1/* mpfr_eint, mpfr_eint1 -- the exponential integral
2
3Copyright 2005, 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4Contributed by the Arenaire and Cacao projects, INRIA.
5
6This file is part of the GNU MPFR Library.
7
8The GNU MPFR Library is free software; you can redistribute it and/or modify
9it under the terms of the GNU Lesser General Public License as published by
10the Free Software Foundation; either version 3 of the License, or (at your
11option) any later version.
12
13The GNU MPFR Library is distributed in the hope that it will be useful, but
14WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
16License for more details.
17
18You should have received a copy of the GNU Lesser General Public License
19along with the GNU MPFR Library; see the file COPYING.LESSER.  If not, see
20http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
2151 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
22
23#define MPFR_NEED_LONGLONG_H
24#include "mpfr-impl.h"
25
26/* eint1(x) = -gamma - log(x) - sum((-1)^k*z^k/k/k!, k=1..infinity) for x > 0
27            = - eint(-x) for x < 0
28   where
29   eint (x) = gamma + log(x) + sum(z^k/k/k!, k=1..infinity) for x > 0
30   eint (x) is undefined for x < 0.
31*/
32
33/* compute in y an approximation of sum(x^k/k/k!, k=1..infinity),
34   and return e such that the absolute error is bound by 2^e ulp(y) */
35static mpfr_exp_t
36mpfr_eint_aux (mpfr_t y, mpfr_srcptr x)
37{
38  mpfr_t eps; /* dynamic (absolute) error bound on t */
39  mpfr_t erru, errs;
40  mpz_t m, s, t, u;
41  mpfr_exp_t e, sizeinbase;
42  mpfr_prec_t w = MPFR_PREC(y);
43  unsigned long k;
44  MPFR_GROUP_DECL (group);
45
46  /* for |x| <= 1, we have S := sum(x^k/k/k!, k=1..infinity) = x + R(x)
47     where |R(x)| <= (x/2)^2/(1-x/2) <= 2*(x/2)^2
48     thus |R(x)/x| <= |x|/2
49     thus if |x| <= 2^(-PREC(y)) we have |S - o(x)| <= ulp(y) */
50
51  if (MPFR_GET_EXP(x) <= - (mpfr_exp_t) w)
52    {
53      mpfr_set (y, x, MPFR_RNDN);
54      return 0;
55    }
56
57  mpz_init (s); /* initializes to 0 */
58  mpz_init (t);
59  mpz_init (u);
60  mpz_init (m);
61  MPFR_GROUP_INIT_3 (group, 31, eps, erru, errs);
62  e = mpfr_get_z_2exp (m, x); /* x = m * 2^e */
63  MPFR_ASSERTD (mpz_sizeinbase (m, 2) == MPFR_PREC (x));
64  if (MPFR_PREC (x) > w)
65    {
66      e += MPFR_PREC (x) - w;
67      mpz_tdiv_q_2exp (m, m, MPFR_PREC (x) - w);
68    }
69  /* remove trailing zeroes from m: this will speed up much cases where
70     x is a small integer divided by a power of 2 */
71  k = mpz_scan1 (m, 0);
72  mpz_tdiv_q_2exp (m, m, k);
73  e += k;
74  /* initialize t to 2^w */
75  mpz_set_ui (t, 1);
76  mpz_mul_2exp (t, t, w);
77  mpfr_set_ui (eps, 0, MPFR_RNDN); /* eps[0] = 0 */
78  mpfr_set_ui (errs, 0, MPFR_RNDN);
79  for (k = 1;; k++)
80    {
81      /* let eps[k] be the absolute error on t[k]:
82         since t[k] = trunc(t[k-1]*m*2^e/k), we have
83         eps[k+1] <= 1 + eps[k-1]*m*2^e/k + t[k-1]*m*2^(1-w)*2^e/k
84                  =  1 + (eps[k-1] + t[k-1]*2^(1-w))*m*2^e/k
85                  = 1 + (eps[k-1]*2^(w-1) + t[k-1])*2^(1-w)*m*2^e/k */
86      mpfr_mul_2ui (eps, eps, w - 1, MPFR_RNDU);
87      mpfr_add_z (eps, eps, t, MPFR_RNDU);
88      MPFR_MPZ_SIZEINBASE2 (sizeinbase, m);
89      mpfr_mul_2si (eps, eps, sizeinbase - (w - 1) + e, MPFR_RNDU);
90      mpfr_div_ui (eps, eps, k, MPFR_RNDU);
91      mpfr_add_ui (eps, eps, 1, MPFR_RNDU);
92      mpz_mul (t, t, m);
93      if (e < 0)
94        mpz_tdiv_q_2exp (t, t, -e);
95      else
96        mpz_mul_2exp (t, t, e);
97      mpz_tdiv_q_ui (t, t, k);
98      mpz_tdiv_q_ui (u, t, k);
99      mpz_add (s, s, u);
100      /* the absolute error on u is <= 1 + eps[k]/k */
101      mpfr_div_ui (erru, eps, k, MPFR_RNDU);
102      mpfr_add_ui (erru, erru, 1, MPFR_RNDU);
103      /* and that on s is the sum of all errors on u */
104      mpfr_add (errs, errs, erru, MPFR_RNDU);
105      /* we are done when t is smaller than errs */
106      if (mpz_sgn (t) == 0)
107        sizeinbase = 0;
108      else
109        MPFR_MPZ_SIZEINBASE2 (sizeinbase, t);
110      if (sizeinbase < MPFR_GET_EXP (errs))
111        break;
112    }
113  /* the truncation error is bounded by (|t|+eps)/k*(|x|/k + |x|^2/k^2 + ...)
114     <= (|t|+eps)/k*|x|/(k-|x|) */
115  mpz_abs (t, t);
116  mpfr_add_z (eps, eps, t, MPFR_RNDU);
117  mpfr_div_ui (eps, eps, k, MPFR_RNDU);
118  mpfr_abs (erru, x, MPFR_RNDU); /* |x| */
119  mpfr_mul (eps, eps, erru, MPFR_RNDU);
120  mpfr_ui_sub (erru, k, erru, MPFR_RNDD);
121  if (MPFR_IS_NEG (erru))
122    {
123      /* the truncated series does not converge, return fail */
124      e = w;
125    }
126  else
127    {
128      mpfr_div (eps, eps, erru, MPFR_RNDU);
129      mpfr_add (errs, errs, eps, MPFR_RNDU);
130      mpfr_set_z (y, s, MPFR_RNDN);
131      mpfr_div_2ui (y, y, w, MPFR_RNDN);
132      /* errs was an absolute error bound on s. We must convert it to an error
133         in terms of ulp(y). Since ulp(y) = 2^(EXP(y)-PREC(y)), we must
134         divide the error by 2^(EXP(y)-PREC(y)), but since we divided also
135         y by 2^w = 2^PREC(y), we must simply divide by 2^EXP(y). */
136      e = MPFR_GET_EXP (errs) - MPFR_GET_EXP (y);
137    }
138  MPFR_GROUP_CLEAR (group);
139  mpz_clear (s);
140  mpz_clear (t);
141  mpz_clear (u);
142  mpz_clear (m);
143  return e;
144}
145
146/* Return in y an approximation of Ei(x) using the asymptotic expansion:
147   Ei(x) = exp(x)/x * (1 + 1/x + 2/x^2 + ... + k!/x^k + ...)
148   Assumes x >= PREC(y) * log(2).
149   Returns the error bound in terms of ulp(y).
150*/
151static mpfr_exp_t
152mpfr_eint_asympt (mpfr_ptr y, mpfr_srcptr x)
153{
154  mpfr_prec_t p = MPFR_PREC(y);
155  mpfr_t invx, t, err;
156  unsigned long k;
157  mpfr_exp_t err_exp;
158
159  mpfr_init2 (t, p);
160  mpfr_init2 (invx, p);
161  mpfr_init2 (err, 31); /* error in ulps on y */
162  mpfr_ui_div (invx, 1, x, MPFR_RNDN); /* invx = 1/x*(1+u) with |u|<=2^(1-p) */
163  mpfr_set_ui (t, 1, MPFR_RNDN); /* exact */
164  mpfr_set (y, t, MPFR_RNDN);
165  mpfr_set_ui (err, 0, MPFR_RNDN);
166  for (k = 1; MPFR_GET_EXP(t) + (mpfr_exp_t) p > MPFR_GET_EXP(y); k++)
167    {
168      mpfr_mul (t, t, invx, MPFR_RNDN); /* 2 more roundings */
169      mpfr_mul_ui (t, t, k, MPFR_RNDN); /* 1 more rounding: t = k!/x^k*(1+u)^e
170                                          with u=2^{-p} and |e| <= 3*k */
171      /* we use the fact that |(1+u)^n-1| <= 2*|n*u| for |n*u| <= 1, thus
172         the error on t is less than 6*k*2^{-p}*t <= 6*k*ulp(t) */
173      /* err is in terms of ulp(y): transform it in terms of ulp(t) */
174      mpfr_mul_2si (err, err, MPFR_GET_EXP(y) - MPFR_GET_EXP(t), MPFR_RNDU);
175      mpfr_add_ui (err, err, 6 * k, MPFR_RNDU);
176      /* transform back in terms of ulp(y) */
177      mpfr_div_2si (err, err, MPFR_GET_EXP(y) - MPFR_GET_EXP(t), MPFR_RNDU);
178      mpfr_add (y, y, t, MPFR_RNDN);
179    }
180  /* add the truncation error bounded by ulp(y): 1 ulp */
181  mpfr_mul (y, y, invx, MPFR_RNDN); /* err <= 2*err + 3/2 */
182  mpfr_exp (t, x, MPFR_RNDN); /* err(t) <= 1/2*ulp(t) */
183  mpfr_mul (y, y, t, MPFR_RNDN); /* again: err <= 2*err + 3/2 */
184  mpfr_mul_2ui (err, err, 2, MPFR_RNDU);
185  mpfr_add_ui (err, err, 8, MPFR_RNDU);
186  err_exp = MPFR_GET_EXP(err);
187  mpfr_clear (t);
188  mpfr_clear (invx);
189  mpfr_clear (err);
190  return err_exp;
191}
192
193int
194mpfr_eint (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd)
195{
196  int inex;
197  mpfr_t tmp, ump;
198  mpfr_exp_t err, te;
199  mpfr_prec_t prec;
200  MPFR_SAVE_EXPO_DECL (expo);
201  MPFR_ZIV_DECL (loop);
202
203  MPFR_LOG_FUNC (("x[%#R]=%R rnd=%d", x, x, rnd),
204                 ("y[%#R]=%R inexact=%d", y, y, inex));
205
206  if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
207    {
208      /* exp(NaN) = exp(-Inf) = NaN */
209      if (MPFR_IS_NAN (x) || (MPFR_IS_INF (x) && MPFR_IS_NEG(x)))
210        {
211          MPFR_SET_NAN (y);
212          MPFR_RET_NAN;
213        }
214      /* eint(+inf) = +inf */
215      else if (MPFR_IS_INF (x))
216        {
217          MPFR_SET_INF(y);
218          MPFR_SET_POS(y);
219          MPFR_RET(0);
220        }
221      else /* eint(+/-0) = -Inf */
222        {
223          MPFR_SET_INF(y);
224          MPFR_SET_NEG(y);
225          MPFR_RET(0);
226        }
227    }
228
229  /* eint(x) = NaN for x < 0 */
230  if (MPFR_IS_NEG(x))
231    {
232      MPFR_SET_NAN (y);
233      MPFR_RET_NAN;
234    }
235
236  MPFR_SAVE_EXPO_MARK (expo);
237
238  /* Since eint(x) >= exp(x)/x, we have log2(eint(x)) >= (x-log(x))/log(2).
239     Let's compute k <= (x-log(x))/log(2) in a low precision. If k >= emax,
240     then log2(eint(x)) >= emax, and eint(x) >= 2^emax, i.e. it overflows. */
241  mpfr_init2 (tmp, 64);
242  mpfr_init2 (ump, 64);
243  mpfr_log (tmp, x, MPFR_RNDU);
244  mpfr_sub (ump, x, tmp, MPFR_RNDD);
245  mpfr_const_log2 (tmp, MPFR_RNDU);
246  mpfr_div (ump, ump, tmp, MPFR_RNDD);
247  /* FIXME: We really need mpfr_set_exp_t and mpfr_cmpfr_exp_t functions. */
248  MPFR_ASSERTN (MPFR_EMAX_MAX <= LONG_MAX);
249  if (mpfr_cmp_ui (ump, __gmpfr_emax) >= 0)
250    {
251      mpfr_clear (tmp);
252      mpfr_clear (ump);
253      MPFR_SAVE_EXPO_FREE (expo);
254      return mpfr_overflow (y, rnd, 1);
255    }
256
257  /* Init stuff */
258  prec = MPFR_PREC (y) + 2 * MPFR_INT_CEIL_LOG2 (MPFR_PREC (y)) + 6;
259
260  /* eint() has a root 0.37250741078136663446..., so if x is near,
261     already take more bits */
262  if (MPFR_GET_EXP(x) == -1) /* 1/4 <= x < 1/2 */
263    {
264      double d;
265      d = mpfr_get_d (x, MPFR_RNDN) - 0.37250741078136663;
266      d = (d == 0.0) ? -53 : __gmpfr_ceil_log2 (d);
267      prec += -d;
268    }
269
270  mpfr_set_prec (tmp, prec);
271  mpfr_set_prec (ump, prec);
272
273  MPFR_ZIV_INIT (loop, prec);            /* Initialize the ZivLoop controler */
274  for (;;)                               /* Infinite loop */
275    {
276      /* We need that the smallest value of k!/x^k is smaller than 2^(-p).
277         The minimum is obtained for x=k, and it is smaller than e*sqrt(x)/e^x
278         for x>=1. */
279      if (MPFR_GET_EXP (x) > 0 && mpfr_cmp_d (x, ((double) prec +
280                            0.5 * (double) MPFR_GET_EXP (x)) * LOG2 + 1.0) > 0)
281        err = mpfr_eint_asympt (tmp, x);
282      else
283        {
284          err = mpfr_eint_aux (tmp, x); /* error <= 2^err ulp(tmp) */
285          te = MPFR_GET_EXP(tmp);
286          mpfr_const_euler (ump, MPFR_RNDN); /* 0.577 -> EXP(ump)=0 */
287          mpfr_add (tmp, tmp, ump, MPFR_RNDN);
288          /* error <= 1/2 + 1/2*2^(EXP(ump)-EXP(tmp)) + 2^(te-EXP(tmp)+err)
289             <= 1/2 + 2^(MAX(EXP(ump), te+err+1) - EXP(tmp))
290             <= 2^(MAX(0, 1 + MAX(EXP(ump), te+err+1) - EXP(tmp))) */
291          err = MAX(1, te + err + 2) - MPFR_GET_EXP(tmp);
292          err = MAX(0, err);
293          te = MPFR_GET_EXP(tmp);
294          mpfr_log (ump, x, MPFR_RNDN);
295          mpfr_add (tmp, tmp, ump, MPFR_RNDN);
296          /* same formula as above, except now EXP(ump) is not 0 */
297          err += te + 1;
298          if (MPFR_LIKELY (!MPFR_IS_ZERO (ump)))
299            err = MAX (MPFR_GET_EXP (ump), err);
300          err = MAX(0, err - MPFR_GET_EXP (tmp));
301        }
302      if (MPFR_LIKELY (MPFR_CAN_ROUND (tmp, prec - err, MPFR_PREC (y), rnd)))
303        break;
304      MPFR_ZIV_NEXT (loop, prec);        /* Increase used precision */
305      mpfr_set_prec (tmp, prec);
306      mpfr_set_prec (ump, prec);
307    }
308  MPFR_ZIV_FREE (loop);                  /* Free the ZivLoop Controler */
309
310  inex = mpfr_set (y, tmp, rnd);    /* Set y to the computed value */
311  mpfr_clear (tmp);
312  mpfr_clear (ump);
313
314  MPFR_SAVE_EXPO_FREE (expo);
315  return mpfr_check_range (y, inex, rnd);
316}
317