1/* Data references and dependences detectors.
2   Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009
3   Free Software Foundation, Inc.
4   Contributed by Sebastian Pop <pop@cri.ensmp.fr>
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 3, or (at your option) any later
11version.
12
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16for more details.
17
18You should have received a copy of the GNU General Public License
19along with GCC; see the file COPYING3.  If not see
20<http://www.gnu.org/licenses/>.  */
21
22#ifndef GCC_TREE_DATA_REF_H
23#define GCC_TREE_DATA_REF_H
24
25#include "graphds.h"
26#include "lambda.h"
27#include "omega.h"
28#include "tree-chrec.h"
29
30/*
31  innermost_loop_behavior describes the evolution of the address of the memory
32  reference in the innermost enclosing loop.  The address is expressed as
33  BASE + STEP * # of iteration, and base is further decomposed as the base
34  pointer (BASE_ADDRESS),  loop invariant offset (OFFSET) and
35  constant offset (INIT).  Examples, in loop nest
36
37  for (i = 0; i < 100; i++)
38    for (j = 3; j < 100; j++)
39
40                       Example 1                      Example 2
41      data-ref         a[j].b[i][j]                   *(p + x + 16B + 4B * j)
42
43
44  innermost_loop_behavior
45      base_address     &a                             p
46      offset           i * D_i			      x
47      init             3 * D_j + offsetof (b)         28
48      step             D_j                            4
49
50  */
51struct innermost_loop_behavior
52{
53  tree base_address;
54  tree offset;
55  tree init;
56  tree step;
57
58  /* Alignment information.  ALIGNED_TO is set to the largest power of two
59     that divides OFFSET.  */
60  tree aligned_to;
61};
62
63/* Describes the evolutions of indices of the memory reference.  The indices
64   are indices of the ARRAY_REFs and the operands of INDIRECT_REFs.
65   For ARRAY_REFs, BASE_OBJECT is the reference with zeroed indices
66   (note that this reference does not have to be valid, if zero does not
67   belong to the range of the array; hence it is not recommended to use
68   BASE_OBJECT in any code generation).  For INDIRECT_REFs, the address is
69   set to the loop-invariant part of the address of the object, except for
70   the constant offset.  For the examples above,
71
72   base_object:        a[0].b[0][0]                   *(p + x + 4B * j_0)
73   indices:            {j_0, +, 1}_2                  {16, +, 4}_2
74		       {i_0, +, 1}_1
75		       {j_0, +, 1}_2
76*/
77
78struct indices
79{
80  /* The object.  */
81  tree base_object;
82
83  /* A list of chrecs.  Access functions of the indices.  */
84  VEC(tree,heap) *access_fns;
85};
86
87struct dr_alias
88{
89  /* The alias information that should be used for new pointers to this
90     location.  SYMBOL_TAG is either a DECL or a SYMBOL_MEMORY_TAG.  */
91  struct ptr_info_def *ptr_info;
92
93  /* The set of virtual operands corresponding to this memory reference,
94     serving as a description of the alias information for the memory
95     reference.  This could be eliminated if we had alias oracle.  */
96  bitmap vops;
97};
98
99/* Each vector of the access matrix represents a linear access
100   function for a subscript.  First elements correspond to the
101   leftmost indices, ie. for a[i][j] the first vector corresponds to
102   the subscript in "i".  The elements of a vector are relative to
103   the loop nests in which the data reference is considered,
104   i.e. the vector is relative to the SCoP that provides the context
105   in which this data reference occurs.
106
107   For example, in
108
109   | loop_1
110   |    loop_2
111   |      a[i+3][2*j+n-1]
112
113   if "i" varies in loop_1 and "j" varies in loop_2, the access
114   matrix with respect to the loop nest {loop_1, loop_2} is:
115
116   | loop_1  loop_2  param_n  cst
117   |   1       0        0      3
118   |   0       2        1     -1
119
120   whereas the access matrix with respect to loop_2 considers "i" as
121   a parameter:
122
123   | loop_2  param_i  param_n  cst
124   |   0       1         0      3
125   |   2       0         1     -1
126*/
127struct access_matrix
128{
129  VEC (loop_p, heap) *loop_nest;
130  int nb_induction_vars;
131  VEC (tree, heap) *parameters;
132  VEC (lambda_vector, gc) *matrix;
133};
134
135#define AM_LOOP_NEST(M) (M)->loop_nest
136#define AM_NB_INDUCTION_VARS(M) (M)->nb_induction_vars
137#define AM_PARAMETERS(M) (M)->parameters
138#define AM_MATRIX(M) (M)->matrix
139#define AM_NB_PARAMETERS(M) (VEC_length (tree, AM_PARAMETERS(M)))
140#define AM_CONST_COLUMN_INDEX(M) (AM_NB_INDUCTION_VARS (M) + AM_NB_PARAMETERS (M))
141#define AM_NB_COLUMNS(M) (AM_NB_INDUCTION_VARS (M) + AM_NB_PARAMETERS (M) + 1)
142#define AM_GET_SUBSCRIPT_ACCESS_VECTOR(M, I) VEC_index (lambda_vector, AM_MATRIX (M), I)
143#define AM_GET_ACCESS_MATRIX_ELEMENT(M, I, J) AM_GET_SUBSCRIPT_ACCESS_VECTOR (M, I)[J]
144
145/* Return the column in the access matrix of LOOP_NUM.  */
146
147static inline int
148am_vector_index_for_loop (struct access_matrix *access_matrix, int loop_num)
149{
150  int i;
151  loop_p l;
152
153  for (i = 0; VEC_iterate (loop_p, AM_LOOP_NEST (access_matrix), i, l); i++)
154    if (l->num == loop_num)
155      return i;
156
157  gcc_unreachable();
158}
159
160int access_matrix_get_index_for_parameter (tree, struct access_matrix *);
161
162struct data_reference
163{
164  /* A pointer to the statement that contains this DR.  */
165  gimple stmt;
166
167  /* A pointer to the memory reference.  */
168  tree ref;
169
170  /* Auxiliary info specific to a pass.  */
171  void *aux;
172
173  /* True when the data reference is in RHS of a stmt.  */
174  bool is_read;
175
176  /* Behavior of the memory reference in the innermost loop.  */
177  struct innermost_loop_behavior innermost;
178
179  /* Subscripts of this data reference.  */
180  struct indices indices;
181
182  /* Alias information for the data reference.  */
183  struct dr_alias alias;
184
185  /* Matrix representation for the data access functions.  */
186  struct access_matrix *access_matrix;
187};
188
189#define DR_STMT(DR)                (DR)->stmt
190#define DR_REF(DR)                 (DR)->ref
191#define DR_BASE_OBJECT(DR)         (DR)->indices.base_object
192#define DR_ACCESS_FNS(DR)	   (DR)->indices.access_fns
193#define DR_ACCESS_FN(DR, I)        VEC_index (tree, DR_ACCESS_FNS (DR), I)
194#define DR_NUM_DIMENSIONS(DR)      VEC_length (tree, DR_ACCESS_FNS (DR))
195#define DR_IS_READ(DR)             (DR)->is_read
196#define DR_BASE_ADDRESS(DR)        (DR)->innermost.base_address
197#define DR_OFFSET(DR)              (DR)->innermost.offset
198#define DR_INIT(DR)                (DR)->innermost.init
199#define DR_STEP(DR)                (DR)->innermost.step
200#define DR_PTR_INFO(DR)            (DR)->alias.ptr_info
201#define DR_ALIGNED_TO(DR)          (DR)->innermost.aligned_to
202#define DR_ACCESS_MATRIX(DR)       (DR)->access_matrix
203
204typedef struct data_reference *data_reference_p;
205DEF_VEC_P(data_reference_p);
206DEF_VEC_ALLOC_P (data_reference_p, heap);
207
208enum data_dependence_direction {
209  dir_positive,
210  dir_negative,
211  dir_equal,
212  dir_positive_or_negative,
213  dir_positive_or_equal,
214  dir_negative_or_equal,
215  dir_star,
216  dir_independent
217};
218
219/* The description of the grid of iterations that overlap.  At most
220   two loops are considered at the same time just now, hence at most
221   two functions are needed.  For each of the functions, we store
222   the vector of coefficients, f[0] + x * f[1] + y * f[2] + ...,
223   where x, y, ... are variables.  */
224
225#define MAX_DIM 2
226
227/* Special values of N.  */
228#define NO_DEPENDENCE 0
229#define NOT_KNOWN (MAX_DIM + 1)
230#define CF_NONTRIVIAL_P(CF) ((CF)->n != NO_DEPENDENCE && (CF)->n != NOT_KNOWN)
231#define CF_NOT_KNOWN_P(CF) ((CF)->n == NOT_KNOWN)
232#define CF_NO_DEPENDENCE_P(CF) ((CF)->n == NO_DEPENDENCE)
233
234typedef VEC (tree, heap) *affine_fn;
235
236typedef struct
237{
238  unsigned n;
239  affine_fn fns[MAX_DIM];
240} conflict_function;
241
242/* What is a subscript?  Given two array accesses a subscript is the
243   tuple composed of the access functions for a given dimension.
244   Example: Given A[f1][f2][f3] and B[g1][g2][g3], there are three
245   subscripts: (f1, g1), (f2, g2), (f3, g3).  These three subscripts
246   are stored in the data_dependence_relation structure under the form
247   of an array of subscripts.  */
248
249struct subscript
250{
251  /* A description of the iterations for which the elements are
252     accessed twice.  */
253  conflict_function *conflicting_iterations_in_a;
254  conflict_function *conflicting_iterations_in_b;
255
256  /* This field stores the information about the iteration domain
257     validity of the dependence relation.  */
258  tree last_conflict;
259
260  /* Distance from the iteration that access a conflicting element in
261     A to the iteration that access this same conflicting element in
262     B.  The distance is a tree scalar expression, i.e. a constant or a
263     symbolic expression, but certainly not a chrec function.  */
264  tree distance;
265};
266
267typedef struct subscript *subscript_p;
268DEF_VEC_P(subscript_p);
269DEF_VEC_ALLOC_P (subscript_p, heap);
270
271#define SUB_CONFLICTS_IN_A(SUB) SUB->conflicting_iterations_in_a
272#define SUB_CONFLICTS_IN_B(SUB) SUB->conflicting_iterations_in_b
273#define SUB_LAST_CONFLICT(SUB) SUB->last_conflict
274#define SUB_DISTANCE(SUB) SUB->distance
275
276/* A data_dependence_relation represents a relation between two
277   data_references A and B.  */
278
279struct data_dependence_relation
280{
281
282  struct data_reference *a;
283  struct data_reference *b;
284
285  /* A "yes/no/maybe" field for the dependence relation:
286
287     - when "ARE_DEPENDENT == NULL_TREE", there exist a dependence
288       relation between A and B, and the description of this relation
289       is given in the SUBSCRIPTS array,
290
291     - when "ARE_DEPENDENT == chrec_known", there is no dependence and
292       SUBSCRIPTS is empty,
293
294     - when "ARE_DEPENDENT == chrec_dont_know", there may be a dependence,
295       but the analyzer cannot be more specific.  */
296  tree are_dependent;
297
298  /* For each subscript in the dependence test, there is an element in
299     this array.  This is the attribute that labels the edge A->B of
300     the data_dependence_relation.  */
301  VEC (subscript_p, heap) *subscripts;
302
303  /* The analyzed loop nest.  */
304  VEC (loop_p, heap) *loop_nest;
305
306  /* The classic direction vector.  */
307  VEC (lambda_vector, heap) *dir_vects;
308
309  /* The classic distance vector.  */
310  VEC (lambda_vector, heap) *dist_vects;
311
312  /* An index in loop_nest for the innermost loop that varies for
313     this data dependence relation.  */
314  unsigned inner_loop;
315
316  /* Is the dependence reversed with respect to the lexicographic order?  */
317  bool reversed_p;
318
319  /* When the dependence relation is affine, it can be represented by
320     a distance vector.  */
321  bool affine_p;
322
323  /* Set to true when the dependence relation is on the same data
324     access.  */
325  bool self_reference_p;
326};
327
328typedef struct data_dependence_relation *ddr_p;
329DEF_VEC_P(ddr_p);
330DEF_VEC_ALLOC_P(ddr_p,heap);
331
332#define DDR_A(DDR) DDR->a
333#define DDR_B(DDR) DDR->b
334#define DDR_AFFINE_P(DDR) DDR->affine_p
335#define DDR_ARE_DEPENDENT(DDR) DDR->are_dependent
336#define DDR_SUBSCRIPTS(DDR) DDR->subscripts
337#define DDR_SUBSCRIPT(DDR, I) VEC_index (subscript_p, DDR_SUBSCRIPTS (DDR), I)
338#define DDR_NUM_SUBSCRIPTS(DDR) VEC_length (subscript_p, DDR_SUBSCRIPTS (DDR))
339
340#define DDR_LOOP_NEST(DDR) DDR->loop_nest
341/* The size of the direction/distance vectors: the number of loops in
342   the loop nest.  */
343#define DDR_NB_LOOPS(DDR) (VEC_length (loop_p, DDR_LOOP_NEST (DDR)))
344#define DDR_INNER_LOOP(DDR) DDR->inner_loop
345#define DDR_SELF_REFERENCE(DDR) DDR->self_reference_p
346
347#define DDR_DIST_VECTS(DDR) ((DDR)->dist_vects)
348#define DDR_DIR_VECTS(DDR) ((DDR)->dir_vects)
349#define DDR_NUM_DIST_VECTS(DDR) \
350  (VEC_length (lambda_vector, DDR_DIST_VECTS (DDR)))
351#define DDR_NUM_DIR_VECTS(DDR) \
352  (VEC_length (lambda_vector, DDR_DIR_VECTS (DDR)))
353#define DDR_DIR_VECT(DDR, I) \
354  VEC_index (lambda_vector, DDR_DIR_VECTS (DDR), I)
355#define DDR_DIST_VECT(DDR, I) \
356  VEC_index (lambda_vector, DDR_DIST_VECTS (DDR), I)
357#define DDR_REVERSED_P(DDR) DDR->reversed_p
358
359
360
361/* Describes a location of a memory reference.  */
362
363typedef struct data_ref_loc_d
364{
365  /* Position of the memory reference.  */
366  tree *pos;
367
368  /* True if the memory reference is read.  */
369  bool is_read;
370} data_ref_loc;
371
372DEF_VEC_O (data_ref_loc);
373DEF_VEC_ALLOC_O (data_ref_loc, heap);
374
375bool get_references_in_stmt (gimple, VEC (data_ref_loc, heap) **);
376bool dr_analyze_innermost (struct data_reference *);
377extern bool compute_data_dependences_for_loop (struct loop *, bool,
378					       VEC (data_reference_p, heap) **,
379					       VEC (ddr_p, heap) **);
380extern bool compute_data_dependences_for_bb (basic_block, bool,
381                                             VEC (data_reference_p, heap) **,
382                                             VEC (ddr_p, heap) **);
383extern tree find_data_references_in_loop (struct loop *,
384                                          VEC (data_reference_p, heap) **);
385extern void print_direction_vector (FILE *, lambda_vector, int);
386extern void print_dir_vectors (FILE *, VEC (lambda_vector, heap) *, int);
387extern void print_dist_vectors (FILE *, VEC (lambda_vector, heap) *, int);
388extern void dump_subscript (FILE *, struct subscript *);
389extern void dump_ddrs (FILE *, VEC (ddr_p, heap) *);
390extern void dump_dist_dir_vectors (FILE *, VEC (ddr_p, heap) *);
391extern void dump_data_reference (FILE *, struct data_reference *);
392extern void debug_data_reference (struct data_reference *);
393extern void dump_data_references (FILE *, VEC (data_reference_p, heap) *);
394extern void debug_data_references (VEC (data_reference_p, heap) *);
395extern void debug_data_dependence_relation (struct data_dependence_relation *);
396extern void dump_data_dependence_relation (FILE *,
397					   struct data_dependence_relation *);
398extern void dump_data_dependence_relations (FILE *, VEC (ddr_p, heap) *);
399extern void debug_data_dependence_relations (VEC (ddr_p, heap) *);
400extern void dump_data_dependence_direction (FILE *,
401					    enum data_dependence_direction);
402extern void free_dependence_relation (struct data_dependence_relation *);
403extern void free_dependence_relations (VEC (ddr_p, heap) *);
404extern void free_data_ref (data_reference_p);
405extern void free_data_refs (VEC (data_reference_p, heap) *);
406extern bool find_data_references_in_stmt (struct loop *, gimple,
407					  VEC (data_reference_p, heap) **);
408extern bool graphite_find_data_references_in_stmt (struct loop *, gimple,
409						   VEC (data_reference_p, heap) **);
410struct data_reference *create_data_ref (struct loop *, tree, gimple, bool);
411extern bool find_loop_nest (struct loop *, VEC (loop_p, heap) **);
412extern void compute_all_dependences (VEC (data_reference_p, heap) *,
413				     VEC (ddr_p, heap) **, VEC (loop_p, heap) *,
414				     bool);
415
416extern void create_rdg_vertices (struct graph *, VEC (gimple, heap) *);
417extern bool dr_may_alias_p (const struct data_reference *,
418			    const struct data_reference *);
419
420/* Return true when the DDR contains two data references that have the
421   same access functions.  */
422
423static inline bool
424same_access_functions (const struct data_dependence_relation *ddr)
425{
426  unsigned i;
427
428  for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
429    if (!eq_evolutions_p (DR_ACCESS_FN (DDR_A (ddr), i),
430			  DR_ACCESS_FN (DDR_B (ddr), i)))
431      return false;
432
433  return true;
434}
435
436/* Return true when DDR is an anti-dependence relation.  */
437
438static inline bool
439ddr_is_anti_dependent (ddr_p ddr)
440{
441  return (DDR_ARE_DEPENDENT (ddr) == NULL_TREE
442	  && DR_IS_READ (DDR_A (ddr))
443	  && !DR_IS_READ (DDR_B (ddr))
444	  && !same_access_functions (ddr));
445}
446
447/* Return true when DEPENDENCE_RELATIONS contains an anti-dependence.  */
448
449static inline bool
450ddrs_have_anti_deps (VEC (ddr_p, heap) *dependence_relations)
451{
452  unsigned i;
453  ddr_p ddr;
454
455  for (i = 0; VEC_iterate (ddr_p, dependence_relations, i, ddr); i++)
456    if (ddr_is_anti_dependent (ddr))
457      return true;
458
459  return false;
460}
461
462/* Return the dependence level for the DDR relation.  */
463
464static inline unsigned
465ddr_dependence_level (ddr_p ddr)
466{
467  unsigned vector;
468  unsigned level = 0;
469
470  if (DDR_DIST_VECTS (ddr))
471    level = dependence_level (DDR_DIST_VECT (ddr, 0), DDR_NB_LOOPS (ddr));
472
473  for (vector = 1; vector < DDR_NUM_DIST_VECTS (ddr); vector++)
474    level = MIN (level, dependence_level (DDR_DIST_VECT (ddr, vector),
475					  DDR_NB_LOOPS (ddr)));
476  return level;
477}
478
479
480
481/* A Reduced Dependence Graph (RDG) vertex representing a statement.  */
482typedef struct rdg_vertex
483{
484  /* The statement represented by this vertex.  */
485  gimple stmt;
486
487  /* True when the statement contains a write to memory.  */
488  bool has_mem_write;
489
490  /* True when the statement contains a read from memory.  */
491  bool has_mem_reads;
492} *rdg_vertex_p;
493
494#define RDGV_STMT(V)     ((struct rdg_vertex *) ((V)->data))->stmt
495#define RDGV_HAS_MEM_WRITE(V) ((struct rdg_vertex *) ((V)->data))->has_mem_write
496#define RDGV_HAS_MEM_READS(V) ((struct rdg_vertex *) ((V)->data))->has_mem_reads
497#define RDG_STMT(RDG, I) RDGV_STMT (&(RDG->vertices[I]))
498#define RDG_MEM_WRITE_STMT(RDG, I) RDGV_HAS_MEM_WRITE (&(RDG->vertices[I]))
499#define RDG_MEM_READS_STMT(RDG, I) RDGV_HAS_MEM_READS (&(RDG->vertices[I]))
500
501void dump_rdg_vertex (FILE *, struct graph *, int);
502void debug_rdg_vertex (struct graph *, int);
503void dump_rdg_component (FILE *, struct graph *, int, bitmap);
504void debug_rdg_component (struct graph *, int);
505void dump_rdg (FILE *, struct graph *);
506void debug_rdg (struct graph *);
507int rdg_vertex_for_stmt (struct graph *, gimple);
508
509/* Data dependence type.  */
510
511enum rdg_dep_type
512{
513  /* Read After Write (RAW).  */
514  flow_dd = 'f',
515
516  /* Write After Read (WAR).  */
517  anti_dd = 'a',
518
519  /* Write After Write (WAW).  */
520  output_dd = 'o',
521
522  /* Read After Read (RAR).  */
523  input_dd = 'i'
524};
525
526/* Dependence information attached to an edge of the RDG.  */
527
528typedef struct rdg_edge
529{
530  /* Type of the dependence.  */
531  enum rdg_dep_type type;
532
533  /* Levels of the dependence: the depth of the loops that carry the
534     dependence.  */
535  unsigned level;
536
537  /* Dependence relation between data dependences, NULL when one of
538     the vertices is a scalar.  */
539  ddr_p relation;
540} *rdg_edge_p;
541
542#define RDGE_TYPE(E)        ((struct rdg_edge *) ((E)->data))->type
543#define RDGE_LEVEL(E)       ((struct rdg_edge *) ((E)->data))->level
544#define RDGE_RELATION(E)    ((struct rdg_edge *) ((E)->data))->relation
545
546struct graph *build_rdg (struct loop *);
547struct graph *build_empty_rdg (int);
548void free_rdg (struct graph *);
549
550/* Return the index of the variable VAR in the LOOP_NEST array.  */
551
552static inline int
553index_in_loop_nest (int var, VEC (loop_p, heap) *loop_nest)
554{
555  struct loop *loopi;
556  int var_index;
557
558  for (var_index = 0; VEC_iterate (loop_p, loop_nest, var_index, loopi);
559       var_index++)
560    if (loopi->num == var)
561      break;
562
563  return var_index;
564}
565
566void stores_from_loop (struct loop *, VEC (gimple, heap) **);
567void remove_similar_memory_refs (VEC (gimple, heap) **);
568bool rdg_defs_used_in_other_loops_p (struct graph *, int);
569bool have_similar_memory_accesses (gimple, gimple);
570bool stmt_with_adjacent_zero_store_dr_p (gimple);
571
572/* Returns true when STRIDE is equal in absolute value to the size of
573   the unit type of TYPE.  */
574
575static inline bool
576stride_of_unit_type_p (tree stride, tree type)
577{
578  return tree_int_cst_equal (fold_unary (ABS_EXPR, TREE_TYPE (stride),
579					 stride),
580			     TYPE_SIZE_UNIT (type));
581}
582
583/* Determines whether RDG vertices V1 and V2 access to similar memory
584   locations, in which case they have to be in the same partition.  */
585
586static inline bool
587rdg_has_similar_memory_accesses (struct graph *rdg, int v1, int v2)
588{
589  return have_similar_memory_accesses (RDG_STMT (rdg, v1),
590				       RDG_STMT (rdg, v2));
591}
592
593/* In lambda-code.c  */
594bool lambda_transform_legal_p (lambda_trans_matrix, int,
595			       VEC (ddr_p, heap) *);
596void lambda_collect_parameters (VEC (data_reference_p, heap) *,
597				VEC (tree, heap) **);
598bool lambda_compute_access_matrices (VEC (data_reference_p, heap) *,
599				     VEC (tree, heap) *, VEC (loop_p, heap) *);
600
601/* In tree-data-ref.c  */
602void split_constant_offset (tree , tree *, tree *);
603
604/* Strongly connected components of the reduced data dependence graph.  */
605
606typedef struct rdg_component
607{
608  int num;
609  VEC (int, heap) *vertices;
610} *rdgc;
611
612DEF_VEC_P (rdgc);
613DEF_VEC_ALLOC_P (rdgc, heap);
614
615DEF_VEC_P (bitmap);
616DEF_VEC_ALLOC_P (bitmap, heap);
617
618#endif  /* GCC_TREE_DATA_REF_H  */
619