BIT (used_btrs, regno))
1000	return regno;
1001    }
1002give_up:
1003  return -1;
1004}
1005
1006/* Calculate the set of basic blocks that contain the live range of
1007   the def/use web DEF.
1008   Also calculate the set of target registers that are live at time
1009   in this live range, but ignore the live range represented by DEF
1010   when calculating this set.  */
1011static void
1012btr_def_live_range (btr_def def, HARD_REG_SET *btrs_live_in_range)
1013{
1014  if (!def->live_range)
1015    {
1016      btr_user user;
1017
1018      def->live_range = BITMAP_ALLOC (NULL);
1019
1020      bitmap_set_bit (def->live_range, def->bb->index);
1021      COPY_HARD_REG_SET (*btrs_live_in_range,
1022			 (flag_btr_bb_exclusive
1023			  ? btrs_live : btrs_live_at_end)[def->bb->index]);
1024
1025      for (user = def->uses; user != NULL; user = user->next)
1026	augment_live_range (def->live_range, btrs_live_in_range,
1027			    def->bb, user->bb,
1028			    (flag_btr_bb_exclusive
1029			     || user->insn != BB_END (def->bb)
1030			     || !JUMP_P (user->insn)));
1031    }
1032  else
1033    {
1034      /* def->live_range is accurate, but we need to recompute
1035	 the set of target registers live over it, because migration
1036	 of other PT instructions may have affected it.
1037      */
1038      unsigned bb;
1039      unsigned def_bb = flag_btr_bb_exclusive ? -1 : def->bb->index;
1040      bitmap_iterator bi;
1041
1042      CLEAR_HARD_REG_SET (*btrs_live_in_range);
1043      EXECUTE_IF_SET_IN_BITMAP (def->live_range, 0, bb, bi)
1044	{
1045	  IOR_HARD_REG_SET (*btrs_live_in_range,
1046			    (def_bb == bb
1047			     ? btrs_live_at_end : btrs_live) [bb]);
1048	}
1049    }
1050  if (!def->other_btr_uses_before_def &&
1051      !def->other_btr_uses_after_use)
1052    CLEAR_HARD_REG_BIT (*btrs_live_in_range, def->btr);
1053}
1054
1055/* Merge into the def/use web DEF any other def/use webs in the same
1056   group that are dominated by DEF, provided that there is a target
1057   register available to allocate to the merged web.  */
1058static void
1059combine_btr_defs (btr_def def, HARD_REG_SET *btrs_live_in_range)
1060{
1061  btr_def other_def;
1062
1063  for (other_def = def->group->members;
1064       other_def != NULL;
1065       other_def = other_def->next_this_group)
1066    {
1067      if (other_def != def
1068	  && other_def->uses != NULL
1069	  && ! other_def->has_ambiguous_use
1070	  && dominated_by_p (CDI_DOMINATORS, other_def->bb, def->bb))
1071	{
1072	  /* def->bb dominates the other def, so def and other_def could
1073	     be combined.  */
1074	  /* Merge their live ranges, and get the set of
1075	     target registers live over the merged range.  */
1076	  int btr;
1077	  HARD_REG_SET combined_btrs_live;
1078	  bitmap combined_live_range = BITMAP_ALLOC (NULL);
1079	  btr_user user;
1080
1081	  if (other_def->live_range == NULL)
1082	    {
1083	      HARD_REG_SET dummy_btrs_live_in_range;
1084	      btr_def_live_range (other_def, &dummy_btrs_live_in_range);
1085	    }
1086	  COPY_HARD_REG_SET (combined_btrs_live, *btrs_live_in_range);
1087	  bitmap_copy (combined_live_range, def->live_range);
1088
1089	  for (user = other_def->uses; user != NULL; user = user->next)
1090	    augment_live_range (combined_live_range, &combined_btrs_live,
1091				def->bb, user->bb,
1092				(flag_btr_bb_exclusive
1093				 || user->insn != BB_END (def->bb)
1094				 || !JUMP_P (user->insn)));
1095
1096	  btr = choose_btr (combined_btrs_live);
1097	  if (btr != -1)
1098	    {
1099	      /* We can combine them.  */
1100	      if (dump_file)
1101		fprintf (dump_file,
1102			 "Combining def in insn %d with def in insn %d\n",
1103			 INSN_UID (other_def->insn), INSN_UID (def->insn));
1104
1105	      def->btr = btr;
1106	      user = other_def->uses;
1107	      while (user != NULL)
1108		{
1109		  btr_user next = user->next;
1110
1111		  user->next = def->uses;
1112		  def->uses = user;
1113		  user = next;
1114		}
1115	      /* Combining def/use webs can make target registers live
1116		 after uses where they previously were not.  This means
1117		 some REG_DEAD notes may no longer be correct.  We could
1118		 be more precise about this if we looked at the combined
1119		 live range, but here I just delete any REG_DEAD notes
1120		 in case they are no longer correct.  */
1121	      for (user = def->uses; user != NULL; user = user->next)
1122		remove_note (user->insn,
1123			     find_regno_note (user->insn, REG_DEAD,
1124					      REGNO (user->use)));
1125	      clear_btr_from_live_range (other_def);
1126	      other_def->uses = NULL;
1127	      bitmap_copy (def->live_range, combined_live_range);
1128	      if (other_def->btr == btr && other_def->other_btr_uses_after_use)
1129		def->other_btr_uses_after_use = 1;
1130	      COPY_HARD_REG_SET (*btrs_live_in_range, combined_btrs_live);
1131
1132	      /* Delete the old target register initialization.  */
1133	      delete_insn (other_def->insn);
1134
1135	    }
1136	  BITMAP_FREE (combined_live_range);
1137	}
1138    }
1139}
1140
1141/* Move the definition DEF from its current position to basic
1142   block NEW_DEF_BB, and modify it to use branch target register BTR.
1143   Delete the old defining insn, and insert a new one in NEW_DEF_BB.
1144   Update all reaching uses of DEF in the RTL to use BTR.
1145   If this new position means that other defs in the
1146   same group can be combined with DEF then combine them.  */
1147static void
1148move_btr_def (basic_block new_def_bb, int btr, btr_def def, bitmap live_range,
1149	     HARD_REG_SET *btrs_live_in_range)
1150{
1151  /* We can move the instruction.
1152     Set a target register in block NEW_DEF_BB to the value
1153     needed for this target register definition.
1154     Replace all uses of the old target register definition by
1155     uses of the new definition.  Delete the old definition.  */
1156  basic_block b = new_def_bb;
1157  rtx insp = BB_HEAD (b);
1158  rtx old_insn = def->insn;
1159  rtx src;
1160  rtx btr_rtx;
1161  rtx new_insn;
1162  enum machine_mode btr_mode;
1163  btr_user user;
1164  rtx set;
1165
1166  if (dump_file)
1167    fprintf(dump_file, "migrating to basic block %d, using reg %d\n",
1168	    new_def_bb->index, btr);
1169
1170  clear_btr_from_live_range (def);
1171  def->btr = btr;
1172  def->bb = new_def_bb;
1173  def->luid = 0;
1174  def->cost = basic_block_freq (new_def_bb);
1175  bitmap_copy (def->live_range, live_range);
1176  combine_btr_defs (def, btrs_live_in_range);
1177  btr = def->btr;
1178  def->other_btr_uses_before_def
1179    = TEST_HARD_REG_BIT (btrs_live[b->index], btr) ? 1 : 0;
1180  add_btr_to_live_range (def, 1);
1181  if (LABEL_P (insp))
1182    insp = NEXT_INSN (insp);
1183  /* N.B.: insp is expected to be NOTE_INSN_BASIC_BLOCK now.  Some
1184     optimizations can result in insp being both first and last insn of
1185     its basic block.  */
1186  /* ?? some assertions to check that insp is sensible? */
1187
1188  if (def->other_btr_uses_before_def)
1189    {
1190      insp = BB_END (b);
1191      for (insp = BB_END (b); ! INSN_P (insp); insp = PREV_INSN (insp))
1192	gcc_assert (insp != BB_HEAD (b));
1193
1194      if (JUMP_P (insp) || can_throw_internal (insp))
1195	insp = PREV_INSN (insp);
1196    }
1197
1198  set = single_set (old_insn);
1199  src = SET_SRC (set);
1200  btr_mode = GET_MODE (SET_DEST (set));
1201  btr_rtx = gen_rtx_REG (btr_mode, btr);
1202
1203  new_insn = gen_move_insn (btr_rtx, src);
1204
1205  /* Insert target register initialization at head of basic block.  */
1206  def->insn = emit_insn_after (new_insn, insp);
1207
1208  regs_ever_live[btr] = 1;
1209
1210  if (dump_file)
1211    fprintf (dump_file, "New pt is insn %d, inserted after insn %d\n",
1212	     INSN_UID (def->insn), INSN_UID (insp));
1213
1214  /* Delete the old target register initialization.  */
1215  delete_insn (old_insn);
1216
1217  /* Replace each use of the old target register by a use of the new target
1218     register.  */
1219  for (user = def->uses; user != NULL; user = user->next)
1220    {
1221      /* Some extra work here to ensure consistent modes, because
1222	 it seems that a target register REG rtx can be given a different
1223	 mode depending on the context (surely that should not be
1224	 the case?).  */
1225      rtx replacement_rtx;
1226      if (GET_MODE (user->use) == GET_MODE (btr_rtx)
1227	  || GET_MODE (user->use) == VOIDmode)
1228	replacement_rtx = btr_rtx;
1229      else
1230	replacement_rtx = gen_rtx_REG (GET_MODE (user->use), btr);
1231      replace_rtx (user->insn, user->use, replacement_rtx);
1232      user->use = replacement_rtx;
1233    }
1234}
1235
1236/* We anticipate intra-block scheduling to be done.  See if INSN could move
1237   up within BB by N_INSNS.  */
1238static int
1239can_move_up (basic_block bb, rtx insn, int n_insns)
1240{
1241  while (insn != BB_HEAD (bb) && n_insns > 0)
1242    {
1243      insn = PREV_INSN (insn);
1244      /* ??? What if we have an anti-dependency that actually prevents the
1245	 scheduler from doing the move?  We'd like to re-allocate the register,
1246	 but not necessarily put the load into another basic block.  */
1247      if (INSN_P (insn))
1248	n_insns--;
1249    }
1250  return n_insns <= 0;
1251}
1252
1253/* Attempt to migrate the target register definition DEF to an
1254   earlier point in the flowgraph.
1255
1256   It is a precondition of this function that DEF is migratable:
1257   i.e. it has a constant source, and all uses are unambiguous.
1258
1259   Only migrations that reduce the cost of DEF will be made.
1260   MIN_COST is the lower bound on the cost of the DEF after migration.
1261   If we migrate DEF so that its cost falls below MIN_COST,
1262   then we do not attempt to migrate further.  The idea is that
1263   we migrate definitions in a priority order based on their cost,
1264   when the cost of this definition falls below MIN_COST, then
1265   there is another definition with cost == MIN_COST which now
1266   has a higher priority than this definition.
1267
1268   Return nonzero if there may be benefit from attempting to
1269   migrate this DEF further (i.e. we have reduced the cost below
1270   MIN_COST, but we may be able to reduce it further).
1271   Return zero if no further migration is possible.  */
1272static int
1273migrate_btr_def (btr_def def, int min_cost)
1274{
1275  bitmap live_range;
1276  HARD_REG_SET btrs_live_in_range;
1277  int btr_used_near_def = 0;
1278  int def_basic_block_freq;
1279  basic_block try;
1280  int give_up = 0;
1281  int def_moved = 0;
1282  btr_user user;
1283  int def_latency;
1284
1285  if (dump_file)
1286    fprintf (dump_file,
1287	     "Attempting to migrate pt from insn %d (cost = %d, min_cost = %d) ... ",
1288	     INSN_UID (def->insn), def->cost, min_cost);
1289
1290  if (!def->group || def->has_ambiguous_use)
1291    /* These defs are not migratable.  */
1292    {
1293      if (dump_file)
1294	fprintf (dump_file, "it's not migratable\n");
1295      return 0;
1296    }
1297
1298  if (!def->uses)
1299    /* We have combined this def with another in the same group, so
1300       no need to consider it further.
1301    */
1302    {
1303      if (dump_file)
1304	fprintf (dump_file, "it's already combined with another pt\n");
1305      return 0;
1306    }
1307
1308  btr_def_live_range (def, &btrs_live_in_range);
1309  live_range = BITMAP_ALLOC (NULL);
1310  bitmap_copy (live_range, def->live_range);
1311
1312#ifdef INSN_SCHEDULING
1313  def_latency = insn_default_latency (def->insn) * issue_rate;
1314#else
1315  def_latency = issue_rate;
1316#endif
1317
1318  for (user = def->uses; user != NULL; user = user->next)
1319    {
1320      if (user->bb == def->bb
1321	  && user->luid > def->luid
1322	  && (def->luid + def_latency) > user->luid
1323	  && ! can_move_up (def->bb, def->insn,
1324			    (def->luid + def_latency) - user->luid))
1325	{
1326	  btr_used_near_def = 1;
1327	  break;
1328	}
1329    }
1330
1331  def_basic_block_freq = basic_block_freq (def->bb);
1332
1333  for (try = get_immediate_dominator (CDI_DOMINATORS, def->bb);
1334       !give_up && try && try != ENTRY_BLOCK_PTR && def->cost >= min_cost;
1335       try = get_immediate_dominator (CDI_DOMINATORS, try))
1336    {
1337      /* Try to move the instruction that sets the target register into
1338	 basic block TRY.  */
1339      int try_freq = basic_block_freq (try);
1340
1341      if (dump_file)
1342	fprintf (dump_file, "trying block %d ...", try->index);
1343
1344      if (try_freq < def_basic_block_freq
1345	  || (try_freq == def_basic_block_freq && btr_used_near_def))
1346	{
1347	  int btr;
1348	  augment_live_range (live_range, &btrs_live_in_range, def->bb, try,
1349			      flag_btr_bb_exclusive);
1350	  if (dump_file)
1351	    {
1352	      fprintf (dump_file, "Now btrs live in range are: ");
1353	      dump_hard_reg_set (btrs_live_in_range);
1354	      fprintf (dump_file, "\n");
1355	    }
1356	  btr = choose_btr (btrs_live_in_range);
1357	  if (btr != -1)
1358	    {
1359	      move_btr_def (try, btr, def, live_range, &btrs_live_in_range);
1360	      bitmap_copy(live_range, def->live_range);
1361	      btr_used_near_def = 0;
1362	      def_moved = 1;
1363	      def_basic_block_freq = basic_block_freq (def->bb);
1364	    }
1365	  else
1366	    {
1367	      /* There are no free target registers available to move
1368		 this far forward, so give up */
1369	      give_up = 1;
1370	      if (dump_file)
1371		fprintf (dump_file,
1372			 "giving up because there are no free target registers\n");
1373	    }
1374
1375	}
1376    }
1377  if (!def_moved)
1378    {
1379      give_up = 1;
1380      if (dump_file)
1381	fprintf (dump_file, "failed to move\n");
1382    }
1383  BITMAP_FREE (live_range);
1384  return !give_up;
1385}
1386
1387/* Attempt to move instructions that set target registers earlier
1388   in the flowgraph, away from their corresponding uses.  */
1389static void
1390migrate_btr_defs (enum reg_class btr_class, int allow_callee_save)
1391{
1392  fibheap_t all_btr_defs = fibheap_new ();
1393  int reg;
1394
1395  gcc_obstack_init (&migrate_btrl_obstack);
1396  if (dump_file)
1397    {
1398      int i;
1399
1400      for (i = 0; i < n_basic_blocks; i++)
1401	{
1402	  basic_block bb = BASIC_BLOCK (i);
1403	  fprintf(dump_file,
1404	    "Basic block %d: count = " HOST_WIDEST_INT_PRINT_DEC
1405	    " loop-depth = %d idom = %d\n",
1406	    i, (HOST_WIDEST_INT) bb->count, bb->loop_depth,
1407	    get_immediate_dominator (CDI_DOMINATORS, bb)->index);
1408	}
1409    }
1410
1411  CLEAR_HARD_REG_SET (all_btrs);
1412  for (first_btr = -1, reg = 0; reg < FIRST_PSEUDO_REGISTER; reg++)
1413    if (TEST_HARD_REG_BIT (reg_class_contents[(int) btr_class], reg)
1414	&& (allow_callee_save || call_used_regs[reg] || regs_ever_live[reg]))
1415      {
1416	SET_HARD_REG_BIT (all_btrs, reg);
1417	last_btr = reg;
1418	if (first_btr < 0)
1419	  first_btr = reg;
1420      }
1421
1422  btrs_live = xcalloc (n_basic_blocks, sizeof (HARD_REG_SET));
1423  btrs_live_at_end = xcalloc (n_basic_blocks, sizeof (HARD_REG_SET));
1424
1425  build_btr_def_use_webs (all_btr_defs);
1426
1427  while (!fibheap_empty (all_btr_defs))
1428    {
1429      btr_def def = fibheap_extract_min (all_btr_defs);
1430      int min_cost = -fibheap_min_key (all_btr_defs);
1431      if (migrate_btr_def (def, min_cost))
1432	{
1433	  fibheap_insert (all_btr_defs, -def->cost, (void *) def);
1434	  if (dump_file)
1435	    {
1436	      fprintf (dump_file,
1437		"Putting insn %d back on queue with priority %d\n",
1438		INSN_UID (def->insn), def->cost);
1439	    }
1440	}
1441      else
1442	BITMAP_FREE (def->live_range);
1443    }
1444
1445  free (btrs_live);
1446  free (btrs_live_at_end);
1447  obstack_free (&migrate_btrl_obstack, NULL);
1448  fibheap_delete (all_btr_defs);
1449}
1450
1451void
1452branch_target_load_optimize (bool after_prologue_epilogue_gen)
1453{
1454  enum reg_class class = targetm.branch_target_register_class ();
1455  if (class != NO_REGS)
1456    {
1457      /* Initialize issue_rate.  */
1458      if (targetm.sched.issue_rate)
1459	issue_rate = targetm.sched.issue_rate ();
1460      else
1461	issue_rate = 1;
1462
1463      /* Build the CFG for migrate_btr_defs.  */
1464#if 1
1465      /* This may or may not be needed, depending on where we
1466	 run this phase.  */
1467      cleanup_cfg (optimize ? CLEANUP_EXPENSIVE : 0);
1468#endif
1469
1470      life_analysis (NULL, 0);
1471
1472      /* Dominator info is also needed for migrate_btr_def.  */
1473      calculate_dominance_info (CDI_DOMINATORS);
1474      migrate_btr_defs (class,
1475		       (targetm.branch_target_register_callee_saved
1476			(after_prologue_epilogue_gen)));
1477
1478      free_dominance_info (CDI_DOMINATORS);
1479
1480      update_life_info (NULL, UPDATE_LIFE_GLOBAL_RM_NOTES,
1481			PROP_DEATH_NOTES | PROP_REG_INFO);
1482    }
1483}
1484
1485static bool
1486gate_handle_branch_target_load_optimize (void)
1487{
1488  return (optimize > 0 && flag_branch_target_load_optimize2);
1489}
1490
1491
1492static void
1493rest_of_handle_branch_target_load_optimize (void)
1494{
1495  static int warned = 0;
1496
1497  /* Leave this a warning for now so that it is possible to experiment
1498     with running this pass twice.  In 3.6, we should either make this
1499     an error, or use separate dump files.  */
1500  if (flag_branch_target_load_optimize
1501      && flag_branch_target_load_optimize2
1502      && !warned)
1503    {
1504      warning (0, "branch target register load optimization is not intended "
1505                  "to be run twice");
1506
1507      warned = 1;
1508    }
1509
1510  branch_target_load_optimize (epilogue_completed);
1511}
1512
1513struct tree_opt_pass pass_branch_target_load_optimize =
1514{
1515  "btl",                               /* name */
1516  gate_handle_branch_target_load_optimize,      /* gate */
1517  rest_of_handle_branch_target_load_optimize,   /* execute */
1518  NULL,                                 /* sub */
1519  NULL,                                 /* next */
1520  0,                                    /* static_pass_number */
1521  0,		                        /* tv_id */
1522  0,                                    /* properties_required */
1523  0,                                    /* properties_provided */
1524  0,                                    /* properties_destroyed */
1525  0,                                    /* todo_flags_start */
1526  TODO_dump_func |
1527  TODO_ggc_collect,                     /* todo_flags_finish */
1528  'd'                                   /* letter */
1529};
1530
1531