1/* IRA processing allocno lives to build allocno live ranges.
2   Copyright (C) 2006, 2007, 2008, 2009, 2010
3   Free Software Foundation, Inc.
4   Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 3, or (at your option) any later
11version.
12
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16for more details.
17
18You should have received a copy of the GNU General Public License
19along with GCC; see the file COPYING3.  If not see
20<http://www.gnu.org/licenses/>.  */
21
22#include "config.h"
23#include "system.h"
24#include "coretypes.h"
25#include "tm.h"
26#include "regs.h"
27#include "rtl.h"
28#include "tm_p.h"
29#include "target.h"
30#include "flags.h"
31#include "except.h"
32#include "hard-reg-set.h"
33#include "basic-block.h"
34#include "insn-config.h"
35#include "recog.h"
36#include "toplev.h"
37#include "params.h"
38#include "df.h"
39#include "sparseset.h"
40#include "ira-int.h"
41
42/* The code in this file is similar to one in global but the code
43   works on the allocno basis and creates live ranges instead of
44   pseudo-register conflicts.  */
45
46/* Program points are enumerated by numbers from range
47   0..IRA_MAX_POINT-1.  There are approximately two times more program
48   points than insns.  Program points are places in the program where
49   liveness info can be changed.  In most general case (there are more
50   complicated cases too) some program points correspond to places
51   where input operand dies and other ones correspond to places where
52   output operands are born.  */
53int ira_max_point;
54
55/* Arrays of size IRA_MAX_POINT mapping a program point to the allocno
56   live ranges with given start/finish point.  */
57allocno_live_range_t *ira_start_point_ranges, *ira_finish_point_ranges;
58
59/* Number of the current program point.  */
60static int curr_point;
61
62/* Point where register pressure excess started or -1 if there is no
63   register pressure excess.  Excess pressure for a register class at
64   some point means that there are more allocnos of given register
65   class living at the point than number of hard-registers of the
66   class available for the allocation.  It is defined only for cover
67   classes.  */
68static int high_pressure_start_point[N_REG_CLASSES];
69
70/* Allocnos live at current point in the scan.  */
71static sparseset allocnos_live;
72
73/* Set of hard regs (except eliminable ones) currently live.  */
74static HARD_REG_SET hard_regs_live;
75
76/* The loop tree node corresponding to the current basic block.  */
77static ira_loop_tree_node_t curr_bb_node;
78
79/* The number of the last processed call.  */
80static int last_call_num;
81/* The number of last call at which given allocno was saved.  */
82static int *allocno_saved_at_call;
83
84/* The function processing birth of register REGNO.  It updates living
85   hard regs and conflict hard regs for living allocnos or starts a
86   new live range for the allocno corresponding to REGNO if it is
87   necessary.  */
88static void
89make_regno_born (int regno)
90{
91  unsigned int i;
92  ira_allocno_t a;
93  allocno_live_range_t p;
94
95  if (regno < FIRST_PSEUDO_REGISTER)
96    {
97      SET_HARD_REG_BIT (hard_regs_live, regno);
98      EXECUTE_IF_SET_IN_SPARSESET (allocnos_live, i)
99        {
100	  SET_HARD_REG_BIT (ALLOCNO_CONFLICT_HARD_REGS (ira_allocnos[i]),
101			    regno);
102	  SET_HARD_REG_BIT (ALLOCNO_TOTAL_CONFLICT_HARD_REGS (ira_allocnos[i]),
103			    regno);
104	}
105      return;
106    }
107  a = ira_curr_regno_allocno_map[regno];
108  if (a == NULL)
109    return;
110  if ((p = ALLOCNO_LIVE_RANGES (a)) == NULL
111      || (p->finish != curr_point && p->finish + 1 != curr_point))
112    ALLOCNO_LIVE_RANGES (a)
113      = ira_create_allocno_live_range (a, curr_point, -1,
114				       ALLOCNO_LIVE_RANGES (a));
115}
116
117/* Update ALLOCNO_EXCESS_PRESSURE_POINTS_NUM for allocno A.  */
118static void
119update_allocno_pressure_excess_length (ira_allocno_t a)
120{
121  int start, i;
122  enum reg_class cover_class, cl;
123  allocno_live_range_t p;
124
125  cover_class = ALLOCNO_COVER_CLASS (a);
126  for (i = 0;
127       (cl = ira_reg_class_super_classes[cover_class][i]) != LIM_REG_CLASSES;
128       i++)
129    {
130      if (high_pressure_start_point[cl] < 0)
131	continue;
132      p = ALLOCNO_LIVE_RANGES (a);
133      ira_assert (p != NULL);
134      start = (high_pressure_start_point[cl] > p->start
135	       ? high_pressure_start_point[cl] : p->start);
136      ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a) += curr_point - start + 1;
137    }
138}
139
140/* Process the death of register REGNO.  This updates hard_regs_live
141   or finishes the current live range for the allocno corresponding to
142   REGNO.  */
143static void
144make_regno_dead (int regno)
145{
146  ira_allocno_t a;
147  allocno_live_range_t p;
148
149  if (regno < FIRST_PSEUDO_REGISTER)
150    {
151      CLEAR_HARD_REG_BIT (hard_regs_live, regno);
152      return;
153    }
154  a = ira_curr_regno_allocno_map[regno];
155  if (a == NULL)
156    return;
157  p = ALLOCNO_LIVE_RANGES (a);
158  ira_assert (p != NULL);
159  p->finish = curr_point;
160  update_allocno_pressure_excess_length (a);
161}
162
163/* The current register pressures for each cover class for the current
164   basic block.  */
165static int curr_reg_pressure[N_REG_CLASSES];
166
167/* Mark allocno A as currently living and update current register
168   pressure, maximal register pressure for the current BB, start point
169   of the register pressure excess, and conflicting hard registers of
170   A.  */
171static void
172set_allocno_live (ira_allocno_t a)
173{
174  int i;
175  enum reg_class cover_class, cl;
176
177  /* Invalidate because it is referenced.  */
178  allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
179  if (sparseset_bit_p (allocnos_live, ALLOCNO_NUM (a)))
180    return;
181  sparseset_set_bit (allocnos_live, ALLOCNO_NUM (a));
182  IOR_HARD_REG_SET (ALLOCNO_CONFLICT_HARD_REGS (a), hard_regs_live);
183  IOR_HARD_REG_SET (ALLOCNO_TOTAL_CONFLICT_HARD_REGS (a), hard_regs_live);
184  cover_class = ALLOCNO_COVER_CLASS (a);
185  for (i = 0;
186       (cl = ira_reg_class_super_classes[cover_class][i]) != LIM_REG_CLASSES;
187       i++)
188    {
189      curr_reg_pressure[cl] += ira_reg_class_nregs[cl][ALLOCNO_MODE (a)];
190      if (high_pressure_start_point[cl] < 0
191	  && (curr_reg_pressure[cl] > ira_available_class_regs[cl]))
192	high_pressure_start_point[cl] = curr_point;
193      if (curr_bb_node->reg_pressure[cl] < curr_reg_pressure[cl])
194	curr_bb_node->reg_pressure[cl] = curr_reg_pressure[cl];
195    }
196}
197
198/* Mark allocno A as currently not living and update current register
199   pressure, start point of the register pressure excess, and register
200   pressure excess length for living allocnos.  */
201static void
202clear_allocno_live (ira_allocno_t a)
203{
204  int i;
205  unsigned int j;
206  enum reg_class cover_class, cl;
207  bool set_p;
208
209  /* Invalidate because it is referenced.  */
210  allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
211  if (sparseset_bit_p (allocnos_live, ALLOCNO_NUM (a)))
212    {
213      cover_class = ALLOCNO_COVER_CLASS (a);
214      set_p = false;
215      for (i = 0;
216	   (cl = ira_reg_class_super_classes[cover_class][i])
217	     != LIM_REG_CLASSES;
218	   i++)
219	{
220	  curr_reg_pressure[cl] -= ira_reg_class_nregs[cl][ALLOCNO_MODE (a)];
221	  ira_assert (curr_reg_pressure[cl] >= 0);
222	  if (high_pressure_start_point[cl] >= 0
223	      && curr_reg_pressure[cl] <= ira_available_class_regs[cl])
224	    set_p = true;
225	}
226      if (set_p)
227	{
228	  EXECUTE_IF_SET_IN_SPARSESET (allocnos_live, j)
229	    update_allocno_pressure_excess_length (ira_allocnos[j]);
230	  for (i = 0;
231	       (cl = ira_reg_class_super_classes[cover_class][i])
232		 != LIM_REG_CLASSES;
233	       i++)
234	    if (high_pressure_start_point[cl] >= 0
235		&& curr_reg_pressure[cl] <= ira_available_class_regs[cl])
236	      high_pressure_start_point[cl] = -1;
237
238	}
239    }
240  sparseset_clear_bit (allocnos_live, ALLOCNO_NUM (a));
241}
242
243/* Mark the register REG as live.  Store a 1 in hard_regs_live or
244   allocnos_live for this register or the corresponding allocno,
245   record how many consecutive hardware registers it actually
246   needs.  */
247static void
248mark_reg_live (rtx reg)
249{
250  int i, regno;
251
252  gcc_assert (REG_P (reg));
253  regno = REGNO (reg);
254
255  if (regno >= FIRST_PSEUDO_REGISTER)
256    {
257      ira_allocno_t a = ira_curr_regno_allocno_map[regno];
258
259      if (a != NULL)
260	{
261	  if (sparseset_bit_p (allocnos_live, ALLOCNO_NUM (a)))
262	    {
263	      /* Invalidate because it is referenced.  */
264	      allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
265	      return;
266	    }
267	  set_allocno_live (a);
268	}
269      make_regno_born (regno);
270    }
271  else if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
272    {
273      int last = regno + hard_regno_nregs[regno][GET_MODE (reg)];
274      enum reg_class cover_class, cl;
275
276      while (regno < last)
277	{
278	  if (! TEST_HARD_REG_BIT (hard_regs_live, regno)
279	      && ! TEST_HARD_REG_BIT (eliminable_regset, regno))
280	    {
281	      cover_class = ira_hard_regno_cover_class[regno];
282	      for (i = 0;
283		   (cl = ira_reg_class_super_classes[cover_class][i])
284		     != LIM_REG_CLASSES;
285		   i++)
286		{
287		  curr_reg_pressure[cl]++;
288		  if (high_pressure_start_point[cl] < 0
289		      && (curr_reg_pressure[cl]
290			  > ira_available_class_regs[cl]))
291		    high_pressure_start_point[cl] = curr_point;
292		}
293	      make_regno_born (regno);
294	      for (i = 0;
295		   (cl = ira_reg_class_super_classes[cover_class][i])
296		     != LIM_REG_CLASSES;
297		   i++)
298		{
299		  if (curr_bb_node->reg_pressure[cl] < curr_reg_pressure[cl])
300		    curr_bb_node->reg_pressure[cl] = curr_reg_pressure[cl];
301		}
302	    }
303	  regno++;
304	}
305    }
306}
307
308/* Mark the register referenced by use or def REF as live.  */
309static void
310mark_ref_live (df_ref ref)
311{
312  rtx reg;
313
314  reg = DF_REF_REG (ref);
315  if (GET_CODE (reg) == SUBREG)
316    reg = SUBREG_REG (reg);
317  mark_reg_live (reg);
318}
319
320/* Mark the register REG as dead.  Store a 0 in hard_regs_live or
321   allocnos_live for the register.  */
322static void
323mark_reg_dead (rtx reg)
324{
325  int regno;
326
327  gcc_assert (REG_P (reg));
328  regno = REGNO (reg);
329
330  if (regno >= FIRST_PSEUDO_REGISTER)
331    {
332      ira_allocno_t a = ira_curr_regno_allocno_map[regno];
333
334      if (a != NULL)
335	{
336	  if (! sparseset_bit_p (allocnos_live, ALLOCNO_NUM (a)))
337	    {
338	      /* Invalidate because it is referenced.  */
339	      allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
340	      return;
341	    }
342	  clear_allocno_live (a);
343	}
344      make_regno_dead (regno);
345    }
346  else if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
347    {
348      int i;
349      unsigned int j;
350      int last = regno + hard_regno_nregs[regno][GET_MODE (reg)];
351      enum reg_class cover_class, cl;
352      bool set_p;
353
354      while (regno < last)
355	{
356	  if (TEST_HARD_REG_BIT (hard_regs_live, regno))
357	    {
358	      set_p = false;
359	      cover_class = ira_hard_regno_cover_class[regno];
360	      for (i = 0;
361		   (cl = ira_reg_class_super_classes[cover_class][i])
362		     != LIM_REG_CLASSES;
363		   i++)
364  		{
365		  curr_reg_pressure[cl]--;
366		  if (high_pressure_start_point[cl] >= 0
367		      && curr_reg_pressure[cl] <= ira_available_class_regs[cl])
368		    set_p = true;
369		  ira_assert (curr_reg_pressure[cl] >= 0);
370		}
371	      if (set_p)
372		{
373		  EXECUTE_IF_SET_IN_SPARSESET (allocnos_live, j)
374		    update_allocno_pressure_excess_length (ira_allocnos[j]);
375		  for (i = 0;
376		       (cl = ira_reg_class_super_classes[cover_class][i])
377			 != LIM_REG_CLASSES;
378		       i++)
379		    if (high_pressure_start_point[cl] >= 0
380			&& (curr_reg_pressure[cl]
381			    <= ira_available_class_regs[cl]))
382		      high_pressure_start_point[cl] = -1;
383		}
384	      make_regno_dead (regno);
385	    }
386	  regno++;
387	}
388    }
389}
390
391/* Mark the register referenced by definition DEF as dead, if the
392   definition is a total one.  */
393static void
394mark_ref_dead (df_ref def)
395{
396  rtx reg;
397
398  if (DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL)
399      || DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL))
400    return;
401
402  reg = DF_REF_REG (def);
403  if (GET_CODE (reg) == SUBREG)
404    reg = SUBREG_REG (reg);
405  mark_reg_dead (reg);
406}
407
408/* Make pseudo REG conflicting with pseudo DREG, if the 1st pseudo
409   class is intersected with class CL.  Advance the current program
410   point before making the conflict if ADVANCE_P.  Return TRUE if we
411   will need to advance the current program point.  */
412static bool
413make_pseudo_conflict (rtx reg, enum reg_class cl, rtx dreg, bool advance_p)
414{
415  ira_allocno_t a;
416
417  if (GET_CODE (reg) == SUBREG)
418    reg = SUBREG_REG (reg);
419
420  if (! REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
421    return advance_p;
422
423  a = ira_curr_regno_allocno_map[REGNO (reg)];
424  if (! reg_classes_intersect_p (cl, ALLOCNO_COVER_CLASS (a)))
425    return advance_p;
426
427  if (advance_p)
428    curr_point++;
429
430  mark_reg_live (reg);
431  mark_reg_live (dreg);
432  mark_reg_dead (reg);
433  mark_reg_dead (dreg);
434
435  return false;
436}
437
438/* Check and make if necessary conflicts for pseudo DREG of class
439   DEF_CL of the current insn with input operand USE of class USE_CL.
440   Advance the current program point before making the conflict if
441   ADVANCE_P.  Return TRUE if we will need to advance the current
442   program point.  */
443static bool
444check_and_make_def_use_conflict (rtx dreg, enum reg_class def_cl,
445				 int use, enum reg_class use_cl,
446				 bool advance_p)
447{
448  if (! reg_classes_intersect_p (def_cl, use_cl))
449    return advance_p;
450
451  advance_p = make_pseudo_conflict (recog_data.operand[use],
452				    use_cl, dreg, advance_p);
453  /* Reload may end up swapping commutative operands, so you
454     have to take both orderings into account.  The
455     constraints for the two operands can be completely
456     different.  (Indeed, if the constraints for the two
457     operands are the same for all alternatives, there's no
458     point marking them as commutative.)  */
459  if (use < recog_data.n_operands - 1
460      && recog_data.constraints[use][0] == '%')
461    advance_p
462      = make_pseudo_conflict (recog_data.operand[use + 1],
463			      use_cl, dreg, advance_p);
464  if (use >= 1
465      && recog_data.constraints[use - 1][0] == '%')
466    advance_p
467      = make_pseudo_conflict (recog_data.operand[use - 1],
468			      use_cl, dreg, advance_p);
469  return advance_p;
470}
471
472/* Check and make if necessary conflicts for definition DEF of class
473   DEF_CL of the current insn with input operands.  Process only
474   constraints of alternative ALT.  */
475static void
476check_and_make_def_conflict (int alt, int def, enum reg_class def_cl)
477{
478  int use, use_match;
479  ira_allocno_t a;
480  enum reg_class use_cl, acl;
481  bool advance_p;
482  rtx dreg = recog_data.operand[def];
483
484  if (def_cl == NO_REGS)
485    return;
486
487  if (GET_CODE (dreg) == SUBREG)
488    dreg = SUBREG_REG (dreg);
489
490  if (! REG_P (dreg) || REGNO (dreg) < FIRST_PSEUDO_REGISTER)
491    return;
492
493  a = ira_curr_regno_allocno_map[REGNO (dreg)];
494  acl = ALLOCNO_COVER_CLASS (a);
495  if (! reg_classes_intersect_p (acl, def_cl))
496    return;
497
498  advance_p = true;
499
500  for (use = 0; use < recog_data.n_operands; use++)
501    {
502      int alt1;
503
504      if (use == def || recog_data.operand_type[use] == OP_OUT)
505	continue;
506
507      if (recog_op_alt[use][alt].anything_ok)
508	use_cl = ALL_REGS;
509      else
510	use_cl = recog_op_alt[use][alt].cl;
511
512      /* If there's any alternative that allows USE to match DEF, do not
513	 record a conflict.  If that causes us to create an invalid
514	 instruction due to the earlyclobber, reload must fix it up.  */
515      for (alt1 = 0; alt1 < recog_data.n_alternatives; alt1++)
516	if (recog_op_alt[use][alt1].matches == def
517	    || (use < recog_data.n_operands - 1
518		&& recog_data.constraints[use][0] == '%'
519		&& recog_op_alt[use + 1][alt1].matches == def)
520	    || (use >= 1
521		&& recog_data.constraints[use - 1][0] == '%'
522		&& recog_op_alt[use - 1][alt1].matches == def))
523	  break;
524
525      if (alt1 < recog_data.n_alternatives)
526	continue;
527
528      advance_p = check_and_make_def_use_conflict (dreg, def_cl, use,
529						   use_cl, advance_p);
530
531      if ((use_match = recog_op_alt[use][alt].matches) >= 0)
532	{
533	  if (use_match == def)
534	    continue;
535
536	  if (recog_op_alt[use_match][alt].anything_ok)
537	    use_cl = ALL_REGS;
538	  else
539	    use_cl = recog_op_alt[use_match][alt].cl;
540	  advance_p = check_and_make_def_use_conflict (dreg, def_cl, use,
541						       use_cl, advance_p);
542	}
543    }
544}
545
546/* Make conflicts of early clobber pseudo registers of the current
547   insn with its inputs.  Avoid introducing unnecessary conflicts by
548   checking classes of the constraints and pseudos because otherwise
549   significant code degradation is possible for some targets.  */
550static void
551make_early_clobber_and_input_conflicts (void)
552{
553  int alt;
554  int def, def_match;
555  enum reg_class def_cl;
556
557  for (alt = 0; alt < recog_data.n_alternatives; alt++)
558    for (def = 0; def < recog_data.n_operands; def++)
559      {
560	def_cl = NO_REGS;
561	if (recog_op_alt[def][alt].earlyclobber)
562	  {
563	    if (recog_op_alt[def][alt].anything_ok)
564	      def_cl = ALL_REGS;
565	    else
566	      def_cl = recog_op_alt[def][alt].cl;
567	    check_and_make_def_conflict (alt, def, def_cl);
568	  }
569	if ((def_match = recog_op_alt[def][alt].matches) >= 0
570	    && (recog_op_alt[def_match][alt].earlyclobber
571		|| recog_op_alt[def][alt].earlyclobber))
572	  {
573	    if (recog_op_alt[def_match][alt].anything_ok)
574	      def_cl = ALL_REGS;
575	    else
576	      def_cl = recog_op_alt[def_match][alt].cl;
577	    check_and_make_def_conflict (alt, def, def_cl);
578	  }
579      }
580}
581
582/* Mark early clobber hard registers of the current INSN as live (if
583   LIVE_P) or dead.  Return true if there are such registers.  */
584static bool
585mark_hard_reg_early_clobbers (rtx insn, bool live_p)
586{
587  df_ref *def_rec;
588  bool set_p = false;
589
590  for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
591    if (DF_REF_FLAGS_IS_SET (*def_rec, DF_REF_MUST_CLOBBER))
592      {
593	rtx dreg = DF_REF_REG (*def_rec);
594
595	if (GET_CODE (dreg) == SUBREG)
596	  dreg = SUBREG_REG (dreg);
597	if (! REG_P (dreg) || REGNO (dreg) >= FIRST_PSEUDO_REGISTER)
598	  continue;
599
600	/* Hard register clobbers are believed to be early clobber
601	   because there is no way to say that non-operand hard
602	   register clobbers are not early ones.  */
603	if (live_p)
604	  mark_ref_live (*def_rec);
605	else
606	  mark_ref_dead (*def_rec);
607	set_p = true;
608      }
609
610  return set_p;
611}
612
613/* Checks that CONSTRAINTS permits to use only one hard register.  If
614   it is so, the function returns the class of the hard register.
615   Otherwise it returns NO_REGS.  */
616static enum reg_class
617single_reg_class (const char *constraints, rtx op, rtx equiv_const)
618{
619  int ignore_p;
620  enum reg_class cl, next_cl;
621  int c;
622
623  cl = NO_REGS;
624  for (ignore_p = false;
625       (c = *constraints);
626       constraints += CONSTRAINT_LEN (c, constraints))
627    if (c == '#')
628      ignore_p = true;
629    else if (c == ',')
630      ignore_p = false;
631    else if (! ignore_p)
632      switch (c)
633	{
634	case ' ':
635	case '\t':
636	case '=':
637	case '+':
638	case '*':
639	case '&':
640	case '%':
641	case '!':
642	case '?':
643	  break;
644	case 'i':
645	  if (CONSTANT_P (op)
646	      || (equiv_const != NULL_RTX && CONSTANT_P (equiv_const)))
647	    return NO_REGS;
648	  break;
649
650	case 'n':
651	  if (CONST_INT_P (op)
652	      || (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == VOIDmode)
653	      || (equiv_const != NULL_RTX
654		  && (CONST_INT_P (equiv_const)
655		      || (GET_CODE (equiv_const) == CONST_DOUBLE
656			  && GET_MODE (equiv_const) == VOIDmode))))
657	    return NO_REGS;
658	  break;
659
660	case 's':
661	  if ((CONSTANT_P (op) && !CONST_INT_P (op)
662	       && (GET_CODE (op) != CONST_DOUBLE || GET_MODE (op) != VOIDmode))
663	      || (equiv_const != NULL_RTX
664		  && CONSTANT_P (equiv_const)
665		  && !CONST_INT_P (equiv_const)
666		  && (GET_CODE (equiv_const) != CONST_DOUBLE
667		      || GET_MODE (equiv_const) != VOIDmode)))
668	    return NO_REGS;
669	  break;
670
671	case 'I':
672	case 'J':
673	case 'K':
674	case 'L':
675	case 'M':
676	case 'N':
677	case 'O':
678	case 'P':
679	  if ((CONST_INT_P (op)
680	       && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, constraints))
681	      || (equiv_const != NULL_RTX
682		  && CONST_INT_P (equiv_const)
683		  && CONST_OK_FOR_CONSTRAINT_P (INTVAL (equiv_const),
684						c, constraints)))
685	    return NO_REGS;
686	  break;
687
688	case 'E':
689	case 'F':
690	  if (GET_CODE (op) == CONST_DOUBLE
691	      || (GET_CODE (op) == CONST_VECTOR
692		  && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT)
693	      || (equiv_const != NULL_RTX
694		  && (GET_CODE (equiv_const) == CONST_DOUBLE
695		      || (GET_CODE (equiv_const) == CONST_VECTOR
696			  && (GET_MODE_CLASS (GET_MODE (equiv_const))
697			      == MODE_VECTOR_FLOAT)))))
698	    return NO_REGS;
699	  break;
700
701	case 'G':
702	case 'H':
703	  if ((GET_CODE (op) == CONST_DOUBLE
704	       && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, constraints))
705	      || (equiv_const != NULL_RTX
706		  && GET_CODE (equiv_const) == CONST_DOUBLE
707		  && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (equiv_const,
708						       c, constraints)))
709	    return NO_REGS;
710	  /* ??? what about memory */
711	case 'r':
712	case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
713	case 'h': case 'j': case 'k': case 'l':
714	case 'q': case 't': case 'u':
715	case 'v': case 'w': case 'x': case 'y': case 'z':
716	case 'A': case 'B': case 'C': case 'D':
717	case 'Q': case 'R': case 'S': case 'T': case 'U':
718	case 'W': case 'Y': case 'Z':
719	  next_cl = (c == 'r'
720		     ? GENERAL_REGS
721		     : REG_CLASS_FROM_CONSTRAINT (c, constraints));
722	  if ((cl != NO_REGS && next_cl != cl)
723	      || (ira_available_class_regs[next_cl]
724		  > ira_reg_class_nregs[next_cl][GET_MODE (op)]))
725	    return NO_REGS;
726	  cl = next_cl;
727	  break;
728
729	case '0': case '1': case '2': case '3': case '4':
730	case '5': case '6': case '7': case '8': case '9':
731	  next_cl
732	    = single_reg_class (recog_data.constraints[c - '0'],
733				recog_data.operand[c - '0'], NULL_RTX);
734	  if ((cl != NO_REGS && next_cl != cl)
735	      || next_cl == NO_REGS
736	      || (ira_available_class_regs[next_cl]
737		  > ira_reg_class_nregs[next_cl][GET_MODE (op)]))
738	    return NO_REGS;
739	  cl = next_cl;
740	  break;
741
742	default:
743	  return NO_REGS;
744	}
745  return cl;
746}
747
748/* The function checks that operand OP_NUM of the current insn can use
749   only one hard register.  If it is so, the function returns the
750   class of the hard register.  Otherwise it returns NO_REGS.  */
751static enum reg_class
752single_reg_operand_class (int op_num)
753{
754  if (op_num < 0 || recog_data.n_alternatives == 0)
755    return NO_REGS;
756  return single_reg_class (recog_data.constraints[op_num],
757			   recog_data.operand[op_num], NULL_RTX);
758}
759
760/* The function sets up hard register set *SET to hard registers which
761   might be used by insn reloads because the constraints are too
762   strict.  */
763void
764ira_implicitly_set_insn_hard_regs (HARD_REG_SET *set)
765{
766  int i, c, regno = 0;
767  bool ignore_p;
768  enum reg_class cl;
769  rtx op;
770  enum machine_mode mode;
771
772  CLEAR_HARD_REG_SET (*set);
773  for (i = 0; i < recog_data.n_operands; i++)
774    {
775      op = recog_data.operand[i];
776
777      if (GET_CODE (op) == SUBREG)
778	op = SUBREG_REG (op);
779
780      if (GET_CODE (op) == SCRATCH
781	  || (REG_P (op) && (regno = REGNO (op)) >= FIRST_PSEUDO_REGISTER))
782	{
783	  const char *p = recog_data.constraints[i];
784
785	  mode = (GET_CODE (op) == SCRATCH
786		  ? GET_MODE (op) : PSEUDO_REGNO_MODE (regno));
787	  cl = NO_REGS;
788	  for (ignore_p = false; (c = *p); p += CONSTRAINT_LEN (c, p))
789	    if (c == '#')
790	      ignore_p = true;
791	    else if (c == ',')
792	      ignore_p = false;
793	    else if (! ignore_p)
794	      switch (c)
795		{
796		case 'r':
797		case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
798		case 'h': case 'j': case 'k': case 'l':
799		case 'q': case 't': case 'u':
800		case 'v': case 'w': case 'x': case 'y': case 'z':
801		case 'A': case 'B': case 'C': case 'D':
802		case 'Q': case 'R': case 'S': case 'T': case 'U':
803		case 'W': case 'Y': case 'Z':
804		  cl = (c == 'r'
805			? GENERAL_REGS
806			: REG_CLASS_FROM_CONSTRAINT (c, p));
807		  if (cl != NO_REGS
808		      && (ira_available_class_regs[cl]
809			  <= ira_reg_class_nregs[cl][mode]))
810		    IOR_HARD_REG_SET (*set, reg_class_contents[cl]);
811		  break;
812		}
813	}
814    }
815}
816/* Processes input operands, if IN_P, or output operands otherwise of
817   the current insn with FREQ to find allocno which can use only one
818   hard register and makes other currently living allocnos conflicting
819   with the hard register.  */
820static void
821process_single_reg_class_operands (bool in_p, int freq)
822{
823  int i, regno;
824  unsigned int px;
825  enum reg_class cl;
826  rtx operand;
827  ira_allocno_t operand_a, a;
828
829  for (i = 0; i < recog_data.n_operands; i++)
830    {
831      operand = recog_data.operand[i];
832      if (in_p && recog_data.operand_type[i] != OP_IN
833	  && recog_data.operand_type[i] != OP_INOUT)
834	continue;
835      if (! in_p && recog_data.operand_type[i] != OP_OUT
836	  && recog_data.operand_type[i] != OP_INOUT)
837	continue;
838      cl = single_reg_operand_class (i);
839      if (cl == NO_REGS)
840	continue;
841
842      operand_a = NULL;
843
844      if (GET_CODE (operand) == SUBREG)
845	operand = SUBREG_REG (operand);
846
847      if (REG_P (operand)
848	  && (regno = REGNO (operand)) >= FIRST_PSEUDO_REGISTER)
849	{
850	  enum reg_class cover_class;
851
852	  operand_a = ira_curr_regno_allocno_map[regno];
853	  cover_class = ALLOCNO_COVER_CLASS (operand_a);
854	  if (ira_class_subset_p[cl][cover_class]
855	      && ira_class_hard_regs_num[cl] != 0)
856	    {
857	      /* View the desired allocation of OPERAND as:
858
859		    (REG:YMODE YREGNO),
860
861		 a simplification of:
862
863		    (subreg:YMODE (reg:XMODE XREGNO) OFFSET).  */
864	      enum machine_mode ymode, xmode;
865	      int xregno, yregno;
866	      HOST_WIDE_INT offset;
867
868	      xmode = recog_data.operand_mode[i];
869	      xregno = ira_class_hard_regs[cl][0];
870	      ymode = ALLOCNO_MODE (operand_a);
871	      offset = subreg_lowpart_offset (ymode, xmode);
872	      yregno = simplify_subreg_regno (xregno, xmode, offset, ymode);
873	      if (yregno >= 0
874		  && ira_class_hard_reg_index[cover_class][yregno] >= 0)
875		{
876		  int cost;
877
878		  ira_allocate_and_set_costs
879		    (&ALLOCNO_CONFLICT_HARD_REG_COSTS (operand_a),
880		     cover_class, 0);
881		  cost
882		    = (freq
883		       * (in_p
884			  ? ira_get_register_move_cost (xmode, cover_class, cl)
885			  : ira_get_register_move_cost (xmode, cl,
886							cover_class)));
887		  ALLOCNO_CONFLICT_HARD_REG_COSTS (operand_a)
888		    [ira_class_hard_reg_index[cover_class][yregno]] -= cost;
889		}
890	    }
891	}
892
893      EXECUTE_IF_SET_IN_SPARSESET (allocnos_live, px)
894        {
895	  a = ira_allocnos[px];
896	  if (a != operand_a)
897	    {
898	      /* We could increase costs of A instead of making it
899		 conflicting with the hard register.  But it works worse
900		 because it will be spilled in reload in anyway.  */
901	      IOR_HARD_REG_SET (ALLOCNO_CONFLICT_HARD_REGS (a),
902				reg_class_contents[cl]);
903	      IOR_HARD_REG_SET (ALLOCNO_TOTAL_CONFLICT_HARD_REGS (a),
904				reg_class_contents[cl]);
905	    }
906	}
907    }
908}
909
910/* Return true when one of the predecessor edges of BB is marked with
911   EDGE_ABNORMAL_CALL or EDGE_EH.  */
912static bool
913bb_has_abnormal_call_pred (basic_block bb)
914{
915  edge e;
916  edge_iterator ei;
917
918  FOR_EACH_EDGE (e, ei, bb->preds)
919    {
920      if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
921	return true;
922    }
923  return false;
924}
925
926/* Process insns of the basic block given by its LOOP_TREE_NODE to
927   update allocno live ranges, allocno hard register conflicts,
928   intersected calls, and register pressure info for allocnos for the
929   basic block for and regions containing the basic block.  */
930static void
931process_bb_node_lives (ira_loop_tree_node_t loop_tree_node)
932{
933  int i, freq;
934  unsigned int j;
935  basic_block bb;
936  rtx insn;
937  bitmap_iterator bi;
938  bitmap reg_live_out;
939  unsigned int px;
940  bool set_p;
941
942  bb = loop_tree_node->bb;
943  if (bb != NULL)
944    {
945      for (i = 0; i < ira_reg_class_cover_size; i++)
946	{
947	  curr_reg_pressure[ira_reg_class_cover[i]] = 0;
948	  high_pressure_start_point[ira_reg_class_cover[i]] = -1;
949	}
950      curr_bb_node = loop_tree_node;
951      reg_live_out = DF_LR_OUT (bb);
952      sparseset_clear (allocnos_live);
953      REG_SET_TO_HARD_REG_SET (hard_regs_live, reg_live_out);
954      AND_COMPL_HARD_REG_SET (hard_regs_live, eliminable_regset);
955      AND_COMPL_HARD_REG_SET (hard_regs_live, ira_no_alloc_regs);
956      for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
957	if (TEST_HARD_REG_BIT (hard_regs_live, i))
958	  {
959	    enum reg_class cover_class, cl;
960
961	    cover_class = ira_class_translate[REGNO_REG_CLASS (i)];
962	    for (j = 0;
963		 (cl = ira_reg_class_super_classes[cover_class][j])
964		   != LIM_REG_CLASSES;
965		 j++)
966	      {
967		curr_reg_pressure[cl]++;
968		if (curr_bb_node->reg_pressure[cl] < curr_reg_pressure[cl])
969		  curr_bb_node->reg_pressure[cl] = curr_reg_pressure[cl];
970		ira_assert (curr_reg_pressure[cl]
971			    <= ira_available_class_regs[cl]);
972	      }
973	  }
974      EXECUTE_IF_SET_IN_BITMAP (reg_live_out, FIRST_PSEUDO_REGISTER, j, bi)
975	{
976	  ira_allocno_t a = ira_curr_regno_allocno_map[j];
977
978	  if (a == NULL)
979	    continue;
980	  ira_assert (! sparseset_bit_p (allocnos_live, ALLOCNO_NUM (a)));
981	  set_allocno_live (a);
982	  make_regno_born (j);
983	}
984
985      freq = REG_FREQ_FROM_BB (bb);
986      if (freq == 0)
987	freq = 1;
988
989      /* Invalidate all allocno_saved_at_call entries.  */
990      last_call_num++;
991
992      /* Scan the code of this basic block, noting which allocnos and
993	 hard regs are born or die.
994
995	 Note that this loop treats uninitialized values as live until
996	 the beginning of the block.  For example, if an instruction
997	 uses (reg:DI foo), and only (subreg:SI (reg:DI foo) 0) is ever
998	 set, FOO will remain live until the beginning of the block.
999	 Likewise if FOO is not set at all.  This is unnecessarily
1000	 pessimistic, but it probably doesn't matter much in practice.  */
1001      FOR_BB_INSNS_REVERSE (bb, insn)
1002	{
1003	  df_ref *def_rec, *use_rec;
1004	  bool call_p;
1005
1006	  if (!NONDEBUG_INSN_P (insn))
1007	    continue;
1008
1009	  if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
1010	    fprintf (ira_dump_file, "   Insn %u(l%d): point = %d\n",
1011		     INSN_UID (insn), loop_tree_node->parent->loop->num,
1012		     curr_point);
1013
1014	  /* Mark each defined value as live.  We need to do this for
1015	     unused values because they still conflict with quantities
1016	     that are live at the time of the definition.
1017
1018	     Ignore DF_REF_MAY_CLOBBERs on a call instruction.  Such
1019	     references represent the effect of the called function
1020	     on a call-clobbered register.  Marking the register as
1021	     live would stop us from allocating it to a call-crossing
1022	     allocno.  */
1023	  call_p = CALL_P (insn);
1024	  for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
1025	    if (!call_p || !DF_REF_FLAGS_IS_SET (*def_rec, DF_REF_MAY_CLOBBER))
1026	      mark_ref_live (*def_rec);
1027
1028	  /* If INSN has multiple outputs, then any value used in one
1029	     of the outputs conflicts with the other outputs.  Model this
1030	     by making the used value live during the output phase.
1031
1032	     It is unsafe to use !single_set here since it will ignore
1033	     an unused output.  Just because an output is unused does
1034	     not mean the compiler can assume the side effect will not
1035	     occur.  Consider if ALLOCNO appears in the address of an
1036	     output and we reload the output.  If we allocate ALLOCNO
1037	     to the same hard register as an unused output we could
1038	     set the hard register before the output reload insn.  */
1039	  if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
1040	    for (use_rec = DF_INSN_USES (insn); *use_rec; use_rec++)
1041	      {
1042		int i;
1043		rtx reg;
1044
1045		reg = DF_REF_REG (*use_rec);
1046		for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
1047		  {
1048		    rtx set;
1049
1050		    set = XVECEXP (PATTERN (insn), 0, i);
1051		    if (GET_CODE (set) == SET
1052			&& reg_overlap_mentioned_p (reg, SET_DEST (set)))
1053		      {
1054			/* After the previous loop, this is a no-op if
1055			   REG is contained within SET_DEST (SET).  */
1056			mark_ref_live (*use_rec);
1057			break;
1058		      }
1059		  }
1060	      }
1061
1062	  extract_insn (insn);
1063	  preprocess_constraints ();
1064	  process_single_reg_class_operands (false, freq);
1065
1066	  /* See which defined values die here.  */
1067	  for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
1068	    if (!call_p || !DF_REF_FLAGS_IS_SET (*def_rec, DF_REF_MAY_CLOBBER))
1069	      mark_ref_dead (*def_rec);
1070
1071	  if (call_p)
1072	    {
1073	      last_call_num++;
1074	      /* The current set of live allocnos are live across the call.  */
1075	      EXECUTE_IF_SET_IN_SPARSESET (allocnos_live, i)
1076	        {
1077		  ira_allocno_t a = ira_allocnos[i];
1078
1079		  if (allocno_saved_at_call[i] != last_call_num)
1080		    /* Here we are mimicking caller-save.c behaviour
1081		       which does not save hard register at a call if
1082		       it was saved on previous call in the same basic
1083		       block and the hard register was not mentioned
1084		       between the two calls.  */
1085		    ALLOCNO_CALL_FREQ (a) += freq;
1086		  /* Mark it as saved at the next call.  */
1087		  allocno_saved_at_call[i] = last_call_num + 1;
1088		  ALLOCNO_CALLS_CROSSED_NUM (a)++;
1089		  /* Don't allocate allocnos that cross setjmps or any
1090		     call, if this function receives a nonlocal
1091		     goto.  */
1092		  if (cfun->has_nonlocal_label
1093		      || find_reg_note (insn, REG_SETJMP,
1094					NULL_RTX) != NULL_RTX)
1095		    {
1096		      SET_HARD_REG_SET (ALLOCNO_CONFLICT_HARD_REGS (a));
1097		      SET_HARD_REG_SET (ALLOCNO_TOTAL_CONFLICT_HARD_REGS (a));
1098		    }
1099		  if (can_throw_internal (insn))
1100		    {
1101		      IOR_HARD_REG_SET (ALLOCNO_TOTAL_CONFLICT_HARD_REGS (a),
1102					call_used_reg_set);
1103		      IOR_HARD_REG_SET (ALLOCNO_CONFLICT_HARD_REGS (a),
1104					call_used_reg_set);
1105		    }
1106		}
1107	    }
1108
1109	  make_early_clobber_and_input_conflicts ();
1110
1111	  curr_point++;
1112
1113	  /* Mark each used value as live.  */
1114	  for (use_rec = DF_INSN_USES (insn); *use_rec; use_rec++)
1115	    mark_ref_live (*use_rec);
1116
1117	  process_single_reg_class_operands (true, freq);
1118
1119	  set_p = mark_hard_reg_early_clobbers (insn, true);
1120
1121	  if (set_p)
1122	    {
1123	      mark_hard_reg_early_clobbers (insn, false);
1124
1125	      /* Mark each hard reg as live again.  For example, a
1126		 hard register can be in clobber and in an insn
1127		 input.  */
1128	      for (use_rec = DF_INSN_USES (insn); *use_rec; use_rec++)
1129		{
1130		  rtx ureg = DF_REF_REG (*use_rec);
1131
1132		  if (GET_CODE (ureg) == SUBREG)
1133		    ureg = SUBREG_REG (ureg);
1134		  if (! REG_P (ureg) || REGNO (ureg) >= FIRST_PSEUDO_REGISTER)
1135		    continue;
1136
1137		  mark_ref_live (*use_rec);
1138		}
1139	    }
1140
1141	  curr_point++;
1142	}
1143
1144#ifdef EH_RETURN_DATA_REGNO
1145      if (bb_has_eh_pred (bb))
1146	for (j = 0; ; ++j)
1147	  {
1148	    unsigned int regno = EH_RETURN_DATA_REGNO (j);
1149	    if (regno == INVALID_REGNUM)
1150	      break;
1151	    make_regno_born (regno);
1152	  }
1153#endif
1154
1155      /* Allocnos can't go in stack regs at the start of a basic block
1156	 that is reached by an abnormal edge. Likewise for call
1157	 clobbered regs, because caller-save, fixup_abnormal_edges and
1158	 possibly the table driven EH machinery are not quite ready to
1159	 handle such allocnos live across such edges.  */
1160      if (bb_has_abnormal_pred (bb))
1161	{
1162#ifdef STACK_REGS
1163	  EXECUTE_IF_SET_IN_SPARSESET (allocnos_live, px)
1164	    {
1165	      ALLOCNO_NO_STACK_REG_P (ira_allocnos[px]) = true;
1166	      ALLOCNO_TOTAL_NO_STACK_REG_P (ira_allocnos[px]) = true;
1167	    }
1168	  for (px = FIRST_STACK_REG; px <= LAST_STACK_REG; px++)
1169	    make_regno_born (px);
1170#endif
1171	  /* No need to record conflicts for call clobbered regs if we
1172	     have nonlocal labels around, as we don't ever try to
1173	     allocate such regs in this case.  */
1174	  if (!cfun->has_nonlocal_label && bb_has_abnormal_call_pred (bb))
1175	    for (px = 0; px < FIRST_PSEUDO_REGISTER; px++)
1176	      if (call_used_regs[px])
1177		make_regno_born (px);
1178	}
1179
1180      EXECUTE_IF_SET_IN_SPARSESET (allocnos_live, i)
1181	{
1182	  make_regno_dead (ALLOCNO_REGNO (ira_allocnos[i]));
1183	}
1184
1185      curr_point++;
1186
1187    }
1188  /* Propagate register pressure to upper loop tree nodes: */
1189  if (loop_tree_node != ira_loop_tree_root)
1190    for (i = 0; i < ira_reg_class_cover_size; i++)
1191      {
1192	enum reg_class cover_class;
1193
1194	cover_class = ira_reg_class_cover[i];
1195	if (loop_tree_node->reg_pressure[cover_class]
1196	    > loop_tree_node->parent->reg_pressure[cover_class])
1197	  loop_tree_node->parent->reg_pressure[cover_class]
1198	    = loop_tree_node->reg_pressure[cover_class];
1199      }
1200}
1201
1202/* Create and set up IRA_START_POINT_RANGES and
1203   IRA_FINISH_POINT_RANGES.  */
1204static void
1205create_start_finish_chains (void)
1206{
1207  ira_allocno_t a;
1208  ira_allocno_iterator ai;
1209  allocno_live_range_t r;
1210
1211  ira_start_point_ranges
1212    = (allocno_live_range_t *) ira_allocate (ira_max_point
1213					     * sizeof (allocno_live_range_t));
1214  memset (ira_start_point_ranges, 0,
1215	  ira_max_point * sizeof (allocno_live_range_t));
1216  ira_finish_point_ranges
1217    = (allocno_live_range_t *) ira_allocate (ira_max_point
1218					     * sizeof (allocno_live_range_t));
1219  memset (ira_finish_point_ranges, 0,
1220	  ira_max_point * sizeof (allocno_live_range_t));
1221  FOR_EACH_ALLOCNO (a, ai)
1222    {
1223      for (r = ALLOCNO_LIVE_RANGES (a); r != NULL; r = r->next)
1224	{
1225	  r->start_next = ira_start_point_ranges[r->start];
1226	  ira_start_point_ranges[r->start] = r;
1227	  r->finish_next = ira_finish_point_ranges[r->finish];
1228 	  ira_finish_point_ranges[r->finish] = r;
1229	}
1230    }
1231}
1232
1233/* Rebuild IRA_START_POINT_RANGES and IRA_FINISH_POINT_RANGES after
1234   new live ranges and program points were added as a result if new
1235   insn generation.  */
1236void
1237ira_rebuild_start_finish_chains (void)
1238{
1239  ira_free (ira_finish_point_ranges);
1240  ira_free (ira_start_point_ranges);
1241  create_start_finish_chains ();
1242}
1243
1244/* Compress allocno live ranges by removing program points where
1245   nothing happens.  */
1246static void
1247remove_some_program_points_and_update_live_ranges (void)
1248{
1249  unsigned i;
1250  int n;
1251  int *map;
1252  ira_allocno_t a;
1253  ira_allocno_iterator ai;
1254  allocno_live_range_t r;
1255  bitmap born_or_died;
1256  bitmap_iterator bi;
1257
1258  born_or_died = ira_allocate_bitmap ();
1259  FOR_EACH_ALLOCNO (a, ai)
1260    {
1261      for (r = ALLOCNO_LIVE_RANGES (a); r != NULL; r = r->next)
1262	{
1263	  ira_assert (r->start <= r->finish);
1264	  bitmap_set_bit (born_or_died, r->start);
1265	  bitmap_set_bit (born_or_died, r->finish);
1266	}
1267    }
1268  map = (int *) ira_allocate (sizeof (int) * ira_max_point);
1269  n = 0;
1270  EXECUTE_IF_SET_IN_BITMAP(born_or_died, 0, i, bi)
1271    {
1272      map[i] = n++;
1273    }
1274  ira_free_bitmap (born_or_died);
1275  if (internal_flag_ira_verbose > 1 && ira_dump_file != NULL)
1276    fprintf (ira_dump_file, "Compressing live ranges: from %d to %d - %d%%\n",
1277	     ira_max_point, n, 100 * n / ira_max_point);
1278  ira_max_point = n;
1279  FOR_EACH_ALLOCNO (a, ai)
1280    {
1281      for (r = ALLOCNO_LIVE_RANGES (a); r != NULL; r = r->next)
1282	{
1283	  r->start = map[r->start];
1284	  r->finish = map[r->finish];
1285	}
1286    }
1287  ira_free (map);
1288}
1289
1290/* Print live ranges R to file F.  */
1291void
1292ira_print_live_range_list (FILE *f, allocno_live_range_t r)
1293{
1294  for (; r != NULL; r = r->next)
1295    fprintf (f, " [%d..%d]", r->start, r->finish);
1296  fprintf (f, "\n");
1297}
1298
1299/* Print live ranges R to stderr.  */
1300void
1301ira_debug_live_range_list (allocno_live_range_t r)
1302{
1303  ira_print_live_range_list (stderr, r);
1304}
1305
1306/* Print live ranges of allocno A to file F.  */
1307static void
1308print_allocno_live_ranges (FILE *f, ira_allocno_t a)
1309{
1310  fprintf (f, " a%d(r%d):", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
1311  ira_print_live_range_list (f, ALLOCNO_LIVE_RANGES (a));
1312}
1313
1314/* Print live ranges of allocno A to stderr.  */
1315void
1316ira_debug_allocno_live_ranges (ira_allocno_t a)
1317{
1318  print_allocno_live_ranges (stderr, a);
1319}
1320
1321/* Print live ranges of all allocnos to file F.  */
1322static void
1323print_live_ranges (FILE *f)
1324{
1325  ira_allocno_t a;
1326  ira_allocno_iterator ai;
1327
1328  FOR_EACH_ALLOCNO (a, ai)
1329    print_allocno_live_ranges (f, a);
1330}
1331
1332/* Print live ranges of all allocnos to stderr.  */
1333void
1334ira_debug_live_ranges (void)
1335{
1336  print_live_ranges (stderr);
1337}
1338
1339/* The main entry function creates live ranges, set up
1340   CONFLICT_HARD_REGS and TOTAL_CONFLICT_HARD_REGS for allocnos, and
1341   calculate register pressure info.  */
1342void
1343ira_create_allocno_live_ranges (void)
1344{
1345  allocnos_live = sparseset_alloc (ira_allocnos_num);
1346  curr_point = 0;
1347  last_call_num = 0;
1348  allocno_saved_at_call
1349    = (int *) ira_allocate (ira_allocnos_num * sizeof (int));
1350  memset (allocno_saved_at_call, 0, ira_allocnos_num * sizeof (int));
1351  ira_traverse_loop_tree (true, ira_loop_tree_root, NULL,
1352			  process_bb_node_lives);
1353  ira_max_point = curr_point;
1354  create_start_finish_chains ();
1355  if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
1356    print_live_ranges (ira_dump_file);
1357  /* Clean up.  */
1358  ira_free (allocno_saved_at_call);
1359  sparseset_free (allocnos_live);
1360}
1361
1362/* Compress allocno live ranges.  */
1363void
1364ira_compress_allocno_live_ranges (void)
1365{
1366  remove_some_program_points_and_update_live_ranges ();
1367  ira_rebuild_start_finish_chains ();
1368  if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
1369    {
1370      fprintf (ira_dump_file, "Ranges after the compression:\n");
1371      print_live_ranges (ira_dump_file);
1372    }
1373}
1374
1375/* Free arrays IRA_START_POINT_RANGES and IRA_FINISH_POINT_RANGES.  */
1376void
1377ira_finish_allocno_live_ranges (void)
1378{
1379  ira_free (ira_finish_point_ranges);
1380  ira_free (ira_start_point_ranges);
1381}
1382