1/* BFD back-end for Renesas H8/300 COFF binaries.
2   Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3   2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4   Free Software Foundation, Inc.
5   Written by Steve Chamberlain, <sac@cygnus.com>.
6
7   This file is part of BFD, the Binary File Descriptor library.
8
9   This program is free software; you can redistribute it and/or modify
10   it under the terms of the GNU General Public License as published by
11   the Free Software Foundation; either version 3 of the License, or
12   (at your option) any later version.
13
14   This program is distributed in the hope that it will be useful,
15   but WITHOUT ANY WARRANTY; without even the implied warranty of
16   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17   GNU General Public License for more details.
18
19   You should have received a copy of the GNU General Public License
20   along with this program; if not, write to the Free Software
21   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22   MA 02110-1301, USA.  */
23
24#include "sysdep.h"
25#include "bfd.h"
26#include "libbfd.h"
27#include "bfdlink.h"
28#include "genlink.h"
29#include "coff/h8300.h"
30#include "coff/internal.h"
31#include "libcoff.h"
32#include "libiberty.h"
33
34#define COFF_DEFAULT_SECTION_ALIGNMENT_POWER (1)
35
36/* We derive a hash table from the basic BFD hash table to
37   hold entries in the function vector.  Aside from the
38   info stored by the basic hash table, we need the offset
39   of a particular entry within the hash table as well as
40   the offset where we'll add the next entry.  */
41
42struct funcvec_hash_entry
43  {
44    /* The basic hash table entry.  */
45    struct bfd_hash_entry root;
46
47    /* The offset within the vectors section where
48       this entry lives.  */
49    bfd_vma offset;
50  };
51
52struct funcvec_hash_table
53  {
54    /* The basic hash table.  */
55    struct bfd_hash_table root;
56
57    bfd *abfd;
58
59    /* Offset at which we'll add the next entry.  */
60    unsigned int offset;
61  };
62
63static struct bfd_hash_entry *
64funcvec_hash_newfunc
65  (struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
66
67static bfd_reloc_status_type special
68  (bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **);
69static int select_reloc
70  (reloc_howto_type *);
71static void rtype2howto
72  (arelent *, struct internal_reloc *);
73static void reloc_processing
74  (arelent *, struct internal_reloc *, asymbol **, bfd *, asection *);
75static bfd_boolean h8300_symbol_address_p
76  (bfd *, asection *, bfd_vma);
77static int h8300_reloc16_estimate
78  (bfd *, asection *, arelent *, unsigned int,
79   struct bfd_link_info *);
80static void h8300_reloc16_extra_cases
81  (bfd *, struct bfd_link_info *, struct bfd_link_order *, arelent *,
82   bfd_byte *, unsigned int *, unsigned int *);
83static bfd_boolean h8300_bfd_link_add_symbols
84  (bfd *, struct bfd_link_info *);
85
86/* To lookup a value in the function vector hash table.  */
87#define funcvec_hash_lookup(table, string, create, copy) \
88  ((struct funcvec_hash_entry *) \
89   bfd_hash_lookup (&(table)->root, (string), (create), (copy)))
90
91/* The derived h8300 COFF linker table.  Note it's derived from
92   the generic linker hash table, not the COFF backend linker hash
93   table!  We use this to attach additional data structures we
94   need while linking on the h8300.  */
95struct h8300_coff_link_hash_table {
96  /* The main hash table.  */
97  struct generic_link_hash_table root;
98
99  /* Section for the vectors table.  This gets attached to a
100     random input bfd, we keep it here for easy access.  */
101  asection *vectors_sec;
102
103  /* Hash table of the functions we need to enter into the function
104     vector.  */
105  struct funcvec_hash_table *funcvec_hash_table;
106};
107
108static struct bfd_link_hash_table *h8300_coff_link_hash_table_create (bfd *);
109
110/* Get the H8/300 COFF linker hash table from a link_info structure.  */
111
112#define h8300_coff_hash_table(p) \
113  ((struct h8300_coff_link_hash_table *) ((coff_hash_table (p))))
114
115/* Initialize fields within a funcvec hash table entry.  Called whenever
116   a new entry is added to the funcvec hash table.  */
117
118static struct bfd_hash_entry *
119funcvec_hash_newfunc (struct bfd_hash_entry *entry,
120		      struct bfd_hash_table *gen_table,
121		      const char *string)
122{
123  struct funcvec_hash_entry *ret;
124  struct funcvec_hash_table *table;
125
126  ret = (struct funcvec_hash_entry *) entry;
127  table = (struct funcvec_hash_table *) gen_table;
128
129  /* Allocate the structure if it has not already been allocated by a
130     subclass.  */
131  if (ret == NULL)
132    ret = ((struct funcvec_hash_entry *)
133	   bfd_hash_allocate (gen_table,
134			      sizeof (struct funcvec_hash_entry)));
135  if (ret == NULL)
136    return NULL;
137
138  /* Call the allocation method of the superclass.  */
139  ret = ((struct funcvec_hash_entry *)
140	 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, gen_table, string));
141
142  if (ret == NULL)
143    return NULL;
144
145  /* Note where this entry will reside in the function vector table.  */
146  ret->offset = table->offset;
147
148  /* Bump the offset at which we store entries in the function
149     vector.  We'd like to bump up the size of the vectors section,
150     but it's not easily available here.  */
151 switch (bfd_get_mach (table->abfd))
152   {
153   case bfd_mach_h8300:
154   case bfd_mach_h8300hn:
155   case bfd_mach_h8300sn:
156     table->offset += 2;
157     break;
158   case bfd_mach_h8300h:
159   case bfd_mach_h8300s:
160     table->offset += 4;
161     break;
162   default:
163     return NULL;
164   }
165
166  /* Everything went OK.  */
167  return (struct bfd_hash_entry *) ret;
168}
169
170/* Initialize the function vector hash table.  */
171
172static bfd_boolean
173funcvec_hash_table_init (struct funcvec_hash_table *table,
174			 bfd *abfd,
175			 struct bfd_hash_entry *(*newfunc)
176			   (struct bfd_hash_entry *,
177			    struct bfd_hash_table *,
178			    const char *),
179			 unsigned int entsize)
180{
181  /* Initialize our local fields, then call the generic initialization
182     routine.  */
183  table->offset = 0;
184  table->abfd = abfd;
185  return (bfd_hash_table_init (&table->root, newfunc, entsize));
186}
187
188/* Create the derived linker hash table.  We use a derived hash table
189   basically to hold "static" information during an H8/300 coff link
190   without using static variables.  */
191
192static struct bfd_link_hash_table *
193h8300_coff_link_hash_table_create (bfd *abfd)
194{
195  struct h8300_coff_link_hash_table *ret;
196  bfd_size_type amt = sizeof (struct h8300_coff_link_hash_table);
197
198  ret = (struct h8300_coff_link_hash_table *) bfd_malloc (amt);
199  if (ret == NULL)
200    return NULL;
201  if (!_bfd_link_hash_table_init (&ret->root.root, abfd,
202				  _bfd_generic_link_hash_newfunc,
203				  sizeof (struct generic_link_hash_entry)))
204    {
205      free (ret);
206      return NULL;
207    }
208
209  /* Initialize our data.  */
210  ret->vectors_sec = NULL;
211  ret->funcvec_hash_table = NULL;
212
213  /* OK.  Everything's initialized, return the base pointer.  */
214  return &ret->root.root;
215}
216
217/* Special handling for H8/300 relocs.
218   We only come here for pcrel stuff and return normally if not an -r link.
219   When doing -r, we can't do any arithmetic for the pcrel stuff, because
220   the code in reloc.c assumes that we can manipulate the targets of
221   the pcrel branches.  This isn't so, since the H8/300 can do relaxing,
222   which means that the gap after the instruction may not be enough to
223   contain the offset required for the branch, so we have to use only
224   the addend until the final link.  */
225
226static bfd_reloc_status_type
227special (bfd *abfd ATTRIBUTE_UNUSED,
228	 arelent *reloc_entry ATTRIBUTE_UNUSED,
229	 asymbol *symbol ATTRIBUTE_UNUSED,
230	 PTR data ATTRIBUTE_UNUSED,
231	 asection *input_section ATTRIBUTE_UNUSED,
232	 bfd *output_bfd,
233	 char **error_message ATTRIBUTE_UNUSED)
234{
235  if (output_bfd == (bfd *) NULL)
236    return bfd_reloc_continue;
237
238  /* Adjust the reloc address to that in the output section.  */
239  reloc_entry->address += input_section->output_offset;
240  return bfd_reloc_ok;
241}
242
243static reloc_howto_type howto_table[] = {
244  HOWTO (R_RELBYTE, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, special, "8", FALSE, 0x000000ff, 0x000000ff, FALSE),
245  HOWTO (R_RELWORD, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, special, "16", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
246  HOWTO (R_RELLONG, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, special, "32", FALSE, 0xffffffff, 0xffffffff, FALSE),
247  HOWTO (R_PCRBYTE, 0, 0, 8, TRUE, 0, complain_overflow_signed, special, "DISP8", FALSE, 0x000000ff, 0x000000ff, TRUE),
248  HOWTO (R_PCRWORD, 0, 1, 16, TRUE, 0, complain_overflow_signed, special, "DISP16", FALSE, 0x0000ffff, 0x0000ffff, TRUE),
249  HOWTO (R_PCRLONG, 0, 2, 32, TRUE, 0, complain_overflow_signed, special, "DISP32", FALSE, 0xffffffff, 0xffffffff, TRUE),
250  HOWTO (R_MOV16B1, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, special, "relaxable mov.b:16", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
251  HOWTO (R_MOV16B2, 0, 1, 8, FALSE, 0, complain_overflow_bitfield, special, "relaxed mov.b:16", FALSE, 0x000000ff, 0x000000ff, FALSE),
252  HOWTO (R_JMP1, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, special, "16/pcrel", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
253  HOWTO (R_JMP2, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, special, "pcrecl/16", FALSE, 0x000000ff, 0x000000ff, FALSE),
254  HOWTO (R_JMPL1, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, special, "24/pcrell", FALSE, 0x00ffffff, 0x00ffffff, FALSE),
255  HOWTO (R_JMPL2, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, special, "pc8/24", FALSE, 0x000000ff, 0x000000ff, FALSE),
256  HOWTO (R_MOV24B1, 0, 1, 32, FALSE, 0, complain_overflow_bitfield, special, "relaxable mov.b:24", FALSE, 0xffffffff, 0xffffffff, FALSE),
257  HOWTO (R_MOV24B2, 0, 1, 8, FALSE, 0, complain_overflow_bitfield, special, "relaxed mov.b:24", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
258
259  /* An indirect reference to a function.  This causes the function's address
260     to be added to the function vector in lo-mem and puts the address of
261     the function vector's entry in the jsr instruction.  */
262  HOWTO (R_MEM_INDIRECT, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, special, "8/indirect", FALSE, 0x000000ff, 0x000000ff, FALSE),
263
264  /* Internal reloc for relaxing.  This is created when a 16-bit pc-relative
265     branch is turned into an 8-bit pc-relative branch.  */
266  HOWTO (R_PCRWORD_B, 0, 0, 8, TRUE, 0, complain_overflow_bitfield, special, "relaxed bCC:16", FALSE, 0x000000ff, 0x000000ff, FALSE),
267
268  HOWTO (R_MOVL1, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,special, "32/24 relaxable move", FALSE, 0xffffffff, 0xffffffff, FALSE),
269
270  HOWTO (R_MOVL2, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, special, "32/24 relaxed move", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
271
272  HOWTO (R_BCC_INV, 0, 0, 8, TRUE, 0, complain_overflow_signed, special, "DISP8 inverted", FALSE, 0x000000ff, 0x000000ff, TRUE),
273
274  HOWTO (R_JMP_DEL, 0, 0, 8, TRUE, 0, complain_overflow_signed, special, "Deleted jump", FALSE, 0x000000ff, 0x000000ff, TRUE),
275};
276
277/* Turn a howto into a reloc number.  */
278
279#define SELECT_RELOC(x,howto) \
280  { x.r_type = select_reloc (howto); }
281
282#define BADMAG(x) (H8300BADMAG (x) && H8300HBADMAG (x) && H8300SBADMAG (x) \
283				   && H8300HNBADMAG(x) && H8300SNBADMAG(x))
284#define H8300 1			/* Customize coffcode.h  */
285#define __A_MAGIC_SET__
286
287/* Code to swap in the reloc.  */
288#define SWAP_IN_RELOC_OFFSET	H_GET_32
289#define SWAP_OUT_RELOC_OFFSET	H_PUT_32
290#define SWAP_OUT_RELOC_EXTRA(abfd, src, dst) \
291  dst->r_stuff[0] = 'S'; \
292  dst->r_stuff[1] = 'C';
293
294static int
295select_reloc (reloc_howto_type *howto)
296{
297  return howto->type;
298}
299
300/* Code to turn a r_type into a howto ptr, uses the above howto table.  */
301
302static void
303rtype2howto (arelent *internal, struct internal_reloc *dst)
304{
305  switch (dst->r_type)
306    {
307    case R_RELBYTE:
308      internal->howto = howto_table + 0;
309      break;
310    case R_RELWORD:
311      internal->howto = howto_table + 1;
312      break;
313    case R_RELLONG:
314      internal->howto = howto_table + 2;
315      break;
316    case R_PCRBYTE:
317      internal->howto = howto_table + 3;
318      break;
319    case R_PCRWORD:
320      internal->howto = howto_table + 4;
321      break;
322    case R_PCRLONG:
323      internal->howto = howto_table + 5;
324      break;
325    case R_MOV16B1:
326      internal->howto = howto_table + 6;
327      break;
328    case R_MOV16B2:
329      internal->howto = howto_table + 7;
330      break;
331    case R_JMP1:
332      internal->howto = howto_table + 8;
333      break;
334    case R_JMP2:
335      internal->howto = howto_table + 9;
336      break;
337    case R_JMPL1:
338      internal->howto = howto_table + 10;
339      break;
340    case R_JMPL2:
341      internal->howto = howto_table + 11;
342      break;
343    case R_MOV24B1:
344      internal->howto = howto_table + 12;
345      break;
346    case R_MOV24B2:
347      internal->howto = howto_table + 13;
348      break;
349    case R_MEM_INDIRECT:
350      internal->howto = howto_table + 14;
351      break;
352    case R_PCRWORD_B:
353      internal->howto = howto_table + 15;
354      break;
355    case R_MOVL1:
356      internal->howto = howto_table + 16;
357      break;
358    case R_MOVL2:
359      internal->howto = howto_table + 17;
360      break;
361    case R_BCC_INV:
362      internal->howto = howto_table + 18;
363      break;
364    case R_JMP_DEL:
365      internal->howto = howto_table + 19;
366      break;
367    default:
368      abort ();
369      break;
370    }
371}
372
373#define RTYPE2HOWTO(internal, relocentry) rtype2howto (internal, relocentry)
374
375/* Perform any necessary magic to the addend in a reloc entry.  */
376
377#define CALC_ADDEND(abfd, symbol, ext_reloc, cache_ptr) \
378 cache_ptr->addend = ext_reloc.r_offset;
379
380#define RELOC_PROCESSING(relent,reloc,symbols,abfd,section) \
381 reloc_processing (relent, reloc, symbols, abfd, section)
382
383static void
384reloc_processing (arelent *relent, struct internal_reloc *reloc,
385		  asymbol **symbols, bfd *abfd, asection *section)
386{
387  relent->address = reloc->r_vaddr;
388  rtype2howto (relent, reloc);
389
390  if (((int) reloc->r_symndx) > 0)
391    relent->sym_ptr_ptr = symbols + obj_convert (abfd)[reloc->r_symndx];
392  else
393    relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
394
395  relent->addend = reloc->r_offset;
396  relent->address -= section->vma;
397}
398
399static bfd_boolean
400h8300_symbol_address_p (bfd *abfd, asection *input_section, bfd_vma address)
401{
402  asymbol **s;
403
404  s = _bfd_generic_link_get_symbols (abfd);
405  BFD_ASSERT (s != (asymbol **) NULL);
406
407  /* Search all the symbols for one in INPUT_SECTION with
408     address ADDRESS.  */
409  while (*s)
410    {
411      asymbol *p = *s;
412
413      if (p->section == input_section
414	  && (input_section->output_section->vma
415	      + input_section->output_offset
416	      + p->value) == address)
417	return TRUE;
418      s++;
419    }
420  return FALSE;
421}
422
423/* If RELOC represents a relaxable instruction/reloc, change it into
424   the relaxed reloc, notify the linker that symbol addresses
425   have changed (bfd_perform_slip) and return how much the current
426   section has shrunk by.
427
428   FIXME: Much of this code has knowledge of the ordering of entries
429   in the howto table.  This needs to be fixed.  */
430
431static int
432h8300_reloc16_estimate (bfd *abfd, asection *input_section, arelent *reloc,
433			unsigned int shrink, struct bfd_link_info *link_info)
434{
435  bfd_vma value;
436  bfd_vma dot;
437  bfd_vma gap;
438  static asection *last_input_section = NULL;
439  static arelent *last_reloc = NULL;
440
441  /* The address of the thing to be relocated will have moved back by
442     the size of the shrink - but we don't change reloc->address here,
443     since we need it to know where the relocation lives in the source
444     uncooked section.  */
445  bfd_vma address = reloc->address - shrink;
446
447  if (input_section != last_input_section)
448    last_reloc = NULL;
449
450  /* Only examine the relocs which might be relaxable.  */
451  switch (reloc->howto->type)
452    {
453      /* This is the 16-/24-bit absolute branch which could become an
454	 8-bit pc-relative branch.  */
455    case R_JMP1:
456    case R_JMPL1:
457      /* Get the address of the target of this branch.  */
458      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
459
460      /* Get the address of the next instruction (not the reloc).  */
461      dot = (input_section->output_section->vma
462	     + input_section->output_offset + address);
463
464      /* Adjust for R_JMP1 vs R_JMPL1.  */
465      dot += (reloc->howto->type == R_JMP1 ? 1 : 2);
466
467      /* Compute the distance from this insn to the branch target.  */
468      gap = value - dot;
469
470      /* If the distance is within -128..+128 inclusive, then we can relax
471	 this jump.  +128 is valid since the target will move two bytes
472	 closer if we do relax this branch.  */
473      if ((int) gap >= -128 && (int) gap <= 128)
474	{
475	  bfd_byte code;
476
477	  if (!bfd_get_section_contents (abfd, input_section, & code,
478					 reloc->address, 1))
479	    break;
480	  code = bfd_get_8 (abfd, & code);
481
482	  /* It's possible we may be able to eliminate this branch entirely;
483	     if the previous instruction is a branch around this instruction,
484	     and there's no label at this instruction, then we can reverse
485	     the condition on the previous branch and eliminate this jump.
486
487	       original:			new:
488		 bCC lab1			bCC' lab2
489		 jmp lab2
490		lab1:				lab1:
491
492	     This saves 4 bytes instead of two, and should be relatively
493	     common.
494
495	     Only perform this optimisation for jumps (code 0x5a) not
496	     subroutine calls, as otherwise it could transform:
497
498			     mov.w   r0,r0
499			     beq     .L1
500			     jsr     @_bar
501		      .L1:   rts
502		      _bar:  rts
503	     into:
504			     mov.w   r0,r0
505			     bne     _bar
506			     rts
507		      _bar:  rts
508
509	     which changes the call (jsr) into a branch (bne).  */
510	  if (code == 0x5a
511	      && gap <= 126
512	      && last_reloc
513	      && last_reloc->howto->type == R_PCRBYTE)
514	    {
515	      bfd_vma last_value;
516	      last_value = bfd_coff_reloc16_get_value (last_reloc, link_info,
517						       input_section) + 1;
518
519	      if (last_value == dot + 2
520		  && last_reloc->address + 1 == reloc->address
521		  && !h8300_symbol_address_p (abfd, input_section, dot - 2))
522		{
523		  reloc->howto = howto_table + 19;
524		  last_reloc->howto = howto_table + 18;
525		  last_reloc->sym_ptr_ptr = reloc->sym_ptr_ptr;
526		  last_reloc->addend = reloc->addend;
527		  shrink += 4;
528		  bfd_perform_slip (abfd, 4, input_section, address);
529		  break;
530		}
531	    }
532
533	  /* Change the reloc type.  */
534	  reloc->howto = reloc->howto + 1;
535
536	  /* This shrinks this section by two bytes.  */
537	  shrink += 2;
538	  bfd_perform_slip (abfd, 2, input_section, address);
539	}
540      break;
541
542    /* This is the 16-bit pc-relative branch which could become an 8-bit
543       pc-relative branch.  */
544    case R_PCRWORD:
545      /* Get the address of the target of this branch, add one to the value
546	 because the addend field in PCrel jumps is off by -1.  */
547      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section) + 1;
548
549      /* Get the address of the next instruction if we were to relax.  */
550      dot = input_section->output_section->vma +
551	input_section->output_offset + address;
552
553      /* Compute the distance from this insn to the branch target.  */
554      gap = value - dot;
555
556      /* If the distance is within -128..+128 inclusive, then we can relax
557	 this jump.  +128 is valid since the target will move two bytes
558	 closer if we do relax this branch.  */
559      if ((int) gap >= -128 && (int) gap <= 128)
560	{
561	  /* Change the reloc type.  */
562	  reloc->howto = howto_table + 15;
563
564	  /* This shrinks this section by two bytes.  */
565	  shrink += 2;
566	  bfd_perform_slip (abfd, 2, input_section, address);
567	}
568      break;
569
570    /* This is a 16-bit absolute address in a mov.b insn, which can
571       become an 8-bit absolute address if it's in the right range.  */
572    case R_MOV16B1:
573      /* Get the address of the data referenced by this mov.b insn.  */
574      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
575      value = bfd_h8300_pad_address (abfd, value);
576
577      /* If the address is in the top 256 bytes of the address space
578	 then we can relax this instruction.  */
579      if (value >= 0xffffff00u)
580	{
581	  /* Change the reloc type.  */
582	  reloc->howto = reloc->howto + 1;
583
584	  /* This shrinks this section by two bytes.  */
585	  shrink += 2;
586	  bfd_perform_slip (abfd, 2, input_section, address);
587	}
588      break;
589
590    /* Similarly for a 24-bit absolute address in a mov.b.  Note that
591       if we can't relax this into an 8-bit absolute, we'll fall through
592       and try to relax it into a 16-bit absolute.  */
593    case R_MOV24B1:
594      /* Get the address of the data referenced by this mov.b insn.  */
595      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
596      value = bfd_h8300_pad_address (abfd, value);
597
598      if (value >= 0xffffff00u)
599	{
600	  /* Change the reloc type.  */
601	  reloc->howto = reloc->howto + 1;
602
603	  /* This shrinks this section by four bytes.  */
604	  shrink += 4;
605	  bfd_perform_slip (abfd, 4, input_section, address);
606
607	  /* Done with this reloc.  */
608	  break;
609	}
610
611      /* FALLTHROUGH and try to turn the 24-/32-bit reloc into a 16-bit
612	 reloc.  */
613
614    /* This is a 24-/32-bit absolute address in a mov insn, which can
615       become an 16-bit absolute address if it's in the right range.  */
616    case R_MOVL1:
617      /* Get the address of the data referenced by this mov insn.  */
618      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
619      value = bfd_h8300_pad_address (abfd, value);
620
621      /* If the address is a sign-extended 16-bit value then we can
622         relax this instruction.  */
623      if (value <= 0x7fff || value >= 0xffff8000u)
624	{
625	  /* Change the reloc type.  */
626	  reloc->howto = howto_table + 17;
627
628	  /* This shrinks this section by two bytes.  */
629	  shrink += 2;
630	  bfd_perform_slip (abfd, 2, input_section, address);
631	}
632      break;
633
634      /* No other reloc types represent relaxing opportunities.  */
635    default:
636      break;
637    }
638
639  last_reloc = reloc;
640  last_input_section = input_section;
641  return shrink;
642}
643
644/* Handle relocations for the H8/300, including relocs for relaxed
645   instructions.
646
647   FIXME: Not all relocations check for overflow!  */
648
649static void
650h8300_reloc16_extra_cases (bfd *abfd, struct bfd_link_info *link_info,
651			   struct bfd_link_order *link_order, arelent *reloc,
652			   bfd_byte *data, unsigned int *src_ptr,
653			   unsigned int *dst_ptr)
654{
655  unsigned int src_address = *src_ptr;
656  unsigned int dst_address = *dst_ptr;
657  asection *input_section = link_order->u.indirect.section;
658  bfd_vma value;
659  bfd_vma dot;
660  int gap, tmp;
661  unsigned char temp_code;
662
663  switch (reloc->howto->type)
664    {
665    /* Generic 8-bit pc-relative relocation.  */
666    case R_PCRBYTE:
667      /* Get the address of the target of this branch.  */
668      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
669
670      dot = (input_section->output_offset
671	     + dst_address
672	     + link_order->u.indirect.section->output_section->vma);
673
674      gap = value - dot;
675
676      /* Sanity check.  */
677      if (gap < -128 || gap > 126)
678	{
679	  if (! ((*link_info->callbacks->reloc_overflow)
680		 (link_info, NULL,
681		  bfd_asymbol_name (*reloc->sym_ptr_ptr),
682		  reloc->howto->name, reloc->addend, input_section->owner,
683		  input_section, reloc->address)))
684	    abort ();
685	}
686
687      /* Everything looks OK.  Apply the relocation and update the
688	 src/dst address appropriately.  */
689      bfd_put_8 (abfd, gap, data + dst_address);
690      dst_address++;
691      src_address++;
692
693      /* All done.  */
694      break;
695
696    /* Generic 16-bit pc-relative relocation.  */
697    case R_PCRWORD:
698      /* Get the address of the target of this branch.  */
699      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
700
701      /* Get the address of the instruction (not the reloc).  */
702      dot = (input_section->output_offset
703	     + dst_address
704	     + link_order->u.indirect.section->output_section->vma + 1);
705
706      gap = value - dot;
707
708      /* Sanity check.  */
709      if (gap > 32766 || gap < -32768)
710	{
711	  if (! ((*link_info->callbacks->reloc_overflow)
712		 (link_info, NULL,
713		  bfd_asymbol_name (*reloc->sym_ptr_ptr),
714		  reloc->howto->name, reloc->addend, input_section->owner,
715		  input_section, reloc->address)))
716	    abort ();
717	}
718
719      /* Everything looks OK.  Apply the relocation and update the
720	 src/dst address appropriately.  */
721      bfd_put_16 (abfd, (bfd_vma) gap, data + dst_address);
722      dst_address += 2;
723      src_address += 2;
724
725      /* All done.  */
726      break;
727
728    /* Generic 8-bit absolute relocation.  */
729    case R_RELBYTE:
730      /* Get the address of the object referenced by this insn.  */
731      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
732
733      bfd_put_8 (abfd, value & 0xff, data + dst_address);
734      dst_address += 1;
735      src_address += 1;
736
737      /* All done.  */
738      break;
739
740    /* Various simple 16-bit absolute relocations.  */
741    case R_MOV16B1:
742    case R_JMP1:
743    case R_RELWORD:
744      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
745      bfd_put_16 (abfd, value, data + dst_address);
746      dst_address += 2;
747      src_address += 2;
748      break;
749
750    /* Various simple 24-/32-bit absolute relocations.  */
751    case R_MOV24B1:
752    case R_MOVL1:
753    case R_RELLONG:
754      /* Get the address of the target of this branch.  */
755      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
756      bfd_put_32 (abfd, value, data + dst_address);
757      dst_address += 4;
758      src_address += 4;
759      break;
760
761    /* Another 24-/32-bit absolute relocation.  */
762    case R_JMPL1:
763      /* Get the address of the target of this branch.  */
764      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
765
766      value = ((value & 0x00ffffff)
767	       | (bfd_get_32 (abfd, data + src_address) & 0xff000000));
768      bfd_put_32 (abfd, value, data + dst_address);
769      dst_address += 4;
770      src_address += 4;
771      break;
772
773      /* This is a 24-/32-bit absolute address in one of the following
774	 instructions:
775
776	   "band", "bclr", "biand", "bild", "bior", "bist", "bixor",
777	   "bld", "bnot", "bor", "bset", "bst", "btst", "bxor", "ldc.w",
778	   "stc.w" and "mov.[bwl]"
779
780	 We may relax this into an 16-bit absolute address if it's in
781	 the right range.  */
782    case R_MOVL2:
783      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
784      value = bfd_h8300_pad_address (abfd, value);
785
786      /* Sanity check.  */
787      if (value <= 0x7fff || value >= 0xffff8000u)
788	{
789	  /* Insert the 16-bit value into the proper location.  */
790	  bfd_put_16 (abfd, value, data + dst_address);
791
792	  /* Fix the opcode.  For all the instructions that belong to
793	     this relaxation, we simply need to turn off bit 0x20 in
794	     the previous byte.  */
795	  data[dst_address - 1] &= ~0x20;
796	  dst_address += 2;
797	  src_address += 4;
798	}
799      else
800	{
801	  if (! ((*link_info->callbacks->reloc_overflow)
802		 (link_info, NULL,
803		  bfd_asymbol_name (*reloc->sym_ptr_ptr),
804		  reloc->howto->name, reloc->addend, input_section->owner,
805		  input_section, reloc->address)))
806	    abort ();
807	}
808      break;
809
810    /* A 16-bit absolute branch that is now an 8-bit pc-relative branch.  */
811    case R_JMP2:
812      /* Get the address of the target of this branch.  */
813      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
814
815      /* Get the address of the next instruction.  */
816      dot = (input_section->output_offset
817	     + dst_address
818	     + link_order->u.indirect.section->output_section->vma + 1);
819
820      gap = value - dot;
821
822      /* Sanity check.  */
823      if (gap < -128 || gap > 126)
824	{
825	  if (! ((*link_info->callbacks->reloc_overflow)
826		 (link_info, NULL,
827		  bfd_asymbol_name (*reloc->sym_ptr_ptr),
828		  reloc->howto->name, reloc->addend, input_section->owner,
829		  input_section, reloc->address)))
830	    abort ();
831	}
832
833      /* Now fix the instruction itself.  */
834      switch (data[dst_address - 1])
835	{
836	case 0x5e:
837	  /* jsr -> bsr */
838	  bfd_put_8 (abfd, 0x55, data + dst_address - 1);
839	  break;
840	case 0x5a:
841	  /* jmp -> bra */
842	  bfd_put_8 (abfd, 0x40, data + dst_address - 1);
843	  break;
844
845	default:
846	  abort ();
847	}
848
849      /* Write out the 8-bit value.  */
850      bfd_put_8 (abfd, gap, data + dst_address);
851
852      dst_address += 1;
853      src_address += 3;
854
855      break;
856
857    /* A 16-bit pc-relative branch that is now an 8-bit pc-relative branch.  */
858    case R_PCRWORD_B:
859      /* Get the address of the target of this branch.  */
860      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
861
862      /* Get the address of the instruction (not the reloc).  */
863      dot = (input_section->output_offset
864	     + dst_address
865	     + link_order->u.indirect.section->output_section->vma - 1);
866
867      gap = value - dot;
868
869      /* Sanity check.  */
870      if (gap < -128 || gap > 126)
871	{
872	  if (! ((*link_info->callbacks->reloc_overflow)
873		 (link_info, NULL,
874		  bfd_asymbol_name (*reloc->sym_ptr_ptr),
875		  reloc->howto->name, reloc->addend, input_section->owner,
876		  input_section, reloc->address)))
877	    abort ();
878	}
879
880      /* Now fix the instruction.  */
881      switch (data[dst_address - 2])
882	{
883	case 0x58:
884	  /* bCC:16 -> bCC:8 */
885	  /* Get the second byte of the original insn, which contains
886	     the condition code.  */
887	  tmp = data[dst_address - 1];
888
889	  /* Compute the fisrt byte of the relaxed instruction.  The
890	     original sequence 0x58 0xX0 is relaxed to 0x4X, where X
891	     represents the condition code.  */
892	  tmp &= 0xf0;
893	  tmp >>= 4;
894	  tmp |= 0x40;
895
896	  /* Write it.  */
897	  bfd_put_8 (abfd, tmp, data + dst_address - 2);
898	  break;
899
900	case 0x5c:
901	  /* bsr:16 -> bsr:8 */
902	  bfd_put_8 (abfd, 0x55, data + dst_address - 2);
903	  break;
904
905	default:
906	  abort ();
907	}
908
909      /* Output the target.  */
910      bfd_put_8 (abfd, gap, data + dst_address - 1);
911
912      /* We don't advance dst_address -- the 8-bit reloc is applied at
913	 dst_address - 1, so the next insn should begin at dst_address.  */
914      src_address += 2;
915
916      break;
917
918    /* Similarly for a 24-bit absolute that is now 8 bits.  */
919    case R_JMPL2:
920      /* Get the address of the target of this branch.  */
921      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
922
923      /* Get the address of the instruction (not the reloc).  */
924      dot = (input_section->output_offset
925	     + dst_address
926	     + link_order->u.indirect.section->output_section->vma + 2);
927
928      gap = value - dot;
929
930      /* Fix the instruction.  */
931      switch (data[src_address])
932	{
933	case 0x5e:
934	  /* jsr -> bsr */
935	  bfd_put_8 (abfd, 0x55, data + dst_address);
936	  break;
937	case 0x5a:
938	  /* jmp ->bra */
939	  bfd_put_8 (abfd, 0x40, data + dst_address);
940	  break;
941	default:
942	  abort ();
943	}
944
945      bfd_put_8 (abfd, gap, data + dst_address + 1);
946      dst_address += 2;
947      src_address += 4;
948
949      break;
950
951      /* This is a 16-bit absolute address in one of the following
952	 instructions:
953
954	   "band", "bclr", "biand", "bild", "bior", "bist", "bixor",
955	   "bld", "bnot", "bor", "bset", "bst", "btst", "bxor", and
956	   "mov.b"
957
958	 We may relax this into an 8-bit absolute address if it's in
959	 the right range.  */
960    case R_MOV16B2:
961      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
962
963      /* All instructions with R_H8_DIR16B2 start with 0x6a.  */
964      if (data[dst_address - 2] != 0x6a)
965	abort ();
966
967      temp_code = data[src_address - 1];
968
969      /* If this is a mov.b instruction, clear the lower nibble, which
970	 contains the source/destination register number.  */
971      if ((temp_code & 0x10) != 0x10)
972	temp_code &= 0xf0;
973
974      /* Fix up the opcode.  */
975      switch (temp_code)
976	{
977	case 0x00:
978	  /* This is mov.b @aa:16,Rd.  */
979	  data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x20;
980	  break;
981	case 0x80:
982	  /* This is mov.b Rs,@aa:16.  */
983	  data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x30;
984	  break;
985	case 0x18:
986	  /* This is a bit-maniputation instruction that stores one
987	     bit into memory, one of "bclr", "bist", "bnot", "bset",
988	     and "bst".  */
989	  data[dst_address - 2] = 0x7f;
990	  break;
991	case 0x10:
992	  /* This is a bit-maniputation instruction that loads one bit
993	     from memory, one of "band", "biand", "bild", "bior",
994	     "bixor", "bld", "bor", "btst", and "bxor".  */
995	  data[dst_address - 2] = 0x7e;
996	  break;
997	default:
998	  abort ();
999	}
1000
1001      bfd_put_8 (abfd, value & 0xff, data + dst_address - 1);
1002      src_address += 2;
1003      break;
1004
1005      /* This is a 24-bit absolute address in one of the following
1006	 instructions:
1007
1008	   "band", "bclr", "biand", "bild", "bior", "bist", "bixor",
1009	   "bld", "bnot", "bor", "bset", "bst", "btst", "bxor", and
1010	   "mov.b"
1011
1012	 We may relax this into an 8-bit absolute address if it's in
1013	 the right range.  */
1014    case R_MOV24B2:
1015      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
1016
1017      /* All instructions with R_MOV24B2 start with 0x6a.  */
1018      if (data[dst_address - 2] != 0x6a)
1019	abort ();
1020
1021      temp_code = data[src_address - 1];
1022
1023      /* If this is a mov.b instruction, clear the lower nibble, which
1024	 contains the source/destination register number.  */
1025      if ((temp_code & 0x30) != 0x30)
1026	temp_code &= 0xf0;
1027
1028      /* Fix up the opcode.  */
1029      switch (temp_code)
1030	{
1031	case 0x20:
1032	  /* This is mov.b @aa:24/32,Rd.  */
1033	  data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x20;
1034	  break;
1035	case 0xa0:
1036	  /* This is mov.b Rs,@aa:24/32.  */
1037	  data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x30;
1038	  break;
1039	case 0x38:
1040	  /* This is a bit-maniputation instruction that stores one
1041	     bit into memory, one of "bclr", "bist", "bnot", "bset",
1042	     and "bst".  */
1043	  data[dst_address - 2] = 0x7f;
1044	  break;
1045	case 0x30:
1046	  /* This is a bit-maniputation instruction that loads one bit
1047	     from memory, one of "band", "biand", "bild", "bior",
1048	     "bixor", "bld", "bor", "btst", and "bxor".  */
1049	  data[dst_address - 2] = 0x7e;
1050	  break;
1051	default:
1052	  abort ();
1053	}
1054
1055      bfd_put_8 (abfd, value & 0xff, data + dst_address - 1);
1056      src_address += 4;
1057      break;
1058
1059    case R_BCC_INV:
1060      /* Get the address of the target of this branch.  */
1061      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
1062
1063      dot = (input_section->output_offset
1064	     + dst_address
1065	     + link_order->u.indirect.section->output_section->vma) + 1;
1066
1067      gap = value - dot;
1068
1069      /* Sanity check.  */
1070      if (gap < -128 || gap > 126)
1071	{
1072	  if (! ((*link_info->callbacks->reloc_overflow)
1073		 (link_info, NULL,
1074		  bfd_asymbol_name (*reloc->sym_ptr_ptr),
1075		  reloc->howto->name, reloc->addend, input_section->owner,
1076		  input_section, reloc->address)))
1077	    abort ();
1078	}
1079
1080      /* Everything looks OK.  Fix the condition in the instruction, apply
1081	 the relocation, and update the src/dst address appropriately.  */
1082
1083      bfd_put_8 (abfd, bfd_get_8 (abfd, data + dst_address - 1) ^ 1,
1084		 data + dst_address - 1);
1085      bfd_put_8 (abfd, gap, data + dst_address);
1086      dst_address++;
1087      src_address++;
1088
1089      /* All done.  */
1090      break;
1091
1092    case R_JMP_DEL:
1093      src_address += 4;
1094      break;
1095
1096    /* An 8-bit memory indirect instruction (jmp/jsr).
1097
1098       There's several things that need to be done to handle
1099       this relocation.
1100
1101       If this is a reloc against the absolute symbol, then
1102       we should handle it just R_RELBYTE.  Likewise if it's
1103       for a symbol with a value ge 0 and le 0xff.
1104
1105       Otherwise it's a jump/call through the function vector,
1106       and the linker is expected to set up the function vector
1107       and put the right value into the jump/call instruction.  */
1108    case R_MEM_INDIRECT:
1109      {
1110	/* We need to find the symbol so we can determine it's
1111	   address in the function vector table.  */
1112	asymbol *symbol;
1113	const char *name;
1114	struct funcvec_hash_table *ftab;
1115	struct funcvec_hash_entry *h;
1116	struct h8300_coff_link_hash_table *htab;
1117	asection *vectors_sec;
1118
1119	if (link_info->output_bfd->xvec != abfd->xvec)
1120	  {
1121	    (*_bfd_error_handler)
1122	      (_("cannot handle R_MEM_INDIRECT reloc when using %s output"),
1123	       link_info->output_bfd->xvec->name);
1124
1125	    /* What else can we do?  This function doesn't allow return
1126	       of an error, and we don't want to call abort as that
1127	       indicates an internal error.  */
1128#ifndef EXIT_FAILURE
1129#define EXIT_FAILURE 1
1130#endif
1131	    xexit (EXIT_FAILURE);
1132	  }
1133	htab = h8300_coff_hash_table (link_info);
1134	vectors_sec = htab->vectors_sec;
1135
1136	/* First see if this is a reloc against the absolute symbol
1137	   or against a symbol with a nonnegative value <= 0xff.  */
1138	symbol = *(reloc->sym_ptr_ptr);
1139	value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
1140	if (symbol == bfd_abs_section_ptr->symbol
1141	    || value <= 0xff)
1142	  {
1143	    /* This should be handled in a manner very similar to
1144	       R_RELBYTES.   If the value is in range, then just slam
1145	       the value into the right location.  Else trigger a
1146	       reloc overflow callback.  */
1147	    if (value <= 0xff)
1148	      {
1149		bfd_put_8 (abfd, value, data + dst_address);
1150		dst_address += 1;
1151		src_address += 1;
1152	      }
1153	    else
1154	      {
1155		if (! ((*link_info->callbacks->reloc_overflow)
1156		       (link_info, NULL,
1157			bfd_asymbol_name (*reloc->sym_ptr_ptr),
1158			reloc->howto->name, reloc->addend, input_section->owner,
1159			input_section, reloc->address)))
1160		  abort ();
1161	      }
1162	    break;
1163	  }
1164
1165	/* This is a jump/call through a function vector, and we're
1166	   expected to create the function vector ourselves.
1167
1168	   First look up this symbol in the linker hash table -- we need
1169	   the derived linker symbol which holds this symbol's index
1170	   in the function vector.  */
1171	name = symbol->name;
1172	if (symbol->flags & BSF_LOCAL)
1173	  {
1174	    char *new_name = bfd_malloc ((bfd_size_type) strlen (name) + 10);
1175
1176	    if (new_name == NULL)
1177	      abort ();
1178
1179	    sprintf (new_name, "%s_%08x", name, symbol->section->id);
1180	    name = new_name;
1181	  }
1182
1183	ftab = htab->funcvec_hash_table;
1184	h = funcvec_hash_lookup (ftab, name, FALSE, FALSE);
1185
1186	/* This shouldn't ever happen.  If it does that means we've got
1187	   data corruption of some kind.  Aborting seems like a reasonable
1188	   thing to do here.  */
1189	if (h == NULL || vectors_sec == NULL)
1190	  abort ();
1191
1192	/* Place the address of the function vector entry into the
1193	   reloc's address.  */
1194	bfd_put_8 (abfd,
1195		   vectors_sec->output_offset + h->offset,
1196		   data + dst_address);
1197
1198	dst_address++;
1199	src_address++;
1200
1201	/* Now create an entry in the function vector itself.  */
1202	switch (bfd_get_mach (input_section->owner))
1203	  {
1204	  case bfd_mach_h8300:
1205	  case bfd_mach_h8300hn:
1206	  case bfd_mach_h8300sn:
1207	    bfd_put_16 (abfd,
1208			bfd_coff_reloc16_get_value (reloc,
1209						    link_info,
1210						    input_section),
1211			vectors_sec->contents + h->offset);
1212	    break;
1213	  case bfd_mach_h8300h:
1214	  case bfd_mach_h8300s:
1215	    bfd_put_32 (abfd,
1216			bfd_coff_reloc16_get_value (reloc,
1217						    link_info,
1218						    input_section),
1219			vectors_sec->contents + h->offset);
1220	    break;
1221	  default:
1222	    abort ();
1223	  }
1224
1225	/* Gross.  We've already written the contents of the vector section
1226	   before we get here...  So we write it again with the new data.  */
1227	bfd_set_section_contents (vectors_sec->output_section->owner,
1228				  vectors_sec->output_section,
1229				  vectors_sec->contents,
1230				  (file_ptr) vectors_sec->output_offset,
1231				  vectors_sec->size);
1232	break;
1233      }
1234
1235    default:
1236      abort ();
1237      break;
1238
1239    }
1240
1241  *src_ptr = src_address;
1242  *dst_ptr = dst_address;
1243}
1244
1245/* Routine for the h8300 linker.
1246
1247   This routine is necessary to handle the special R_MEM_INDIRECT
1248   relocs on the h8300.  It's responsible for generating a vectors
1249   section and attaching it to an input bfd as well as sizing
1250   the vectors section.  It also creates our vectors hash table.
1251
1252   It uses the generic linker routines to actually add the symbols.
1253   from this BFD to the bfd linker hash table.  It may add a few
1254   selected static symbols to the bfd linker hash table.  */
1255
1256static bfd_boolean
1257h8300_bfd_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
1258{
1259  asection *sec;
1260  struct funcvec_hash_table *funcvec_hash_table;
1261  bfd_size_type amt;
1262  struct h8300_coff_link_hash_table *htab;
1263
1264  /* Add the symbols using the generic code.  */
1265  _bfd_generic_link_add_symbols (abfd, info);
1266
1267  if (info->output_bfd->xvec != abfd->xvec)
1268    return TRUE;
1269
1270  htab = h8300_coff_hash_table (info);
1271
1272  /* If we haven't created a vectors section, do so now.  */
1273  if (!htab->vectors_sec)
1274    {
1275      flagword flags;
1276
1277      /* Make sure the appropriate flags are set, including SEC_IN_MEMORY.  */
1278      flags = (SEC_ALLOC | SEC_LOAD
1279	       | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_READONLY);
1280      htab->vectors_sec = bfd_make_section_with_flags (abfd, ".vectors",
1281						       flags);
1282
1283      /* If the section wasn't created, or we couldn't set the flags,
1284	 quit quickly now, rather than dying a painful death later.  */
1285      if (!htab->vectors_sec)
1286	return FALSE;
1287
1288      /* Also create the vector hash table.  */
1289      amt = sizeof (struct funcvec_hash_table);
1290      funcvec_hash_table = (struct funcvec_hash_table *) bfd_alloc (abfd, amt);
1291
1292      if (!funcvec_hash_table)
1293	return FALSE;
1294
1295      /* And initialize the funcvec hash table.  */
1296      if (!funcvec_hash_table_init (funcvec_hash_table, abfd,
1297				    funcvec_hash_newfunc,
1298				    sizeof (struct funcvec_hash_entry)))
1299	{
1300	  bfd_release (abfd, funcvec_hash_table);
1301	  return FALSE;
1302	}
1303
1304      /* Store away a pointer to the funcvec hash table.  */
1305      htab->funcvec_hash_table = funcvec_hash_table;
1306    }
1307
1308  /* Load up the function vector hash table.  */
1309  funcvec_hash_table = htab->funcvec_hash_table;
1310
1311  /* Now scan the relocs for all the sections in this bfd; create
1312     additional space in the .vectors section as needed.  */
1313  for (sec = abfd->sections; sec; sec = sec->next)
1314    {
1315      long reloc_size, reloc_count, i;
1316      asymbol **symbols;
1317      arelent **relocs;
1318
1319      /* Suck in the relocs, symbols & canonicalize them.  */
1320      reloc_size = bfd_get_reloc_upper_bound (abfd, sec);
1321      if (reloc_size <= 0)
1322	continue;
1323
1324      relocs = (arelent **) bfd_malloc ((bfd_size_type) reloc_size);
1325      if (!relocs)
1326	return FALSE;
1327
1328      /* The symbols should have been read in by _bfd_generic link_add_symbols
1329	 call abovec, so we can cheat and use the pointer to them that was
1330	 saved in the above call.  */
1331      symbols = _bfd_generic_link_get_symbols(abfd);
1332      reloc_count = bfd_canonicalize_reloc (abfd, sec, relocs, symbols);
1333      if (reloc_count <= 0)
1334	{
1335	  free (relocs);
1336	  continue;
1337	}
1338
1339      /* Now walk through all the relocations in this section.  */
1340      for (i = 0; i < reloc_count; i++)
1341	{
1342	  arelent *reloc = relocs[i];
1343	  asymbol *symbol = *(reloc->sym_ptr_ptr);
1344	  const char *name;
1345
1346	  /* We've got an indirect reloc.  See if we need to add it
1347	     to the function vector table.   At this point, we have
1348	     to add a new entry for each unique symbol referenced
1349	     by an R_MEM_INDIRECT relocation except for a reloc
1350	     against the absolute section symbol.  */
1351	  if (reloc->howto->type == R_MEM_INDIRECT
1352	      && symbol != bfd_abs_section_ptr->symbol)
1353
1354	    {
1355	      struct funcvec_hash_table *ftab;
1356	      struct funcvec_hash_entry *h;
1357
1358	      name = symbol->name;
1359	      if (symbol->flags & BSF_LOCAL)
1360		{
1361		  char *new_name;
1362
1363		  new_name = bfd_malloc ((bfd_size_type) strlen (name) + 10);
1364		  if (new_name == NULL)
1365		    abort ();
1366
1367		  sprintf (new_name, "%s_%08x", name, symbol->section->id);
1368		  name = new_name;
1369		}
1370
1371	      /* Look this symbol up in the function vector hash table.  */
1372	      ftab = htab->funcvec_hash_table;
1373	      h = funcvec_hash_lookup (ftab, name, FALSE, FALSE);
1374
1375	      /* If this symbol isn't already in the hash table, add
1376		 it and bump up the size of the hash table.  */
1377	      if (h == NULL)
1378		{
1379		  h = funcvec_hash_lookup (ftab, name, TRUE, TRUE);
1380		  if (h == NULL)
1381		    {
1382		      free (relocs);
1383		      return FALSE;
1384		    }
1385
1386		  /* Bump the size of the vectors section.  Each vector
1387		     takes 2 bytes on the h8300 and 4 bytes on the h8300h.  */
1388		  switch (bfd_get_mach (abfd))
1389		    {
1390		    case bfd_mach_h8300:
1391		    case bfd_mach_h8300hn:
1392		    case bfd_mach_h8300sn:
1393		      htab->vectors_sec->size += 2;
1394		      break;
1395		    case bfd_mach_h8300h:
1396		    case bfd_mach_h8300s:
1397		      htab->vectors_sec->size += 4;
1398		      break;
1399		    default:
1400		      abort ();
1401		    }
1402		}
1403	    }
1404	}
1405
1406      /* We're done with the relocations, release them.  */
1407      free (relocs);
1408    }
1409
1410  /* Now actually allocate some space for the function vector.  It's
1411     wasteful to do this more than once, but this is easier.  */
1412  sec = htab->vectors_sec;
1413  if (sec->size != 0)
1414    {
1415      /* Free the old contents.  */
1416      if (sec->contents)
1417	free (sec->contents);
1418
1419      /* Allocate new contents.  */
1420      sec->contents = bfd_malloc (sec->size);
1421    }
1422
1423  return TRUE;
1424}
1425
1426#define coff_reloc16_extra_cases h8300_reloc16_extra_cases
1427#define coff_reloc16_estimate h8300_reloc16_estimate
1428#define coff_bfd_link_add_symbols h8300_bfd_link_add_symbols
1429#define coff_bfd_link_hash_table_create h8300_coff_link_hash_table_create
1430
1431#define COFF_LONG_FILENAMES
1432
1433#ifndef bfd_pe_print_pdata
1434#define bfd_pe_print_pdata	NULL
1435#endif
1436
1437#include "coffcode.h"
1438
1439#undef coff_bfd_get_relocated_section_contents
1440#undef coff_bfd_relax_section
1441#define coff_bfd_get_relocated_section_contents \
1442  bfd_coff_reloc16_get_relocated_section_contents
1443#define coff_bfd_relax_section bfd_coff_reloc16_relax_section
1444
1445CREATE_BIG_COFF_TARGET_VEC (h8300coff_vec, "coff-h8300", BFD_IS_RELAXABLE, 0, '_', NULL, COFF_SWAP_TABLE)
1446