1/* Definitions for computing resource usage of specific insns.
2   Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
3   2009 Free Software Foundation, Inc.
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 3, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING3.  If not see
19<http://www.gnu.org/licenses/>.  */
20
21#include "config.h"
22#include "system.h"
23#include "coretypes.h"
24#include "tm.h"
25#include "toplev.h"
26#include "rtl.h"
27#include "tm_p.h"
28#include "hard-reg-set.h"
29#include "function.h"
30#include "regs.h"
31#include "flags.h"
32#include "output.h"
33#include "resource.h"
34#include "except.h"
35#include "insn-attr.h"
36#include "params.h"
37#include "df.h"
38
39/* This structure is used to record liveness information at the targets or
40   fallthrough insns of branches.  We will most likely need the information
41   at targets again, so save them in a hash table rather than recomputing them
42   each time.  */
43
44struct target_info
45{
46  int uid;			/* INSN_UID of target.  */
47  struct target_info *next;	/* Next info for same hash bucket.  */
48  HARD_REG_SET live_regs;	/* Registers live at target.  */
49  int block;			/* Basic block number containing target.  */
50  int bb_tick;			/* Generation count of basic block info.  */
51};
52
53#define TARGET_HASH_PRIME 257
54
55/* Indicates what resources are required at the beginning of the epilogue.  */
56static struct resources start_of_epilogue_needs;
57
58/* Indicates what resources are required at function end.  */
59static struct resources end_of_function_needs;
60
61/* Define the hash table itself.  */
62static struct target_info **target_hash_table = NULL;
63
64/* For each basic block, we maintain a generation number of its basic
65   block info, which is updated each time we move an insn from the
66   target of a jump.  This is the generation number indexed by block
67   number.  */
68
69static int *bb_ticks;
70
71/* Marks registers possibly live at the current place being scanned by
72   mark_target_live_regs.  Also used by update_live_status.  */
73
74static HARD_REG_SET current_live_regs;
75
76/* Marks registers for which we have seen a REG_DEAD note but no assignment.
77   Also only used by the next two functions.  */
78
79static HARD_REG_SET pending_dead_regs;
80
81static void update_live_status (rtx, const_rtx, void *);
82static int find_basic_block (rtx, int);
83static rtx next_insn_no_annul (rtx);
84static rtx find_dead_or_set_registers (rtx, struct resources*,
85				       rtx*, int, struct resources,
86				       struct resources);
87
88/* Utility function called from mark_target_live_regs via note_stores.
89   It deadens any CLOBBERed registers and livens any SET registers.  */
90
91static void
92update_live_status (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
93{
94  int first_regno, last_regno;
95  int i;
96
97  if (!REG_P (dest)
98      && (GET_CODE (dest) != SUBREG || !REG_P (SUBREG_REG (dest))))
99    return;
100
101  if (GET_CODE (dest) == SUBREG)
102    {
103      first_regno = subreg_regno (dest);
104      last_regno = first_regno + subreg_nregs (dest);
105
106    }
107  else
108    {
109      first_regno = REGNO (dest);
110      last_regno = END_HARD_REGNO (dest);
111    }
112
113  if (GET_CODE (x) == CLOBBER)
114    for (i = first_regno; i < last_regno; i++)
115      CLEAR_HARD_REG_BIT (current_live_regs, i);
116  else
117    for (i = first_regno; i < last_regno; i++)
118      {
119	SET_HARD_REG_BIT (current_live_regs, i);
120	CLEAR_HARD_REG_BIT (pending_dead_regs, i);
121      }
122}
123
124/* Find the number of the basic block with correct live register
125   information that starts closest to INSN.  Return -1 if we couldn't
126   find such a basic block or the beginning is more than
127   SEARCH_LIMIT instructions before INSN.  Use SEARCH_LIMIT = -1 for
128   an unlimited search.
129
130   The delay slot filling code destroys the control-flow graph so,
131   instead of finding the basic block containing INSN, we search
132   backwards toward a BARRIER where the live register information is
133   correct.  */
134
135static int
136find_basic_block (rtx insn, int search_limit)
137{
138  /* Scan backwards to the previous BARRIER.  Then see if we can find a
139     label that starts a basic block.  Return the basic block number.  */
140  for (insn = prev_nonnote_insn (insn);
141       insn && !BARRIER_P (insn) && search_limit != 0;
142       insn = prev_nonnote_insn (insn), --search_limit)
143    ;
144
145  /* The closest BARRIER is too far away.  */
146  if (search_limit == 0)
147    return -1;
148
149  /* The start of the function.  */
150  else if (insn == 0)
151    return ENTRY_BLOCK_PTR->next_bb->index;
152
153  /* See if any of the upcoming CODE_LABELs start a basic block.  If we reach
154     anything other than a CODE_LABEL or note, we can't find this code.  */
155  for (insn = next_nonnote_insn (insn);
156       insn && LABEL_P (insn);
157       insn = next_nonnote_insn (insn))
158    if (BLOCK_FOR_INSN (insn))
159      return BLOCK_FOR_INSN (insn)->index;
160
161  return -1;
162}
163
164/* Similar to next_insn, but ignores insns in the delay slots of
165   an annulled branch.  */
166
167static rtx
168next_insn_no_annul (rtx insn)
169{
170  if (insn)
171    {
172      /* If INSN is an annulled branch, skip any insns from the target
173	 of the branch.  */
174      if (INSN_P (insn)
175	  && INSN_ANNULLED_BRANCH_P (insn)
176	  && NEXT_INSN (PREV_INSN (insn)) != insn)
177	{
178	  rtx next = NEXT_INSN (insn);
179	  enum rtx_code code = GET_CODE (next);
180
181	  while ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
182		 && INSN_FROM_TARGET_P (next))
183	    {
184	      insn = next;
185	      next = NEXT_INSN (insn);
186	      code = GET_CODE (next);
187	    }
188	}
189
190      insn = NEXT_INSN (insn);
191      if (insn && NONJUMP_INSN_P (insn)
192	  && GET_CODE (PATTERN (insn)) == SEQUENCE)
193	insn = XVECEXP (PATTERN (insn), 0, 0);
194    }
195
196  return insn;
197}
198
199/* Given X, some rtl, and RES, a pointer to a `struct resource', mark
200   which resources are referenced by the insn.  If INCLUDE_DELAYED_EFFECTS
201   is TRUE, resources used by the called routine will be included for
202   CALL_INSNs.  */
203
204void
205mark_referenced_resources (rtx x, struct resources *res,
206			   bool include_delayed_effects)
207{
208  enum rtx_code code = GET_CODE (x);
209  int i, j;
210  unsigned int r;
211  const char *format_ptr;
212
213  /* Handle leaf items for which we set resource flags.  Also, special-case
214     CALL, SET and CLOBBER operators.  */
215  switch (code)
216    {
217    case CONST:
218    case CONST_INT:
219    case CONST_DOUBLE:
220    case CONST_FIXED:
221    case CONST_VECTOR:
222    case PC:
223    case SYMBOL_REF:
224    case LABEL_REF:
225      return;
226
227    case SUBREG:
228      if (!REG_P (SUBREG_REG (x)))
229	mark_referenced_resources (SUBREG_REG (x), res, false);
230      else
231	{
232	  unsigned int regno = subreg_regno (x);
233	  unsigned int last_regno = regno + subreg_nregs (x);
234
235	  gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
236	  for (r = regno; r < last_regno; r++)
237	    SET_HARD_REG_BIT (res->regs, r);
238	}
239      return;
240
241    case REG:
242      gcc_assert (HARD_REGISTER_P (x));
243      add_to_hard_reg_set (&res->regs, GET_MODE (x), REGNO (x));
244      return;
245
246    case MEM:
247      /* If this memory shouldn't change, it really isn't referencing
248	 memory.  */
249      if (MEM_READONLY_P (x))
250	res->unch_memory = 1;
251      else
252	res->memory = 1;
253      res->volatil |= MEM_VOLATILE_P (x);
254
255      /* Mark registers used to access memory.  */
256      mark_referenced_resources (XEXP (x, 0), res, false);
257      return;
258
259    case CC0:
260      res->cc = 1;
261      return;
262
263    case UNSPEC_VOLATILE:
264    case TRAP_IF:
265    case ASM_INPUT:
266      /* Traditional asm's are always volatile.  */
267      res->volatil = 1;
268      break;
269
270    case ASM_OPERANDS:
271      res->volatil |= MEM_VOLATILE_P (x);
272
273      /* For all ASM_OPERANDS, we must traverse the vector of input operands.
274	 We can not just fall through here since then we would be confused
275	 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
276	 traditional asms unlike their normal usage.  */
277
278      for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
279	mark_referenced_resources (ASM_OPERANDS_INPUT (x, i), res, false);
280      return;
281
282    case CALL:
283      /* The first operand will be a (MEM (xxx)) but doesn't really reference
284	 memory.  The second operand may be referenced, though.  */
285      mark_referenced_resources (XEXP (XEXP (x, 0), 0), res, false);
286      mark_referenced_resources (XEXP (x, 1), res, false);
287      return;
288
289    case SET:
290      /* Usually, the first operand of SET is set, not referenced.  But
291	 registers used to access memory are referenced.  SET_DEST is
292	 also referenced if it is a ZERO_EXTRACT.  */
293
294      mark_referenced_resources (SET_SRC (x), res, false);
295
296      x = SET_DEST (x);
297      if (GET_CODE (x) == ZERO_EXTRACT
298	  || GET_CODE (x) == STRICT_LOW_PART)
299	mark_referenced_resources (x, res, false);
300      else if (GET_CODE (x) == SUBREG)
301	x = SUBREG_REG (x);
302      if (MEM_P (x))
303	mark_referenced_resources (XEXP (x, 0), res, false);
304      return;
305
306    case CLOBBER:
307      return;
308
309    case CALL_INSN:
310      if (include_delayed_effects)
311	{
312	  /* A CALL references memory, the frame pointer if it exists, the
313	     stack pointer, any global registers and any registers given in
314	     USE insns immediately in front of the CALL.
315
316	     However, we may have moved some of the parameter loading insns
317	     into the delay slot of this CALL.  If so, the USE's for them
318	     don't count and should be skipped.  */
319	  rtx insn = PREV_INSN (x);
320	  rtx sequence = 0;
321	  int seq_size = 0;
322	  int i;
323
324	  /* If we are part of a delay slot sequence, point at the SEQUENCE.  */
325	  if (NEXT_INSN (insn) != x)
326	    {
327	      sequence = PATTERN (NEXT_INSN (insn));
328	      seq_size = XVECLEN (sequence, 0);
329	      gcc_assert (GET_CODE (sequence) == SEQUENCE);
330	    }
331
332	  res->memory = 1;
333	  SET_HARD_REG_BIT (res->regs, STACK_POINTER_REGNUM);
334	  if (frame_pointer_needed)
335	    {
336	      SET_HARD_REG_BIT (res->regs, FRAME_POINTER_REGNUM);
337#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
338	      SET_HARD_REG_BIT (res->regs, HARD_FRAME_POINTER_REGNUM);
339#endif
340	    }
341
342	  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
343	    if (global_regs[i])
344	      SET_HARD_REG_BIT (res->regs, i);
345
346	  /* Check for a REG_SETJMP.  If it exists, then we must
347	     assume that this call can need any register.
348
349	     This is done to be more conservative about how we handle setjmp.
350	     We assume that they both use and set all registers.  Using all
351	     registers ensures that a register will not be considered dead
352	     just because it crosses a setjmp call.  A register should be
353	     considered dead only if the setjmp call returns nonzero.  */
354	  if (find_reg_note (x, REG_SETJMP, NULL))
355	    SET_HARD_REG_SET (res->regs);
356
357	  {
358	    rtx link;
359
360	    for (link = CALL_INSN_FUNCTION_USAGE (x);
361		 link;
362		 link = XEXP (link, 1))
363	      if (GET_CODE (XEXP (link, 0)) == USE)
364		{
365		  for (i = 1; i < seq_size; i++)
366		    {
367		      rtx slot_pat = PATTERN (XVECEXP (sequence, 0, i));
368		      if (GET_CODE (slot_pat) == SET
369			  && rtx_equal_p (SET_DEST (slot_pat),
370					  XEXP (XEXP (link, 0), 0)))
371			break;
372		    }
373		  if (i >= seq_size)
374		    mark_referenced_resources (XEXP (XEXP (link, 0), 0),
375					       res, false);
376		}
377	  }
378	}
379
380      /* ... fall through to other INSN processing ...  */
381
382    case INSN:
383    case JUMP_INSN:
384
385#ifdef INSN_REFERENCES_ARE_DELAYED
386      if (! include_delayed_effects
387	  && INSN_REFERENCES_ARE_DELAYED (x))
388	return;
389#endif
390
391      /* No special processing, just speed up.  */
392      mark_referenced_resources (PATTERN (x), res, include_delayed_effects);
393      return;
394
395    default:
396      break;
397    }
398
399  /* Process each sub-expression and flag what it needs.  */
400  format_ptr = GET_RTX_FORMAT (code);
401  for (i = 0; i < GET_RTX_LENGTH (code); i++)
402    switch (*format_ptr++)
403      {
404      case 'e':
405	mark_referenced_resources (XEXP (x, i), res, include_delayed_effects);
406	break;
407
408      case 'E':
409	for (j = 0; j < XVECLEN (x, i); j++)
410	  mark_referenced_resources (XVECEXP (x, i, j), res,
411				     include_delayed_effects);
412	break;
413      }
414}
415
416/* A subroutine of mark_target_live_regs.  Search forward from TARGET
417   looking for registers that are set before they are used.  These are dead.
418   Stop after passing a few conditional jumps, and/or a small
419   number of unconditional branches.  */
420
421static rtx
422find_dead_or_set_registers (rtx target, struct resources *res,
423			    rtx *jump_target, int jump_count,
424			    struct resources set, struct resources needed)
425{
426  HARD_REG_SET scratch;
427  rtx insn, next;
428  rtx jump_insn = 0;
429  int i;
430
431  for (insn = target; insn; insn = next)
432    {
433      rtx this_jump_insn = insn;
434
435      next = NEXT_INSN (insn);
436
437      /* If this instruction can throw an exception, then we don't
438	 know where we might end up next.  That means that we have to
439	 assume that whatever we have already marked as live really is
440	 live.  */
441      if (can_throw_internal (insn))
442	break;
443
444      switch (GET_CODE (insn))
445	{
446	case CODE_LABEL:
447	  /* After a label, any pending dead registers that weren't yet
448	     used can be made dead.  */
449	  AND_COMPL_HARD_REG_SET (pending_dead_regs, needed.regs);
450	  AND_COMPL_HARD_REG_SET (res->regs, pending_dead_regs);
451	  CLEAR_HARD_REG_SET (pending_dead_regs);
452
453	  continue;
454
455	case BARRIER:
456	case NOTE:
457	  continue;
458
459	case INSN:
460	  if (GET_CODE (PATTERN (insn)) == USE)
461	    {
462	      /* If INSN is a USE made by update_block, we care about the
463		 underlying insn.  Any registers set by the underlying insn
464		 are live since the insn is being done somewhere else.  */
465	      if (INSN_P (XEXP (PATTERN (insn), 0)))
466		mark_set_resources (XEXP (PATTERN (insn), 0), res, 0,
467				    MARK_SRC_DEST_CALL);
468
469	      /* All other USE insns are to be ignored.  */
470	      continue;
471	    }
472	  else if (GET_CODE (PATTERN (insn)) == CLOBBER)
473	    continue;
474	  else if (GET_CODE (PATTERN (insn)) == SEQUENCE)
475	    {
476	      /* An unconditional jump can be used to fill the delay slot
477		 of a call, so search for a JUMP_INSN in any position.  */
478	      for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
479		{
480		  this_jump_insn = XVECEXP (PATTERN (insn), 0, i);
481		  if (JUMP_P (this_jump_insn))
482		    break;
483		}
484	    }
485
486	default:
487	  break;
488	}
489
490      if (JUMP_P (this_jump_insn))
491	{
492	  if (jump_count++ < 10)
493	    {
494	      if (any_uncondjump_p (this_jump_insn)
495		  || GET_CODE (PATTERN (this_jump_insn)) == RETURN)
496		{
497		  next = JUMP_LABEL (this_jump_insn);
498		  if (jump_insn == 0)
499		    {
500		      jump_insn = insn;
501		      if (jump_target)
502			*jump_target = JUMP_LABEL (this_jump_insn);
503		    }
504		}
505	      else if (any_condjump_p (this_jump_insn))
506		{
507		  struct resources target_set, target_res;
508		  struct resources fallthrough_res;
509
510		  /* We can handle conditional branches here by following
511		     both paths, and then IOR the results of the two paths
512		     together, which will give us registers that are dead
513		     on both paths.  Since this is expensive, we give it
514		     a much higher cost than unconditional branches.  The
515		     cost was chosen so that we will follow at most 1
516		     conditional branch.  */
517
518		  jump_count += 4;
519		  if (jump_count >= 10)
520		    break;
521
522		  mark_referenced_resources (insn, &needed, true);
523
524		  /* For an annulled branch, mark_set_resources ignores slots
525		     filled by instructions from the target.  This is correct
526		     if the branch is not taken.  Since we are following both
527		     paths from the branch, we must also compute correct info
528		     if the branch is taken.  We do this by inverting all of
529		     the INSN_FROM_TARGET_P bits, calling mark_set_resources,
530		     and then inverting the INSN_FROM_TARGET_P bits again.  */
531
532		  if (GET_CODE (PATTERN (insn)) == SEQUENCE
533		      && INSN_ANNULLED_BRANCH_P (this_jump_insn))
534		    {
535		      for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
536			INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i))
537			  = ! INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i));
538
539		      target_set = set;
540		      mark_set_resources (insn, &target_set, 0,
541					  MARK_SRC_DEST_CALL);
542
543		      for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
544			INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i))
545			  = ! INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i));
546
547		      mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
548		    }
549		  else
550		    {
551		      mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
552		      target_set = set;
553		    }
554
555		  target_res = *res;
556		  COPY_HARD_REG_SET (scratch, target_set.regs);
557		  AND_COMPL_HARD_REG_SET (scratch, needed.regs);
558		  AND_COMPL_HARD_REG_SET (target_res.regs, scratch);
559
560		  fallthrough_res = *res;
561		  COPY_HARD_REG_SET (scratch, set.regs);
562		  AND_COMPL_HARD_REG_SET (scratch, needed.regs);
563		  AND_COMPL_HARD_REG_SET (fallthrough_res.regs, scratch);
564
565		  find_dead_or_set_registers (JUMP_LABEL (this_jump_insn),
566					      &target_res, 0, jump_count,
567					      target_set, needed);
568		  find_dead_or_set_registers (next,
569					      &fallthrough_res, 0, jump_count,
570					      set, needed);
571		  IOR_HARD_REG_SET (fallthrough_res.regs, target_res.regs);
572		  AND_HARD_REG_SET (res->regs, fallthrough_res.regs);
573		  break;
574		}
575	      else
576		break;
577	    }
578	  else
579	    {
580	      /* Don't try this optimization if we expired our jump count
581		 above, since that would mean there may be an infinite loop
582		 in the function being compiled.  */
583	      jump_insn = 0;
584	      break;
585	    }
586	}
587
588      mark_referenced_resources (insn, &needed, true);
589      mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
590
591      COPY_HARD_REG_SET (scratch, set.regs);
592      AND_COMPL_HARD_REG_SET (scratch, needed.regs);
593      AND_COMPL_HARD_REG_SET (res->regs, scratch);
594    }
595
596  return jump_insn;
597}
598
599/* Given X, a part of an insn, and a pointer to a `struct resource',
600   RES, indicate which resources are modified by the insn. If
601   MARK_TYPE is MARK_SRC_DEST_CALL, also mark resources potentially
602   set by the called routine.
603
604   If IN_DEST is nonzero, it means we are inside a SET.  Otherwise,
605   objects are being referenced instead of set.
606
607   We never mark the insn as modifying the condition code unless it explicitly
608   SETs CC0 even though this is not totally correct.  The reason for this is
609   that we require a SET of CC0 to immediately precede the reference to CC0.
610   So if some other insn sets CC0 as a side-effect, we know it cannot affect
611   our computation and thus may be placed in a delay slot.  */
612
613void
614mark_set_resources (rtx x, struct resources *res, int in_dest,
615		    enum mark_resource_type mark_type)
616{
617  enum rtx_code code;
618  int i, j;
619  unsigned int r;
620  const char *format_ptr;
621
622 restart:
623
624  code = GET_CODE (x);
625
626  switch (code)
627    {
628    case NOTE:
629    case BARRIER:
630    case CODE_LABEL:
631    case USE:
632    case CONST_INT:
633    case CONST_DOUBLE:
634    case CONST_FIXED:
635    case CONST_VECTOR:
636    case LABEL_REF:
637    case SYMBOL_REF:
638    case CONST:
639    case PC:
640      /* These don't set any resources.  */
641      return;
642
643    case CC0:
644      if (in_dest)
645	res->cc = 1;
646      return;
647
648    case CALL_INSN:
649      /* Called routine modifies the condition code, memory, any registers
650	 that aren't saved across calls, global registers and anything
651	 explicitly CLOBBERed immediately after the CALL_INSN.  */
652
653      if (mark_type == MARK_SRC_DEST_CALL)
654	{
655	  rtx link;
656
657	  res->cc = res->memory = 1;
658
659	  IOR_HARD_REG_SET (res->regs, regs_invalidated_by_call);
660
661	  for (link = CALL_INSN_FUNCTION_USAGE (x);
662	       link; link = XEXP (link, 1))
663	    if (GET_CODE (XEXP (link, 0)) == CLOBBER)
664	      mark_set_resources (SET_DEST (XEXP (link, 0)), res, 1,
665				  MARK_SRC_DEST);
666
667	  /* Check for a REG_SETJMP.  If it exists, then we must
668	     assume that this call can clobber any register.  */
669	  if (find_reg_note (x, REG_SETJMP, NULL))
670	    SET_HARD_REG_SET (res->regs);
671	}
672
673      /* ... and also what its RTL says it modifies, if anything.  */
674
675    case JUMP_INSN:
676    case INSN:
677
678	/* An insn consisting of just a CLOBBER (or USE) is just for flow
679	   and doesn't actually do anything, so we ignore it.  */
680
681#ifdef INSN_SETS_ARE_DELAYED
682      if (mark_type != MARK_SRC_DEST_CALL
683	  && INSN_SETS_ARE_DELAYED (x))
684	return;
685#endif
686
687      x = PATTERN (x);
688      if (GET_CODE (x) != USE && GET_CODE (x) != CLOBBER)
689	goto restart;
690      return;
691
692    case SET:
693      /* If the source of a SET is a CALL, this is actually done by
694	 the called routine.  So only include it if we are to include the
695	 effects of the calling routine.  */
696
697      mark_set_resources (SET_DEST (x), res,
698			  (mark_type == MARK_SRC_DEST_CALL
699			   || GET_CODE (SET_SRC (x)) != CALL),
700			  mark_type);
701
702      mark_set_resources (SET_SRC (x), res, 0, MARK_SRC_DEST);
703      return;
704
705    case CLOBBER:
706      mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
707      return;
708
709    case SEQUENCE:
710      for (i = 0; i < XVECLEN (x, 0); i++)
711	if (! (INSN_ANNULLED_BRANCH_P (XVECEXP (x, 0, 0))
712	       && INSN_FROM_TARGET_P (XVECEXP (x, 0, i))))
713	  mark_set_resources (XVECEXP (x, 0, i), res, 0, mark_type);
714      return;
715
716    case POST_INC:
717    case PRE_INC:
718    case POST_DEC:
719    case PRE_DEC:
720      mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
721      return;
722
723    case PRE_MODIFY:
724    case POST_MODIFY:
725      mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
726      mark_set_resources (XEXP (XEXP (x, 1), 0), res, 0, MARK_SRC_DEST);
727      mark_set_resources (XEXP (XEXP (x, 1), 1), res, 0, MARK_SRC_DEST);
728      return;
729
730    case SIGN_EXTRACT:
731    case ZERO_EXTRACT:
732      mark_set_resources (XEXP (x, 0), res, in_dest, MARK_SRC_DEST);
733      mark_set_resources (XEXP (x, 1), res, 0, MARK_SRC_DEST);
734      mark_set_resources (XEXP (x, 2), res, 0, MARK_SRC_DEST);
735      return;
736
737    case MEM:
738      if (in_dest)
739	{
740	  res->memory = 1;
741	  res->unch_memory |= MEM_READONLY_P (x);
742	  res->volatil |= MEM_VOLATILE_P (x);
743	}
744
745      mark_set_resources (XEXP (x, 0), res, 0, MARK_SRC_DEST);
746      return;
747
748    case SUBREG:
749      if (in_dest)
750	{
751	  if (!REG_P (SUBREG_REG (x)))
752	    mark_set_resources (SUBREG_REG (x), res, in_dest, mark_type);
753	  else
754	    {
755	      unsigned int regno = subreg_regno (x);
756	      unsigned int last_regno = regno + subreg_nregs (x);
757
758	      gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
759	      for (r = regno; r < last_regno; r++)
760		SET_HARD_REG_BIT (res->regs, r);
761	    }
762	}
763      return;
764
765    case REG:
766      if (in_dest)
767	{
768	  gcc_assert (HARD_REGISTER_P (x));
769	  add_to_hard_reg_set (&res->regs, GET_MODE (x), REGNO (x));
770	}
771      return;
772
773    case UNSPEC_VOLATILE:
774    case ASM_INPUT:
775      /* Traditional asm's are always volatile.  */
776      res->volatil = 1;
777      return;
778
779    case TRAP_IF:
780      res->volatil = 1;
781      break;
782
783    case ASM_OPERANDS:
784      res->volatil |= MEM_VOLATILE_P (x);
785
786      /* For all ASM_OPERANDS, we must traverse the vector of input operands.
787	 We can not just fall through here since then we would be confused
788	 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
789	 traditional asms unlike their normal usage.  */
790
791      for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
792	mark_set_resources (ASM_OPERANDS_INPUT (x, i), res, in_dest,
793			    MARK_SRC_DEST);
794      return;
795
796    default:
797      break;
798    }
799
800  /* Process each sub-expression and flag what it needs.  */
801  format_ptr = GET_RTX_FORMAT (code);
802  for (i = 0; i < GET_RTX_LENGTH (code); i++)
803    switch (*format_ptr++)
804      {
805      case 'e':
806	mark_set_resources (XEXP (x, i), res, in_dest, mark_type);
807	break;
808
809      case 'E':
810	for (j = 0; j < XVECLEN (x, i); j++)
811	  mark_set_resources (XVECEXP (x, i, j), res, in_dest, mark_type);
812	break;
813      }
814}
815
816/* Return TRUE if INSN is a return, possibly with a filled delay slot.  */
817
818static bool
819return_insn_p (const_rtx insn)
820{
821  if (JUMP_P (insn) && GET_CODE (PATTERN (insn)) == RETURN)
822    return true;
823
824  if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
825    return return_insn_p (XVECEXP (PATTERN (insn), 0, 0));
826
827  return false;
828}
829
830/* Set the resources that are live at TARGET.
831
832   If TARGET is zero, we refer to the end of the current function and can
833   return our precomputed value.
834
835   Otherwise, we try to find out what is live by consulting the basic block
836   information.  This is tricky, because we must consider the actions of
837   reload and jump optimization, which occur after the basic block information
838   has been computed.
839
840   Accordingly, we proceed as follows::
841
842   We find the previous BARRIER and look at all immediately following labels
843   (with no intervening active insns) to see if any of them start a basic
844   block.  If we hit the start of the function first, we use block 0.
845
846   Once we have found a basic block and a corresponding first insn, we can
847   accurately compute the live status (by starting at a label following a
848   BARRIER, we are immune to actions taken by reload and jump.)  Then we
849   scan all insns between that point and our target.  For each CLOBBER (or
850   for call-clobbered regs when we pass a CALL_INSN), mark the appropriate
851   registers are dead.  For a SET, mark them as live.
852
853   We have to be careful when using REG_DEAD notes because they are not
854   updated by such things as find_equiv_reg.  So keep track of registers
855   marked as dead that haven't been assigned to, and mark them dead at the
856   next CODE_LABEL since reload and jump won't propagate values across labels.
857
858   If we cannot find the start of a basic block (should be a very rare
859   case, if it can happen at all), mark everything as potentially live.
860
861   Next, scan forward from TARGET looking for things set or clobbered
862   before they are used.  These are not live.
863
864   Because we can be called many times on the same target, save our results
865   in a hash table indexed by INSN_UID.  This is only done if the function
866   init_resource_info () was invoked before we are called.  */
867
868void
869mark_target_live_regs (rtx insns, rtx target, struct resources *res)
870{
871  int b = -1;
872  unsigned int i;
873  struct target_info *tinfo = NULL;
874  rtx insn;
875  rtx jump_insn = 0;
876  rtx jump_target;
877  HARD_REG_SET scratch;
878  struct resources set, needed;
879
880  /* Handle end of function.  */
881  if (target == 0)
882    {
883      *res = end_of_function_needs;
884      return;
885    }
886
887  /* Handle return insn.  */
888  else if (return_insn_p (target))
889    {
890      *res = end_of_function_needs;
891      mark_referenced_resources (target, res, false);
892      return;
893    }
894
895  /* We have to assume memory is needed, but the CC isn't.  */
896  res->memory = 1;
897  res->volatil = res->unch_memory = 0;
898  res->cc = 0;
899
900  /* See if we have computed this value already.  */
901  if (target_hash_table != NULL)
902    {
903      for (tinfo = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
904	   tinfo; tinfo = tinfo->next)
905	if (tinfo->uid == INSN_UID (target))
906	  break;
907
908      /* Start by getting the basic block number.  If we have saved
909	 information, we can get it from there unless the insn at the
910	 start of the basic block has been deleted.  */
911      if (tinfo && tinfo->block != -1
912	  && ! INSN_DELETED_P (BB_HEAD (BASIC_BLOCK (tinfo->block))))
913	b = tinfo->block;
914    }
915
916  if (b == -1)
917    b = find_basic_block (target, MAX_DELAY_SLOT_LIVE_SEARCH);
918
919  if (target_hash_table != NULL)
920    {
921      if (tinfo)
922	{
923	  /* If the information is up-to-date, use it.  Otherwise, we will
924	     update it below.  */
925	  if (b == tinfo->block && b != -1 && tinfo->bb_tick == bb_ticks[b])
926	    {
927	      COPY_HARD_REG_SET (res->regs, tinfo->live_regs);
928	      return;
929	    }
930	}
931      else
932	{
933	  /* Allocate a place to put our results and chain it into the
934	     hash table.  */
935	  tinfo = XNEW (struct target_info);
936	  tinfo->uid = INSN_UID (target);
937	  tinfo->block = b;
938	  tinfo->next
939	    = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
940	  target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME] = tinfo;
941	}
942    }
943
944  CLEAR_HARD_REG_SET (pending_dead_regs);
945
946  /* If we found a basic block, get the live registers from it and update
947     them with anything set or killed between its start and the insn before
948     TARGET; this custom life analysis is really about registers so we need
949     to use the LR problem.  Otherwise, we must assume everything is live.  */
950  if (b != -1)
951    {
952      regset regs_live = DF_LR_IN (BASIC_BLOCK (b));
953      rtx start_insn, stop_insn;
954
955      /* Compute hard regs live at start of block.  */
956      REG_SET_TO_HARD_REG_SET (current_live_regs, regs_live);
957
958      /* Get starting and ending insn, handling the case where each might
959	 be a SEQUENCE.  */
960      start_insn = (b == ENTRY_BLOCK_PTR->next_bb->index ?
961		    insns : BB_HEAD (BASIC_BLOCK (b)));
962      stop_insn = target;
963
964      if (NONJUMP_INSN_P (start_insn)
965	  && GET_CODE (PATTERN (start_insn)) == SEQUENCE)
966	start_insn = XVECEXP (PATTERN (start_insn), 0, 0);
967
968      if (NONJUMP_INSN_P (stop_insn)
969	  && GET_CODE (PATTERN (stop_insn)) == SEQUENCE)
970	stop_insn = next_insn (PREV_INSN (stop_insn));
971
972      for (insn = start_insn; insn != stop_insn;
973	   insn = next_insn_no_annul (insn))
974	{
975	  rtx link;
976	  rtx real_insn = insn;
977	  enum rtx_code code = GET_CODE (insn);
978
979	  if (DEBUG_INSN_P (insn))
980	    continue;
981
982	  /* If this insn is from the target of a branch, it isn't going to
983	     be used in the sequel.  If it is used in both cases, this
984	     test will not be true.  */
985	  if ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
986	      && INSN_FROM_TARGET_P (insn))
987	    continue;
988
989	  /* If this insn is a USE made by update_block, we care about the
990	     underlying insn.  */
991	  if (code == INSN && GET_CODE (PATTERN (insn)) == USE
992	      && INSN_P (XEXP (PATTERN (insn), 0)))
993	      real_insn = XEXP (PATTERN (insn), 0);
994
995	  if (CALL_P (real_insn))
996	    {
997	      /* CALL clobbers all call-used regs that aren't fixed except
998		 sp, ap, and fp.  Do this before setting the result of the
999		 call live.  */
1000	      AND_COMPL_HARD_REG_SET (current_live_regs,
1001				      regs_invalidated_by_call);
1002
1003	      /* A CALL_INSN sets any global register live, since it may
1004		 have been modified by the call.  */
1005	      for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1006		if (global_regs[i])
1007		  SET_HARD_REG_BIT (current_live_regs, i);
1008	    }
1009
1010	  /* Mark anything killed in an insn to be deadened at the next
1011	     label.  Ignore USE insns; the only REG_DEAD notes will be for
1012	     parameters.  But they might be early.  A CALL_INSN will usually
1013	     clobber registers used for parameters.  It isn't worth bothering
1014	     with the unlikely case when it won't.  */
1015	  if ((NONJUMP_INSN_P (real_insn)
1016	       && GET_CODE (PATTERN (real_insn)) != USE
1017	       && GET_CODE (PATTERN (real_insn)) != CLOBBER)
1018	      || JUMP_P (real_insn)
1019	      || CALL_P (real_insn))
1020	    {
1021	      for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
1022		if (REG_NOTE_KIND (link) == REG_DEAD
1023		    && REG_P (XEXP (link, 0))
1024		    && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
1025		  add_to_hard_reg_set (&pending_dead_regs,
1026				      GET_MODE (XEXP (link, 0)),
1027				      REGNO (XEXP (link, 0)));
1028
1029	      note_stores (PATTERN (real_insn), update_live_status, NULL);
1030
1031	      /* If any registers were unused after this insn, kill them.
1032		 These notes will always be accurate.  */
1033	      for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
1034		if (REG_NOTE_KIND (link) == REG_UNUSED
1035		    && REG_P (XEXP (link, 0))
1036		    && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
1037		  remove_from_hard_reg_set (&current_live_regs,
1038					   GET_MODE (XEXP (link, 0)),
1039					   REGNO (XEXP (link, 0)));
1040	    }
1041
1042	  else if (LABEL_P (real_insn))
1043	    {
1044	      basic_block bb;
1045
1046	      /* A label clobbers the pending dead registers since neither
1047		 reload nor jump will propagate a value across a label.  */
1048	      AND_COMPL_HARD_REG_SET (current_live_regs, pending_dead_regs);
1049	      CLEAR_HARD_REG_SET (pending_dead_regs);
1050
1051	      /* We must conservatively assume that all registers that used
1052		 to be live here still are.  The fallthrough edge may have
1053		 left a live register uninitialized.  */
1054	      bb = BLOCK_FOR_INSN (real_insn);
1055	      if (bb)
1056		{
1057		  HARD_REG_SET extra_live;
1058
1059		  REG_SET_TO_HARD_REG_SET (extra_live, DF_LR_IN (bb));
1060		  IOR_HARD_REG_SET (current_live_regs, extra_live);
1061		}
1062	    }
1063
1064	  /* The beginning of the epilogue corresponds to the end of the
1065	     RTL chain when there are no epilogue insns.  Certain resources
1066	     are implicitly required at that point.  */
1067	  else if (NOTE_P (real_insn)
1068		   && NOTE_KIND (real_insn) == NOTE_INSN_EPILOGUE_BEG)
1069	    IOR_HARD_REG_SET (current_live_regs, start_of_epilogue_needs.regs);
1070	}
1071
1072      COPY_HARD_REG_SET (res->regs, current_live_regs);
1073      if (tinfo != NULL)
1074	{
1075	  tinfo->block = b;
1076	  tinfo->bb_tick = bb_ticks[b];
1077	}
1078    }
1079  else
1080    /* We didn't find the start of a basic block.  Assume everything
1081       in use.  This should happen only extremely rarely.  */
1082    SET_HARD_REG_SET (res->regs);
1083
1084  CLEAR_RESOURCE (&set);
1085  CLEAR_RESOURCE (&needed);
1086
1087  jump_insn = find_dead_or_set_registers (target, res, &jump_target, 0,
1088					  set, needed);
1089
1090  /* If we hit an unconditional branch, we have another way of finding out
1091     what is live: we can see what is live at the branch target and include
1092     anything used but not set before the branch.  We add the live
1093     resources found using the test below to those found until now.  */
1094
1095  if (jump_insn)
1096    {
1097      struct resources new_resources;
1098      rtx stop_insn = next_active_insn (jump_insn);
1099
1100      mark_target_live_regs (insns, next_active_insn (jump_target),
1101			     &new_resources);
1102      CLEAR_RESOURCE (&set);
1103      CLEAR_RESOURCE (&needed);
1104
1105      /* Include JUMP_INSN in the needed registers.  */
1106      for (insn = target; insn != stop_insn; insn = next_active_insn (insn))
1107	{
1108	  mark_referenced_resources (insn, &needed, true);
1109
1110	  COPY_HARD_REG_SET (scratch, needed.regs);
1111	  AND_COMPL_HARD_REG_SET (scratch, set.regs);
1112	  IOR_HARD_REG_SET (new_resources.regs, scratch);
1113
1114	  mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
1115	}
1116
1117      IOR_HARD_REG_SET (res->regs, new_resources.regs);
1118    }
1119
1120  if (tinfo != NULL)
1121    {
1122      COPY_HARD_REG_SET (tinfo->live_regs, res->regs);
1123    }
1124}
1125
1126/* Initialize the resources required by mark_target_live_regs ().
1127   This should be invoked before the first call to mark_target_live_regs.  */
1128
1129void
1130init_resource_info (rtx epilogue_insn)
1131{
1132  int i;
1133  basic_block bb;
1134
1135  /* Indicate what resources are required to be valid at the end of the current
1136     function.  The condition code never is and memory always is.  If the
1137     frame pointer is needed, it is and so is the stack pointer unless
1138     EXIT_IGNORE_STACK is nonzero.  If the frame pointer is not needed, the
1139     stack pointer is.  Registers used to return the function value are
1140     needed.  Registers holding global variables are needed.  */
1141
1142  end_of_function_needs.cc = 0;
1143  end_of_function_needs.memory = 1;
1144  end_of_function_needs.unch_memory = 0;
1145  CLEAR_HARD_REG_SET (end_of_function_needs.regs);
1146
1147  if (frame_pointer_needed)
1148    {
1149      SET_HARD_REG_BIT (end_of_function_needs.regs, FRAME_POINTER_REGNUM);
1150#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1151      SET_HARD_REG_BIT (end_of_function_needs.regs, HARD_FRAME_POINTER_REGNUM);
1152#endif
1153      if (! EXIT_IGNORE_STACK
1154	  || current_function_sp_is_unchanging)
1155	SET_HARD_REG_BIT (end_of_function_needs.regs, STACK_POINTER_REGNUM);
1156    }
1157  else
1158    SET_HARD_REG_BIT (end_of_function_needs.regs, STACK_POINTER_REGNUM);
1159
1160  if (crtl->return_rtx != 0)
1161    mark_referenced_resources (crtl->return_rtx,
1162			       &end_of_function_needs, true);
1163
1164  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1165    if (global_regs[i]
1166#ifdef EPILOGUE_USES
1167	|| EPILOGUE_USES (i)
1168#endif
1169	)
1170      SET_HARD_REG_BIT (end_of_function_needs.regs, i);
1171
1172  /* The registers required to be live at the end of the function are
1173     represented in the flow information as being dead just prior to
1174     reaching the end of the function.  For example, the return of a value
1175     might be represented by a USE of the return register immediately
1176     followed by an unconditional jump to the return label where the
1177     return label is the end of the RTL chain.  The end of the RTL chain
1178     is then taken to mean that the return register is live.
1179
1180     This sequence is no longer maintained when epilogue instructions are
1181     added to the RTL chain.  To reconstruct the original meaning, the
1182     start of the epilogue (NOTE_INSN_EPILOGUE_BEG) is regarded as the
1183     point where these registers become live (start_of_epilogue_needs).
1184     If epilogue instructions are present, the registers set by those
1185     instructions won't have been processed by flow.  Thus, those
1186     registers are additionally required at the end of the RTL chain
1187     (end_of_function_needs).  */
1188
1189  start_of_epilogue_needs = end_of_function_needs;
1190
1191  while ((epilogue_insn = next_nonnote_insn (epilogue_insn)))
1192    {
1193      mark_set_resources (epilogue_insn, &end_of_function_needs, 0,
1194			  MARK_SRC_DEST_CALL);
1195      if (return_insn_p (epilogue_insn))
1196	break;
1197    }
1198
1199  /* Allocate and initialize the tables used by mark_target_live_regs.  */
1200  target_hash_table = XCNEWVEC (struct target_info *, TARGET_HASH_PRIME);
1201  bb_ticks = XCNEWVEC (int, last_basic_block);
1202
1203  /* Set the BLOCK_FOR_INSN of each label that starts a basic block.  */
1204  FOR_EACH_BB (bb)
1205    if (LABEL_P (BB_HEAD (bb)))
1206      BLOCK_FOR_INSN (BB_HEAD (bb)) = bb;
1207}
1208
1209/* Free up the resources allocated to mark_target_live_regs ().  This
1210   should be invoked after the last call to mark_target_live_regs ().  */
1211
1212void
1213free_resource_info (void)
1214{
1215  basic_block bb;
1216
1217  if (target_hash_table != NULL)
1218    {
1219      int i;
1220
1221      for (i = 0; i < TARGET_HASH_PRIME; ++i)
1222	{
1223	  struct target_info *ti = target_hash_table[i];
1224
1225	  while (ti)
1226	    {
1227	      struct target_info *next = ti->next;
1228	      free (ti);
1229	      ti = next;
1230	    }
1231	}
1232
1233      free (target_hash_table);
1234      target_hash_table = NULL;
1235    }
1236
1237  if (bb_ticks != NULL)
1238    {
1239      free (bb_ticks);
1240      bb_ticks = NULL;
1241    }
1242
1243  FOR_EACH_BB (bb)
1244    if (LABEL_P (BB_HEAD (bb)))
1245      BLOCK_FOR_INSN (BB_HEAD (bb)) = NULL;
1246}
1247
1248/* Clear any hashed information that we have stored for INSN.  */
1249
1250void
1251clear_hashed_info_for_insn (rtx insn)
1252{
1253  struct target_info *tinfo;
1254
1255  if (target_hash_table != NULL)
1256    {
1257      for (tinfo = target_hash_table[INSN_UID (insn) % TARGET_HASH_PRIME];
1258	   tinfo; tinfo = tinfo->next)
1259	if (tinfo->uid == INSN_UID (insn))
1260	  break;
1261
1262      if (tinfo)
1263	tinfo->block = -1;
1264    }
1265}
1266
1267/* Increment the tick count for the basic block that contains INSN.  */
1268
1269void
1270incr_ticks_for_insn (rtx insn)
1271{
1272  int b = find_basic_block (insn, MAX_DELAY_SLOT_LIVE_SEARCH);
1273
1274  if (b != -1)
1275    bb_ticks[b]++;
1276}
1277
1278/* Add TRIAL to the set of resources used at the end of the current
1279   function.  */
1280void
1281mark_end_of_function_resources (rtx trial, bool include_delayed_effects)
1282{
1283  mark_referenced_resources (trial, &end_of_function_needs,
1284			     include_delayed_effects);
1285}
1286