1/* High-level loop manipulation functions.
2   Copyright (C) 2004, 2005, 2006, 2007, 2008, 2010
3   Free Software Foundation, Inc.
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it
8under the terms of the GNU General Public License as published by the
9Free Software Foundation; either version 3, or (at your option) any
10later version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT
13ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING3.  If not see
19<http://www.gnu.org/licenses/>.  */
20
21#include "config.h"
22#include "system.h"
23#include "coretypes.h"
24#include "tm.h"
25#include "tree.h"
26#include "rtl.h"
27#include "tm_p.h"
28#include "hard-reg-set.h"
29#include "basic-block.h"
30#include "output.h"
31#include "diagnostic.h"
32#include "tree-flow.h"
33#include "tree-dump.h"
34#include "timevar.h"
35#include "cfgloop.h"
36#include "tree-pass.h"
37#include "cfglayout.h"
38#include "tree-scalar-evolution.h"
39#include "params.h"
40#include "tree-inline.h"
41#include "langhooks.h"
42
43/* Creates an induction variable with value BASE + STEP * iteration in LOOP.
44   It is expected that neither BASE nor STEP are shared with other expressions
45   (unless the sharing rules allow this).  Use VAR as a base var_decl for it
46   (if NULL, a new temporary will be created).  The increment will occur at
47   INCR_POS (after it if AFTER is true, before it otherwise).  INCR_POS and
48   AFTER can be computed using standard_iv_increment_position.  The ssa versions
49   of the variable before and after increment will be stored in VAR_BEFORE and
50   VAR_AFTER (unless they are NULL).  */
51
52void
53create_iv (tree base, tree step, tree var, struct loop *loop,
54	   gimple_stmt_iterator *incr_pos, bool after,
55	   tree *var_before, tree *var_after)
56{
57  gimple stmt;
58  tree initial, step1;
59  gimple_seq stmts;
60  tree vb, va;
61  enum tree_code incr_op = PLUS_EXPR;
62  edge pe = loop_preheader_edge (loop);
63
64  if (!var)
65    {
66      var = create_tmp_var (TREE_TYPE (base), "ivtmp");
67      add_referenced_var (var);
68    }
69
70  vb = make_ssa_name (var, NULL);
71  if (var_before)
72    *var_before = vb;
73  va = make_ssa_name (var, NULL);
74  if (var_after)
75    *var_after = va;
76
77  /* For easier readability of the created code, produce MINUS_EXPRs
78     when suitable.  */
79  if (TREE_CODE (step) == INTEGER_CST)
80    {
81      if (TYPE_UNSIGNED (TREE_TYPE (step)))
82	{
83	  step1 = fold_build1 (NEGATE_EXPR, TREE_TYPE (step), step);
84	  if (tree_int_cst_lt (step1, step))
85	    {
86	      incr_op = MINUS_EXPR;
87	      step = step1;
88	    }
89	}
90      else
91	{
92	  bool ovf;
93
94	  if (!tree_expr_nonnegative_warnv_p (step, &ovf)
95	      && may_negate_without_overflow_p (step))
96	    {
97	      incr_op = MINUS_EXPR;
98	      step = fold_build1 (NEGATE_EXPR, TREE_TYPE (step), step);
99	    }
100	}
101    }
102  if (POINTER_TYPE_P (TREE_TYPE (base)))
103    {
104      if (TREE_CODE (base) == ADDR_EXPR)
105	mark_addressable (TREE_OPERAND (base, 0));
106      step = fold_convert (sizetype, step);
107      if (incr_op == MINUS_EXPR)
108	step = fold_build1 (NEGATE_EXPR, sizetype, step);
109      incr_op = POINTER_PLUS_EXPR;
110    }
111  /* Gimplify the step if necessary.  We put the computations in front of the
112     loop (i.e. the step should be loop invariant).  */
113  step = force_gimple_operand (step, &stmts, true, NULL_TREE);
114  if (stmts)
115    gsi_insert_seq_on_edge_immediate (pe, stmts);
116
117  stmt = gimple_build_assign_with_ops (incr_op, va, vb, step);
118  if (after)
119    gsi_insert_after (incr_pos, stmt, GSI_NEW_STMT);
120  else
121    gsi_insert_before (incr_pos, stmt, GSI_NEW_STMT);
122
123  initial = force_gimple_operand (base, &stmts, true, var);
124  if (stmts)
125    gsi_insert_seq_on_edge_immediate (pe, stmts);
126
127  stmt = create_phi_node (vb, loop->header);
128  SSA_NAME_DEF_STMT (vb) = stmt;
129  add_phi_arg (stmt, initial, loop_preheader_edge (loop), UNKNOWN_LOCATION);
130  add_phi_arg (stmt, va, loop_latch_edge (loop), UNKNOWN_LOCATION);
131}
132
133/* Add exit phis for the USE on EXIT.  */
134
135static void
136add_exit_phis_edge (basic_block exit, tree use)
137{
138  gimple phi, def_stmt = SSA_NAME_DEF_STMT (use);
139  basic_block def_bb = gimple_bb (def_stmt);
140  struct loop *def_loop;
141  edge e;
142  edge_iterator ei;
143
144  /* Check that some of the edges entering the EXIT block exits a loop in
145     that USE is defined.  */
146  FOR_EACH_EDGE (e, ei, exit->preds)
147    {
148      def_loop = find_common_loop (def_bb->loop_father, e->src->loop_father);
149      if (!flow_bb_inside_loop_p (def_loop, e->dest))
150	break;
151    }
152
153  if (!e)
154    return;
155
156  phi = create_phi_node (use, exit);
157  create_new_def_for (gimple_phi_result (phi), phi,
158		      gimple_phi_result_ptr (phi));
159  FOR_EACH_EDGE (e, ei, exit->preds)
160    add_phi_arg (phi, use, e, UNKNOWN_LOCATION);
161}
162
163/* Add exit phis for VAR that is used in LIVEIN.
164   Exits of the loops are stored in EXITS.  */
165
166static void
167add_exit_phis_var (tree var, bitmap livein, bitmap exits)
168{
169  bitmap def;
170  unsigned index;
171  basic_block def_bb = gimple_bb (SSA_NAME_DEF_STMT (var));
172  bitmap_iterator bi;
173
174  if (is_gimple_reg (var))
175    bitmap_clear_bit (livein, def_bb->index);
176  else
177    bitmap_set_bit (livein, def_bb->index);
178
179  def = BITMAP_ALLOC (NULL);
180  bitmap_set_bit (def, def_bb->index);
181  compute_global_livein (livein, def);
182  BITMAP_FREE (def);
183
184  EXECUTE_IF_AND_IN_BITMAP (exits, livein, 0, index, bi)
185    {
186      add_exit_phis_edge (BASIC_BLOCK (index), var);
187    }
188}
189
190/* Add exit phis for the names marked in NAMES_TO_RENAME.
191   Exits of the loops are stored in EXITS.  Sets of blocks where the ssa
192   names are used are stored in USE_BLOCKS.  */
193
194static void
195add_exit_phis (bitmap names_to_rename, bitmap *use_blocks, bitmap loop_exits)
196{
197  unsigned i;
198  bitmap_iterator bi;
199
200  EXECUTE_IF_SET_IN_BITMAP (names_to_rename, 0, i, bi)
201    {
202      add_exit_phis_var (ssa_name (i), use_blocks[i], loop_exits);
203    }
204}
205
206/* Returns a bitmap of all loop exit edge targets.  */
207
208static bitmap
209get_loops_exits (void)
210{
211  bitmap exits = BITMAP_ALLOC (NULL);
212  basic_block bb;
213  edge e;
214  edge_iterator ei;
215
216  FOR_EACH_BB (bb)
217    {
218      FOR_EACH_EDGE (e, ei, bb->preds)
219	if (e->src != ENTRY_BLOCK_PTR
220	    && !flow_bb_inside_loop_p (e->src->loop_father, bb))
221	  {
222	    bitmap_set_bit (exits, bb->index);
223	    break;
224	  }
225    }
226
227  return exits;
228}
229
230/* For USE in BB, if it is used outside of the loop it is defined in,
231   mark it for rewrite.  Record basic block BB where it is used
232   to USE_BLOCKS.  Record the ssa name index to NEED_PHIS bitmap.  */
233
234static void
235find_uses_to_rename_use (basic_block bb, tree use, bitmap *use_blocks,
236			 bitmap need_phis)
237{
238  unsigned ver;
239  basic_block def_bb;
240  struct loop *def_loop;
241
242  if (TREE_CODE (use) != SSA_NAME)
243    return;
244
245  /* We don't need to keep virtual operands in loop-closed form.  */
246  if (!is_gimple_reg (use))
247    return;
248
249  ver = SSA_NAME_VERSION (use);
250  def_bb = gimple_bb (SSA_NAME_DEF_STMT (use));
251  if (!def_bb)
252    return;
253  def_loop = def_bb->loop_father;
254
255  /* If the definition is not inside a loop, it is not interesting.  */
256  if (!loop_outer (def_loop))
257    return;
258
259  /* If the use is not outside of the loop it is defined in, it is not
260     interesting.  */
261  if (flow_bb_inside_loop_p (def_loop, bb))
262    return;
263
264  if (!use_blocks[ver])
265    use_blocks[ver] = BITMAP_ALLOC (NULL);
266  bitmap_set_bit (use_blocks[ver], bb->index);
267
268  bitmap_set_bit (need_phis, ver);
269}
270
271/* For uses in STMT, mark names that are used outside of the loop they are
272   defined to rewrite.  Record the set of blocks in that the ssa
273   names are defined to USE_BLOCKS and the ssa names themselves to
274   NEED_PHIS.  */
275
276static void
277find_uses_to_rename_stmt (gimple stmt, bitmap *use_blocks, bitmap need_phis)
278{
279  ssa_op_iter iter;
280  tree var;
281  basic_block bb = gimple_bb (stmt);
282
283  if (is_gimple_debug (stmt))
284    return;
285
286  FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_ALL_USES)
287    find_uses_to_rename_use (bb, var, use_blocks, need_phis);
288}
289
290/* Marks names that are used in BB and outside of the loop they are
291   defined in for rewrite.  Records the set of blocks in that the ssa
292   names are defined to USE_BLOCKS.  Record the SSA names that will
293   need exit PHIs in NEED_PHIS.  */
294
295static void
296find_uses_to_rename_bb (basic_block bb, bitmap *use_blocks, bitmap need_phis)
297{
298  gimple_stmt_iterator bsi;
299  edge e;
300  edge_iterator ei;
301
302  FOR_EACH_EDGE (e, ei, bb->succs)
303    for (bsi = gsi_start_phis (e->dest); !gsi_end_p (bsi); gsi_next (&bsi))
304      find_uses_to_rename_use (bb, PHI_ARG_DEF_FROM_EDGE (gsi_stmt (bsi), e),
305			       use_blocks, need_phis);
306
307  for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
308    find_uses_to_rename_stmt (gsi_stmt (bsi), use_blocks, need_phis);
309}
310
311/* Marks names that are used outside of the loop they are defined in
312   for rewrite.  Records the set of blocks in that the ssa
313   names are defined to USE_BLOCKS.  If CHANGED_BBS is not NULL,
314   scan only blocks in this set.  */
315
316static void
317find_uses_to_rename (bitmap changed_bbs, bitmap *use_blocks, bitmap need_phis)
318{
319  basic_block bb;
320  unsigned index;
321  bitmap_iterator bi;
322
323  if (changed_bbs && !bitmap_empty_p (changed_bbs))
324    {
325      EXECUTE_IF_SET_IN_BITMAP (changed_bbs, 0, index, bi)
326	{
327	  find_uses_to_rename_bb (BASIC_BLOCK (index), use_blocks, need_phis);
328	}
329    }
330  else
331    {
332      FOR_EACH_BB (bb)
333	{
334	  find_uses_to_rename_bb (bb, use_blocks, need_phis);
335	}
336    }
337}
338
339/* Rewrites the program into a loop closed ssa form -- i.e. inserts extra
340   phi nodes to ensure that no variable is used outside the loop it is
341   defined in.
342
343   This strengthening of the basic ssa form has several advantages:
344
345   1) Updating it during unrolling/peeling/versioning is trivial, since
346      we do not need to care about the uses outside of the loop.
347   2) The behavior of all uses of an induction variable is the same.
348      Without this, you need to distinguish the case when the variable
349      is used outside of the loop it is defined in, for example
350
351      for (i = 0; i < 100; i++)
352	{
353	  for (j = 0; j < 100; j++)
354	    {
355	      k = i + j;
356	      use1 (k);
357	    }
358	  use2 (k);
359	}
360
361      Looking from the outer loop with the normal SSA form, the first use of k
362      is not well-behaved, while the second one is an induction variable with
363      base 99 and step 1.
364
365      If CHANGED_BBS is not NULL, we look for uses outside loops only in
366      the basic blocks in this set.
367
368      UPDATE_FLAG is used in the call to update_ssa.  See
369      TODO_update_ssa* for documentation.  */
370
371void
372rewrite_into_loop_closed_ssa (bitmap changed_bbs, unsigned update_flag)
373{
374  bitmap loop_exits;
375  bitmap *use_blocks;
376  unsigned i, old_num_ssa_names;
377  bitmap names_to_rename;
378
379  loops_state_set (LOOP_CLOSED_SSA);
380  if (number_of_loops () <= 1)
381    return;
382
383  loop_exits = get_loops_exits ();
384  names_to_rename = BITMAP_ALLOC (NULL);
385
386  /* If the pass has caused the SSA form to be out-of-date, update it
387     now.  */
388  update_ssa (update_flag);
389
390  old_num_ssa_names = num_ssa_names;
391  use_blocks = XCNEWVEC (bitmap, old_num_ssa_names);
392
393  /* Find the uses outside loops.  */
394  find_uses_to_rename (changed_bbs, use_blocks, names_to_rename);
395
396  /* Add the PHI nodes on exits of the loops for the names we need to
397     rewrite.  */
398  add_exit_phis (names_to_rename, use_blocks, loop_exits);
399
400  for (i = 0; i < old_num_ssa_names; i++)
401    BITMAP_FREE (use_blocks[i]);
402  free (use_blocks);
403  BITMAP_FREE (loop_exits);
404  BITMAP_FREE (names_to_rename);
405
406  /* Fix up all the names found to be used outside their original
407     loops.  */
408  update_ssa (TODO_update_ssa);
409}
410
411/* Check invariants of the loop closed ssa form for the USE in BB.  */
412
413static void
414check_loop_closed_ssa_use (basic_block bb, tree use)
415{
416  gimple def;
417  basic_block def_bb;
418
419  if (TREE_CODE (use) != SSA_NAME || !is_gimple_reg (use))
420    return;
421
422  def = SSA_NAME_DEF_STMT (use);
423  def_bb = gimple_bb (def);
424  gcc_assert (!def_bb
425	      || flow_bb_inside_loop_p (def_bb->loop_father, bb));
426}
427
428/* Checks invariants of loop closed ssa form in statement STMT in BB.  */
429
430static void
431check_loop_closed_ssa_stmt (basic_block bb, gimple stmt)
432{
433  ssa_op_iter iter;
434  tree var;
435
436  if (is_gimple_debug (stmt))
437    return;
438
439  FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_ALL_USES)
440    check_loop_closed_ssa_use (bb, var);
441}
442
443/* Checks that invariants of the loop closed ssa form are preserved.  */
444
445void
446verify_loop_closed_ssa (void)
447{
448  basic_block bb;
449  gimple_stmt_iterator bsi;
450  gimple phi;
451  edge e;
452  edge_iterator ei;
453
454  if (number_of_loops () <= 1)
455    return;
456
457  verify_ssa (false);
458
459  FOR_EACH_BB (bb)
460    {
461      for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
462	{
463	  phi = gsi_stmt (bsi);
464	  FOR_EACH_EDGE (e, ei, bb->preds)
465	    check_loop_closed_ssa_use (e->src,
466				       PHI_ARG_DEF_FROM_EDGE (phi, e));
467	}
468
469      for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
470	check_loop_closed_ssa_stmt (bb, gsi_stmt (bsi));
471    }
472}
473
474/* Split loop exit edge EXIT.  The things are a bit complicated by a need to
475   preserve the loop closed ssa form.  The newly created block is returned.  */
476
477basic_block
478split_loop_exit_edge (edge exit)
479{
480  basic_block dest = exit->dest;
481  basic_block bb = split_edge (exit);
482  gimple phi, new_phi;
483  tree new_name, name;
484  use_operand_p op_p;
485  gimple_stmt_iterator psi;
486  source_location locus;
487
488  for (psi = gsi_start_phis (dest); !gsi_end_p (psi); gsi_next (&psi))
489    {
490      phi = gsi_stmt (psi);
491      op_p = PHI_ARG_DEF_PTR_FROM_EDGE (phi, single_succ_edge (bb));
492      locus = gimple_phi_arg_location_from_edge (phi, single_succ_edge (bb));
493
494      name = USE_FROM_PTR (op_p);
495
496      /* If the argument of the PHI node is a constant, we do not need
497	 to keep it inside loop.  */
498      if (TREE_CODE (name) != SSA_NAME)
499	continue;
500
501      /* Otherwise create an auxiliary phi node that will copy the value
502	 of the SSA name out of the loop.  */
503      new_name = duplicate_ssa_name (name, NULL);
504      new_phi = create_phi_node (new_name, bb);
505      SSA_NAME_DEF_STMT (new_name) = new_phi;
506      add_phi_arg (new_phi, name, exit, locus);
507      SET_USE (op_p, new_name);
508    }
509
510  return bb;
511}
512
513/* Returns the basic block in that statements should be emitted for induction
514   variables incremented at the end of the LOOP.  */
515
516basic_block
517ip_end_pos (struct loop *loop)
518{
519  return loop->latch;
520}
521
522/* Returns the basic block in that statements should be emitted for induction
523   variables incremented just before exit condition of a LOOP.  */
524
525basic_block
526ip_normal_pos (struct loop *loop)
527{
528  gimple last;
529  basic_block bb;
530  edge exit;
531
532  if (!single_pred_p (loop->latch))
533    return NULL;
534
535  bb = single_pred (loop->latch);
536  last = last_stmt (bb);
537  if (!last
538      || gimple_code (last) != GIMPLE_COND)
539    return NULL;
540
541  exit = EDGE_SUCC (bb, 0);
542  if (exit->dest == loop->latch)
543    exit = EDGE_SUCC (bb, 1);
544
545  if (flow_bb_inside_loop_p (loop, exit->dest))
546    return NULL;
547
548  return bb;
549}
550
551/* Stores the standard position for induction variable increment in LOOP
552   (just before the exit condition if it is available and latch block is empty,
553   end of the latch block otherwise) to BSI.  INSERT_AFTER is set to true if
554   the increment should be inserted after *BSI.  */
555
556void
557standard_iv_increment_position (struct loop *loop, gimple_stmt_iterator *bsi,
558				bool *insert_after)
559{
560  basic_block bb = ip_normal_pos (loop), latch = ip_end_pos (loop);
561  gimple last = last_stmt (latch);
562
563  if (!bb
564      || (last && gimple_code (last) != GIMPLE_LABEL))
565    {
566      *bsi = gsi_last_bb (latch);
567      *insert_after = true;
568    }
569  else
570    {
571      *bsi = gsi_last_bb (bb);
572      *insert_after = false;
573    }
574}
575
576/* Copies phi node arguments for duplicated blocks.  The index of the first
577   duplicated block is FIRST_NEW_BLOCK.  */
578
579static void
580copy_phi_node_args (unsigned first_new_block)
581{
582  unsigned i;
583
584  for (i = first_new_block; i < (unsigned) last_basic_block; i++)
585    BASIC_BLOCK (i)->flags |= BB_DUPLICATED;
586
587  for (i = first_new_block; i < (unsigned) last_basic_block; i++)
588    add_phi_args_after_copy_bb (BASIC_BLOCK (i));
589
590  for (i = first_new_block; i < (unsigned) last_basic_block; i++)
591    BASIC_BLOCK (i)->flags &= ~BB_DUPLICATED;
592}
593
594
595/* The same as cfgloopmanip.c:duplicate_loop_to_header_edge, but also
596   updates the PHI nodes at start of the copied region.  In order to
597   achieve this, only loops whose exits all lead to the same location
598   are handled.
599
600   Notice that we do not completely update the SSA web after
601   duplication.  The caller is responsible for calling update_ssa
602   after the loop has been duplicated.  */
603
604bool
605gimple_duplicate_loop_to_header_edge (struct loop *loop, edge e,
606				    unsigned int ndupl, sbitmap wont_exit,
607				    edge orig, VEC (edge, heap) **to_remove,
608				    int flags)
609{
610  unsigned first_new_block;
611
612  if (!loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES))
613    return false;
614  if (!loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS))
615    return false;
616
617#ifdef ENABLE_CHECKING
618  if (loops_state_satisfies_p (LOOP_CLOSED_SSA))
619    verify_loop_closed_ssa ();
620#endif
621
622  first_new_block = last_basic_block;
623  if (!duplicate_loop_to_header_edge (loop, e, ndupl, wont_exit,
624				      orig, to_remove, flags))
625    return false;
626
627  /* Readd the removed phi args for e.  */
628  flush_pending_stmts (e);
629
630  /* Copy the phi node arguments.  */
631  copy_phi_node_args (first_new_block);
632
633  scev_reset ();
634
635  return true;
636}
637
638/* Returns true if we can unroll LOOP FACTOR times.  Number
639   of iterations of the loop is returned in NITER.  */
640
641bool
642can_unroll_loop_p (struct loop *loop, unsigned factor,
643		   struct tree_niter_desc *niter)
644{
645  edge exit;
646
647  /* Check whether unrolling is possible.  We only want to unroll loops
648     for that we are able to determine number of iterations.  We also
649     want to split the extra iterations of the loop from its end,
650     therefore we require that the loop has precisely one
651     exit.  */
652
653  exit = single_dom_exit (loop);
654  if (!exit)
655    return false;
656
657  if (!number_of_iterations_exit (loop, exit, niter, false)
658      || niter->cmp == ERROR_MARK
659      /* Scalar evolutions analysis might have copy propagated
660	 the abnormal ssa names into these expressions, hence
661	 emitting the computations based on them during loop
662	 unrolling might create overlapping life ranges for
663	 them, and failures in out-of-ssa.  */
664      || contains_abnormal_ssa_name_p (niter->may_be_zero)
665      || contains_abnormal_ssa_name_p (niter->control.base)
666      || contains_abnormal_ssa_name_p (niter->control.step)
667      || contains_abnormal_ssa_name_p (niter->bound))
668    return false;
669
670  /* And of course, we must be able to duplicate the loop.  */
671  if (!can_duplicate_loop_p (loop))
672    return false;
673
674  /* The final loop should be small enough.  */
675  if (tree_num_loop_insns (loop, &eni_size_weights) * factor
676      > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS))
677    return false;
678
679  return true;
680}
681
682/* Determines the conditions that control execution of LOOP unrolled FACTOR
683   times.  DESC is number of iterations of LOOP.  ENTER_COND is set to
684   condition that must be true if the main loop can be entered.
685   EXIT_BASE, EXIT_STEP, EXIT_CMP and EXIT_BOUND are set to values describing
686   how the exit from the unrolled loop should be controlled.  */
687
688static void
689determine_exit_conditions (struct loop *loop, struct tree_niter_desc *desc,
690			   unsigned factor, tree *enter_cond,
691			   tree *exit_base, tree *exit_step,
692			   enum tree_code *exit_cmp, tree *exit_bound)
693{
694  gimple_seq stmts;
695  tree base = desc->control.base;
696  tree step = desc->control.step;
697  tree bound = desc->bound;
698  tree type = TREE_TYPE (step);
699  tree bigstep, delta;
700  tree min = lower_bound_in_type (type, type);
701  tree max = upper_bound_in_type (type, type);
702  enum tree_code cmp = desc->cmp;
703  tree cond = boolean_true_node, assum;
704
705  /* For pointers, do the arithmetics in the type of step (sizetype).  */
706  base = fold_convert (type, base);
707  bound = fold_convert (type, bound);
708
709  *enter_cond = boolean_false_node;
710  *exit_base = NULL_TREE;
711  *exit_step = NULL_TREE;
712  *exit_cmp = ERROR_MARK;
713  *exit_bound = NULL_TREE;
714  gcc_assert (cmp != ERROR_MARK);
715
716  /* We only need to be correct when we answer question
717     "Do at least FACTOR more iterations remain?" in the unrolled loop.
718     Thus, transforming BASE + STEP * i <> BOUND to
719     BASE + STEP * i < BOUND is ok.  */
720  if (cmp == NE_EXPR)
721    {
722      if (tree_int_cst_sign_bit (step))
723	cmp = GT_EXPR;
724      else
725	cmp = LT_EXPR;
726    }
727  else if (cmp == LT_EXPR)
728    {
729      gcc_assert (!tree_int_cst_sign_bit (step));
730    }
731  else if (cmp == GT_EXPR)
732    {
733      gcc_assert (tree_int_cst_sign_bit (step));
734    }
735  else
736    gcc_unreachable ();
737
738  /* The main body of the loop may be entered iff:
739
740     1) desc->may_be_zero is false.
741     2) it is possible to check that there are at least FACTOR iterations
742	of the loop, i.e., BOUND - step * FACTOR does not overflow.
743     3) # of iterations is at least FACTOR  */
744
745  if (!integer_zerop (desc->may_be_zero))
746    cond = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
747			invert_truthvalue (desc->may_be_zero),
748			cond);
749
750  bigstep = fold_build2 (MULT_EXPR, type, step,
751			 build_int_cst_type (type, factor));
752  delta = fold_build2 (MINUS_EXPR, type, bigstep, step);
753  if (cmp == LT_EXPR)
754    assum = fold_build2 (GE_EXPR, boolean_type_node,
755			 bound,
756			 fold_build2 (PLUS_EXPR, type, min, delta));
757  else
758    assum = fold_build2 (LE_EXPR, boolean_type_node,
759			 bound,
760			 fold_build2 (PLUS_EXPR, type, max, delta));
761  cond = fold_build2 (TRUTH_AND_EXPR, boolean_type_node, assum, cond);
762
763  bound = fold_build2 (MINUS_EXPR, type, bound, delta);
764  assum = fold_build2 (cmp, boolean_type_node, base, bound);
765  cond = fold_build2 (TRUTH_AND_EXPR, boolean_type_node, assum, cond);
766
767  cond = force_gimple_operand (unshare_expr (cond), &stmts, false, NULL_TREE);
768  if (stmts)
769    gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
770  /* cond now may be a gimple comparison, which would be OK, but also any
771     other gimple rhs (say a && b).  In this case we need to force it to
772     operand.  */
773  if (!is_gimple_condexpr (cond))
774    {
775      cond = force_gimple_operand (cond, &stmts, true, NULL_TREE);
776      if (stmts)
777	gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
778    }
779  *enter_cond = cond;
780
781  base = force_gimple_operand (unshare_expr (base), &stmts, true, NULL_TREE);
782  if (stmts)
783    gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
784  bound = force_gimple_operand (unshare_expr (bound), &stmts, true, NULL_TREE);
785  if (stmts)
786    gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
787
788  *exit_base = base;
789  *exit_step = bigstep;
790  *exit_cmp = cmp;
791  *exit_bound = bound;
792}
793
794/* Scales the frequencies of all basic blocks in LOOP that are strictly
795   dominated by BB by NUM/DEN.  */
796
797static void
798scale_dominated_blocks_in_loop (struct loop *loop, basic_block bb,
799				int num, int den)
800{
801  basic_block son;
802
803  if (den == 0)
804    return;
805
806  for (son = first_dom_son (CDI_DOMINATORS, bb);
807       son;
808       son = next_dom_son (CDI_DOMINATORS, son))
809    {
810      if (!flow_bb_inside_loop_p (loop, son))
811	continue;
812      scale_bbs_frequencies_int (&son, 1, num, den);
813      scale_dominated_blocks_in_loop (loop, son, num, den);
814    }
815}
816
817/* Unroll LOOP FACTOR times.  DESC describes number of iterations of LOOP.
818   EXIT is the exit of the loop to that DESC corresponds.
819
820   If N is number of iterations of the loop and MAY_BE_ZERO is the condition
821   under that loop exits in the first iteration even if N != 0,
822
823   while (1)
824     {
825       x = phi (init, next);
826
827       pre;
828       if (st)
829         break;
830       post;
831     }
832
833   becomes (with possibly the exit conditions formulated a bit differently,
834   avoiding the need to create a new iv):
835
836   if (MAY_BE_ZERO || N < FACTOR)
837     goto rest;
838
839   do
840     {
841       x = phi (init, next);
842
843       pre;
844       post;
845       pre;
846       post;
847       ...
848       pre;
849       post;
850       N -= FACTOR;
851
852     } while (N >= FACTOR);
853
854   rest:
855     init' = phi (init, x);
856
857   while (1)
858     {
859       x = phi (init', next);
860
861       pre;
862       if (st)
863         break;
864       post;
865     }
866
867   Before the loop is unrolled, TRANSFORM is called for it (only for the
868   unrolled loop, but not for its versioned copy).  DATA is passed to
869   TRANSFORM.  */
870
871/* Probability in % that the unrolled loop is entered.  Just a guess.  */
872#define PROB_UNROLLED_LOOP_ENTERED 90
873
874void
875tree_transform_and_unroll_loop (struct loop *loop, unsigned factor,
876				edge exit, struct tree_niter_desc *desc,
877				transform_callback transform,
878				void *data)
879{
880  gimple exit_if;
881  tree ctr_before, ctr_after;
882  tree enter_main_cond, exit_base, exit_step, exit_bound;
883  enum tree_code exit_cmp;
884  gimple phi_old_loop, phi_new_loop, phi_rest;
885  gimple_stmt_iterator psi_old_loop, psi_new_loop;
886  tree init, next, new_init, var;
887  struct loop *new_loop;
888  basic_block rest, exit_bb;
889  edge old_entry, new_entry, old_latch, precond_edge, new_exit;
890  edge new_nonexit, e;
891  gimple_stmt_iterator bsi;
892  use_operand_p op;
893  bool ok;
894  unsigned est_niter, prob_entry, scale_unrolled, scale_rest, freq_e, freq_h;
895  unsigned new_est_niter, i, prob;
896  unsigned irr = loop_preheader_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP;
897  sbitmap wont_exit;
898  VEC (edge, heap) *to_remove = NULL;
899
900  est_niter = expected_loop_iterations (loop);
901  determine_exit_conditions (loop, desc, factor,
902			     &enter_main_cond, &exit_base, &exit_step,
903			     &exit_cmp, &exit_bound);
904
905  /* Let us assume that the unrolled loop is quite likely to be entered.  */
906  if (integer_nonzerop (enter_main_cond))
907    prob_entry = REG_BR_PROB_BASE;
908  else
909    prob_entry = PROB_UNROLLED_LOOP_ENTERED * REG_BR_PROB_BASE / 100;
910
911  /* The values for scales should keep profile consistent, and somewhat close
912     to correct.
913
914     TODO: The current value of SCALE_REST makes it appear that the loop that
915     is created by splitting the remaining iterations of the unrolled loop is
916     executed the same number of times as the original loop, and with the same
917     frequencies, which is obviously wrong.  This does not appear to cause
918     problems, so we do not bother with fixing it for now.  To make the profile
919     correct, we would need to change the probability of the exit edge of the
920     loop, and recompute the distribution of frequencies in its body because
921     of this change (scale the frequencies of blocks before and after the exit
922     by appropriate factors).  */
923  scale_unrolled = prob_entry;
924  scale_rest = REG_BR_PROB_BASE;
925
926  new_loop = loop_version (loop, enter_main_cond, NULL,
927			   prob_entry, scale_unrolled, scale_rest, true);
928  gcc_assert (new_loop != NULL);
929  update_ssa (TODO_update_ssa);
930
931  /* Determine the probability of the exit edge of the unrolled loop.  */
932  new_est_niter = est_niter / factor;
933
934  /* Without profile feedback, loops for that we do not know a better estimate
935     are assumed to roll 10 times.  When we unroll such loop, it appears to
936     roll too little, and it may even seem to be cold.  To avoid this, we
937     ensure that the created loop appears to roll at least 5 times (but at
938     most as many times as before unrolling).  */
939  if (new_est_niter < 5)
940    {
941      if (est_niter < 5)
942	new_est_niter = est_niter;
943      else
944	new_est_niter = 5;
945    }
946
947  /* Prepare the cfg and update the phi nodes.  Move the loop exit to the
948     loop latch (and make its condition dummy, for the moment).  */
949  rest = loop_preheader_edge (new_loop)->src;
950  precond_edge = single_pred_edge (rest);
951  split_edge (loop_latch_edge (loop));
952  exit_bb = single_pred (loop->latch);
953
954  /* Since the exit edge will be removed, the frequency of all the blocks
955     in the loop that are dominated by it must be scaled by
956     1 / (1 - exit->probability).  */
957  scale_dominated_blocks_in_loop (loop, exit->src,
958				  REG_BR_PROB_BASE,
959				  REG_BR_PROB_BASE - exit->probability);
960
961  bsi = gsi_last_bb (exit_bb);
962  exit_if = gimple_build_cond (EQ_EXPR, integer_zero_node,
963			       integer_zero_node,
964			       NULL_TREE, NULL_TREE);
965
966  gsi_insert_after (&bsi, exit_if, GSI_NEW_STMT);
967  new_exit = make_edge (exit_bb, rest, EDGE_FALSE_VALUE | irr);
968  rescan_loop_exit (new_exit, true, false);
969
970  /* Set the probability of new exit to the same of the old one.  Fix
971     the frequency of the latch block, by scaling it back by
972     1 - exit->probability.  */
973  new_exit->count = exit->count;
974  new_exit->probability = exit->probability;
975  new_nonexit = single_pred_edge (loop->latch);
976  new_nonexit->probability = REG_BR_PROB_BASE - exit->probability;
977  new_nonexit->flags = EDGE_TRUE_VALUE;
978  new_nonexit->count -= exit->count;
979  if (new_nonexit->count < 0)
980    new_nonexit->count = 0;
981  scale_bbs_frequencies_int (&loop->latch, 1, new_nonexit->probability,
982			     REG_BR_PROB_BASE);
983
984  old_entry = loop_preheader_edge (loop);
985  new_entry = loop_preheader_edge (new_loop);
986  old_latch = loop_latch_edge (loop);
987  for (psi_old_loop = gsi_start_phis (loop->header),
988       psi_new_loop = gsi_start_phis (new_loop->header);
989       !gsi_end_p (psi_old_loop);
990       gsi_next (&psi_old_loop), gsi_next (&psi_new_loop))
991    {
992      phi_old_loop = gsi_stmt (psi_old_loop);
993      phi_new_loop = gsi_stmt (psi_new_loop);
994
995      init = PHI_ARG_DEF_FROM_EDGE (phi_old_loop, old_entry);
996      op = PHI_ARG_DEF_PTR_FROM_EDGE (phi_new_loop, new_entry);
997      gcc_assert (operand_equal_for_phi_arg_p (init, USE_FROM_PTR (op)));
998      next = PHI_ARG_DEF_FROM_EDGE (phi_old_loop, old_latch);
999
1000      /* Prefer using original variable as a base for the new ssa name.
1001	 This is necessary for virtual ops, and useful in order to avoid
1002	 losing debug info for real ops.  */
1003      if (TREE_CODE (next) == SSA_NAME
1004	  && useless_type_conversion_p (TREE_TYPE (next),
1005					TREE_TYPE (init)))
1006	var = SSA_NAME_VAR (next);
1007      else if (TREE_CODE (init) == SSA_NAME
1008	       && useless_type_conversion_p (TREE_TYPE (init),
1009					     TREE_TYPE (next)))
1010	var = SSA_NAME_VAR (init);
1011      else if (useless_type_conversion_p (TREE_TYPE (next), TREE_TYPE (init)))
1012	{
1013	  var = create_tmp_var (TREE_TYPE (next), "unrinittmp");
1014	  add_referenced_var (var);
1015	}
1016      else
1017	{
1018	  var = create_tmp_var (TREE_TYPE (init), "unrinittmp");
1019	  add_referenced_var (var);
1020	}
1021
1022      new_init = make_ssa_name (var, NULL);
1023      phi_rest = create_phi_node (new_init, rest);
1024      SSA_NAME_DEF_STMT (new_init) = phi_rest;
1025
1026      add_phi_arg (phi_rest, init, precond_edge, UNKNOWN_LOCATION);
1027      add_phi_arg (phi_rest, next, new_exit, UNKNOWN_LOCATION);
1028      SET_USE (op, new_init);
1029    }
1030
1031  remove_path (exit);
1032
1033  /* Transform the loop.  */
1034  if (transform)
1035    (*transform) (loop, data);
1036
1037  /* Unroll the loop and remove the exits in all iterations except for the
1038     last one.  */
1039  wont_exit = sbitmap_alloc (factor);
1040  sbitmap_ones (wont_exit);
1041  RESET_BIT (wont_exit, factor - 1);
1042
1043  ok = gimple_duplicate_loop_to_header_edge
1044	  (loop, loop_latch_edge (loop), factor - 1,
1045	   wont_exit, new_exit, &to_remove, DLTHE_FLAG_UPDATE_FREQ);
1046  free (wont_exit);
1047  gcc_assert (ok);
1048
1049  for (i = 0; VEC_iterate (edge, to_remove, i, e); i++)
1050    {
1051      ok = remove_path (e);
1052      gcc_assert (ok);
1053    }
1054  VEC_free (edge, heap, to_remove);
1055  update_ssa (TODO_update_ssa);
1056
1057  /* Ensure that the frequencies in the loop match the new estimated
1058     number of iterations, and change the probability of the new
1059     exit edge.  */
1060  freq_h = loop->header->frequency;
1061  freq_e = EDGE_FREQUENCY (loop_preheader_edge (loop));
1062  if (freq_h != 0)
1063    scale_loop_frequencies (loop, freq_e * (new_est_niter + 1), freq_h);
1064
1065  exit_bb = single_pred (loop->latch);
1066  new_exit = find_edge (exit_bb, rest);
1067  new_exit->count = loop_preheader_edge (loop)->count;
1068  new_exit->probability = REG_BR_PROB_BASE / (new_est_niter + 1);
1069
1070  rest->count += new_exit->count;
1071  rest->frequency += EDGE_FREQUENCY (new_exit);
1072
1073  new_nonexit = single_pred_edge (loop->latch);
1074  prob = new_nonexit->probability;
1075  new_nonexit->probability = REG_BR_PROB_BASE - new_exit->probability;
1076  new_nonexit->count = exit_bb->count - new_exit->count;
1077  if (new_nonexit->count < 0)
1078    new_nonexit->count = 0;
1079  if (prob > 0)
1080    scale_bbs_frequencies_int (&loop->latch, 1, new_nonexit->probability,
1081			       prob);
1082
1083  /* Finally create the new counter for number of iterations and add the new
1084     exit instruction.  */
1085  bsi = gsi_last_bb (exit_bb);
1086  exit_if = gsi_stmt (bsi);
1087  create_iv (exit_base, exit_step, NULL_TREE, loop,
1088	     &bsi, false, &ctr_before, &ctr_after);
1089  gimple_cond_set_code (exit_if, exit_cmp);
1090  gimple_cond_set_lhs (exit_if, ctr_after);
1091  gimple_cond_set_rhs (exit_if, exit_bound);
1092  update_stmt (exit_if);
1093
1094#ifdef ENABLE_CHECKING
1095  verify_flow_info ();
1096  verify_dominators (CDI_DOMINATORS);
1097  verify_loop_structure ();
1098  verify_loop_closed_ssa ();
1099#endif
1100}
1101
1102/* Wrapper over tree_transform_and_unroll_loop for case we do not
1103   want to transform the loop before unrolling.  The meaning
1104   of the arguments is the same as for tree_transform_and_unroll_loop.  */
1105
1106void
1107tree_unroll_loop (struct loop *loop, unsigned factor,
1108		  edge exit, struct tree_niter_desc *desc)
1109{
1110  tree_transform_and_unroll_loop (loop, factor, exit, desc,
1111				  NULL, NULL);
1112}
1113
1114/* Rewrite the phi node at position PSI in function of the main
1115   induction variable MAIN_IV and insert the generated code at GSI.  */
1116
1117static void
1118rewrite_phi_with_iv (loop_p loop,
1119		     gimple_stmt_iterator *psi,
1120		     gimple_stmt_iterator *gsi,
1121		     tree main_iv)
1122{
1123  affine_iv iv;
1124  gimple stmt, phi = gsi_stmt (*psi);
1125  tree atype, mtype, val, res = PHI_RESULT (phi);
1126
1127  if (!is_gimple_reg (res) || res == main_iv)
1128    {
1129      gsi_next (psi);
1130      return;
1131    }
1132
1133  if (!simple_iv (loop, loop, res, &iv, true))
1134    {
1135      gsi_next (psi);
1136      return;
1137    }
1138
1139  remove_phi_node (psi, false);
1140
1141  atype = TREE_TYPE (res);
1142  mtype = POINTER_TYPE_P (atype) ? sizetype : atype;
1143  val = fold_build2 (MULT_EXPR, mtype, unshare_expr (iv.step),
1144		     fold_convert (mtype, main_iv));
1145  val = fold_build2 (POINTER_TYPE_P (atype)
1146		     ? POINTER_PLUS_EXPR : PLUS_EXPR,
1147		     atype, unshare_expr (iv.base), val);
1148  val = force_gimple_operand_gsi (gsi, val, false, NULL_TREE, true,
1149				  GSI_SAME_STMT);
1150  stmt = gimple_build_assign (res, val);
1151  gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1152  SSA_NAME_DEF_STMT (res) = stmt;
1153}
1154
1155/* Rewrite all the phi nodes of LOOP in function of the main induction
1156   variable MAIN_IV.  */
1157
1158static void
1159rewrite_all_phi_nodes_with_iv (loop_p loop, tree main_iv)
1160{
1161  unsigned i;
1162  basic_block *bbs = get_loop_body_in_dom_order (loop);
1163  gimple_stmt_iterator psi;
1164
1165  for (i = 0; i < loop->num_nodes; i++)
1166    {
1167      basic_block bb = bbs[i];
1168      gimple_stmt_iterator gsi = gsi_after_labels (bb);
1169
1170      if (bb->loop_father != loop)
1171	continue;
1172
1173      for (psi = gsi_start_phis (bb); !gsi_end_p (psi); )
1174	rewrite_phi_with_iv (loop, &psi, &gsi, main_iv);
1175    }
1176
1177  free (bbs);
1178}
1179
1180/* Bases all the induction variables in LOOP on a single induction
1181   variable (unsigned with base 0 and step 1), whose final value is
1182   compared with *NIT.  When the IV type precision has to be larger
1183   than *NIT type precision, *NIT is converted to the larger type, the
1184   conversion code is inserted before the loop, and *NIT is updated to
1185   the new definition.  When BUMP_IN_LATCH is true, the induction
1186   variable is incremented in the loop latch, otherwise it is
1187   incremented in the loop header.  Return the induction variable that
1188   was created.  */
1189
1190tree
1191canonicalize_loop_ivs (struct loop *loop, tree *nit, bool bump_in_latch)
1192{
1193  unsigned precision = TYPE_PRECISION (TREE_TYPE (*nit));
1194  unsigned original_precision = precision;
1195  tree type, var_before;
1196  gimple_stmt_iterator gsi, psi;
1197  gimple stmt;
1198  edge exit = single_dom_exit (loop);
1199  gimple_seq stmts;
1200
1201  for (psi = gsi_start_phis (loop->header);
1202       !gsi_end_p (psi); gsi_next (&psi))
1203    {
1204      gimple phi = gsi_stmt (psi);
1205      tree res = PHI_RESULT (phi);
1206
1207      if (is_gimple_reg (res) && TYPE_PRECISION (TREE_TYPE (res)) > precision)
1208	precision = TYPE_PRECISION (TREE_TYPE (res));
1209    }
1210
1211  type = lang_hooks.types.type_for_size (precision, 1);
1212
1213  if (original_precision != precision)
1214    {
1215      *nit = fold_convert (type, *nit);
1216      *nit = force_gimple_operand (*nit, &stmts, true, NULL_TREE);
1217      if (stmts)
1218	gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
1219    }
1220
1221  gsi = gsi_last_bb (bump_in_latch ? loop->latch : loop->header);
1222  create_iv (build_int_cst_type (type, 0), build_int_cst (type, 1), NULL_TREE,
1223	     loop, &gsi, bump_in_latch, &var_before, NULL);
1224
1225  rewrite_all_phi_nodes_with_iv (loop, var_before);
1226
1227  stmt = last_stmt (exit->src);
1228  /* Make the loop exit if the control condition is not satisfied.  */
1229  if (exit->flags & EDGE_TRUE_VALUE)
1230    {
1231      edge te, fe;
1232
1233      extract_true_false_edges_from_block (exit->src, &te, &fe);
1234      te->flags = EDGE_FALSE_VALUE;
1235      fe->flags = EDGE_TRUE_VALUE;
1236    }
1237  gimple_cond_set_code (stmt, LT_EXPR);
1238  gimple_cond_set_lhs (stmt, var_before);
1239  gimple_cond_set_rhs (stmt, *nit);
1240  update_stmt (stmt);
1241
1242  return var_before;
1243}
1244