1/* Read ELF (Executable and Linking Format) object files for GDB.
2
3   Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
4   2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
5   Free Software Foundation, Inc.
6
7   Written by Fred Fish at Cygnus Support.
8
9   This file is part of GDB.
10
11   This program is free software; you can redistribute it and/or modify
12   it under the terms of the GNU General Public License as published by
13   the Free Software Foundation; either version 3 of the License, or
14   (at your option) any later version.
15
16   This program is distributed in the hope that it will be useful,
17   but WITHOUT ANY WARRANTY; without even the implied warranty of
18   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19   GNU General Public License for more details.
20
21   You should have received a copy of the GNU General Public License
22   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
23
24#include "defs.h"
25#include "bfd.h"
26#include "gdb_string.h"
27#include "elf-bfd.h"
28#include "elf/common.h"
29#include "elf/internal.h"
30#include "elf/mips.h"
31#include "symtab.h"
32#include "symfile.h"
33#include "objfiles.h"
34#include "buildsym.h"
35#include "stabsread.h"
36#include "gdb-stabs.h"
37#include "complaints.h"
38#include "demangle.h"
39#include "psympriv.h"
40#include "filenames.h"
41#include "gdbtypes.h"
42#include "value.h"
43#include "infcall.h"
44#include "gdbthread.h"
45#include "regcache.h"
46
47extern void _initialize_elfread (void);
48
49/* Forward declarations.  */
50static const struct sym_fns elf_sym_fns_gdb_index;
51static const struct sym_fns elf_sym_fns_lazy_psyms;
52
53/* The struct elfinfo is available only during ELF symbol table and
54   psymtab reading.  It is destroyed at the completion of psymtab-reading.
55   It's local to elf_symfile_read.  */
56
57struct elfinfo
58  {
59    asection *stabsect;		/* Section pointer for .stab section */
60    asection *stabindexsect;	/* Section pointer for .stab.index section */
61    asection *mdebugsect;	/* Section pointer for .mdebug section */
62  };
63
64static void free_elfinfo (void *);
65
66/* Minimal symbols located at the GOT entries for .plt - that is the real
67   pointer where the given entry will jump to.  It gets updated by the real
68   function address during lazy ld.so resolving in the inferior.  These
69   minimal symbols are indexed for <tab>-completion.  */
70
71#define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
72
73/* Locate the segments in ABFD.  */
74
75static struct symfile_segment_data *
76elf_symfile_segments (bfd *abfd)
77{
78  Elf_Internal_Phdr *phdrs, **segments;
79  long phdrs_size;
80  int num_phdrs, num_segments, num_sections, i;
81  asection *sect;
82  struct symfile_segment_data *data;
83
84  phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
85  if (phdrs_size == -1)
86    return NULL;
87
88  phdrs = alloca (phdrs_size);
89  num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
90  if (num_phdrs == -1)
91    return NULL;
92
93  num_segments = 0;
94  segments = alloca (sizeof (Elf_Internal_Phdr *) * num_phdrs);
95  for (i = 0; i < num_phdrs; i++)
96    if (phdrs[i].p_type == PT_LOAD)
97      segments[num_segments++] = &phdrs[i];
98
99  if (num_segments == 0)
100    return NULL;
101
102  data = XZALLOC (struct symfile_segment_data);
103  data->num_segments = num_segments;
104  data->segment_bases = XCALLOC (num_segments, CORE_ADDR);
105  data->segment_sizes = XCALLOC (num_segments, CORE_ADDR);
106
107  for (i = 0; i < num_segments; i++)
108    {
109      data->segment_bases[i] = segments[i]->p_vaddr;
110      data->segment_sizes[i] = segments[i]->p_memsz;
111    }
112
113  num_sections = bfd_count_sections (abfd);
114  data->segment_info = XCALLOC (num_sections, int);
115
116  for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
117    {
118      int j;
119      CORE_ADDR vma;
120
121      if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
122	continue;
123
124      vma = bfd_get_section_vma (abfd, sect);
125
126      for (j = 0; j < num_segments; j++)
127	if (segments[j]->p_memsz > 0
128	    && vma >= segments[j]->p_vaddr
129	    && (vma - segments[j]->p_vaddr) < segments[j]->p_memsz)
130	  {
131	    data->segment_info[i] = j + 1;
132	    break;
133	  }
134
135      /* We should have found a segment for every non-empty section.
136	 If we haven't, we will not relocate this section by any
137	 offsets we apply to the segments.  As an exception, do not
138	 warn about SHT_NOBITS sections; in normal ELF execution
139	 environments, SHT_NOBITS means zero-initialized and belongs
140	 in a segment, but in no-OS environments some tools (e.g. ARM
141	 RealView) use SHT_NOBITS for uninitialized data.  Since it is
142	 uninitialized, it doesn't need a program header.  Such
143	 binaries are not relocatable.  */
144      if (bfd_get_section_size (sect) > 0 && j == num_segments
145	  && (bfd_get_section_flags (abfd, sect) & SEC_LOAD) != 0)
146	warning (_("Loadable segment \"%s\" outside of ELF segments"),
147		 bfd_section_name (abfd, sect));
148    }
149
150  return data;
151}
152
153/* We are called once per section from elf_symfile_read.  We
154   need to examine each section we are passed, check to see
155   if it is something we are interested in processing, and
156   if so, stash away some access information for the section.
157
158   For now we recognize the dwarf debug information sections and
159   line number sections from matching their section names.  The
160   ELF definition is no real help here since it has no direct
161   knowledge of DWARF (by design, so any debugging format can be
162   used).
163
164   We also recognize the ".stab" sections used by the Sun compilers
165   released with Solaris 2.
166
167   FIXME: The section names should not be hardwired strings (what
168   should they be?  I don't think most object file formats have enough
169   section flags to specify what kind of debug section it is.
170   -kingdon).  */
171
172static void
173elf_locate_sections (bfd *ignore_abfd, asection *sectp, void *eip)
174{
175  struct elfinfo *ei;
176
177  ei = (struct elfinfo *) eip;
178  if (strcmp (sectp->name, ".stab") == 0)
179    {
180      ei->stabsect = sectp;
181    }
182  else if (strcmp (sectp->name, ".stab.index") == 0)
183    {
184      ei->stabindexsect = sectp;
185    }
186  else if (strcmp (sectp->name, ".mdebug") == 0)
187    {
188      ei->mdebugsect = sectp;
189    }
190}
191
192static struct minimal_symbol *
193record_minimal_symbol (const char *name, int name_len, int copy_name,
194		       CORE_ADDR address,
195		       enum minimal_symbol_type ms_type,
196		       asection *bfd_section, struct objfile *objfile)
197{
198  struct gdbarch *gdbarch = get_objfile_arch (objfile);
199
200  if (ms_type == mst_text || ms_type == mst_file_text
201      || ms_type == mst_text_gnu_ifunc)
202    address = gdbarch_smash_text_address (gdbarch, address);
203
204  return prim_record_minimal_symbol_full (name, name_len, copy_name, address,
205					  ms_type, bfd_section->index,
206					  bfd_section, objfile);
207}
208
209/*
210
211   LOCAL FUNCTION
212
213   elf_symtab_read -- read the symbol table of an ELF file
214
215   SYNOPSIS
216
217   void elf_symtab_read (struct objfile *objfile, int type,
218			 long number_of_symbols, asymbol **symbol_table)
219
220   DESCRIPTION
221
222   Given an objfile, a symbol table, and a flag indicating whether the
223   symbol table contains regular, dynamic, or synthetic symbols, add all
224   the global function and data symbols to the minimal symbol table.
225
226   In stabs-in-ELF, as implemented by Sun, there are some local symbols
227   defined in the ELF symbol table, which can be used to locate
228   the beginnings of sections from each ".o" file that was linked to
229   form the executable objfile.  We gather any such info and record it
230   in data structures hung off the objfile's private data.
231
232 */
233
234#define ST_REGULAR 0
235#define ST_DYNAMIC 1
236#define ST_SYNTHETIC 2
237
238static void
239elf_symtab_read (struct objfile *objfile, int type,
240		 long number_of_symbols, asymbol **symbol_table,
241		 int copy_names)
242{
243  struct gdbarch *gdbarch = get_objfile_arch (objfile);
244  asymbol *sym;
245  long i;
246  CORE_ADDR symaddr;
247  CORE_ADDR offset;
248  enum minimal_symbol_type ms_type;
249  /* If sectinfo is nonNULL, it contains section info that should end up
250     filed in the objfile.  */
251  struct stab_section_info *sectinfo = NULL;
252  /* If filesym is nonzero, it points to a file symbol, but we haven't
253     seen any section info for it yet.  */
254  asymbol *filesym = 0;
255  /* Name of filesym.  This is either a constant string or is saved on
256     the objfile's obstack.  */
257  char *filesymname = "";
258  struct dbx_symfile_info *dbx = objfile->deprecated_sym_stab_info;
259  int stripped = (bfd_get_symcount (objfile->obfd) == 0);
260
261  for (i = 0; i < number_of_symbols; i++)
262    {
263      sym = symbol_table[i];
264      if (sym->name == NULL || *sym->name == '\0')
265	{
266	  /* Skip names that don't exist (shouldn't happen), or names
267	     that are null strings (may happen).  */
268	  continue;
269	}
270
271      /* Skip "special" symbols, e.g. ARM mapping symbols.  These are
272	 symbols which do not correspond to objects in the symbol table,
273	 but have some other target-specific meaning.  */
274      if (bfd_is_target_special_symbol (objfile->obfd, sym))
275	{
276	  if (gdbarch_record_special_symbol_p (gdbarch))
277	    gdbarch_record_special_symbol (gdbarch, objfile, sym);
278	  continue;
279	}
280
281      offset = ANOFFSET (objfile->section_offsets, sym->section->index);
282      if (type == ST_DYNAMIC
283	  && sym->section == &bfd_und_section
284	  && (sym->flags & BSF_FUNCTION))
285	{
286	  struct minimal_symbol *msym;
287	  bfd *abfd = objfile->obfd;
288	  asection *sect;
289
290	  /* Symbol is a reference to a function defined in
291	     a shared library.
292	     If its value is non zero then it is usually the address
293	     of the corresponding entry in the procedure linkage table,
294	     plus the desired section offset.
295	     If its value is zero then the dynamic linker has to resolve
296	     the symbol.  We are unable to find any meaningful address
297	     for this symbol in the executable file, so we skip it.  */
298	  symaddr = sym->value;
299	  if (symaddr == 0)
300	    continue;
301
302	  /* sym->section is the undefined section.  However, we want to
303	     record the section where the PLT stub resides with the
304	     minimal symbol.  Search the section table for the one that
305	     covers the stub's address.  */
306	  for (sect = abfd->sections; sect != NULL; sect = sect->next)
307	    {
308	      if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
309		continue;
310
311	      if (symaddr >= bfd_get_section_vma (abfd, sect)
312		  && symaddr < bfd_get_section_vma (abfd, sect)
313			       + bfd_get_section_size (sect))
314		break;
315	    }
316	  if (!sect)
317	    continue;
318
319	  symaddr += ANOFFSET (objfile->section_offsets, sect->index);
320
321	  msym = record_minimal_symbol
322	    (sym->name, strlen (sym->name), copy_names,
323	     symaddr, mst_solib_trampoline, sect, objfile);
324	  if (msym != NULL)
325	    msym->filename = filesymname;
326	  continue;
327	}
328
329      /* If it is a nonstripped executable, do not enter dynamic
330	 symbols, as the dynamic symbol table is usually a subset
331	 of the main symbol table.  */
332      if (type == ST_DYNAMIC && !stripped)
333	continue;
334      if (sym->flags & BSF_FILE)
335	{
336	  /* STT_FILE debugging symbol that helps stabs-in-elf debugging.
337	     Chain any old one onto the objfile; remember new sym.  */
338	  if (sectinfo != NULL)
339	    {
340	      sectinfo->next = dbx->stab_section_info;
341	      dbx->stab_section_info = sectinfo;
342	      sectinfo = NULL;
343	    }
344	  filesym = sym;
345	  filesymname =
346	    obsavestring ((char *) filesym->name, strlen (filesym->name),
347			  &objfile->objfile_obstack);
348	}
349      else if (sym->flags & BSF_SECTION_SYM)
350	continue;
351      else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK))
352	{
353	  struct minimal_symbol *msym;
354
355	  /* Select global/local/weak symbols.  Note that bfd puts abs
356	     symbols in their own section, so all symbols we are
357	     interested in will have a section.  */
358	  /* Bfd symbols are section relative.  */
359	  symaddr = sym->value + sym->section->vma;
360	  /* Relocate all non-absolute and non-TLS symbols by the
361	     section offset.  */
362	  if (sym->section != &bfd_abs_section
363	      && !(sym->section->flags & SEC_THREAD_LOCAL))
364	    {
365	      symaddr += offset;
366	    }
367	  /* For non-absolute symbols, use the type of the section
368	     they are relative to, to intuit text/data.  Bfd provides
369	     no way of figuring this out for absolute symbols.  */
370	  if (sym->section == &bfd_abs_section)
371	    {
372	      /* This is a hack to get the minimal symbol type
373		 right for Irix 5, which has absolute addresses
374		 with special section indices for dynamic symbols.
375
376		 NOTE: uweigand-20071112: Synthetic symbols do not
377		 have an ELF-private part, so do not touch those.  */
378	      unsigned int shndx = type == ST_SYNTHETIC ? 0 :
379		((elf_symbol_type *) sym)->internal_elf_sym.st_shndx;
380
381	      switch (shndx)
382		{
383		case SHN_MIPS_TEXT:
384		  ms_type = mst_text;
385		  break;
386		case SHN_MIPS_DATA:
387		  ms_type = mst_data;
388		  break;
389		case SHN_MIPS_ACOMMON:
390		  ms_type = mst_bss;
391		  break;
392		default:
393		  ms_type = mst_abs;
394		}
395
396	      /* If it is an Irix dynamic symbol, skip section name
397		 symbols, relocate all others by section offset.  */
398	      if (ms_type != mst_abs)
399		{
400		  if (sym->name[0] == '.')
401		    continue;
402		  symaddr += offset;
403		}
404	    }
405	  else if (sym->section->flags & SEC_CODE)
406	    {
407	      if (sym->flags & (BSF_GLOBAL | BSF_WEAK))
408		{
409		  if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
410		    ms_type = mst_text_gnu_ifunc;
411		  else
412		    ms_type = mst_text;
413		}
414	      else if ((sym->name[0] == '.' && sym->name[1] == 'L')
415		       || ((sym->flags & BSF_LOCAL)
416			   && sym->name[0] == '$'
417			   && sym->name[1] == 'L'))
418		/* Looks like a compiler-generated label.  Skip
419		   it.  The assembler should be skipping these (to
420		   keep executables small), but apparently with
421		   gcc on the (deleted) delta m88k SVR4, it loses.
422		   So to have us check too should be harmless (but
423		   I encourage people to fix this in the assembler
424		   instead of adding checks here).  */
425		continue;
426	      else
427		{
428		  ms_type = mst_file_text;
429		}
430	    }
431	  else if (sym->section->flags & SEC_ALLOC)
432	    {
433	      if (sym->flags & (BSF_GLOBAL | BSF_WEAK))
434		{
435		  if (sym->section->flags & SEC_LOAD)
436		    {
437		      ms_type = mst_data;
438		    }
439		  else
440		    {
441		      ms_type = mst_bss;
442		    }
443		}
444	      else if (sym->flags & BSF_LOCAL)
445		{
446		  /* Named Local variable in a Data section.
447		     Check its name for stabs-in-elf.  */
448		  int special_local_sect;
449
450		  if (strcmp ("Bbss.bss", sym->name) == 0)
451		    special_local_sect = SECT_OFF_BSS (objfile);
452		  else if (strcmp ("Ddata.data", sym->name) == 0)
453		    special_local_sect = SECT_OFF_DATA (objfile);
454		  else if (strcmp ("Drodata.rodata", sym->name) == 0)
455		    special_local_sect = SECT_OFF_RODATA (objfile);
456		  else
457		    special_local_sect = -1;
458		  if (special_local_sect >= 0)
459		    {
460		      /* Found a special local symbol.  Allocate a
461			 sectinfo, if needed, and fill it in.  */
462		      if (sectinfo == NULL)
463			{
464			  int max_index;
465			  size_t size;
466
467			  max_index = SECT_OFF_BSS (objfile);
468			  if (objfile->sect_index_data > max_index)
469			    max_index = objfile->sect_index_data;
470			  if (objfile->sect_index_rodata > max_index)
471			    max_index = objfile->sect_index_rodata;
472
473			  /* max_index is the largest index we'll
474			     use into this array, so we must
475			     allocate max_index+1 elements for it.
476			     However, 'struct stab_section_info'
477			     already includes one element, so we
478			     need to allocate max_index aadditional
479			     elements.  */
480			  size = (sizeof (struct stab_section_info)
481				  + (sizeof (CORE_ADDR) * max_index));
482			  sectinfo = (struct stab_section_info *)
483			    xmalloc (size);
484			  memset (sectinfo, 0, size);
485			  sectinfo->num_sections = max_index;
486			  if (filesym == NULL)
487			    {
488			      complaint (&symfile_complaints,
489					 _("elf/stab section information %s "
490					   "without a preceding file symbol"),
491					 sym->name);
492			    }
493			  else
494			    {
495			      sectinfo->filename =
496				(char *) filesym->name;
497			    }
498			}
499		      if (sectinfo->sections[special_local_sect] != 0)
500			complaint (&symfile_complaints,
501				   _("duplicated elf/stab section "
502				     "information for %s"),
503				   sectinfo->filename);
504		      /* BFD symbols are section relative.  */
505		      symaddr = sym->value + sym->section->vma;
506		      /* Relocate non-absolute symbols by the
507			 section offset.  */
508		      if (sym->section != &bfd_abs_section)
509			symaddr += offset;
510		      sectinfo->sections[special_local_sect] = symaddr;
511		      /* The special local symbols don't go in the
512			 minimal symbol table, so ignore this one.  */
513		      continue;
514		    }
515		  /* Not a special stabs-in-elf symbol, do regular
516		     symbol processing.  */
517		  if (sym->section->flags & SEC_LOAD)
518		    {
519		      ms_type = mst_file_data;
520		    }
521		  else
522		    {
523		      ms_type = mst_file_bss;
524		    }
525		}
526	      else
527		{
528		  ms_type = mst_unknown;
529		}
530	    }
531	  else
532	    {
533	      /* FIXME:  Solaris2 shared libraries include lots of
534		 odd "absolute" and "undefined" symbols, that play
535		 hob with actions like finding what function the PC
536		 is in.  Ignore them if they aren't text, data, or bss.  */
537	      /* ms_type = mst_unknown; */
538	      continue;	/* Skip this symbol.  */
539	    }
540	  msym = record_minimal_symbol
541	    (sym->name, strlen (sym->name), copy_names, symaddr,
542	     ms_type, sym->section, objfile);
543
544	  if (msym)
545	    {
546	      /* Pass symbol size field in via BFD.  FIXME!!!  */
547	      elf_symbol_type *elf_sym;
548
549	      /* NOTE: uweigand-20071112: A synthetic symbol does not have an
550		 ELF-private part.  However, in some cases (e.g. synthetic
551		 'dot' symbols on ppc64) the udata.p entry is set to point back
552		 to the original ELF symbol it was derived from.  Get the size
553		 from that symbol.  */
554	      if (type != ST_SYNTHETIC)
555		elf_sym = (elf_symbol_type *) sym;
556	      else
557		elf_sym = (elf_symbol_type *) sym->udata.p;
558
559	      if (elf_sym)
560		MSYMBOL_SIZE(msym) = elf_sym->internal_elf_sym.st_size;
561
562	      msym->filename = filesymname;
563	      gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
564	    }
565
566	  /* For @plt symbols, also record a trampoline to the
567	     destination symbol.  The @plt symbol will be used in
568	     disassembly, and the trampoline will be used when we are
569	     trying to find the target.  */
570	  if (msym && ms_type == mst_text && type == ST_SYNTHETIC)
571	    {
572	      int len = strlen (sym->name);
573
574	      if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0)
575		{
576		  struct minimal_symbol *mtramp;
577
578		  mtramp = record_minimal_symbol (sym->name, len - 4, 1,
579						  symaddr,
580						  mst_solib_trampoline,
581						  sym->section, objfile);
582		  if (mtramp)
583		    {
584		      MSYMBOL_SIZE (mtramp) = MSYMBOL_SIZE (msym);
585		      mtramp->filename = filesymname;
586		      gdbarch_elf_make_msymbol_special (gdbarch, sym, mtramp);
587		    }
588		}
589	    }
590	}
591    }
592}
593
594/* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
595   for later look ups of which function to call when user requests
596   a STT_GNU_IFUNC function.  As the STT_GNU_IFUNC type is found at the target
597   library defining `function' we cannot yet know while reading OBJFILE which
598   of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
599   DYN_SYMBOL_TABLE is no longer easily available for OBJFILE.  */
600
601static void
602elf_rel_plt_read (struct objfile *objfile, asymbol **dyn_symbol_table)
603{
604  bfd *obfd = objfile->obfd;
605  const struct elf_backend_data *bed = get_elf_backend_data (obfd);
606  asection *plt, *relplt, *got_plt;
607  unsigned u;
608  int plt_elf_idx;
609  bfd_size_type reloc_count, reloc;
610  char *string_buffer = NULL;
611  size_t string_buffer_size = 0;
612  struct cleanup *back_to;
613  struct gdbarch *gdbarch = objfile->gdbarch;
614  struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
615  size_t ptr_size = TYPE_LENGTH (ptr_type);
616
617  if (objfile->separate_debug_objfile_backlink)
618    return;
619
620  plt = bfd_get_section_by_name (obfd, ".plt");
621  if (plt == NULL)
622    return;
623  plt_elf_idx = elf_section_data (plt)->this_idx;
624
625  got_plt = bfd_get_section_by_name (obfd, ".got.plt");
626  if (got_plt == NULL)
627    return;
628
629  /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc.  */
630  for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next)
631    if (elf_section_data (relplt)->this_hdr.sh_info == plt_elf_idx
632	&& (elf_section_data (relplt)->this_hdr.sh_type == SHT_REL
633	    || elf_section_data (relplt)->this_hdr.sh_type == SHT_RELA))
634      break;
635  if (relplt == NULL)
636    return;
637
638  if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE))
639    return;
640
641  back_to = make_cleanup (free_current_contents, &string_buffer);
642
643  reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize;
644  for (reloc = 0; reloc < reloc_count; reloc++)
645    {
646      const char *name, *name_got_plt;
647      struct minimal_symbol *msym;
648      CORE_ADDR address;
649      const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
650      size_t name_len;
651
652      name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr);
653      name_len = strlen (name);
654      address = relplt->relocation[reloc].address;
655
656      /* Does the pointer reside in the .got.plt section?  */
657      if (!(bfd_get_section_vma (obfd, got_plt) <= address
658            && address < bfd_get_section_vma (obfd, got_plt)
659			 + bfd_get_section_size (got_plt)))
660	continue;
661
662      /* We cannot check if NAME is a reference to mst_text_gnu_ifunc as in
663	 OBJFILE the symbol is undefined and the objfile having NAME defined
664	 may not yet have been loaded.  */
665
666      if (string_buffer_size < name_len + got_suffix_len)
667	{
668	  string_buffer_size = 2 * (name_len + got_suffix_len);
669	  string_buffer = xrealloc (string_buffer, string_buffer_size);
670	}
671      memcpy (string_buffer, name, name_len);
672      memcpy (&string_buffer[name_len], SYMBOL_GOT_PLT_SUFFIX,
673	      got_suffix_len);
674
675      msym = record_minimal_symbol (string_buffer, name_len + got_suffix_len,
676                                    1, address, mst_slot_got_plt, got_plt,
677				    objfile);
678      if (msym)
679	MSYMBOL_SIZE (msym) = ptr_size;
680    }
681
682  do_cleanups (back_to);
683}
684
685/* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked.  */
686
687static const struct objfile_data *elf_objfile_gnu_ifunc_cache_data;
688
689/* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data.  */
690
691struct elf_gnu_ifunc_cache
692{
693  /* This is always a function entry address, not a function descriptor.  */
694  CORE_ADDR addr;
695
696  char name[1];
697};
698
699/* htab_hash for elf_objfile_gnu_ifunc_cache_data.  */
700
701static hashval_t
702elf_gnu_ifunc_cache_hash (const void *a_voidp)
703{
704  const struct elf_gnu_ifunc_cache *a = a_voidp;
705
706  return htab_hash_string (a->name);
707}
708
709/* htab_eq for elf_objfile_gnu_ifunc_cache_data.  */
710
711static int
712elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp)
713{
714  const struct elf_gnu_ifunc_cache *a = a_voidp;
715  const struct elf_gnu_ifunc_cache *b = b_voidp;
716
717  return strcmp (a->name, b->name) == 0;
718}
719
720/* Record the target function address of a STT_GNU_IFUNC function NAME is the
721   function entry address ADDR.  Return 1 if NAME and ADDR are considered as
722   valid and therefore they were successfully recorded, return 0 otherwise.
723
724   Function does not expect a duplicate entry.  Use
725   elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
726   exists.  */
727
728static int
729elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr)
730{
731  struct minimal_symbol *msym;
732  asection *sect;
733  struct objfile *objfile;
734  htab_t htab;
735  struct elf_gnu_ifunc_cache entry_local, *entry_p;
736  void **slot;
737
738  msym = lookup_minimal_symbol_by_pc (addr);
739  if (msym == NULL)
740    return 0;
741  if (SYMBOL_VALUE_ADDRESS (msym) != addr)
742    return 0;
743  /* minimal symbols have always SYMBOL_OBJ_SECTION non-NULL.  */
744  sect = SYMBOL_OBJ_SECTION (msym)->the_bfd_section;
745  objfile = SYMBOL_OBJ_SECTION (msym)->objfile;
746
747  /* If .plt jumps back to .plt the symbol is still deferred for later
748     resolution and it has no use for GDB.  Besides ".text" this symbol can
749     reside also in ".opd" for ppc64 function descriptor.  */
750  if (strcmp (bfd_get_section_name (objfile->obfd, sect), ".plt") == 0)
751    return 0;
752
753  htab = objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
754  if (htab == NULL)
755    {
756      htab = htab_create_alloc_ex (1, elf_gnu_ifunc_cache_hash,
757				   elf_gnu_ifunc_cache_eq,
758				   NULL, &objfile->objfile_obstack,
759				   hashtab_obstack_allocate,
760				   dummy_obstack_deallocate);
761      set_objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data, htab);
762    }
763
764  entry_local.addr = addr;
765  obstack_grow (&objfile->objfile_obstack, &entry_local,
766		offsetof (struct elf_gnu_ifunc_cache, name));
767  obstack_grow_str0 (&objfile->objfile_obstack, name);
768  entry_p = obstack_finish (&objfile->objfile_obstack);
769
770  slot = htab_find_slot (htab, entry_p, INSERT);
771  if (*slot != NULL)
772    {
773      struct elf_gnu_ifunc_cache *entry_found_p = *slot;
774      struct gdbarch *gdbarch = objfile->gdbarch;
775
776      if (entry_found_p->addr != addr)
777	{
778	  /* This case indicates buggy inferior program, the resolved address
779	     should never change.  */
780
781	    warning (_("gnu-indirect-function \"%s\" has changed its resolved "
782		       "function_address from %s to %s"),
783		     name, paddress (gdbarch, entry_found_p->addr),
784		     paddress (gdbarch, addr));
785	}
786
787      /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack.  */
788    }
789  *slot = entry_p;
790
791  return 1;
792}
793
794/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
795   function NAME.  If the address is found it is stored to *ADDR_P (if ADDR_P
796   is not NULL) and the function returns 1.  It returns 0 otherwise.
797
798   Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
799   function.  */
800
801static int
802elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p)
803{
804  struct objfile *objfile;
805
806  ALL_PSPACE_OBJFILES (current_program_space, objfile)
807    {
808      htab_t htab;
809      struct elf_gnu_ifunc_cache *entry_p;
810      void **slot;
811
812      htab = objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
813      if (htab == NULL)
814	continue;
815
816      entry_p = alloca (sizeof (*entry_p) + strlen (name));
817      strcpy (entry_p->name, name);
818
819      slot = htab_find_slot (htab, entry_p, NO_INSERT);
820      if (slot == NULL)
821	continue;
822      entry_p = *slot;
823      gdb_assert (entry_p != NULL);
824
825      if (addr_p)
826	*addr_p = entry_p->addr;
827      return 1;
828    }
829
830  return 0;
831}
832
833/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
834   function NAME.  If the address is found it is stored to *ADDR_P (if ADDR_P
835   is not NULL) and the function returns 1.  It returns 0 otherwise.
836
837   Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
838   elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
839   prevent cache entries duplicates.  */
840
841static int
842elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p)
843{
844  char *name_got_plt;
845  struct objfile *objfile;
846  const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
847
848  name_got_plt = alloca (strlen (name) + got_suffix_len + 1);
849  sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name);
850
851  ALL_PSPACE_OBJFILES (current_program_space, objfile)
852    {
853      bfd *obfd = objfile->obfd;
854      struct gdbarch *gdbarch = objfile->gdbarch;
855      struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
856      size_t ptr_size = TYPE_LENGTH (ptr_type);
857      CORE_ADDR pointer_address, addr;
858      asection *plt;
859      gdb_byte *buf = alloca (ptr_size);
860      struct minimal_symbol *msym;
861
862      msym = lookup_minimal_symbol (name_got_plt, NULL, objfile);
863      if (msym == NULL)
864	continue;
865      if (MSYMBOL_TYPE (msym) != mst_slot_got_plt)
866	continue;
867      pointer_address = SYMBOL_VALUE_ADDRESS (msym);
868
869      plt = bfd_get_section_by_name (obfd, ".plt");
870      if (plt == NULL)
871	continue;
872
873      if (MSYMBOL_SIZE (msym) != ptr_size)
874	continue;
875      if (target_read_memory (pointer_address, buf, ptr_size) != 0)
876	continue;
877      addr = extract_typed_address (buf, ptr_type);
878      addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
879						 &current_target);
880
881      if (addr_p)
882	*addr_p = addr;
883      if (elf_gnu_ifunc_record_cache (name, addr))
884	return 1;
885    }
886
887  return 0;
888}
889
890/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
891   function NAME.  If the address is found it is stored to *ADDR_P (if ADDR_P
892   is not NULL) and the function returns 1.  It returns 0 otherwise.
893
894   Both the elf_objfile_gnu_ifunc_cache_data hash table and
895   SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.  */
896
897static int
898elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p)
899{
900  if (elf_gnu_ifunc_resolve_by_cache (name, addr_p))
901    return 1;
902
903  if (elf_gnu_ifunc_resolve_by_got (name, addr_p))
904    return 1;
905
906  return 0;
907}
908
909/* Call STT_GNU_IFUNC - a function returning addresss of a real function to
910   call.  PC is theSTT_GNU_IFUNC resolving function entry.  The value returned
911   is the entry point of the resolved STT_GNU_IFUNC target function to call.
912   */
913
914static CORE_ADDR
915elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
916{
917  char *name_at_pc;
918  CORE_ADDR start_at_pc, address;
919  struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
920  struct value *function, *address_val;
921
922  /* Try first any non-intrusive methods without an inferior call.  */
923
924  if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL)
925      && start_at_pc == pc)
926    {
927      if (elf_gnu_ifunc_resolve_name (name_at_pc, &address))
928	return address;
929    }
930  else
931    name_at_pc = NULL;
932
933  function = allocate_value (func_func_type);
934  set_value_address (function, pc);
935
936  /* STT_GNU_IFUNC resolver functions have no parameters.  FUNCTION is the
937     function entry address.  ADDRESS may be a function descriptor.  */
938
939  address_val = call_function_by_hand (function, 0, NULL);
940  address = value_as_address (address_val);
941  address = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
942						&current_target);
943
944  if (name_at_pc)
945    elf_gnu_ifunc_record_cache (name_at_pc, address);
946
947  return address;
948}
949
950/* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition.  */
951
952static void
953elf_gnu_ifunc_resolver_stop (struct breakpoint *b)
954{
955  struct breakpoint *b_return;
956  struct frame_info *prev_frame = get_prev_frame (get_current_frame ());
957  struct frame_id prev_frame_id = get_stack_frame_id (prev_frame);
958  CORE_ADDR prev_pc = get_frame_pc (prev_frame);
959  int thread_id = pid_to_thread_id (inferior_ptid);
960
961  gdb_assert (b->type == bp_gnu_ifunc_resolver);
962
963  for (b_return = b->related_breakpoint; b_return != b;
964       b_return = b_return->related_breakpoint)
965    {
966      gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return);
967      gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL);
968      gdb_assert (frame_id_p (b_return->frame_id));
969
970      if (b_return->thread == thread_id
971	  && b_return->loc->requested_address == prev_pc
972	  && frame_id_eq (b_return->frame_id, prev_frame_id))
973	break;
974    }
975
976  if (b_return == b)
977    {
978      struct symtab_and_line sal;
979
980      /* No need to call find_pc_line for symbols resolving as this is only
981	 a helper breakpointer never shown to the user.  */
982
983      init_sal (&sal);
984      sal.pspace = current_inferior ()->pspace;
985      sal.pc = prev_pc;
986      sal.section = find_pc_overlay (sal.pc);
987      sal.explicit_pc = 1;
988      b_return = set_momentary_breakpoint (get_frame_arch (prev_frame), sal,
989					   prev_frame_id,
990					   bp_gnu_ifunc_resolver_return);
991
992      /* Add new b_return to the ring list b->related_breakpoint.  */
993      gdb_assert (b_return->related_breakpoint == b_return);
994      b_return->related_breakpoint = b->related_breakpoint;
995      b->related_breakpoint = b_return;
996    }
997}
998
999/* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition.  */
1000
1001static void
1002elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
1003{
1004  struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
1005  struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
1006  struct type *value_type = TYPE_TARGET_TYPE (func_func_type);
1007  struct regcache *regcache = get_thread_regcache (inferior_ptid);
1008  struct value *value;
1009  CORE_ADDR resolved_address, resolved_pc;
1010  struct symtab_and_line sal;
1011  struct symtabs_and_lines sals, sals_end;
1012
1013  gdb_assert (b->type == bp_gnu_ifunc_resolver_return);
1014
1015  value = allocate_value (value_type);
1016  gdbarch_return_value (gdbarch, func_func_type, value_type, regcache,
1017			value_contents_raw (value), NULL);
1018  resolved_address = value_as_address (value);
1019  resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch,
1020						    resolved_address,
1021						    &current_target);
1022
1023  while (b->related_breakpoint != b)
1024    {
1025      struct breakpoint *b_next = b->related_breakpoint;
1026
1027      switch (b->type)
1028	{
1029	case bp_gnu_ifunc_resolver:
1030	  break;
1031	case bp_gnu_ifunc_resolver_return:
1032	  delete_breakpoint (b);
1033	  break;
1034	default:
1035	  internal_error (__FILE__, __LINE__,
1036			  _("handle_inferior_event: Invalid "
1037			    "gnu-indirect-function breakpoint type %d"),
1038			  (int) b->type);
1039	}
1040      b = b_next;
1041    }
1042  gdb_assert (b->type == bp_gnu_ifunc_resolver);
1043
1044  gdb_assert (current_program_space == b->pspace);
1045  elf_gnu_ifunc_record_cache (b->addr_string, resolved_pc);
1046
1047  sal = find_pc_line (resolved_pc, 0);
1048  sals.nelts = 1;
1049  sals.sals = &sal;
1050  sals_end.nelts = 0;
1051
1052  b->type = bp_breakpoint;
1053  update_breakpoint_locations (b, sals, sals_end);
1054}
1055
1056struct build_id
1057  {
1058    size_t size;
1059    gdb_byte data[1];
1060  };
1061
1062/* Locate NT_GNU_BUILD_ID from ABFD and return its content.  */
1063
1064static struct build_id *
1065build_id_bfd_get (bfd *abfd)
1066{
1067  struct build_id *retval;
1068
1069  if (!bfd_check_format (abfd, bfd_object)
1070      || bfd_get_flavour (abfd) != bfd_target_elf_flavour
1071      || elf_tdata (abfd)->build_id == NULL)
1072    return NULL;
1073
1074  retval = xmalloc (sizeof *retval - 1 + elf_tdata (abfd)->build_id_size);
1075  retval->size = elf_tdata (abfd)->build_id_size;
1076  memcpy (retval->data, elf_tdata (abfd)->build_id, retval->size);
1077
1078  return retval;
1079}
1080
1081/* Return if FILENAME has NT_GNU_BUILD_ID matching the CHECK value.  */
1082
1083static int
1084build_id_verify (const char *filename, struct build_id *check)
1085{
1086  bfd *abfd;
1087  struct build_id *found = NULL;
1088  int retval = 0;
1089
1090  /* We expect to be silent on the non-existing files.  */
1091  abfd = bfd_open_maybe_remote (filename);
1092  if (abfd == NULL)
1093    return 0;
1094
1095  found = build_id_bfd_get (abfd);
1096
1097  if (found == NULL)
1098    warning (_("File \"%s\" has no build-id, file skipped"), filename);
1099  else if (found->size != check->size
1100           || memcmp (found->data, check->data, found->size) != 0)
1101    warning (_("File \"%s\" has a different build-id, file skipped"),
1102	     filename);
1103  else
1104    retval = 1;
1105
1106  gdb_bfd_close_or_warn (abfd);
1107
1108  xfree (found);
1109
1110  return retval;
1111}
1112
1113static char *
1114build_id_to_debug_filename (struct build_id *build_id)
1115{
1116  char *link, *debugdir, *retval = NULL;
1117
1118  /* DEBUG_FILE_DIRECTORY/.build-id/ab/cdef */
1119  link = alloca (strlen (debug_file_directory) + (sizeof "/.build-id/" - 1) + 1
1120		 + 2 * build_id->size + (sizeof ".debug" - 1) + 1);
1121
1122  /* Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1123     cause "/.build-id/..." lookups.  */
1124
1125  debugdir = debug_file_directory;
1126  do
1127    {
1128      char *s, *debugdir_end;
1129      gdb_byte *data = build_id->data;
1130      size_t size = build_id->size;
1131
1132      while (*debugdir == DIRNAME_SEPARATOR)
1133	debugdir++;
1134
1135      debugdir_end = strchr (debugdir, DIRNAME_SEPARATOR);
1136      if (debugdir_end == NULL)
1137	debugdir_end = &debugdir[strlen (debugdir)];
1138
1139      memcpy (link, debugdir, debugdir_end - debugdir);
1140      s = &link[debugdir_end - debugdir];
1141      s += sprintf (s, "/.build-id/");
1142      if (size > 0)
1143	{
1144	  size--;
1145	  s += sprintf (s, "%02x", (unsigned) *data++);
1146	}
1147      if (size > 0)
1148	*s++ = '/';
1149      while (size-- > 0)
1150	s += sprintf (s, "%02x", (unsigned) *data++);
1151      strcpy (s, ".debug");
1152
1153      /* lrealpath() is expensive even for the usually non-existent files.  */
1154      if (access (link, F_OK) == 0)
1155	retval = lrealpath (link);
1156
1157      if (retval != NULL && !build_id_verify (retval, build_id))
1158	{
1159	  xfree (retval);
1160	  retval = NULL;
1161	}
1162
1163      if (retval != NULL)
1164	break;
1165
1166      debugdir = debugdir_end;
1167    }
1168  while (*debugdir != 0);
1169
1170  return retval;
1171}
1172
1173static char *
1174find_separate_debug_file_by_buildid (struct objfile *objfile)
1175{
1176  struct build_id *build_id;
1177
1178  build_id = build_id_bfd_get (objfile->obfd);
1179  if (build_id != NULL)
1180    {
1181      char *build_id_name;
1182
1183      build_id_name = build_id_to_debug_filename (build_id);
1184      xfree (build_id);
1185      /* Prevent looping on a stripped .debug file.  */
1186      if (build_id_name != NULL
1187	  && filename_cmp (build_id_name, objfile->name) == 0)
1188        {
1189	  warning (_("\"%s\": separate debug info file has no debug info"),
1190		   build_id_name);
1191	  xfree (build_id_name);
1192	}
1193      else if (build_id_name != NULL)
1194        return build_id_name;
1195    }
1196  return NULL;
1197}
1198
1199/* Scan and build partial symbols for a symbol file.
1200   We have been initialized by a call to elf_symfile_init, which
1201   currently does nothing.
1202
1203   SECTION_OFFSETS is a set of offsets to apply to relocate the symbols
1204   in each section.  We simplify it down to a single offset for all
1205   symbols.  FIXME.
1206
1207   This function only does the minimum work necessary for letting the
1208   user "name" things symbolically; it does not read the entire symtab.
1209   Instead, it reads the external and static symbols and puts them in partial
1210   symbol tables.  When more extensive information is requested of a
1211   file, the corresponding partial symbol table is mutated into a full
1212   fledged symbol table by going back and reading the symbols
1213   for real.
1214
1215   We look for sections with specific names, to tell us what debug
1216   format to look for:  FIXME!!!
1217
1218   elfstab_build_psymtabs() handles STABS symbols;
1219   mdebug_build_psymtabs() handles ECOFF debugging information.
1220
1221   Note that ELF files have a "minimal" symbol table, which looks a lot
1222   like a COFF symbol table, but has only the minimal information necessary
1223   for linking.  We process this also, and use the information to
1224   build gdb's minimal symbol table.  This gives us some minimal debugging
1225   capability even for files compiled without -g.  */
1226
1227static void
1228elf_symfile_read (struct objfile *objfile, int symfile_flags)
1229{
1230  bfd *abfd = objfile->obfd;
1231  struct elfinfo ei;
1232  struct cleanup *back_to;
1233  long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
1234  asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
1235  asymbol *synthsyms;
1236
1237  init_minimal_symbol_collection ();
1238  back_to = make_cleanup_discard_minimal_symbols ();
1239
1240  memset ((char *) &ei, 0, sizeof (ei));
1241
1242  /* Allocate struct to keep track of the symfile.  */
1243  objfile->deprecated_sym_stab_info = (struct dbx_symfile_info *)
1244    xmalloc (sizeof (struct dbx_symfile_info));
1245  memset ((char *) objfile->deprecated_sym_stab_info,
1246	  0, sizeof (struct dbx_symfile_info));
1247  make_cleanup (free_elfinfo, (void *) objfile);
1248
1249  /* Process the normal ELF symbol table first.  This may write some
1250     chain of info into the dbx_symfile_info in
1251     objfile->deprecated_sym_stab_info, which can later be used by
1252     elfstab_offset_sections.  */
1253
1254  storage_needed = bfd_get_symtab_upper_bound (objfile->obfd);
1255  if (storage_needed < 0)
1256    error (_("Can't read symbols from %s: %s"),
1257	   bfd_get_filename (objfile->obfd),
1258	   bfd_errmsg (bfd_get_error ()));
1259
1260  if (storage_needed > 0)
1261    {
1262      symbol_table = (asymbol **) xmalloc (storage_needed);
1263      make_cleanup (xfree, symbol_table);
1264      symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table);
1265
1266      if (symcount < 0)
1267	error (_("Can't read symbols from %s: %s"),
1268	       bfd_get_filename (objfile->obfd),
1269	       bfd_errmsg (bfd_get_error ()));
1270
1271      elf_symtab_read (objfile, ST_REGULAR, symcount, symbol_table, 0);
1272    }
1273
1274  /* Add the dynamic symbols.  */
1275
1276  storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd);
1277
1278  if (storage_needed > 0)
1279    {
1280      /* Memory gets permanently referenced from ABFD after
1281	 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1282	 It happens only in the case when elf_slurp_reloc_table sees
1283	 asection->relocation NULL.  Determining which section is asection is
1284	 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1285	 implementation detail, though.  */
1286
1287      dyn_symbol_table = bfd_alloc (abfd, storage_needed);
1288      dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd,
1289						     dyn_symbol_table);
1290
1291      if (dynsymcount < 0)
1292	error (_("Can't read symbols from %s: %s"),
1293	       bfd_get_filename (objfile->obfd),
1294	       bfd_errmsg (bfd_get_error ()));
1295
1296      elf_symtab_read (objfile, ST_DYNAMIC, dynsymcount, dyn_symbol_table, 0);
1297
1298      elf_rel_plt_read (objfile, dyn_symbol_table);
1299    }
1300
1301  /* Add synthetic symbols - for instance, names for any PLT entries.  */
1302
1303  synthcount = bfd_get_synthetic_symtab (abfd, symcount, symbol_table,
1304					 dynsymcount, dyn_symbol_table,
1305					 &synthsyms);
1306  if (synthcount > 0)
1307    {
1308      asymbol **synth_symbol_table;
1309      long i;
1310
1311      make_cleanup (xfree, synthsyms);
1312      synth_symbol_table = xmalloc (sizeof (asymbol *) * synthcount);
1313      for (i = 0; i < synthcount; i++)
1314	synth_symbol_table[i] = synthsyms + i;
1315      make_cleanup (xfree, synth_symbol_table);
1316      elf_symtab_read (objfile, ST_SYNTHETIC, synthcount,
1317		       synth_symbol_table, 1);
1318    }
1319
1320  /* Install any minimal symbols that have been collected as the current
1321     minimal symbols for this objfile.  The debug readers below this point
1322     should not generate new minimal symbols; if they do it's their
1323     responsibility to install them.  "mdebug" appears to be the only one
1324     which will do this.  */
1325
1326  install_minimal_symbols (objfile);
1327  do_cleanups (back_to);
1328
1329  /* Now process debugging information, which is contained in
1330     special ELF sections.  */
1331
1332  /* We first have to find them...  */
1333  bfd_map_over_sections (abfd, elf_locate_sections, (void *) & ei);
1334
1335  /* ELF debugging information is inserted into the psymtab in the
1336     order of least informative first - most informative last.  Since
1337     the psymtab table is searched `most recent insertion first' this
1338     increases the probability that more detailed debug information
1339     for a section is found.
1340
1341     For instance, an object file might contain both .mdebug (XCOFF)
1342     and .debug_info (DWARF2) sections then .mdebug is inserted first
1343     (searched last) and DWARF2 is inserted last (searched first).  If
1344     we don't do this then the XCOFF info is found first - for code in
1345     an included file XCOFF info is useless.  */
1346
1347  if (ei.mdebugsect)
1348    {
1349      const struct ecoff_debug_swap *swap;
1350
1351      /* .mdebug section, presumably holding ECOFF debugging
1352         information.  */
1353      swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1354      if (swap)
1355	elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
1356    }
1357  if (ei.stabsect)
1358    {
1359      asection *str_sect;
1360
1361      /* Stab sections have an associated string table that looks like
1362         a separate section.  */
1363      str_sect = bfd_get_section_by_name (abfd, ".stabstr");
1364
1365      /* FIXME should probably warn about a stab section without a stabstr.  */
1366      if (str_sect)
1367	elfstab_build_psymtabs (objfile,
1368				ei.stabsect,
1369				str_sect->filepos,
1370				bfd_section_size (abfd, str_sect));
1371    }
1372
1373  if (dwarf2_has_info (objfile))
1374    {
1375      /* elf_sym_fns_gdb_index cannot handle simultaneous non-DWARF debug
1376	 information present in OBJFILE.  If there is such debug info present
1377	 never use .gdb_index.  */
1378
1379      if (!objfile_has_partial_symbols (objfile)
1380	  && dwarf2_initialize_objfile (objfile))
1381	objfile->sf = &elf_sym_fns_gdb_index;
1382      else
1383	{
1384	  /* It is ok to do this even if the stabs reader made some
1385	     partial symbols, because OBJF_PSYMTABS_READ has not been
1386	     set, and so our lazy reader function will still be called
1387	     when needed.  */
1388	  objfile->sf = &elf_sym_fns_lazy_psyms;
1389	}
1390    }
1391  /* If the file has its own symbol tables it has no separate debug
1392     info.  `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1393     SYMTABS/PSYMTABS.  `.gnu_debuglink' may no longer be present with
1394     `.note.gnu.build-id'.  */
1395  else if (!objfile_has_partial_symbols (objfile))
1396    {
1397      char *debugfile;
1398
1399      debugfile = find_separate_debug_file_by_buildid (objfile);
1400
1401      if (debugfile == NULL)
1402	debugfile = find_separate_debug_file_by_debuglink (objfile);
1403
1404      if (debugfile)
1405	{
1406	  bfd *abfd = symfile_bfd_open (debugfile);
1407
1408	  symbol_file_add_separate (abfd, symfile_flags, objfile);
1409	  xfree (debugfile);
1410	}
1411    }
1412}
1413
1414/* Callback to lazily read psymtabs.  */
1415
1416static void
1417read_psyms (struct objfile *objfile)
1418{
1419  if (dwarf2_has_info (objfile))
1420    dwarf2_build_psymtabs (objfile);
1421}
1422
1423/* This cleans up the objfile's deprecated_sym_stab_info pointer, and
1424   the chain of stab_section_info's, that might be dangling from
1425   it.  */
1426
1427static void
1428free_elfinfo (void *objp)
1429{
1430  struct objfile *objfile = (struct objfile *) objp;
1431  struct dbx_symfile_info *dbxinfo = objfile->deprecated_sym_stab_info;
1432  struct stab_section_info *ssi, *nssi;
1433
1434  ssi = dbxinfo->stab_section_info;
1435  while (ssi)
1436    {
1437      nssi = ssi->next;
1438      xfree (ssi);
1439      ssi = nssi;
1440    }
1441
1442  dbxinfo->stab_section_info = 0;	/* Just say No mo info about this.  */
1443}
1444
1445
1446/* Initialize anything that needs initializing when a completely new symbol
1447   file is specified (not just adding some symbols from another file, e.g. a
1448   shared library).
1449
1450   We reinitialize buildsym, since we may be reading stabs from an ELF
1451   file.  */
1452
1453static void
1454elf_new_init (struct objfile *ignore)
1455{
1456  stabsread_new_init ();
1457  buildsym_new_init ();
1458}
1459
1460/* Perform any local cleanups required when we are done with a particular
1461   objfile.  I.E, we are in the process of discarding all symbol information
1462   for an objfile, freeing up all memory held for it, and unlinking the
1463   objfile struct from the global list of known objfiles.  */
1464
1465static void
1466elf_symfile_finish (struct objfile *objfile)
1467{
1468  if (objfile->deprecated_sym_stab_info != NULL)
1469    {
1470      xfree (objfile->deprecated_sym_stab_info);
1471    }
1472
1473  dwarf2_free_objfile (objfile);
1474}
1475
1476/* ELF specific initialization routine for reading symbols.
1477
1478   It is passed a pointer to a struct sym_fns which contains, among other
1479   things, the BFD for the file whose symbols are being read, and a slot for
1480   a pointer to "private data" which we can fill with goodies.
1481
1482   For now at least, we have nothing in particular to do, so this function is
1483   just a stub.  */
1484
1485static void
1486elf_symfile_init (struct objfile *objfile)
1487{
1488  /* ELF objects may be reordered, so set OBJF_REORDERED.  If we
1489     find this causes a significant slowdown in gdb then we could
1490     set it in the debug symbol readers only when necessary.  */
1491  objfile->flags |= OBJF_REORDERED;
1492}
1493
1494/* When handling an ELF file that contains Sun STABS debug info,
1495   some of the debug info is relative to the particular chunk of the
1496   section that was generated in its individual .o file.  E.g.
1497   offsets to static variables are relative to the start of the data
1498   segment *for that module before linking*.  This information is
1499   painfully squirreled away in the ELF symbol table as local symbols
1500   with wierd names.  Go get 'em when needed.  */
1501
1502void
1503elfstab_offset_sections (struct objfile *objfile, struct partial_symtab *pst)
1504{
1505  const char *filename = pst->filename;
1506  struct dbx_symfile_info *dbx = objfile->deprecated_sym_stab_info;
1507  struct stab_section_info *maybe = dbx->stab_section_info;
1508  struct stab_section_info *questionable = 0;
1509  int i;
1510
1511  /* The ELF symbol info doesn't include path names, so strip the path
1512     (if any) from the psymtab filename.  */
1513  filename = lbasename (filename);
1514
1515  /* FIXME:  This linear search could speed up significantly
1516     if it was chained in the right order to match how we search it,
1517     and if we unchained when we found a match.  */
1518  for (; maybe; maybe = maybe->next)
1519    {
1520      if (filename[0] == maybe->filename[0]
1521	  && filename_cmp (filename, maybe->filename) == 0)
1522	{
1523	  /* We found a match.  But there might be several source files
1524	     (from different directories) with the same name.  */
1525	  if (0 == maybe->found)
1526	    break;
1527	  questionable = maybe;	/* Might use it later.  */
1528	}
1529    }
1530
1531  if (maybe == 0 && questionable != 0)
1532    {
1533      complaint (&symfile_complaints,
1534		 _("elf/stab section information questionable for %s"),
1535		 filename);
1536      maybe = questionable;
1537    }
1538
1539  if (maybe)
1540    {
1541      /* Found it!  Allocate a new psymtab struct, and fill it in.  */
1542      maybe->found++;
1543      pst->section_offsets = (struct section_offsets *)
1544	obstack_alloc (&objfile->objfile_obstack,
1545		       SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
1546      for (i = 0; i < maybe->num_sections; i++)
1547	(pst->section_offsets)->offsets[i] = maybe->sections[i];
1548      return;
1549    }
1550
1551  /* We were unable to find any offsets for this file.  Complain.  */
1552  if (dbx->stab_section_info)	/* If there *is* any info, */
1553    complaint (&symfile_complaints,
1554	       _("elf/stab section information missing for %s"), filename);
1555}
1556
1557/* Register that we are able to handle ELF object file formats.  */
1558
1559static const struct sym_fns elf_sym_fns =
1560{
1561  bfd_target_elf_flavour,
1562  elf_new_init,			/* init anything gbl to entire symtab */
1563  elf_symfile_init,		/* read initial info, setup for sym_read() */
1564  elf_symfile_read,		/* read a symbol file into symtab */
1565  NULL,				/* sym_read_psymbols */
1566  elf_symfile_finish,		/* finished with file, cleanup */
1567  default_symfile_offsets,	/* Translate ext. to int. relocation */
1568  elf_symfile_segments,		/* Get segment information from a file.  */
1569  NULL,
1570  default_symfile_relocate,	/* Relocate a debug section.  */
1571  &psym_functions
1572};
1573
1574/* The same as elf_sym_fns, but not registered and lazily reads
1575   psymbols.  */
1576
1577static const struct sym_fns elf_sym_fns_lazy_psyms =
1578{
1579  bfd_target_elf_flavour,
1580  elf_new_init,			/* init anything gbl to entire symtab */
1581  elf_symfile_init,		/* read initial info, setup for sym_read() */
1582  elf_symfile_read,		/* read a symbol file into symtab */
1583  read_psyms,			/* sym_read_psymbols */
1584  elf_symfile_finish,		/* finished with file, cleanup */
1585  default_symfile_offsets,	/* Translate ext. to int. relocation */
1586  elf_symfile_segments,		/* Get segment information from a file.  */
1587  NULL,
1588  default_symfile_relocate,	/* Relocate a debug section.  */
1589  &psym_functions
1590};
1591
1592/* The same as elf_sym_fns, but not registered and uses the
1593   DWARF-specific GNU index rather than psymtab.  */
1594static const struct sym_fns elf_sym_fns_gdb_index =
1595{
1596  bfd_target_elf_flavour,
1597  elf_new_init,			/* init anything gbl to entire symab */
1598  elf_symfile_init,		/* read initial info, setup for sym_red() */
1599  elf_symfile_read,		/* read a symbol file into symtab */
1600  NULL,				/* sym_read_psymbols */
1601  elf_symfile_finish,		/* finished with file, cleanup */
1602  default_symfile_offsets,	/* Translate ext. to int. relocatin */
1603  elf_symfile_segments,		/* Get segment information from a file.  */
1604  NULL,
1605  default_symfile_relocate,	/* Relocate a debug section.  */
1606  &dwarf2_gdb_index_functions
1607};
1608
1609/* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p.  */
1610
1611static const struct gnu_ifunc_fns elf_gnu_ifunc_fns =
1612{
1613  elf_gnu_ifunc_resolve_addr,
1614  elf_gnu_ifunc_resolve_name,
1615  elf_gnu_ifunc_resolver_stop,
1616  elf_gnu_ifunc_resolver_return_stop
1617};
1618
1619void
1620_initialize_elfread (void)
1621{
1622  add_symtab_fns (&elf_sym_fns);
1623
1624  elf_objfile_gnu_ifunc_cache_data = register_objfile_data ();
1625  gnu_ifunc_fns_p = &elf_gnu_ifunc_fns;
1626}
1627