1/* Renesas M32C target-dependent code for GDB, the GNU debugger.
2
3   Copyright 2004, 2005, 2007, 2008, 2009, 2010, 2011
4   Free Software Foundation, Inc.
5
6   This file is part of GDB.
7
8   This program is free software; you can redistribute it and/or modify
9   it under the terms of the GNU General Public License as published by
10   the Free Software Foundation; either version 3 of the License, or
11   (at your option) any later version.
12
13   This program is distributed in the hope that it will be useful,
14   but WITHOUT ANY WARRANTY; without even the implied warranty of
15   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16   GNU General Public License for more details.
17
18   You should have received a copy of the GNU General Public License
19   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
20
21#include "defs.h"
22
23#include <stdarg.h>
24
25#if defined (HAVE_STRING_H)
26#include <string.h>
27#endif
28
29#include "gdb_assert.h"
30#include "elf-bfd.h"
31#include "elf/m32c.h"
32#include "gdb/sim-m32c.h"
33#include "dis-asm.h"
34#include "gdbtypes.h"
35#include "regcache.h"
36#include "arch-utils.h"
37#include "frame.h"
38#include "frame-unwind.h"
39#include "dwarf2-frame.h"
40#include "dwarf2expr.h"
41#include "symtab.h"
42#include "gdbcore.h"
43#include "value.h"
44#include "reggroups.h"
45#include "prologue-value.h"
46#include "target.h"
47
48
49/* The m32c tdep structure.  */
50
51static struct reggroup *m32c_dma_reggroup;
52
53struct m32c_reg;
54
55/* The type of a function that moves the value of REG between CACHE or
56   BUF --- in either direction.  */
57typedef enum register_status (m32c_move_reg_t) (struct m32c_reg *reg,
58						struct regcache *cache,
59						void *buf);
60
61struct m32c_reg
62{
63  /* The name of this register.  */
64  const char *name;
65
66  /* Its type.  */
67  struct type *type;
68
69  /* The architecture this register belongs to.  */
70  struct gdbarch *arch;
71
72  /* Its GDB register number.  */
73  int num;
74
75  /* Its sim register number.  */
76  int sim_num;
77
78  /* Its DWARF register number, or -1 if it doesn't have one.  */
79  int dwarf_num;
80
81  /* Register group memberships.  */
82  unsigned int general_p : 1;
83  unsigned int dma_p : 1;
84  unsigned int system_p : 1;
85  unsigned int save_restore_p : 1;
86
87  /* Functions to read its value from a regcache, and write its value
88     to a regcache.  */
89  m32c_move_reg_t *read, *write;
90
91  /* Data for READ and WRITE functions.  The exact meaning depends on
92     the specific functions selected; see the comments for those
93     functions.  */
94  struct m32c_reg *rx, *ry;
95  int n;
96};
97
98
99/* An overestimate of the number of raw and pseudoregisters we will
100   have.  The exact answer depends on the variant of the architecture
101   at hand, but we can use this to declare statically allocated
102   arrays, and bump it up when needed.  */
103#define M32C_MAX_NUM_REGS (75)
104
105/* The largest assigned DWARF register number.  */
106#define M32C_MAX_DWARF_REGNUM (40)
107
108
109struct gdbarch_tdep
110{
111  /* All the registers for this variant, indexed by GDB register
112     number, and the number of registers present.  */
113  struct m32c_reg regs[M32C_MAX_NUM_REGS];
114
115  /* The number of valid registers.  */
116  int num_regs;
117
118  /* Interesting registers.  These are pointers into REGS.  */
119  struct m32c_reg *pc, *flg;
120  struct m32c_reg *r0, *r1, *r2, *r3, *a0, *a1;
121  struct m32c_reg *r2r0, *r3r2r1r0, *r3r1r2r0;
122  struct m32c_reg *sb, *fb, *sp;
123
124  /* A table indexed by DWARF register numbers, pointing into
125     REGS.  */
126  struct m32c_reg *dwarf_regs[M32C_MAX_DWARF_REGNUM + 1];
127
128  /* Types for this architecture.  We can't use the builtin_type_foo
129     types, because they're not initialized when building a gdbarch
130     structure.  */
131  struct type *voyd, *ptr_voyd, *func_voyd;
132  struct type *uint8, *uint16;
133  struct type *int8, *int16, *int32, *int64;
134
135  /* The types for data address and code address registers.  */
136  struct type *data_addr_reg_type, *code_addr_reg_type;
137
138  /* The number of bytes a return address pushed by a 'jsr' instruction
139     occupies on the stack.  */
140  int ret_addr_bytes;
141
142  /* The number of bytes an address register occupies on the stack
143     when saved by an 'enter' or 'pushm' instruction.  */
144  int push_addr_bytes;
145};
146
147
148/* Types.  */
149
150static void
151make_types (struct gdbarch *arch)
152{
153  struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
154  unsigned long mach = gdbarch_bfd_arch_info (arch)->mach;
155  int data_addr_reg_bits, code_addr_reg_bits;
156  char type_name[50];
157
158#if 0
159  /* This is used to clip CORE_ADDR values, so this value is
160     appropriate both on the m32c, where pointers are 32 bits long,
161     and on the m16c, where pointers are sixteen bits long, but there
162     may be code above the 64k boundary.  */
163  set_gdbarch_addr_bit (arch, 24);
164#else
165  /* GCC uses 32 bits for addrs in the dwarf info, even though
166     only 16/24 bits are used.  Setting addr_bit to 24 causes
167     errors in reading the dwarf addresses.  */
168  set_gdbarch_addr_bit (arch, 32);
169#endif
170
171  set_gdbarch_int_bit (arch, 16);
172  switch (mach)
173    {
174    case bfd_mach_m16c:
175      data_addr_reg_bits = 16;
176      code_addr_reg_bits = 24;
177      set_gdbarch_ptr_bit (arch, 16);
178      tdep->ret_addr_bytes = 3;
179      tdep->push_addr_bytes = 2;
180      break;
181
182    case bfd_mach_m32c:
183      data_addr_reg_bits = 24;
184      code_addr_reg_bits = 24;
185      set_gdbarch_ptr_bit (arch, 32);
186      tdep->ret_addr_bytes = 4;
187      tdep->push_addr_bytes = 4;
188      break;
189
190    default:
191      gdb_assert_not_reached ("unexpected mach");
192    }
193
194  /* The builtin_type_mumble variables are sometimes uninitialized when
195     this is called, so we avoid using them.  */
196  tdep->voyd = arch_type (arch, TYPE_CODE_VOID, 1, "void");
197  tdep->ptr_voyd
198    = arch_type (arch, TYPE_CODE_PTR, gdbarch_ptr_bit (arch) / TARGET_CHAR_BIT,
199                 NULL);
200  TYPE_TARGET_TYPE (tdep->ptr_voyd) = tdep->voyd;
201  TYPE_UNSIGNED (tdep->ptr_voyd) = 1;
202  tdep->func_voyd = lookup_function_type (tdep->voyd);
203
204  sprintf (type_name, "%s_data_addr_t",
205	   gdbarch_bfd_arch_info (arch)->printable_name);
206  tdep->data_addr_reg_type
207    = arch_type (arch, TYPE_CODE_PTR, data_addr_reg_bits / TARGET_CHAR_BIT,
208                 xstrdup (type_name));
209  TYPE_TARGET_TYPE (tdep->data_addr_reg_type) = tdep->voyd;
210  TYPE_UNSIGNED (tdep->data_addr_reg_type) = 1;
211
212  sprintf (type_name, "%s_code_addr_t",
213	   gdbarch_bfd_arch_info (arch)->printable_name);
214  tdep->code_addr_reg_type
215    = arch_type (arch, TYPE_CODE_PTR, code_addr_reg_bits / TARGET_CHAR_BIT,
216                 xstrdup (type_name));
217  TYPE_TARGET_TYPE (tdep->code_addr_reg_type) = tdep->func_voyd;
218  TYPE_UNSIGNED (tdep->code_addr_reg_type) = 1;
219
220  tdep->uint8  = arch_integer_type (arch,  8, 1, "uint8_t");
221  tdep->uint16 = arch_integer_type (arch, 16, 1, "uint16_t");
222  tdep->int8   = arch_integer_type (arch,  8, 0, "int8_t");
223  tdep->int16  = arch_integer_type (arch, 16, 0, "int16_t");
224  tdep->int32  = arch_integer_type (arch, 32, 0, "int32_t");
225  tdep->int64  = arch_integer_type (arch, 64, 0, "int64_t");
226}
227
228
229
230/* Register set.  */
231
232static const char *
233m32c_register_name (struct gdbarch *gdbarch, int num)
234{
235  return gdbarch_tdep (gdbarch)->regs[num].name;
236}
237
238
239static struct type *
240m32c_register_type (struct gdbarch *arch, int reg_nr)
241{
242  return gdbarch_tdep (arch)->regs[reg_nr].type;
243}
244
245
246static int
247m32c_register_sim_regno (struct gdbarch *gdbarch, int reg_nr)
248{
249  return gdbarch_tdep (gdbarch)->regs[reg_nr].sim_num;
250}
251
252
253static int
254m32c_debug_info_reg_to_regnum (struct gdbarch *gdbarch, int reg_nr)
255{
256  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
257  if (0 <= reg_nr && reg_nr <= M32C_MAX_DWARF_REGNUM
258      && tdep->dwarf_regs[reg_nr])
259    return tdep->dwarf_regs[reg_nr]->num;
260  else
261    /* The DWARF CFI code expects to see -1 for invalid register
262       numbers.  */
263    return -1;
264}
265
266
267static int
268m32c_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
269			  struct reggroup *group)
270{
271  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
272  struct m32c_reg *reg = &tdep->regs[regnum];
273
274  /* The anonymous raw registers aren't in any groups.  */
275  if (! reg->name)
276    return 0;
277
278  if (group == all_reggroup)
279    return 1;
280
281  if (group == general_reggroup
282      && reg->general_p)
283    return 1;
284
285  if (group == m32c_dma_reggroup
286      && reg->dma_p)
287    return 1;
288
289  if (group == system_reggroup
290      && reg->system_p)
291    return 1;
292
293  /* Since the m32c DWARF register numbers refer to cooked registers, not
294     raw registers, and frame_pop depends on the save and restore groups
295     containing registers the DWARF CFI will actually mention, our save
296     and restore groups are cooked registers, not raw registers.  (This is
297     why we can't use the default reggroup function.)  */
298  if ((group == save_reggroup
299       || group == restore_reggroup)
300      && reg->save_restore_p)
301    return 1;
302
303  return 0;
304}
305
306
307/* Register move functions.  We declare them here using
308   m32c_move_reg_t to check the types.  */
309static m32c_move_reg_t m32c_raw_read,      m32c_raw_write;
310static m32c_move_reg_t m32c_banked_read,   m32c_banked_write;
311static m32c_move_reg_t m32c_sb_read, 	   m32c_sb_write;
312static m32c_move_reg_t m32c_part_read,     m32c_part_write;
313static m32c_move_reg_t m32c_cat_read,      m32c_cat_write;
314static m32c_move_reg_t m32c_r3r2r1r0_read, m32c_r3r2r1r0_write;
315
316
317/* Copy the value of the raw register REG from CACHE to BUF.  */
318static enum register_status
319m32c_raw_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
320{
321  return regcache_raw_read (cache, reg->num, buf);
322}
323
324
325/* Copy the value of the raw register REG from BUF to CACHE.  */
326static enum register_status
327m32c_raw_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
328{
329  regcache_raw_write (cache, reg->num, (const void *) buf);
330
331  return REG_VALID;
332}
333
334
335/* Return the value of the 'flg' register in CACHE.  */
336static int
337m32c_read_flg (struct regcache *cache)
338{
339  struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (cache));
340  ULONGEST flg;
341  regcache_raw_read_unsigned (cache, tdep->flg->num, &flg);
342  return flg & 0xffff;
343}
344
345
346/* Evaluate the real register number of a banked register.  */
347static struct m32c_reg *
348m32c_banked_register (struct m32c_reg *reg, struct regcache *cache)
349{
350  return ((m32c_read_flg (cache) & reg->n) ? reg->ry : reg->rx);
351}
352
353
354/* Move the value of a banked register from CACHE to BUF.
355   If the value of the 'flg' register in CACHE has any of the bits
356   masked in REG->n set, then read REG->ry.  Otherwise, read
357   REG->rx.  */
358static enum register_status
359m32c_banked_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
360{
361  struct m32c_reg *bank_reg = m32c_banked_register (reg, cache);
362  return regcache_raw_read (cache, bank_reg->num, buf);
363}
364
365
366/* Move the value of a banked register from BUF to CACHE.
367   If the value of the 'flg' register in CACHE has any of the bits
368   masked in REG->n set, then write REG->ry.  Otherwise, write
369   REG->rx.  */
370static enum register_status
371m32c_banked_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
372{
373  struct m32c_reg *bank_reg = m32c_banked_register (reg, cache);
374  regcache_raw_write (cache, bank_reg->num, (const void *) buf);
375
376  return REG_VALID;
377}
378
379
380/* Move the value of SB from CACHE to BUF.  On bfd_mach_m32c, SB is a
381   banked register; on bfd_mach_m16c, it's not.  */
382static enum register_status
383m32c_sb_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
384{
385  if (gdbarch_bfd_arch_info (reg->arch)->mach == bfd_mach_m16c)
386    return m32c_raw_read (reg->rx, cache, buf);
387  else
388    return m32c_banked_read (reg, cache, buf);
389}
390
391
392/* Move the value of SB from BUF to CACHE.  On bfd_mach_m32c, SB is a
393   banked register; on bfd_mach_m16c, it's not.  */
394static enum register_status
395m32c_sb_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
396{
397  if (gdbarch_bfd_arch_info (reg->arch)->mach == bfd_mach_m16c)
398    m32c_raw_write (reg->rx, cache, buf);
399  else
400    m32c_banked_write (reg, cache, buf);
401
402  return REG_VALID;
403}
404
405
406/* Assuming REG uses m32c_part_read and m32c_part_write, set *OFFSET_P
407   and *LEN_P to the offset and length, in bytes, of the part REG
408   occupies in its underlying register.  The offset is from the
409   lower-addressed end, regardless of the architecture's endianness.
410   (The M32C family is always little-endian, but let's keep those
411   assumptions out of here.)  */
412static void
413m32c_find_part (struct m32c_reg *reg, int *offset_p, int *len_p)
414{
415  /* The length of the containing register, of which REG is one part.  */
416  int containing_len = TYPE_LENGTH (reg->rx->type);
417
418  /* The length of one "element" in our imaginary array.  */
419  int elt_len = TYPE_LENGTH (reg->type);
420
421  /* The offset of REG's "element" from the least significant end of
422     the containing register.  */
423  int elt_offset = reg->n * elt_len;
424
425  /* If we extend off the end, trim the length of the element.  */
426  if (elt_offset + elt_len > containing_len)
427    {
428      elt_len = containing_len - elt_offset;
429      /* We shouldn't be declaring partial registers that go off the
430	 end of their containing registers.  */
431      gdb_assert (elt_len > 0);
432    }
433
434  /* Flip the offset around if we're big-endian.  */
435  if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
436    elt_offset = TYPE_LENGTH (reg->rx->type) - elt_offset - elt_len;
437
438  *offset_p = elt_offset;
439  *len_p = elt_len;
440}
441
442
443/* Move the value of a partial register (r0h, intbl, etc.) from CACHE
444   to BUF.  Treating the value of the register REG->rx as an array of
445   REG->type values, where higher indices refer to more significant
446   bits, read the value of the REG->n'th element.  */
447static enum register_status
448m32c_part_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
449{
450  int offset, len;
451
452  memset (buf, 0, TYPE_LENGTH (reg->type));
453  m32c_find_part (reg, &offset, &len);
454  return regcache_cooked_read_part (cache, reg->rx->num, offset, len, buf);
455}
456
457
458/* Move the value of a banked register from BUF to CACHE.
459   Treating the value of the register REG->rx as an array of REG->type
460   values, where higher indices refer to more significant bits, write
461   the value of the REG->n'th element.  */
462static enum register_status
463m32c_part_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
464{
465  int offset, len;
466
467  m32c_find_part (reg, &offset, &len);
468  regcache_cooked_write_part (cache, reg->rx->num, offset, len, buf);
469
470  return REG_VALID;
471}
472
473
474/* Move the value of REG from CACHE to BUF.  REG's value is the
475   concatenation of the values of the registers REG->rx and REG->ry,
476   with REG->rx contributing the more significant bits.  */
477static enum register_status
478m32c_cat_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
479{
480  int high_bytes = TYPE_LENGTH (reg->rx->type);
481  int low_bytes  = TYPE_LENGTH (reg->ry->type);
482  /* For address arithmetic.  */
483  unsigned char *cbuf = buf;
484  enum register_status status;
485
486  gdb_assert (TYPE_LENGTH (reg->type) == high_bytes + low_bytes);
487
488  if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
489    {
490      status = regcache_cooked_read (cache, reg->rx->num, cbuf);
491      if (status == REG_VALID)
492	status = regcache_cooked_read (cache, reg->ry->num, cbuf + high_bytes);
493    }
494  else
495    {
496      status = regcache_cooked_read (cache, reg->rx->num, cbuf + low_bytes);
497      if (status == REG_VALID)
498	status = regcache_cooked_read (cache, reg->ry->num, cbuf);
499    }
500
501  return status;
502}
503
504
505/* Move the value of REG from CACHE to BUF.  REG's value is the
506   concatenation of the values of the registers REG->rx and REG->ry,
507   with REG->rx contributing the more significant bits.  */
508static enum register_status
509m32c_cat_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
510{
511  int high_bytes = TYPE_LENGTH (reg->rx->type);
512  int low_bytes  = TYPE_LENGTH (reg->ry->type);
513  /* For address arithmetic.  */
514  unsigned char *cbuf = buf;
515
516  gdb_assert (TYPE_LENGTH (reg->type) == high_bytes + low_bytes);
517
518  if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
519    {
520      regcache_cooked_write (cache, reg->rx->num, cbuf);
521      regcache_cooked_write (cache, reg->ry->num, cbuf + high_bytes);
522    }
523  else
524    {
525      regcache_cooked_write (cache, reg->rx->num, cbuf + low_bytes);
526      regcache_cooked_write (cache, reg->ry->num, cbuf);
527    }
528
529  return REG_VALID;
530}
531
532
533/* Copy the value of the raw register REG from CACHE to BUF.  REG is
534   the concatenation (from most significant to least) of r3, r2, r1,
535   and r0.  */
536static enum register_status
537m32c_r3r2r1r0_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
538{
539  struct gdbarch_tdep *tdep = gdbarch_tdep (reg->arch);
540  int len = TYPE_LENGTH (tdep->r0->type);
541  enum register_status status;
542
543  /* For address arithmetic.  */
544  unsigned char *cbuf = buf;
545
546  if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
547    {
548      status = regcache_cooked_read (cache, tdep->r0->num, cbuf + len * 3);
549      if (status == REG_VALID)
550	status = regcache_cooked_read (cache, tdep->r1->num, cbuf + len * 2);
551      if (status == REG_VALID)
552	status = regcache_cooked_read (cache, tdep->r2->num, cbuf + len * 1);
553      if (status == REG_VALID)
554	status = regcache_cooked_read (cache, tdep->r3->num, cbuf);
555    }
556  else
557    {
558      status = regcache_cooked_read (cache, tdep->r0->num, cbuf);
559      if (status == REG_VALID)
560	status = regcache_cooked_read (cache, tdep->r1->num, cbuf + len * 1);
561      if (status == REG_VALID)
562	status = regcache_cooked_read (cache, tdep->r2->num, cbuf + len * 2);
563      if (status == REG_VALID)
564	status = regcache_cooked_read (cache, tdep->r3->num, cbuf + len * 3);
565    }
566
567  return status;
568}
569
570
571/* Copy the value of the raw register REG from BUF to CACHE.  REG is
572   the concatenation (from most significant to least) of r3, r2, r1,
573   and r0.  */
574static enum register_status
575m32c_r3r2r1r0_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
576{
577  struct gdbarch_tdep *tdep = gdbarch_tdep (reg->arch);
578  int len = TYPE_LENGTH (tdep->r0->type);
579
580  /* For address arithmetic.  */
581  unsigned char *cbuf = buf;
582
583  if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
584    {
585      regcache_cooked_write (cache, tdep->r0->num, cbuf + len * 3);
586      regcache_cooked_write (cache, tdep->r1->num, cbuf + len * 2);
587      regcache_cooked_write (cache, tdep->r2->num, cbuf + len * 1);
588      regcache_cooked_write (cache, tdep->r3->num, cbuf);
589    }
590  else
591    {
592      regcache_cooked_write (cache, tdep->r0->num, cbuf);
593      regcache_cooked_write (cache, tdep->r1->num, cbuf + len * 1);
594      regcache_cooked_write (cache, tdep->r2->num, cbuf + len * 2);
595      regcache_cooked_write (cache, tdep->r3->num, cbuf + len * 3);
596    }
597
598  return REG_VALID;
599}
600
601
602static enum register_status
603m32c_pseudo_register_read (struct gdbarch *arch,
604			   struct regcache *cache,
605			   int cookednum,
606			   gdb_byte *buf)
607{
608  struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
609  struct m32c_reg *reg;
610
611  gdb_assert (0 <= cookednum && cookednum < tdep->num_regs);
612  gdb_assert (arch == get_regcache_arch (cache));
613  gdb_assert (arch == tdep->regs[cookednum].arch);
614  reg = &tdep->regs[cookednum];
615
616  return reg->read (reg, cache, buf);
617}
618
619
620static void
621m32c_pseudo_register_write (struct gdbarch *arch,
622			    struct regcache *cache,
623			    int cookednum,
624			    const gdb_byte *buf)
625{
626  struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
627  struct m32c_reg *reg;
628
629  gdb_assert (0 <= cookednum && cookednum < tdep->num_regs);
630  gdb_assert (arch == get_regcache_arch (cache));
631  gdb_assert (arch == tdep->regs[cookednum].arch);
632  reg = &tdep->regs[cookednum];
633
634  reg->write (reg, cache, (void *) buf);
635}
636
637
638/* Add a register with the given fields to the end of ARCH's table.
639   Return a pointer to the newly added register.  */
640static struct m32c_reg *
641add_reg (struct gdbarch *arch,
642	 const char *name,
643	 struct type *type,
644	 int sim_num,
645	 m32c_move_reg_t *read,
646	 m32c_move_reg_t *write,
647	 struct m32c_reg *rx,
648	 struct m32c_reg *ry,
649	 int n)
650{
651  struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
652  struct m32c_reg *r = &tdep->regs[tdep->num_regs];
653
654  gdb_assert (tdep->num_regs < M32C_MAX_NUM_REGS);
655
656  r->name           = name;
657  r->type           = type;
658  r->arch           = arch;
659  r->num            = tdep->num_regs;
660  r->sim_num        = sim_num;
661  r->dwarf_num      = -1;
662  r->general_p      = 0;
663  r->dma_p          = 0;
664  r->system_p       = 0;
665  r->save_restore_p = 0;
666  r->read           = read;
667  r->write          = write;
668  r->rx             = rx;
669  r->ry             = ry;
670  r->n              = n;
671
672  tdep->num_regs++;
673
674  return r;
675}
676
677
678/* Record NUM as REG's DWARF register number.  */
679static void
680set_dwarf_regnum (struct m32c_reg *reg, int num)
681{
682  gdb_assert (num < M32C_MAX_NUM_REGS);
683
684  /* Update the reg->DWARF mapping.  Only count the first number
685     assigned to this register.  */
686  if (reg->dwarf_num == -1)
687    reg->dwarf_num = num;
688
689  /* Update the DWARF->reg mapping.  */
690  gdbarch_tdep (reg->arch)->dwarf_regs[num] = reg;
691}
692
693
694/* Mark REG as a general-purpose register, and return it.  */
695static struct m32c_reg *
696mark_general (struct m32c_reg *reg)
697{
698  reg->general_p = 1;
699  return reg;
700}
701
702
703/* Mark REG as a DMA register, and return it.  */
704static struct m32c_reg *
705mark_dma (struct m32c_reg *reg)
706{
707  reg->dma_p = 1;
708  return reg;
709}
710
711
712/* Mark REG as a SYSTEM register, and return it.  */
713static struct m32c_reg *
714mark_system (struct m32c_reg *reg)
715{
716  reg->system_p = 1;
717  return reg;
718}
719
720
721/* Mark REG as a save-restore register, and return it.  */
722static struct m32c_reg *
723mark_save_restore (struct m32c_reg *reg)
724{
725  reg->save_restore_p = 1;
726  return reg;
727}
728
729
730#define FLAGBIT_B	0x0010
731#define FLAGBIT_U	0x0080
732
733/* Handy macros for declaring registers.  These all evaluate to
734   pointers to the register declared.  Macros that define two
735   registers evaluate to a pointer to the first.  */
736
737/* A raw register named NAME, with type TYPE and sim number SIM_NUM.  */
738#define R(name, type, sim_num)					\
739  (add_reg (arch, (name), (type), (sim_num),			\
740	    m32c_raw_read, m32c_raw_write, NULL, NULL, 0))
741
742/* The simulator register number for a raw register named NAME.  */
743#define SIM(name) (m32c_sim_reg_ ## name)
744
745/* A raw unsigned 16-bit data register named NAME.
746   NAME should be an identifier, not a string.  */
747#define R16U(name)						\
748  (R(#name, tdep->uint16, SIM (name)))
749
750/* A raw data address register named NAME.
751   NAME should be an identifier, not a string.  */
752#define RA(name)						\
753  (R(#name, tdep->data_addr_reg_type, SIM (name)))
754
755/* A raw code address register named NAME.  NAME should
756   be an identifier, not a string.  */
757#define RC(name)						\
758  (R(#name, tdep->code_addr_reg_type, SIM (name)))
759
760/* A pair of raw registers named NAME0 and NAME1, with type TYPE.
761   NAME should be an identifier, not a string.  */
762#define RP(name, type)				\
763  (R(#name "0", (type), SIM (name ## 0)),	\
764   R(#name "1", (type), SIM (name ## 1)) - 1)
765
766/* A raw banked general-purpose data register named NAME.
767   NAME should be an identifier, not a string.  */
768#define RBD(name)						\
769  (R(NULL, tdep->int16, SIM (name ## _bank0)),		\
770   R(NULL, tdep->int16, SIM (name ## _bank1)) - 1)
771
772/* A raw banked data address register named NAME.
773   NAME should be an identifier, not a string.  */
774#define RBA(name)						\
775  (R(NULL, tdep->data_addr_reg_type, SIM (name ## _bank0)),	\
776   R(NULL, tdep->data_addr_reg_type, SIM (name ## _bank1)) - 1)
777
778/* A cooked register named NAME referring to a raw banked register
779   from the bank selected by the current value of FLG.  RAW_PAIR
780   should be a pointer to the first register in the banked pair.
781   NAME must be an identifier, not a string.  */
782#define CB(name, raw_pair)				\
783  (add_reg (arch, #name, (raw_pair)->type, 0,		\
784	    m32c_banked_read, m32c_banked_write,	\
785            (raw_pair), (raw_pair + 1), FLAGBIT_B))
786
787/* A pair of registers named NAMEH and NAMEL, of type TYPE, that
788   access the top and bottom halves of the register pointed to by
789   NAME.  NAME should be an identifier.  */
790#define CHL(name, type)							\
791  (add_reg (arch, #name "h", (type), 0,					\
792	    m32c_part_read, m32c_part_write, name, NULL, 1),		\
793   add_reg (arch, #name "l", (type), 0,					\
794	    m32c_part_read, m32c_part_write, name, NULL, 0) - 1)
795
796/* A register constructed by concatenating the two registers HIGH and
797   LOW, whose name is HIGHLOW and whose type is TYPE.  */
798#define CCAT(high, low, type)					\
799  (add_reg (arch, #high #low, (type), 0,			\
800	    m32c_cat_read, m32c_cat_write, (high), (low), 0))
801
802/* Abbreviations for marking register group membership.  */
803#define G(reg)   (mark_general (reg))
804#define S(reg)   (mark_system  (reg))
805#define DMA(reg) (mark_dma     (reg))
806
807
808/* Construct the register set for ARCH.  */
809static void
810make_regs (struct gdbarch *arch)
811{
812  struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
813  int mach = gdbarch_bfd_arch_info (arch)->mach;
814  int num_raw_regs;
815  int num_cooked_regs;
816
817  struct m32c_reg *r0;
818  struct m32c_reg *r1;
819  struct m32c_reg *r2;
820  struct m32c_reg *r3;
821  struct m32c_reg *a0;
822  struct m32c_reg *a1;
823  struct m32c_reg *fb;
824  struct m32c_reg *sb;
825  struct m32c_reg *sp;
826  struct m32c_reg *r0hl;
827  struct m32c_reg *r1hl;
828  struct m32c_reg *r2hl;
829  struct m32c_reg *r3hl;
830  struct m32c_reg *intbhl;
831  struct m32c_reg *r2r0;
832  struct m32c_reg *r3r1;
833  struct m32c_reg *r3r1r2r0;
834  struct m32c_reg *r3r2r1r0;
835  struct m32c_reg *a1a0;
836
837  struct m32c_reg *raw_r0_pair = RBD (r0);
838  struct m32c_reg *raw_r1_pair = RBD (r1);
839  struct m32c_reg *raw_r2_pair = RBD (r2);
840  struct m32c_reg *raw_r3_pair = RBD (r3);
841  struct m32c_reg *raw_a0_pair = RBA (a0);
842  struct m32c_reg *raw_a1_pair = RBA (a1);
843  struct m32c_reg *raw_fb_pair = RBA (fb);
844
845  /* sb is banked on the bfd_mach_m32c, but not on bfd_mach_m16c.
846     We always declare both raw registers, and deal with the distinction
847     in the pseudoregister.  */
848  struct m32c_reg *raw_sb_pair = RBA (sb);
849
850  struct m32c_reg *usp         = S (RA (usp));
851  struct m32c_reg *isp         = S (RA (isp));
852  struct m32c_reg *intb        = S (RC (intb));
853  struct m32c_reg *pc          = G (RC (pc));
854  struct m32c_reg *flg         = G (R16U (flg));
855
856  if (mach == bfd_mach_m32c)
857    {
858      struct m32c_reg *svf     = S (R16U (svf));
859      struct m32c_reg *svp     = S (RC (svp));
860      struct m32c_reg *vct     = S (RC (vct));
861
862      struct m32c_reg *dmd01   = DMA (RP (dmd, tdep->uint8));
863      struct m32c_reg *dct01   = DMA (RP (dct, tdep->uint16));
864      struct m32c_reg *drc01   = DMA (RP (drc, tdep->uint16));
865      struct m32c_reg *dma01   = DMA (RP (dma, tdep->data_addr_reg_type));
866      struct m32c_reg *dsa01   = DMA (RP (dsa, tdep->data_addr_reg_type));
867      struct m32c_reg *dra01   = DMA (RP (dra, tdep->data_addr_reg_type));
868    }
869
870  num_raw_regs = tdep->num_regs;
871
872  r0 	      = G (CB (r0, raw_r0_pair));
873  r1 	      = G (CB (r1, raw_r1_pair));
874  r2          = G (CB (r2, raw_r2_pair));
875  r3          = G (CB (r3, raw_r3_pair));
876  a0          = G (CB (a0, raw_a0_pair));
877  a1          = G (CB (a1, raw_a1_pair));
878  fb          = G (CB (fb, raw_fb_pair));
879
880  /* sb is banked on the bfd_mach_m32c, but not on bfd_mach_m16c.
881     Specify custom read/write functions that do the right thing.  */
882  sb          = G (add_reg (arch, "sb", raw_sb_pair->type, 0,
883			    m32c_sb_read, m32c_sb_write,
884			    raw_sb_pair, raw_sb_pair + 1, 0));
885
886  /* The current sp is either usp or isp, depending on the value of
887     the FLG register's U bit.  */
888  sp          = G (add_reg (arch, "sp", usp->type, 0,
889			    m32c_banked_read, m32c_banked_write,
890			    isp, usp, FLAGBIT_U));
891
892  r0hl        = CHL (r0, tdep->int8);
893  r1hl        = CHL (r1, tdep->int8);
894  r2hl        = CHL (r2, tdep->int8);
895  r3hl        = CHL (r3, tdep->int8);
896  intbhl      = CHL (intb, tdep->int16);
897
898  r2r0        = CCAT (r2,   r0,   tdep->int32);
899  r3r1        = CCAT (r3,   r1,   tdep->int32);
900  r3r1r2r0    = CCAT (r3r1, r2r0, tdep->int64);
901
902  r3r2r1r0
903    = add_reg (arch, "r3r2r1r0", tdep->int64, 0,
904	       m32c_r3r2r1r0_read, m32c_r3r2r1r0_write, NULL, NULL, 0);
905
906  if (mach == bfd_mach_m16c)
907    a1a0 = CCAT (a1, a0, tdep->int32);
908  else
909    a1a0 = NULL;
910
911  num_cooked_regs = tdep->num_regs - num_raw_regs;
912
913  tdep->pc   	 = pc;
914  tdep->flg  	 = flg;
915  tdep->r0   	 = r0;
916  tdep->r1   	 = r1;
917  tdep->r2   	 = r2;
918  tdep->r3   	 = r3;
919  tdep->r2r0 	 = r2r0;
920  tdep->r3r2r1r0 = r3r2r1r0;
921  tdep->r3r1r2r0 = r3r1r2r0;
922  tdep->a0       = a0;
923  tdep->a1       = a1;
924  tdep->sb       = sb;
925  tdep->fb   	 = fb;
926  tdep->sp   	 = sp;
927
928  /* Set up the DWARF register table.  */
929  memset (tdep->dwarf_regs, 0, sizeof (tdep->dwarf_regs));
930  set_dwarf_regnum (r0hl + 1, 0x01);
931  set_dwarf_regnum (r0hl + 0, 0x02);
932  set_dwarf_regnum (r1hl + 1, 0x03);
933  set_dwarf_regnum (r1hl + 0, 0x04);
934  set_dwarf_regnum (r0,       0x05);
935  set_dwarf_regnum (r1,       0x06);
936  set_dwarf_regnum (r2,       0x07);
937  set_dwarf_regnum (r3,       0x08);
938  set_dwarf_regnum (a0,       0x09);
939  set_dwarf_regnum (a1,       0x0a);
940  set_dwarf_regnum (fb,       0x0b);
941  set_dwarf_regnum (sp,       0x0c);
942  set_dwarf_regnum (pc,       0x0d); /* GCC's invention */
943  set_dwarf_regnum (sb,       0x13);
944  set_dwarf_regnum (r2r0,     0x15);
945  set_dwarf_regnum (r3r1,     0x16);
946  if (a1a0)
947    set_dwarf_regnum (a1a0,   0x17);
948
949  /* Enumerate the save/restore register group.
950
951     The regcache_save and regcache_restore functions apply their read
952     function to each register in this group.
953
954     Since frame_pop supplies frame_unwind_register as its read
955     function, the registers meaningful to the Dwarf unwinder need to
956     be in this group.
957
958     On the other hand, when we make inferior calls, save_inferior_status
959     and restore_inferior_status use them to preserve the current register
960     values across the inferior call.  For this, you'd kind of like to
961     preserve all the raw registers, to protect the interrupted code from
962     any sort of bank switching the callee might have done.  But we handle
963     those cases so badly anyway --- for example, it matters whether we
964     restore FLG before or after we restore the general-purpose registers,
965     but there's no way to express that --- that it isn't worth worrying
966     about.
967
968     We omit control registers like inthl: if you call a function that
969     changes those, it's probably because you wanted that change to be
970     visible to the interrupted code.  */
971  mark_save_restore (r0);
972  mark_save_restore (r1);
973  mark_save_restore (r2);
974  mark_save_restore (r3);
975  mark_save_restore (a0);
976  mark_save_restore (a1);
977  mark_save_restore (sb);
978  mark_save_restore (fb);
979  mark_save_restore (sp);
980  mark_save_restore (pc);
981  mark_save_restore (flg);
982
983  set_gdbarch_num_regs (arch, num_raw_regs);
984  set_gdbarch_num_pseudo_regs (arch, num_cooked_regs);
985  set_gdbarch_pc_regnum (arch, pc->num);
986  set_gdbarch_sp_regnum (arch, sp->num);
987  set_gdbarch_register_name (arch, m32c_register_name);
988  set_gdbarch_register_type (arch, m32c_register_type);
989  set_gdbarch_pseudo_register_read (arch, m32c_pseudo_register_read);
990  set_gdbarch_pseudo_register_write (arch, m32c_pseudo_register_write);
991  set_gdbarch_register_sim_regno (arch, m32c_register_sim_regno);
992  set_gdbarch_stab_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum);
993  set_gdbarch_dwarf2_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum);
994  set_gdbarch_register_reggroup_p (arch, m32c_register_reggroup_p);
995
996  reggroup_add (arch, general_reggroup);
997  reggroup_add (arch, all_reggroup);
998  reggroup_add (arch, save_reggroup);
999  reggroup_add (arch, restore_reggroup);
1000  reggroup_add (arch, system_reggroup);
1001  reggroup_add (arch, m32c_dma_reggroup);
1002}
1003
1004
1005
1006/* Breakpoints.  */
1007
1008static const unsigned char *
1009m32c_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
1010{
1011  static unsigned char break_insn[] = { 0x00 };	/* brk */
1012
1013  *len = sizeof (break_insn);
1014  return break_insn;
1015}
1016
1017
1018
1019/* Prologue analysis.  */
1020
1021struct m32c_prologue
1022{
1023  /* For consistency with the DWARF 2 .debug_frame info generated by
1024     GCC, a frame's CFA is the address immediately after the saved
1025     return address.  */
1026
1027  /* The architecture for which we generated this prologue info.  */
1028  struct gdbarch *arch;
1029
1030  enum {
1031    /* This function uses a frame pointer.  */
1032    prologue_with_frame_ptr,
1033
1034    /* This function has no frame pointer.  */
1035    prologue_sans_frame_ptr,
1036
1037    /* This function sets up the stack, so its frame is the first
1038       frame on the stack.  */
1039    prologue_first_frame
1040
1041  } kind;
1042
1043  /* If KIND is prologue_with_frame_ptr, this is the offset from the
1044     CFA to where the frame pointer points.  This is always zero or
1045     negative.  */
1046  LONGEST frame_ptr_offset;
1047
1048  /* If KIND is prologue_sans_frame_ptr, the offset from the CFA to
1049     the stack pointer --- always zero or negative.
1050
1051     Calling this a "size" is a bit misleading, but given that the
1052     stack grows downwards, using offsets for everything keeps one
1053     from going completely sign-crazy: you never change anything's
1054     sign for an ADD instruction; always change the second operand's
1055     sign for a SUB instruction; and everything takes care of
1056     itself.
1057
1058     Functions that use alloca don't have a constant frame size.  But
1059     they always have frame pointers, so we must use that to find the
1060     CFA (and perhaps to unwind the stack pointer).  */
1061  LONGEST frame_size;
1062
1063  /* The address of the first instruction at which the frame has been
1064     set up and the arguments are where the debug info says they are
1065     --- as best as we can tell.  */
1066  CORE_ADDR prologue_end;
1067
1068  /* reg_offset[R] is the offset from the CFA at which register R is
1069     saved, or 1 if register R has not been saved.  (Real values are
1070     always zero or negative.)  */
1071  LONGEST reg_offset[M32C_MAX_NUM_REGS];
1072};
1073
1074
1075/* The longest I've seen, anyway.  */
1076#define M32C_MAX_INSN_LEN (9)
1077
1078/* Processor state, for the prologue analyzer.  */
1079struct m32c_pv_state
1080{
1081  struct gdbarch *arch;
1082  pv_t r0, r1, r2, r3;
1083  pv_t a0, a1;
1084  pv_t sb, fb, sp;
1085  pv_t pc;
1086  struct pv_area *stack;
1087
1088  /* Bytes from the current PC, the address they were read from,
1089     and the address of the next unconsumed byte.  */
1090  gdb_byte insn[M32C_MAX_INSN_LEN];
1091  CORE_ADDR scan_pc, next_addr;
1092};
1093
1094
1095/* Push VALUE on STATE's stack, occupying SIZE bytes.  Return zero if
1096   all went well, or non-zero if simulating the action would trash our
1097   state.  */
1098static int
1099m32c_pv_push (struct m32c_pv_state *state, pv_t value, int size)
1100{
1101  if (pv_area_store_would_trash (state->stack, state->sp))
1102    return 1;
1103
1104  state->sp = pv_add_constant (state->sp, -size);
1105  pv_area_store (state->stack, state->sp, size, value);
1106
1107  return 0;
1108}
1109
1110
1111/* A source or destination location for an m16c or m32c
1112   instruction.  */
1113struct srcdest
1114{
1115  /* If srcdest_reg, the location is a register pointed to by REG.
1116     If srcdest_partial_reg, the location is part of a register pointed
1117     to by REG.  We don't try to handle this too well.
1118     If srcdest_mem, the location is memory whose address is ADDR.  */
1119  enum { srcdest_reg, srcdest_partial_reg, srcdest_mem } kind;
1120  pv_t *reg, addr;
1121};
1122
1123
1124/* Return the SIZE-byte value at LOC in STATE.  */
1125static pv_t
1126m32c_srcdest_fetch (struct m32c_pv_state *state, struct srcdest loc, int size)
1127{
1128  if (loc.kind == srcdest_mem)
1129    return pv_area_fetch (state->stack, loc.addr, size);
1130  else if (loc.kind == srcdest_partial_reg)
1131    return pv_unknown ();
1132  else
1133    return *loc.reg;
1134}
1135
1136
1137/* Write VALUE, a SIZE-byte value, to LOC in STATE.  Return zero if
1138   all went well, or non-zero if simulating the store would trash our
1139   state.  */
1140static int
1141m32c_srcdest_store (struct m32c_pv_state *state, struct srcdest loc,
1142		    pv_t value, int size)
1143{
1144  if (loc.kind == srcdest_mem)
1145    {
1146      if (pv_area_store_would_trash (state->stack, loc.addr))
1147	return 1;
1148      pv_area_store (state->stack, loc.addr, size, value);
1149    }
1150  else if (loc.kind == srcdest_partial_reg)
1151    *loc.reg = pv_unknown ();
1152  else
1153    *loc.reg = value;
1154
1155  return 0;
1156}
1157
1158
1159static int
1160m32c_sign_ext (int v, int bits)
1161{
1162  int mask = 1 << (bits - 1);
1163  return (v ^ mask) - mask;
1164}
1165
1166static unsigned int
1167m32c_next_byte (struct m32c_pv_state *st)
1168{
1169  gdb_assert (st->next_addr - st->scan_pc < sizeof (st->insn));
1170  return st->insn[st->next_addr++ - st->scan_pc];
1171}
1172
1173static int
1174m32c_udisp8 (struct m32c_pv_state *st)
1175{
1176  return m32c_next_byte (st);
1177}
1178
1179
1180static int
1181m32c_sdisp8 (struct m32c_pv_state *st)
1182{
1183  return m32c_sign_ext (m32c_next_byte (st), 8);
1184}
1185
1186
1187static int
1188m32c_udisp16 (struct m32c_pv_state *st)
1189{
1190  int low  = m32c_next_byte (st);
1191  int high = m32c_next_byte (st);
1192
1193  return low + (high << 8);
1194}
1195
1196
1197static int
1198m32c_sdisp16 (struct m32c_pv_state *st)
1199{
1200  int low  = m32c_next_byte (st);
1201  int high = m32c_next_byte (st);
1202
1203  return m32c_sign_ext (low + (high << 8), 16);
1204}
1205
1206
1207static int
1208m32c_udisp24 (struct m32c_pv_state *st)
1209{
1210  int low  = m32c_next_byte (st);
1211  int mid  = m32c_next_byte (st);
1212  int high = m32c_next_byte (st);
1213
1214  return low + (mid << 8) + (high << 16);
1215}
1216
1217
1218/* Extract the 'source' field from an m32c MOV.size:G-format instruction.  */
1219static int
1220m32c_get_src23 (unsigned char *i)
1221{
1222  return (((i[0] & 0x70) >> 2)
1223	  | ((i[1] & 0x30) >> 4));
1224}
1225
1226
1227/* Extract the 'dest' field from an m32c MOV.size:G-format instruction.  */
1228static int
1229m32c_get_dest23 (unsigned char *i)
1230{
1231  return (((i[0] & 0x0e) << 1)
1232	  | ((i[1] & 0xc0) >> 6));
1233}
1234
1235
1236static struct srcdest
1237m32c_decode_srcdest4 (struct m32c_pv_state *st,
1238		      int code, int size)
1239{
1240  struct srcdest sd;
1241
1242  if (code < 6)
1243    sd.kind = (size == 2 ? srcdest_reg : srcdest_partial_reg);
1244  else
1245    sd.kind = srcdest_mem;
1246
1247  sd.addr = pv_unknown ();
1248  sd.reg = 0;
1249
1250  switch (code)
1251    {
1252    case 0x0: sd.reg = (size == 1 ? &st->r0 : &st->r0); break;
1253    case 0x1: sd.reg = (size == 1 ? &st->r0 : &st->r1); break;
1254    case 0x2: sd.reg = (size == 1 ? &st->r1 : &st->r2); break;
1255    case 0x3: sd.reg = (size == 1 ? &st->r1 : &st->r3); break;
1256
1257    case 0x4: sd.reg = &st->a0; break;
1258    case 0x5: sd.reg = &st->a1; break;
1259
1260    case 0x6: sd.addr = st->a0; break;
1261    case 0x7: sd.addr = st->a1; break;
1262
1263    case 0x8: sd.addr = pv_add_constant (st->a0, m32c_udisp8 (st)); break;
1264    case 0x9: sd.addr = pv_add_constant (st->a1, m32c_udisp8 (st)); break;
1265    case 0xa: sd.addr = pv_add_constant (st->sb, m32c_udisp8 (st)); break;
1266    case 0xb: sd.addr = pv_add_constant (st->fb, m32c_sdisp8 (st)); break;
1267
1268    case 0xc: sd.addr = pv_add_constant (st->a0, m32c_udisp16 (st)); break;
1269    case 0xd: sd.addr = pv_add_constant (st->a1, m32c_udisp16 (st)); break;
1270    case 0xe: sd.addr = pv_add_constant (st->sb, m32c_udisp16 (st)); break;
1271    case 0xf: sd.addr = pv_constant (m32c_udisp16 (st)); break;
1272
1273    default:
1274      gdb_assert_not_reached ("unexpected srcdest4");
1275    }
1276
1277  return sd;
1278}
1279
1280
1281static struct srcdest
1282m32c_decode_sd23 (struct m32c_pv_state *st, int code, int size, int ind)
1283{
1284  struct srcdest sd;
1285
1286  sd.addr = pv_unknown ();
1287  sd.reg = 0;
1288
1289  switch (code)
1290    {
1291    case 0x12:
1292    case 0x13:
1293    case 0x10:
1294    case 0x11:
1295      sd.kind = (size == 1) ? srcdest_partial_reg : srcdest_reg;
1296      break;
1297
1298    case 0x02:
1299    case 0x03:
1300      sd.kind = (size == 4) ? srcdest_reg : srcdest_partial_reg;
1301      break;
1302
1303    default:
1304      sd.kind = srcdest_mem;
1305      break;
1306
1307    }
1308
1309  switch (code)
1310    {
1311    case 0x12: sd.reg = &st->r0; break;
1312    case 0x13: sd.reg = &st->r1; break;
1313    case 0x10: sd.reg = ((size == 1) ? &st->r0 : &st->r2); break;
1314    case 0x11: sd.reg = ((size == 1) ? &st->r1 : &st->r3); break;
1315    case 0x02: sd.reg = &st->a0; break;
1316    case 0x03: sd.reg = &st->a1; break;
1317
1318    case 0x00: sd.addr = st->a0; break;
1319    case 0x01: sd.addr = st->a1; break;
1320    case 0x04: sd.addr = pv_add_constant (st->a0, m32c_udisp8 (st)); break;
1321    case 0x05: sd.addr = pv_add_constant (st->a1, m32c_udisp8 (st)); break;
1322    case 0x06: sd.addr = pv_add_constant (st->sb, m32c_udisp8 (st)); break;
1323    case 0x07: sd.addr = pv_add_constant (st->fb, m32c_sdisp8 (st)); break;
1324    case 0x08: sd.addr = pv_add_constant (st->a0, m32c_udisp16 (st)); break;
1325    case 0x09: sd.addr = pv_add_constant (st->a1, m32c_udisp16 (st)); break;
1326    case 0x0a: sd.addr = pv_add_constant (st->sb, m32c_udisp16 (st)); break;
1327    case 0x0b: sd.addr = pv_add_constant (st->fb, m32c_sdisp16 (st)); break;
1328    case 0x0c: sd.addr = pv_add_constant (st->a0, m32c_udisp24 (st)); break;
1329    case 0x0d: sd.addr = pv_add_constant (st->a1, m32c_udisp24 (st)); break;
1330    case 0x0f: sd.addr = pv_constant (m32c_udisp16 (st)); break;
1331    case 0x0e: sd.addr = pv_constant (m32c_udisp24 (st)); break;
1332    default:
1333      gdb_assert_not_reached ("unexpected sd23");
1334    }
1335
1336  if (ind)
1337    {
1338      sd.addr = m32c_srcdest_fetch (st, sd, 4);
1339      sd.kind = srcdest_mem;
1340    }
1341
1342  return sd;
1343}
1344
1345
1346/* The r16c and r32c machines have instructions with similar
1347   semantics, but completely different machine language encodings.  So
1348   we break out the semantics into their own functions, and leave
1349   machine-specific decoding in m32c_analyze_prologue.
1350
1351   The following functions all expect their arguments already decoded,
1352   and they all return zero if analysis should continue past this
1353   instruction, or non-zero if analysis should stop.  */
1354
1355
1356/* Simulate an 'enter SIZE' instruction in STATE.  */
1357static int
1358m32c_pv_enter (struct m32c_pv_state *state, int size)
1359{
1360  struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1361
1362  /* If simulating this store would require us to forget
1363     everything we know about the stack frame in the name of
1364     accuracy, it would be better to just quit now.  */
1365  if (pv_area_store_would_trash (state->stack, state->sp))
1366    return 1;
1367
1368  if (m32c_pv_push (state, state->fb, tdep->push_addr_bytes))
1369    return 1;
1370  state->fb = state->sp;
1371  state->sp = pv_add_constant (state->sp, -size);
1372
1373  return 0;
1374}
1375
1376
1377static int
1378m32c_pv_pushm_one (struct m32c_pv_state *state, pv_t reg,
1379		   int bit, int src, int size)
1380{
1381  if (bit & src)
1382    {
1383      if (m32c_pv_push (state, reg, size))
1384	return 1;
1385    }
1386
1387  return 0;
1388}
1389
1390
1391/* Simulate a 'pushm SRC' instruction in STATE.  */
1392static int
1393m32c_pv_pushm (struct m32c_pv_state *state, int src)
1394{
1395  struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1396
1397  /* The bits in SRC indicating which registers to save are:
1398     r0 r1 r2 r3 a0 a1 sb fb */
1399  return
1400    (   m32c_pv_pushm_one (state, state->fb, 0x01, src, tdep->push_addr_bytes)
1401     || m32c_pv_pushm_one (state, state->sb, 0x02, src, tdep->push_addr_bytes)
1402     || m32c_pv_pushm_one (state, state->a1, 0x04, src, tdep->push_addr_bytes)
1403     || m32c_pv_pushm_one (state, state->a0, 0x08, src, tdep->push_addr_bytes)
1404     || m32c_pv_pushm_one (state, state->r3, 0x10, src, 2)
1405     || m32c_pv_pushm_one (state, state->r2, 0x20, src, 2)
1406     || m32c_pv_pushm_one (state, state->r1, 0x40, src, 2)
1407     || m32c_pv_pushm_one (state, state->r0, 0x80, src, 2));
1408}
1409
1410/* Return non-zero if VALUE is the first incoming argument register.  */
1411
1412static int
1413m32c_is_1st_arg_reg (struct m32c_pv_state *state, pv_t value)
1414{
1415  struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1416  return (value.kind == pvk_register
1417          && (gdbarch_bfd_arch_info (state->arch)->mach == bfd_mach_m16c
1418	      ? (value.reg == tdep->r1->num)
1419	      : (value.reg == tdep->r0->num))
1420          && value.k == 0);
1421}
1422
1423/* Return non-zero if VALUE is an incoming argument register.  */
1424
1425static int
1426m32c_is_arg_reg (struct m32c_pv_state *state, pv_t value)
1427{
1428  struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1429  return (value.kind == pvk_register
1430          && (gdbarch_bfd_arch_info (state->arch)->mach == bfd_mach_m16c
1431	      ? (value.reg == tdep->r1->num || value.reg == tdep->r2->num)
1432	      : (value.reg == tdep->r0->num))
1433          && value.k == 0);
1434}
1435
1436/* Return non-zero if a store of VALUE to LOC is probably spilling an
1437   argument register to its stack slot in STATE.  Such instructions
1438   should be included in the prologue, if possible.
1439
1440   The store is a spill if:
1441   - the value being stored is the original value of an argument register;
1442   - the value has not already been stored somewhere in STACK; and
1443   - LOC is a stack slot (e.g., a memory location whose address is
1444     relative to the original value of the SP).  */
1445
1446static int
1447m32c_is_arg_spill (struct m32c_pv_state *st,
1448		   struct srcdest loc,
1449		   pv_t value)
1450{
1451  struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1452
1453  return (m32c_is_arg_reg (st, value)
1454	  && loc.kind == srcdest_mem
1455          && pv_is_register (loc.addr, tdep->sp->num)
1456          && ! pv_area_find_reg (st->stack, st->arch, value.reg, 0));
1457}
1458
1459/* Return non-zero if a store of VALUE to LOC is probably
1460   copying the struct return address into an address register
1461   for immediate use.  This is basically a "spill" into the
1462   address register, instead of onto the stack.
1463
1464   The prerequisites are:
1465   - value being stored is original value of the FIRST arg register;
1466   - value has not already been stored on stack; and
1467   - LOC is an address register (a0 or a1).  */
1468
1469static int
1470m32c_is_struct_return (struct m32c_pv_state *st,
1471		       struct srcdest loc,
1472		       pv_t value)
1473{
1474  struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1475
1476  return (m32c_is_1st_arg_reg (st, value)
1477	  && !pv_area_find_reg (st->stack, st->arch, value.reg, 0)
1478	  && loc.kind == srcdest_reg
1479	  && (pv_is_register (*loc.reg, tdep->a0->num)
1480	      || pv_is_register (*loc.reg, tdep->a1->num)));
1481}
1482
1483/* Return non-zero if a 'pushm' saving the registers indicated by SRC
1484   was a register save:
1485   - all the named registers should have their original values, and
1486   - the stack pointer should be at a constant offset from the
1487     original stack pointer.  */
1488static int
1489m32c_pushm_is_reg_save (struct m32c_pv_state *st, int src)
1490{
1491  struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1492  /* The bits in SRC indicating which registers to save are:
1493     r0 r1 r2 r3 a0 a1 sb fb */
1494  return
1495    (pv_is_register (st->sp, tdep->sp->num)
1496     && (! (src & 0x01) || pv_is_register_k (st->fb, tdep->fb->num, 0))
1497     && (! (src & 0x02) || pv_is_register_k (st->sb, tdep->sb->num, 0))
1498     && (! (src & 0x04) || pv_is_register_k (st->a1, tdep->a1->num, 0))
1499     && (! (src & 0x08) || pv_is_register_k (st->a0, tdep->a0->num, 0))
1500     && (! (src & 0x10) || pv_is_register_k (st->r3, tdep->r3->num, 0))
1501     && (! (src & 0x20) || pv_is_register_k (st->r2, tdep->r2->num, 0))
1502     && (! (src & 0x40) || pv_is_register_k (st->r1, tdep->r1->num, 0))
1503     && (! (src & 0x80) || pv_is_register_k (st->r0, tdep->r0->num, 0)));
1504}
1505
1506
1507/* Function for finding saved registers in a 'struct pv_area'; we pass
1508   this to pv_area_scan.
1509
1510   If VALUE is a saved register, ADDR says it was saved at a constant
1511   offset from the frame base, and SIZE indicates that the whole
1512   register was saved, record its offset in RESULT_UNTYPED.  */
1513static void
1514check_for_saved (void *prologue_untyped, pv_t addr, CORE_ADDR size, pv_t value)
1515{
1516  struct m32c_prologue *prologue = (struct m32c_prologue *) prologue_untyped;
1517  struct gdbarch *arch = prologue->arch;
1518  struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1519
1520  /* Is this the unchanged value of some register being saved on the
1521     stack?  */
1522  if (value.kind == pvk_register
1523      && value.k == 0
1524      && pv_is_register (addr, tdep->sp->num))
1525    {
1526      /* Some registers require special handling: they're saved as a
1527	 larger value than the register itself.  */
1528      CORE_ADDR saved_size = register_size (arch, value.reg);
1529
1530      if (value.reg == tdep->pc->num)
1531	saved_size = tdep->ret_addr_bytes;
1532      else if (register_type (arch, value.reg)
1533	       == tdep->data_addr_reg_type)
1534	saved_size = tdep->push_addr_bytes;
1535
1536      if (size == saved_size)
1537	{
1538	  /* Find which end of the saved value corresponds to our
1539	     register.  */
1540	  if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
1541	    prologue->reg_offset[value.reg]
1542	      = (addr.k + saved_size - register_size (arch, value.reg));
1543	  else
1544	    prologue->reg_offset[value.reg] = addr.k;
1545	}
1546    }
1547}
1548
1549
1550/* Analyze the function prologue for ARCH at START, going no further
1551   than LIMIT, and place a description of what we found in
1552   PROLOGUE.  */
1553static void
1554m32c_analyze_prologue (struct gdbarch *arch,
1555		       CORE_ADDR start, CORE_ADDR limit,
1556		       struct m32c_prologue *prologue)
1557{
1558  struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1559  unsigned long mach = gdbarch_bfd_arch_info (arch)->mach;
1560  CORE_ADDR after_last_frame_related_insn;
1561  struct cleanup *back_to;
1562  struct m32c_pv_state st;
1563
1564  st.arch = arch;
1565  st.r0 = pv_register (tdep->r0->num, 0);
1566  st.r1 = pv_register (tdep->r1->num, 0);
1567  st.r2 = pv_register (tdep->r2->num, 0);
1568  st.r3 = pv_register (tdep->r3->num, 0);
1569  st.a0 = pv_register (tdep->a0->num, 0);
1570  st.a1 = pv_register (tdep->a1->num, 0);
1571  st.sb = pv_register (tdep->sb->num, 0);
1572  st.fb = pv_register (tdep->fb->num, 0);
1573  st.sp = pv_register (tdep->sp->num, 0);
1574  st.pc = pv_register (tdep->pc->num, 0);
1575  st.stack = make_pv_area (tdep->sp->num, gdbarch_addr_bit (arch));
1576  back_to = make_cleanup_free_pv_area (st.stack);
1577
1578  /* Record that the call instruction has saved the return address on
1579     the stack.  */
1580  m32c_pv_push (&st, st.pc, tdep->ret_addr_bytes);
1581
1582  memset (prologue, 0, sizeof (*prologue));
1583  prologue->arch = arch;
1584  {
1585    int i;
1586    for (i = 0; i < M32C_MAX_NUM_REGS; i++)
1587      prologue->reg_offset[i] = 1;
1588  }
1589
1590  st.scan_pc = after_last_frame_related_insn = start;
1591
1592  while (st.scan_pc < limit)
1593    {
1594      pv_t pre_insn_fb = st.fb;
1595      pv_t pre_insn_sp = st.sp;
1596
1597      /* In theory we could get in trouble by trying to read ahead
1598	 here, when we only know we're expecting one byte.  In
1599	 practice I doubt anyone will care, and it makes the rest of
1600	 the code easier.  */
1601      if (target_read_memory (st.scan_pc, st.insn, sizeof (st.insn)))
1602	/* If we can't fetch the instruction from memory, stop here
1603	   and hope for the best.  */
1604	break;
1605      st.next_addr = st.scan_pc;
1606
1607      /* The assembly instructions are written as they appear in the
1608	 section of the processor manuals that describe the
1609	 instruction encodings.
1610
1611	 When a single assembly language instruction has several
1612	 different machine-language encodings, the manual
1613	 distinguishes them by a number in parens, before the
1614	 mnemonic.  Those numbers are included, as well.
1615
1616	 The srcdest decoding instructions have the same names as the
1617	 analogous functions in the simulator.  */
1618      if (mach == bfd_mach_m16c)
1619	{
1620	  /* (1) ENTER #imm8 */
1621	  if (st.insn[0] == 0x7c && st.insn[1] == 0xf2)
1622	    {
1623	      if (m32c_pv_enter (&st, st.insn[2]))
1624		break;
1625	      st.next_addr += 3;
1626	    }
1627	  /* (1) PUSHM src */
1628	  else if (st.insn[0] == 0xec)
1629	    {
1630	      int src = st.insn[1];
1631	      if (m32c_pv_pushm (&st, src))
1632		break;
1633	      st.next_addr += 2;
1634
1635	      if (m32c_pushm_is_reg_save (&st, src))
1636		after_last_frame_related_insn = st.next_addr;
1637	    }
1638
1639	  /* (6) MOV.size:G src, dest */
1640	  else if ((st.insn[0] & 0xfe) == 0x72)
1641	    {
1642	      int size = (st.insn[0] & 0x01) ? 2 : 1;
1643	      struct srcdest src;
1644	      struct srcdest dest;
1645	      pv_t src_value;
1646	      st.next_addr += 2;
1647
1648	      src
1649		= m32c_decode_srcdest4 (&st, (st.insn[1] >> 4) & 0xf, size);
1650	      dest
1651		= m32c_decode_srcdest4 (&st, st.insn[1] & 0xf, size);
1652	      src_value = m32c_srcdest_fetch (&st, src, size);
1653
1654	      if (m32c_is_arg_spill (&st, dest, src_value))
1655		after_last_frame_related_insn = st.next_addr;
1656	      else if (m32c_is_struct_return (&st, dest, src_value))
1657		after_last_frame_related_insn = st.next_addr;
1658
1659	      if (m32c_srcdest_store (&st, dest, src_value, size))
1660		break;
1661	    }
1662
1663	  /* (1) LDC #IMM16, sp */
1664	  else if (st.insn[0] == 0xeb
1665		   && st.insn[1] == 0x50)
1666	    {
1667	      st.next_addr += 2;
1668	      st.sp = pv_constant (m32c_udisp16 (&st));
1669	    }
1670
1671	  else
1672	    /* We've hit some instruction we don't know how to simulate.
1673	       Strictly speaking, we should set every value we're
1674	       tracking to "unknown".  But we'll be optimistic, assume
1675	       that we have enough information already, and stop
1676	       analysis here.  */
1677	    break;
1678	}
1679      else
1680	{
1681	  int src_indirect = 0;
1682	  int dest_indirect = 0;
1683	  int i = 0;
1684
1685	  gdb_assert (mach == bfd_mach_m32c);
1686
1687	  /* Check for prefix bytes indicating indirect addressing.  */
1688	  if (st.insn[0] == 0x41)
1689	    {
1690	      src_indirect = 1;
1691	      i++;
1692	    }
1693	  else if (st.insn[0] == 0x09)
1694	    {
1695	      dest_indirect = 1;
1696	      i++;
1697	    }
1698	  else if (st.insn[0] == 0x49)
1699	    {
1700	      src_indirect = dest_indirect = 1;
1701	      i++;
1702	    }
1703
1704	  /* (1) ENTER #imm8 */
1705	  if (st.insn[i] == 0xec)
1706	    {
1707	      if (m32c_pv_enter (&st, st.insn[i + 1]))
1708		break;
1709	      st.next_addr += 2;
1710	    }
1711
1712	  /* (1) PUSHM src */
1713	  else if (st.insn[i] == 0x8f)
1714	    {
1715	      int src = st.insn[i + 1];
1716	      if (m32c_pv_pushm (&st, src))
1717		break;
1718	      st.next_addr += 2;
1719
1720	      if (m32c_pushm_is_reg_save (&st, src))
1721		after_last_frame_related_insn = st.next_addr;
1722	    }
1723
1724	  /* (7) MOV.size:G src, dest */
1725	  else if ((st.insn[i] & 0x80) == 0x80
1726		   && (st.insn[i + 1] & 0x0f) == 0x0b
1727		   && m32c_get_src23 (&st.insn[i]) < 20
1728		   && m32c_get_dest23 (&st.insn[i]) < 20)
1729	    {
1730	      struct srcdest src;
1731	      struct srcdest dest;
1732	      pv_t src_value;
1733	      int bw = st.insn[i] & 0x01;
1734	      int size = bw ? 2 : 1;
1735	      st.next_addr += 2;
1736
1737	      src
1738		= m32c_decode_sd23 (&st, m32c_get_src23 (&st.insn[i]),
1739				    size, src_indirect);
1740	      dest
1741		= m32c_decode_sd23 (&st, m32c_get_dest23 (&st.insn[i]),
1742				    size, dest_indirect);
1743	      src_value = m32c_srcdest_fetch (&st, src, size);
1744
1745	      if (m32c_is_arg_spill (&st, dest, src_value))
1746		after_last_frame_related_insn = st.next_addr;
1747
1748	      if (m32c_srcdest_store (&st, dest, src_value, size))
1749		break;
1750	    }
1751	  /* (2) LDC #IMM24, sp */
1752	  else if (st.insn[i] == 0xd5
1753		   && st.insn[i + 1] == 0x29)
1754	    {
1755	      st.next_addr += 2;
1756	      st.sp = pv_constant (m32c_udisp24 (&st));
1757	    }
1758	  else
1759	    /* We've hit some instruction we don't know how to simulate.
1760	       Strictly speaking, we should set every value we're
1761	       tracking to "unknown".  But we'll be optimistic, assume
1762	       that we have enough information already, and stop
1763	       analysis here.  */
1764	    break;
1765	}
1766
1767      /* If this instruction changed the FB or decreased the SP (i.e.,
1768         allocated more stack space), then this may be a good place to
1769         declare the prologue finished.  However, there are some
1770         exceptions:
1771
1772         - If the instruction just changed the FB back to its original
1773           value, then that's probably a restore instruction.  The
1774           prologue should definitely end before that.
1775
1776         - If the instruction increased the value of the SP (that is,
1777           shrunk the frame), then it's probably part of a frame
1778           teardown sequence, and the prologue should end before
1779           that.  */
1780
1781      if (! pv_is_identical (st.fb, pre_insn_fb))
1782        {
1783          if (! pv_is_register_k (st.fb, tdep->fb->num, 0))
1784            after_last_frame_related_insn = st.next_addr;
1785        }
1786      else if (! pv_is_identical (st.sp, pre_insn_sp))
1787        {
1788          /* The comparison of the constants looks odd, there, because
1789             .k is unsigned.  All it really means is that the SP is
1790             lower than it was before the instruction.  */
1791          if (   pv_is_register (pre_insn_sp, tdep->sp->num)
1792              && pv_is_register (st.sp,       tdep->sp->num)
1793              && ((pre_insn_sp.k - st.sp.k) < (st.sp.k - pre_insn_sp.k)))
1794            after_last_frame_related_insn = st.next_addr;
1795        }
1796
1797      st.scan_pc = st.next_addr;
1798    }
1799
1800  /* Did we load a constant value into the stack pointer?  */
1801  if (pv_is_constant (st.sp))
1802    prologue->kind = prologue_first_frame;
1803
1804  /* Alternatively, did we initialize the frame pointer?  Remember
1805     that the CFA is the address after the return address.  */
1806  if (pv_is_register (st.fb, tdep->sp->num))
1807    {
1808      prologue->kind = prologue_with_frame_ptr;
1809      prologue->frame_ptr_offset = st.fb.k;
1810    }
1811
1812  /* Is the frame size a known constant?  Remember that frame_size is
1813     actually the offset from the CFA to the SP (i.e., a negative
1814     value).  */
1815  else if (pv_is_register (st.sp, tdep->sp->num))
1816    {
1817      prologue->kind = prologue_sans_frame_ptr;
1818      prologue->frame_size = st.sp.k;
1819    }
1820
1821  /* We haven't been able to make sense of this function's frame.  Treat
1822     it as the first frame.  */
1823  else
1824    prologue->kind = prologue_first_frame;
1825
1826  /* Record where all the registers were saved.  */
1827  pv_area_scan (st.stack, check_for_saved, (void *) prologue);
1828
1829  prologue->prologue_end = after_last_frame_related_insn;
1830
1831  do_cleanups (back_to);
1832}
1833
1834
1835static CORE_ADDR
1836m32c_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR ip)
1837{
1838  char *name;
1839  CORE_ADDR func_addr, func_end, sal_end;
1840  struct m32c_prologue p;
1841
1842  /* Try to find the extent of the function that contains IP.  */
1843  if (! find_pc_partial_function (ip, &name, &func_addr, &func_end))
1844    return ip;
1845
1846  /* Find end by prologue analysis.  */
1847  m32c_analyze_prologue (gdbarch, ip, func_end, &p);
1848  /* Find end by line info.  */
1849  sal_end = skip_prologue_using_sal (gdbarch, ip);
1850  /* Return whichever is lower.  */
1851  if (sal_end != 0 && sal_end != ip && sal_end < p.prologue_end)
1852    return sal_end;
1853  else
1854    return p.prologue_end;
1855}
1856
1857
1858
1859/* Stack unwinding.  */
1860
1861static struct m32c_prologue *
1862m32c_analyze_frame_prologue (struct frame_info *this_frame,
1863			     void **this_prologue_cache)
1864{
1865  if (! *this_prologue_cache)
1866    {
1867      CORE_ADDR func_start = get_frame_func (this_frame);
1868      CORE_ADDR stop_addr = get_frame_pc (this_frame);
1869
1870      /* If we couldn't find any function containing the PC, then
1871         just initialize the prologue cache, but don't do anything.  */
1872      if (! func_start)
1873        stop_addr = func_start;
1874
1875      *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct m32c_prologue);
1876      m32c_analyze_prologue (get_frame_arch (this_frame),
1877			     func_start, stop_addr, *this_prologue_cache);
1878    }
1879
1880  return *this_prologue_cache;
1881}
1882
1883
1884static CORE_ADDR
1885m32c_frame_base (struct frame_info *this_frame,
1886                void **this_prologue_cache)
1887{
1888  struct m32c_prologue *p
1889    = m32c_analyze_frame_prologue (this_frame, this_prologue_cache);
1890  struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
1891
1892  /* In functions that use alloca, the distance between the stack
1893     pointer and the frame base varies dynamically, so we can't use
1894     the SP plus static information like prologue analysis to find the
1895     frame base.  However, such functions must have a frame pointer,
1896     to be able to restore the SP on exit.  So whenever we do have a
1897     frame pointer, use that to find the base.  */
1898  switch (p->kind)
1899    {
1900    case prologue_with_frame_ptr:
1901      {
1902	CORE_ADDR fb
1903	  = get_frame_register_unsigned (this_frame, tdep->fb->num);
1904	return fb - p->frame_ptr_offset;
1905      }
1906
1907    case prologue_sans_frame_ptr:
1908      {
1909	CORE_ADDR sp
1910	  = get_frame_register_unsigned (this_frame, tdep->sp->num);
1911	return sp - p->frame_size;
1912      }
1913
1914    case prologue_first_frame:
1915      return 0;
1916
1917    default:
1918      gdb_assert_not_reached ("unexpected prologue kind");
1919    }
1920}
1921
1922
1923static void
1924m32c_this_id (struct frame_info *this_frame,
1925	      void **this_prologue_cache,
1926	      struct frame_id *this_id)
1927{
1928  CORE_ADDR base = m32c_frame_base (this_frame, this_prologue_cache);
1929
1930  if (base)
1931    *this_id = frame_id_build (base, get_frame_func (this_frame));
1932  /* Otherwise, leave it unset, and that will terminate the backtrace.  */
1933}
1934
1935
1936static struct value *
1937m32c_prev_register (struct frame_info *this_frame,
1938		    void **this_prologue_cache, int regnum)
1939{
1940  struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
1941  struct m32c_prologue *p
1942    = m32c_analyze_frame_prologue (this_frame, this_prologue_cache);
1943  CORE_ADDR frame_base = m32c_frame_base (this_frame, this_prologue_cache);
1944  int reg_size = register_size (get_frame_arch (this_frame), regnum);
1945
1946  if (regnum == tdep->sp->num)
1947    return frame_unwind_got_constant (this_frame, regnum, frame_base);
1948
1949  /* If prologue analysis says we saved this register somewhere,
1950     return a description of the stack slot holding it.  */
1951  if (p->reg_offset[regnum] != 1)
1952    return frame_unwind_got_memory (this_frame, regnum,
1953                                    frame_base + p->reg_offset[regnum]);
1954
1955  /* Otherwise, presume we haven't changed the value of this
1956     register, and get it from the next frame.  */
1957  return frame_unwind_got_register (this_frame, regnum, regnum);
1958}
1959
1960
1961static const struct frame_unwind m32c_unwind = {
1962  NORMAL_FRAME,
1963  default_frame_unwind_stop_reason,
1964  m32c_this_id,
1965  m32c_prev_register,
1966  NULL,
1967  default_frame_sniffer
1968};
1969
1970
1971static CORE_ADDR
1972m32c_unwind_pc (struct gdbarch *arch, struct frame_info *next_frame)
1973{
1974  struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1975  return frame_unwind_register_unsigned (next_frame, tdep->pc->num);
1976}
1977
1978
1979static CORE_ADDR
1980m32c_unwind_sp (struct gdbarch *arch, struct frame_info *next_frame)
1981{
1982  struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1983  return frame_unwind_register_unsigned (next_frame, tdep->sp->num);
1984}
1985
1986
1987/* Inferior calls.  */
1988
1989/* The calling conventions, according to GCC:
1990
1991   r8c, m16c
1992   ---------
1993   First arg may be passed in r1l or r1 if it (1) fits (QImode or
1994   HImode), (2) is named, and (3) is an integer or pointer type (no
1995   structs, floats, etc).  Otherwise, it's passed on the stack.
1996
1997   Second arg may be passed in r2, same restrictions (but not QImode),
1998   even if the first arg is passed on the stack.
1999
2000   Third and further args are passed on the stack.  No padding is
2001   used, stack "alignment" is 8 bits.
2002
2003   m32cm, m32c
2004   -----------
2005
2006   First arg may be passed in r0l or r0, same restrictions as above.
2007
2008   Second and further args are passed on the stack.  Padding is used
2009   after QImode parameters (i.e. lower-addressed byte is the value,
2010   higher-addressed byte is the padding), stack "alignment" is 16
2011   bits.  */
2012
2013
2014/* Return true if TYPE is a type that can be passed in registers.  (We
2015   ignore the size, and pay attention only to the type code;
2016   acceptable sizes depends on which register is being considered to
2017   hold it.)  */
2018static int
2019m32c_reg_arg_type (struct type *type)
2020{
2021  enum type_code code = TYPE_CODE (type);
2022
2023  return (code == TYPE_CODE_INT
2024	  || code == TYPE_CODE_ENUM
2025	  || code == TYPE_CODE_PTR
2026	  || code == TYPE_CODE_REF
2027	  || code == TYPE_CODE_BOOL
2028	  || code == TYPE_CODE_CHAR);
2029}
2030
2031
2032static CORE_ADDR
2033m32c_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2034		      struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2035		      struct value **args, CORE_ADDR sp, int struct_return,
2036		      CORE_ADDR struct_addr)
2037{
2038  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2039  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2040  unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
2041  CORE_ADDR cfa;
2042  int i;
2043
2044  /* The number of arguments given in this function's prototype, or
2045     zero if it has a non-prototyped function type.  The m32c ABI
2046     passes arguments mentioned in the prototype differently from
2047     those in the ellipsis of a varargs function, or from those passed
2048     to a non-prototyped function.  */
2049  int num_prototyped_args = 0;
2050
2051  {
2052    struct type *func_type = value_type (function);
2053
2054    /* Dereference function pointer types.  */
2055    if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
2056      func_type = TYPE_TARGET_TYPE (func_type);
2057
2058    gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC ||
2059		TYPE_CODE (func_type) == TYPE_CODE_METHOD);
2060
2061#if 0
2062    /* The ABI description in gcc/config/m32c/m32c.abi says that
2063       we need to handle prototyped and non-prototyped functions
2064       separately, but the code in GCC doesn't actually do so.  */
2065    if (TYPE_PROTOTYPED (func_type))
2066#endif
2067      num_prototyped_args = TYPE_NFIELDS (func_type);
2068  }
2069
2070  /* First, if the function returns an aggregate by value, push a
2071     pointer to a buffer for it.  This doesn't affect the way
2072     subsequent arguments are allocated to registers.  */
2073  if (struct_return)
2074    {
2075      int ptr_len = TYPE_LENGTH (tdep->ptr_voyd);
2076      sp -= ptr_len;
2077      write_memory_unsigned_integer (sp, ptr_len, byte_order, struct_addr);
2078    }
2079
2080  /* Push the arguments.  */
2081  for (i = nargs - 1; i >= 0; i--)
2082    {
2083      struct value *arg = args[i];
2084      const gdb_byte *arg_bits = value_contents (arg);
2085      struct type *arg_type = value_type (arg);
2086      ULONGEST arg_size = TYPE_LENGTH (arg_type);
2087
2088      /* Can it go in r1 or r1l (for m16c) or r0 or r0l (for m32c)?  */
2089      if (i == 0
2090	  && arg_size <= 2
2091	  && i < num_prototyped_args
2092	  && m32c_reg_arg_type (arg_type))
2093	{
2094	  /* Extract and re-store as an integer as a terse way to make
2095	     sure it ends up in the least significant end of r1.  (GDB
2096	     should avoid assuming endianness, even on uni-endian
2097	     processors.)  */
2098	  ULONGEST u = extract_unsigned_integer (arg_bits, arg_size,
2099						 byte_order);
2100	  struct m32c_reg *reg = (mach == bfd_mach_m16c) ? tdep->r1 : tdep->r0;
2101	  regcache_cooked_write_unsigned (regcache, reg->num, u);
2102	}
2103
2104      /* Can it go in r2?  */
2105      else if (mach == bfd_mach_m16c
2106	       && i == 1
2107	       && arg_size == 2
2108	       && i < num_prototyped_args
2109	       && m32c_reg_arg_type (arg_type))
2110	regcache_cooked_write (regcache, tdep->r2->num, arg_bits);
2111
2112      /* Everything else goes on the stack.  */
2113      else
2114	{
2115	  sp -= arg_size;
2116
2117	  /* Align the stack.  */
2118	  if (mach == bfd_mach_m32c)
2119	    sp &= ~1;
2120
2121	  write_memory (sp, arg_bits, arg_size);
2122	}
2123    }
2124
2125  /* This is the CFA we use to identify the dummy frame.  */
2126  cfa = sp;
2127
2128  /* Push the return address.  */
2129  sp -= tdep->ret_addr_bytes;
2130  write_memory_unsigned_integer (sp, tdep->ret_addr_bytes, byte_order,
2131				 bp_addr);
2132
2133  /* Update the stack pointer.  */
2134  regcache_cooked_write_unsigned (regcache, tdep->sp->num, sp);
2135
2136  /* We need to borrow an odd trick from the i386 target here.
2137
2138     The value we return from this function gets used as the stack
2139     address (the CFA) for the dummy frame's ID.  The obvious thing is
2140     to return the new TOS.  However, that points at the return
2141     address, saved on the stack, which is inconsistent with the CFA's
2142     described by GCC's DWARF 2 .debug_frame information: DWARF 2
2143     .debug_frame info uses the address immediately after the saved
2144     return address.  So you end up with a dummy frame whose CFA
2145     points at the return address, but the frame for the function
2146     being called has a CFA pointing after the return address: the
2147     younger CFA is *greater than* the older CFA.  The sanity checks
2148     in frame.c don't like that.
2149
2150     So we try to be consistent with the CFA's used by DWARF 2.
2151     Having a dummy frame and a real frame with the *same* CFA is
2152     tolerable.  */
2153  return cfa;
2154}
2155
2156
2157static struct frame_id
2158m32c_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2159{
2160  /* This needs to return a frame ID whose PC is the return address
2161     passed to m32c_push_dummy_call, and whose stack_addr is the SP
2162     m32c_push_dummy_call returned.
2163
2164     m32c_unwind_sp gives us the CFA, which is the value the SP had
2165     before the return address was pushed.  */
2166  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2167  CORE_ADDR sp = get_frame_register_unsigned (this_frame, tdep->sp->num);
2168  return frame_id_build (sp, get_frame_pc (this_frame));
2169}
2170
2171
2172
2173/* Return values.  */
2174
2175/* Return value conventions, according to GCC:
2176
2177   r8c, m16c
2178   ---------
2179
2180   QImode in r0l
2181   HImode in r0
2182   SImode in r2r0
2183   near pointer in r0
2184   far pointer in r2r0
2185
2186   Aggregate values (regardless of size) are returned by pushing a
2187   pointer to a temporary area on the stack after the args are pushed.
2188   The function fills in this area with the value.  Note that this
2189   pointer on the stack does not affect how register arguments, if any,
2190   are configured.
2191
2192   m32cm, m32c
2193   -----------
2194   Same.  */
2195
2196/* Return non-zero if values of type TYPE are returned by storing them
2197   in a buffer whose address is passed on the stack, ahead of the
2198   other arguments.  */
2199static int
2200m32c_return_by_passed_buf (struct type *type)
2201{
2202  enum type_code code = TYPE_CODE (type);
2203
2204  return (code == TYPE_CODE_STRUCT
2205	  || code == TYPE_CODE_UNION);
2206}
2207
2208static enum return_value_convention
2209m32c_return_value (struct gdbarch *gdbarch,
2210		   struct type *func_type,
2211		   struct type *valtype,
2212		   struct regcache *regcache,
2213		   gdb_byte *readbuf,
2214		   const gdb_byte *writebuf)
2215{
2216  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2217  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2218  enum return_value_convention conv;
2219  ULONGEST valtype_len = TYPE_LENGTH (valtype);
2220
2221  if (m32c_return_by_passed_buf (valtype))
2222    conv = RETURN_VALUE_STRUCT_CONVENTION;
2223  else
2224    conv = RETURN_VALUE_REGISTER_CONVENTION;
2225
2226  if (readbuf)
2227    {
2228      /* We should never be called to find values being returned by
2229	 RETURN_VALUE_STRUCT_CONVENTION.  Those can't be located,
2230	 unless we made the call ourselves.  */
2231      gdb_assert (conv == RETURN_VALUE_REGISTER_CONVENTION);
2232
2233      gdb_assert (valtype_len <= 8);
2234
2235      /* Anything that fits in r0 is returned there.  */
2236      if (valtype_len <= TYPE_LENGTH (tdep->r0->type))
2237	{
2238	  ULONGEST u;
2239	  regcache_cooked_read_unsigned (regcache, tdep->r0->num, &u);
2240	  store_unsigned_integer (readbuf, valtype_len, byte_order, u);
2241	}
2242      else
2243	{
2244	  /* Everything else is passed in mem0, using as many bytes as
2245	     needed.  This is not what the Renesas tools do, but it's
2246	     what GCC does at the moment.  */
2247	  struct minimal_symbol *mem0
2248	    = lookup_minimal_symbol ("mem0", NULL, NULL);
2249
2250	  if (! mem0)
2251	    error (_("The return value is stored in memory at 'mem0', "
2252		     "but GDB cannot find\n"
2253		     "its address."));
2254	  read_memory (SYMBOL_VALUE_ADDRESS (mem0), readbuf, valtype_len);
2255	}
2256    }
2257
2258  if (writebuf)
2259    {
2260      /* We should never be called to store values to be returned
2261	 using RETURN_VALUE_STRUCT_CONVENTION.  We have no way of
2262	 finding the buffer, unless we made the call ourselves.  */
2263      gdb_assert (conv == RETURN_VALUE_REGISTER_CONVENTION);
2264
2265      gdb_assert (valtype_len <= 8);
2266
2267      /* Anything that fits in r0 is returned there.  */
2268      if (valtype_len <= TYPE_LENGTH (tdep->r0->type))
2269	{
2270	  ULONGEST u = extract_unsigned_integer (writebuf, valtype_len,
2271						 byte_order);
2272	  regcache_cooked_write_unsigned (regcache, tdep->r0->num, u);
2273	}
2274      else
2275	{
2276	  /* Everything else is passed in mem0, using as many bytes as
2277	     needed.  This is not what the Renesas tools do, but it's
2278	     what GCC does at the moment.  */
2279	  struct minimal_symbol *mem0
2280	    = lookup_minimal_symbol ("mem0", NULL, NULL);
2281
2282	  if (! mem0)
2283	    error (_("The return value is stored in memory at 'mem0', "
2284		     "but GDB cannot find\n"
2285		     " its address."));
2286	  write_memory (SYMBOL_VALUE_ADDRESS (mem0),
2287                        (char *) writebuf, valtype_len);
2288	}
2289    }
2290
2291  return conv;
2292}
2293
2294
2295
2296/* Trampolines.  */
2297
2298/* The m16c and m32c use a trampoline function for indirect function
2299   calls.  An indirect call looks like this:
2300
2301	     ... push arguments ...
2302	     ... push target function address ...
2303	     jsr.a m32c_jsri16
2304
2305   The code for m32c_jsri16 looks like this:
2306
2307     m32c_jsri16:
2308
2309             # Save return address.
2310	     pop.w	m32c_jsri_ret
2311	     pop.b	m32c_jsri_ret+2
2312
2313             # Store target function address.
2314	     pop.w	m32c_jsri_addr
2315
2316	     # Re-push return address.
2317	     push.b	m32c_jsri_ret+2
2318	     push.w	m32c_jsri_ret
2319
2320	     # Call the target function.
2321	     jmpi.a	m32c_jsri_addr
2322
2323   Without further information, GDB will treat calls to m32c_jsri16
2324   like calls to any other function.  Since m32c_jsri16 doesn't have
2325   debugging information, that normally means that GDB sets a step-
2326   resume breakpoint and lets the program continue --- which is not
2327   what the user wanted.  (Giving the trampoline debugging info
2328   doesn't help: the user expects the program to stop in the function
2329   their program is calling, not in some trampoline code they've never
2330   seen before.)
2331
2332   The gdbarch_skip_trampoline_code method tells GDB how to step
2333   through such trampoline functions transparently to the user.  When
2334   given the address of a trampoline function's first instruction,
2335   gdbarch_skip_trampoline_code should return the address of the first
2336   instruction of the function really being called.  If GDB decides it
2337   wants to step into that function, it will set a breakpoint there
2338   and silently continue to it.
2339
2340   We recognize the trampoline by name, and extract the target address
2341   directly from the stack.  This isn't great, but recognizing by its
2342   code sequence seems more fragile.  */
2343
2344static CORE_ADDR
2345m32c_skip_trampoline_code (struct frame_info *frame, CORE_ADDR stop_pc)
2346{
2347  struct gdbarch *gdbarch = get_frame_arch (frame);
2348  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2349  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2350
2351  /* It would be nicer to simply look up the addresses of known
2352     trampolines once, and then compare stop_pc with them.  However,
2353     we'd need to ensure that that cached address got invalidated when
2354     someone loaded a new executable, and I'm not quite sure of the
2355     best way to do that.  find_pc_partial_function does do some
2356     caching, so we'll see how this goes.  */
2357  char *name;
2358  CORE_ADDR start, end;
2359
2360  if (find_pc_partial_function (stop_pc, &name, &start, &end))
2361    {
2362      /* Are we stopped at the beginning of the trampoline function?  */
2363      if (strcmp (name, "m32c_jsri16") == 0
2364	  && stop_pc == start)
2365	{
2366	  /* Get the stack pointer.  The return address is at the top,
2367	     and the target function's address is just below that.  We
2368	     know it's a two-byte address, since the trampoline is
2369	     m32c_jsri*16*.  */
2370	  CORE_ADDR sp = get_frame_sp (get_current_frame ());
2371	  CORE_ADDR target
2372	    = read_memory_unsigned_integer (sp + tdep->ret_addr_bytes,
2373					    2, byte_order);
2374
2375	  /* What we have now is the address of a jump instruction.
2376	     What we need is the destination of that jump.
2377	     The opcode is 1 byte, and the destination is the next 3 bytes.  */
2378
2379	  target = read_memory_unsigned_integer (target + 1, 3, byte_order);
2380	  return target;
2381	}
2382    }
2383
2384  return 0;
2385}
2386
2387
2388/* Address/pointer conversions.  */
2389
2390/* On the m16c, there is a 24-bit address space, but only a very few
2391   instructions can generate addresses larger than 0xffff: jumps,
2392   jumps to subroutines, and the lde/std (load/store extended)
2393   instructions.
2394
2395   Since GCC can only support one size of pointer, we can't have
2396   distinct 'near' and 'far' pointer types; we have to pick one size
2397   for everything.  If we wanted to use 24-bit pointers, then GCC
2398   would have to use lde and ste for all memory references, which
2399   would be terrible for performance and code size.  So the GNU
2400   toolchain uses 16-bit pointers for everything, and gives up the
2401   ability to have pointers point outside the first 64k of memory.
2402
2403   However, as a special hack, we let the linker place functions at
2404   addresses above 0xffff, as long as it also places a trampoline in
2405   the low 64k for every function whose address is taken.  Each
2406   trampoline consists of a single jmp.a instruction that jumps to the
2407   function's real entry point.  Pointers to functions can be 16 bits
2408   long, even though the functions themselves are at higher addresses:
2409   the pointers refer to the trampolines, not the functions.
2410
2411   This complicates things for GDB, however: given the address of a
2412   function (from debug info or linker symbols, say) which could be
2413   anywhere in the 24-bit address space, how can we find an
2414   appropriate 16-bit value to use as a pointer to it?
2415
2416   If the linker has not generated a trampoline for the function,
2417   we're out of luck.  Well, I guess we could malloc some space and
2418   write a jmp.a instruction to it, but I'm not going to get into that
2419   at the moment.
2420
2421   If the linker has generated a trampoline for the function, then it
2422   also emitted a symbol for the trampoline: if the function's linker
2423   symbol is named NAME, then the function's trampoline's linker
2424   symbol is named NAME.plt.
2425
2426   So, given a code address:
2427   - We try to find a linker symbol at that address.
2428   - If we find such a symbol named NAME, we look for a linker symbol
2429     named NAME.plt.
2430   - If we find such a symbol, we assume it is a trampoline, and use
2431     its address as the pointer value.
2432
2433   And, given a function pointer:
2434   - We try to find a linker symbol at that address named NAME.plt.
2435   - If we find such a symbol, we look for a linker symbol named NAME.
2436   - If we find that, we provide that as the function's address.
2437   - If any of the above steps fail, we return the original address
2438     unchanged; it might really be a function in the low 64k.
2439
2440   See?  You *knew* there was a reason you wanted to be a computer
2441   programmer!  :)  */
2442
2443static void
2444m32c_m16c_address_to_pointer (struct gdbarch *gdbarch,
2445			      struct type *type, gdb_byte *buf, CORE_ADDR addr)
2446{
2447  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2448  enum type_code target_code;
2449  gdb_assert (TYPE_CODE (type) == TYPE_CODE_PTR ||
2450	      TYPE_CODE (type) == TYPE_CODE_REF);
2451
2452  target_code = TYPE_CODE (TYPE_TARGET_TYPE (type));
2453
2454  if (target_code == TYPE_CODE_FUNC || target_code == TYPE_CODE_METHOD)
2455    {
2456      char *func_name;
2457      char *tramp_name;
2458      struct minimal_symbol *tramp_msym;
2459
2460      /* Try to find a linker symbol at this address.  */
2461      struct minimal_symbol *func_msym = lookup_minimal_symbol_by_pc (addr);
2462
2463      if (! func_msym)
2464        error (_("Cannot convert code address %s to function pointer:\n"
2465               "couldn't find a symbol at that address, to find trampoline."),
2466               paddress (gdbarch, addr));
2467
2468      func_name = SYMBOL_LINKAGE_NAME (func_msym);
2469      tramp_name = xmalloc (strlen (func_name) + 5);
2470      strcpy (tramp_name, func_name);
2471      strcat (tramp_name, ".plt");
2472
2473      /* Try to find a linker symbol for the trampoline.  */
2474      tramp_msym = lookup_minimal_symbol (tramp_name, NULL, NULL);
2475
2476      /* We've either got another copy of the name now, or don't need
2477         the name any more.  */
2478      xfree (tramp_name);
2479
2480      if (! tramp_msym)
2481	{
2482	  CORE_ADDR ptrval;
2483
2484	  /* No PLT entry found.  Mask off the upper bits of the address
2485	     to make a pointer.  As noted in the warning to the user
2486	     below, this value might be useful if converted back into
2487	     an address by GDB, but will otherwise, almost certainly,
2488	     be garbage.
2489
2490	     Using this masked result does seem to be useful
2491	     in gdb.cp/cplusfuncs.exp in which ~40 FAILs turn into
2492	     PASSes.  These results appear to be correct as well.
2493
2494	     We print a warning here so that the user can make a
2495	     determination about whether the result is useful or not.  */
2496	  ptrval = addr & 0xffff;
2497
2498	  warning (_("Cannot convert code address %s to function pointer:\n"
2499		   "couldn't find trampoline named '%s.plt'.\n"
2500		   "Returning pointer value %s instead; this may produce\n"
2501		   "a useful result if converted back into an address by GDB,\n"
2502		   "but will most likely not be useful otherwise.\n"),
2503		   paddress (gdbarch, addr), func_name,
2504		   paddress (gdbarch, ptrval));
2505
2506	  addr = ptrval;
2507
2508	}
2509      else
2510	{
2511	  /* The trampoline's address is our pointer.  */
2512	  addr = SYMBOL_VALUE_ADDRESS (tramp_msym);
2513	}
2514    }
2515
2516  store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order, addr);
2517}
2518
2519
2520static CORE_ADDR
2521m32c_m16c_pointer_to_address (struct gdbarch *gdbarch,
2522			      struct type *type, const gdb_byte *buf)
2523{
2524  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2525  CORE_ADDR ptr;
2526  enum type_code target_code;
2527
2528  gdb_assert (TYPE_CODE (type) == TYPE_CODE_PTR ||
2529	      TYPE_CODE (type) == TYPE_CODE_REF);
2530
2531  ptr = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
2532
2533  target_code = TYPE_CODE (TYPE_TARGET_TYPE (type));
2534
2535  if (target_code == TYPE_CODE_FUNC || target_code == TYPE_CODE_METHOD)
2536    {
2537      /* See if there is a minimal symbol at that address whose name is
2538         "NAME.plt".  */
2539      struct minimal_symbol *ptr_msym = lookup_minimal_symbol_by_pc (ptr);
2540
2541      if (ptr_msym)
2542        {
2543          char *ptr_msym_name = SYMBOL_LINKAGE_NAME (ptr_msym);
2544          int len = strlen (ptr_msym_name);
2545
2546          if (len > 4
2547              && strcmp (ptr_msym_name + len - 4, ".plt") == 0)
2548            {
2549	      struct minimal_symbol *func_msym;
2550              /* We have a .plt symbol; try to find the symbol for the
2551                 corresponding function.
2552
2553                 Since the trampoline contains a jump instruction, we
2554                 could also just extract the jump's target address.  I
2555                 don't see much advantage one way or the other.  */
2556              char *func_name = xmalloc (len - 4 + 1);
2557              memcpy (func_name, ptr_msym_name, len - 4);
2558              func_name[len - 4] = '\0';
2559              func_msym
2560                = lookup_minimal_symbol (func_name, NULL, NULL);
2561
2562              /* If we do have such a symbol, return its value as the
2563                 function's true address.  */
2564              if (func_msym)
2565                ptr = SYMBOL_VALUE_ADDRESS (func_msym);
2566            }
2567        }
2568      else
2569	{
2570	  int aspace;
2571
2572	  for (aspace = 1; aspace <= 15; aspace++)
2573	    {
2574	      ptr_msym = lookup_minimal_symbol_by_pc ((aspace << 16) | ptr);
2575
2576	      if (ptr_msym)
2577		ptr |= aspace << 16;
2578	    }
2579	}
2580    }
2581
2582  return ptr;
2583}
2584
2585static void
2586m32c_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
2587			    int *frame_regnum,
2588			    LONGEST *frame_offset)
2589{
2590  char *name;
2591  CORE_ADDR func_addr, func_end, sal_end;
2592  struct m32c_prologue p;
2593
2594  struct regcache *regcache = get_current_regcache ();
2595  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2596
2597  if (!find_pc_partial_function (pc, &name, &func_addr, &func_end))
2598    internal_error (__FILE__, __LINE__,
2599		    _("No virtual frame pointer available"));
2600
2601  m32c_analyze_prologue (gdbarch, func_addr, pc, &p);
2602  switch (p.kind)
2603    {
2604    case prologue_with_frame_ptr:
2605      *frame_regnum = m32c_banked_register (tdep->fb, regcache)->num;
2606      *frame_offset = p.frame_ptr_offset;
2607      break;
2608    case prologue_sans_frame_ptr:
2609      *frame_regnum = m32c_banked_register (tdep->sp, regcache)->num;
2610      *frame_offset = p.frame_size;
2611      break;
2612    default:
2613      *frame_regnum = m32c_banked_register (tdep->sp, regcache)->num;
2614      *frame_offset = 0;
2615      break;
2616    }
2617  /* Sanity check */
2618  if (*frame_regnum > gdbarch_num_regs (gdbarch))
2619    internal_error (__FILE__, __LINE__,
2620		    _("No virtual frame pointer available"));
2621}
2622
2623
2624/* Initialization.  */
2625
2626static struct gdbarch *
2627m32c_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2628{
2629  struct gdbarch *arch;
2630  struct gdbarch_tdep *tdep;
2631  unsigned long mach = info.bfd_arch_info->mach;
2632
2633  /* Find a candidate among the list of architectures we've created
2634     already.  */
2635  for (arches = gdbarch_list_lookup_by_info (arches, &info);
2636       arches != NULL;
2637       arches = gdbarch_list_lookup_by_info (arches->next, &info))
2638    return arches->gdbarch;
2639
2640  tdep = xcalloc (1, sizeof (*tdep));
2641  arch = gdbarch_alloc (&info, tdep);
2642
2643  /* Essential types.  */
2644  make_types (arch);
2645
2646  /* Address/pointer conversions.  */
2647  if (mach == bfd_mach_m16c)
2648    {
2649      set_gdbarch_address_to_pointer (arch, m32c_m16c_address_to_pointer);
2650      set_gdbarch_pointer_to_address (arch, m32c_m16c_pointer_to_address);
2651    }
2652
2653  /* Register set.  */
2654  make_regs (arch);
2655
2656  /* Disassembly.  */
2657  set_gdbarch_print_insn (arch, print_insn_m32c);
2658
2659  /* Breakpoints.  */
2660  set_gdbarch_breakpoint_from_pc (arch, m32c_breakpoint_from_pc);
2661
2662  /* Prologue analysis and unwinding.  */
2663  set_gdbarch_inner_than (arch, core_addr_lessthan);
2664  set_gdbarch_skip_prologue (arch, m32c_skip_prologue);
2665  set_gdbarch_unwind_pc (arch, m32c_unwind_pc);
2666  set_gdbarch_unwind_sp (arch, m32c_unwind_sp);
2667#if 0
2668  /* I'm dropping the dwarf2 sniffer because it has a few problems.
2669     They may be in the dwarf2 cfi code in GDB, or they may be in
2670     the debug info emitted by the upstream toolchain.  I don't
2671     know which, but I do know that the prologue analyzer works better.
2672     MVS 04/13/06  */
2673  dwarf2_append_sniffers (arch);
2674#endif
2675  frame_unwind_append_unwinder (arch, &m32c_unwind);
2676
2677  /* Inferior calls.  */
2678  set_gdbarch_push_dummy_call (arch, m32c_push_dummy_call);
2679  set_gdbarch_return_value (arch, m32c_return_value);
2680  set_gdbarch_dummy_id (arch, m32c_dummy_id);
2681
2682  /* Trampolines.  */
2683  set_gdbarch_skip_trampoline_code (arch, m32c_skip_trampoline_code);
2684
2685  set_gdbarch_virtual_frame_pointer (arch, m32c_virtual_frame_pointer);
2686
2687  /* m32c function boundary addresses are not necessarily even.
2688     Therefore, the `vbit', which indicates a pointer to a virtual
2689     member function, is stored in the delta field, rather than as
2690     the low bit of a function pointer address.
2691
2692     In order to verify this, see the definition of
2693     TARGET_PTRMEMFUNC_VBIT_LOCATION in gcc/defaults.h along with the
2694     definition of FUNCTION_BOUNDARY in gcc/config/m32c/m32c.h.  */
2695  set_gdbarch_vbit_in_delta (arch, 1);
2696
2697  return arch;
2698}
2699
2700/* Provide a prototype to silence -Wmissing-prototypes.  */
2701extern initialize_file_ftype _initialize_m32c_tdep;
2702
2703void
2704_initialize_m32c_tdep (void)
2705{
2706  register_gdbarch_init (bfd_arch_m32c, m32c_gdbarch_init);
2707
2708  m32c_dma_reggroup = reggroup_new ("dma", USER_REGGROUP);
2709}
2710