1/* RTL-based forward propagation pass for GNU compiler.
2   Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010
3   Free Software Foundation, Inc.
4   Contributed by Paolo Bonzini and Steven Bosscher.
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 3, or (at your option) any later
11version.
12
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16for more details.
17
18You should have received a copy of the GNU General Public License
19along with GCC; see the file COPYING3.  If not see
20<http://www.gnu.org/licenses/>.  */
21
22#include "config.h"
23#include "system.h"
24#include "coretypes.h"
25#include "tm.h"
26#include "toplev.h"
27
28#include "timevar.h"
29#include "rtl.h"
30#include "tm_p.h"
31#include "emit-rtl.h"
32#include "insn-config.h"
33#include "recog.h"
34#include "flags.h"
35#include "obstack.h"
36#include "basic-block.h"
37#include "output.h"
38#include "df.h"
39#include "target.h"
40#include "cfgloop.h"
41#include "tree-pass.h"
42#include "domwalk.h"
43
44
45/* This pass does simple forward propagation and simplification when an
46   operand of an insn can only come from a single def.  This pass uses
47   df.c, so it is global.  However, we only do limited analysis of
48   available expressions.
49
50   1) The pass tries to propagate the source of the def into the use,
51   and checks if the result is independent of the substituted value.
52   For example, the high word of a (zero_extend:DI (reg:SI M)) is always
53   zero, independent of the source register.
54
55   In particular, we propagate constants into the use site.  Sometimes
56   RTL expansion did not put the constant in the same insn on purpose,
57   to satisfy a predicate, and the result will fail to be recognized;
58   but this happens rarely and in this case we can still create a
59   REG_EQUAL note.  For multi-word operations, this
60
61      (set (subreg:SI (reg:DI 120) 0) (const_int 0))
62      (set (subreg:SI (reg:DI 120) 4) (const_int -1))
63      (set (subreg:SI (reg:DI 122) 0)
64         (ior:SI (subreg:SI (reg:DI 119) 0) (subreg:SI (reg:DI 120) 0)))
65      (set (subreg:SI (reg:DI 122) 4)
66         (ior:SI (subreg:SI (reg:DI 119) 4) (subreg:SI (reg:DI 120) 4)))
67
68   can be simplified to the much simpler
69
70      (set (subreg:SI (reg:DI 122) 0) (subreg:SI (reg:DI 119)))
71      (set (subreg:SI (reg:DI 122) 4) (const_int -1))
72
73   This particular propagation is also effective at putting together
74   complex addressing modes.  We are more aggressive inside MEMs, in
75   that all definitions are propagated if the use is in a MEM; if the
76   result is a valid memory address we check address_cost to decide
77   whether the substitution is worthwhile.
78
79   2) The pass propagates register copies.  This is not as effective as
80   the copy propagation done by CSE's canon_reg, which works by walking
81   the instruction chain, it can help the other transformations.
82
83   We should consider removing this optimization, and instead reorder the
84   RTL passes, because GCSE does this transformation too.  With some luck,
85   the CSE pass at the end of rest_of_handle_gcse could also go away.
86
87   3) The pass looks for paradoxical subregs that are actually unnecessary.
88   Things like this:
89
90     (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
91     (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
92     (set (reg:SI 122) (plus:SI (subreg:SI (reg:QI 120) 0)
93                                (subreg:SI (reg:QI 121) 0)))
94
95   are very common on machines that can only do word-sized operations.
96   For each use of a paradoxical subreg (subreg:WIDER (reg:NARROW N) 0),
97   if it has a single def and it is (subreg:NARROW (reg:WIDE M) 0),
98   we can replace the paradoxical subreg with simply (reg:WIDE M).  The
99   above will simplify this to
100
101     (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
102     (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
103     (set (reg:SI 122) (plus:SI (reg:SI 118) (reg:SI 119)))
104
105   where the first two insns are now dead.
106
107   We used to use reaching definitions to find which uses have a
108   single reaching definition (sounds obvious...), but this is too
109   complex a problem in nasty testcases like PR33928.  Now we use the
110   multiple definitions problem in df-problems.c.  The similarity
111   between that problem and SSA form creation is taken further, in
112   that fwprop does a dominator walk to create its chains; however,
113   instead of creating a PHI function where multiple definitions meet
114   I just punt and record only singleton use-def chains, which is
115   all that is needed by fwprop.  */
116
117
118static int num_changes;
119
120DEF_VEC_P(df_ref);
121DEF_VEC_ALLOC_P(df_ref,heap);
122static VEC(df_ref,heap) *use_def_ref;
123static VEC(df_ref,heap) *reg_defs;
124static VEC(df_ref,heap) *reg_defs_stack;
125
126/* The MD bitmaps are trimmed to include only live registers to cut
127   memory usage on testcases like insn-recog.c.  Track live registers
128   in the basic block and do not perform forward propagation if the
129   destination is a dead pseudo occurring in a note.  */
130static bitmap local_md;
131static bitmap local_lr;
132
133/* Return the only def in USE's use-def chain, or NULL if there is
134   more than one def in the chain.  */
135
136static inline df_ref
137get_def_for_use (df_ref use)
138{
139  return VEC_index (df_ref, use_def_ref, DF_REF_ID (use));
140}
141
142
143/* Update the reg_defs vector with non-partial definitions in DEF_REC.
144   TOP_FLAG says which artificials uses should be used, when DEF_REC
145   is an artificial def vector.  LOCAL_MD is modified as after a
146   df_md_simulate_* function; we do more or less the same processing
147   done there, so we do not use those functions.  */
148
149#define DF_MD_GEN_FLAGS \
150	(DF_REF_PARTIAL | DF_REF_CONDITIONAL | DF_REF_MAY_CLOBBER)
151
152static void
153process_defs (df_ref *def_rec, int top_flag)
154{
155  df_ref def;
156  while ((def = *def_rec++) != NULL)
157    {
158      df_ref curr_def = VEC_index (df_ref, reg_defs, DF_REF_REGNO (def));
159      unsigned int dregno;
160
161      if ((DF_REF_FLAGS (def) & DF_REF_AT_TOP) != top_flag)
162	continue;
163
164      dregno = DF_REF_REGNO (def);
165      if (curr_def)
166	VEC_safe_push (df_ref, heap, reg_defs_stack, curr_def);
167      else
168	{
169	  /* Do not store anything if "transitioning" from NULL to NULL.  But
170             otherwise, push a special entry on the stack to tell the
171	     leave_block callback that the entry in reg_defs was NULL.  */
172	  if (DF_REF_FLAGS (def) & DF_MD_GEN_FLAGS)
173	    ;
174	  else
175	    VEC_safe_push (df_ref, heap, reg_defs_stack, def);
176	}
177
178      if (DF_REF_FLAGS (def) & DF_MD_GEN_FLAGS)
179	{
180	  bitmap_set_bit (local_md, dregno);
181	  VEC_replace (df_ref, reg_defs, dregno, NULL);
182	}
183      else
184	{
185	  bitmap_clear_bit (local_md, dregno);
186	  VEC_replace (df_ref, reg_defs, dregno, def);
187	}
188    }
189}
190
191
192/* Fill the use_def_ref vector with values for the uses in USE_REC,
193   taking reaching definitions info from LOCAL_MD and REG_DEFS.
194   TOP_FLAG says which artificials uses should be used, when USE_REC
195   is an artificial use vector.  */
196
197static void
198process_uses (df_ref *use_rec, int top_flag)
199{
200  df_ref use;
201  while ((use = *use_rec++) != NULL)
202    if ((DF_REF_FLAGS (use) & DF_REF_AT_TOP) == top_flag)
203      {
204        unsigned int uregno = DF_REF_REGNO (use);
205        if (VEC_index (df_ref, reg_defs, uregno)
206	    && !bitmap_bit_p (local_md, uregno)
207	    && bitmap_bit_p (local_lr, uregno))
208	  VEC_replace (df_ref, use_def_ref, DF_REF_ID (use),
209		       VEC_index (df_ref, reg_defs, uregno));
210      }
211}
212
213
214static void
215single_def_use_enter_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
216			    basic_block bb)
217{
218  int bb_index = bb->index;
219  struct df_md_bb_info *md_bb_info = df_md_get_bb_info (bb_index);
220  struct df_lr_bb_info *lr_bb_info = df_lr_get_bb_info (bb_index);
221  rtx insn;
222
223  bitmap_copy (local_md, md_bb_info->in);
224  bitmap_copy (local_lr, lr_bb_info->in);
225
226  /* Push a marker for the leave_block callback.  */
227  VEC_safe_push (df_ref, heap, reg_defs_stack, NULL);
228
229  process_uses (df_get_artificial_uses (bb_index), DF_REF_AT_TOP);
230  process_defs (df_get_artificial_defs (bb_index), DF_REF_AT_TOP);
231  df_simulate_initialize_forwards (bb, local_lr);
232
233  FOR_BB_INSNS (bb, insn)
234    if (INSN_P (insn))
235      {
236        unsigned int uid = INSN_UID (insn);
237        process_uses (DF_INSN_UID_USES (uid), 0);
238        process_uses (DF_INSN_UID_EQ_USES (uid), 0);
239        process_defs (DF_INSN_UID_DEFS (uid), 0);
240	df_simulate_one_insn_forwards (bb, insn, local_lr);
241      }
242
243  process_uses (df_get_artificial_uses (bb_index), 0);
244  process_defs (df_get_artificial_defs (bb_index), 0);
245}
246
247/* Pop the definitions created in this basic block when leaving its
248   dominated parts.  */
249
250static void
251single_def_use_leave_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
252			    basic_block bb ATTRIBUTE_UNUSED)
253{
254  df_ref saved_def;
255  while ((saved_def = VEC_pop (df_ref, reg_defs_stack)) != NULL)
256    {
257      unsigned int dregno = DF_REF_REGNO (saved_def);
258
259      /* See also process_defs.  */
260      if (saved_def == VEC_index (df_ref, reg_defs, dregno))
261	VEC_replace (df_ref, reg_defs, dregno, NULL);
262      else
263	VEC_replace (df_ref, reg_defs, dregno, saved_def);
264    }
265}
266
267
268/* Build a vector holding the reaching definitions of uses reached by a
269   single dominating definition.  */
270
271static void
272build_single_def_use_links (void)
273{
274  struct dom_walk_data walk_data;
275
276  /* We use the multiple definitions problem to compute our restricted
277     use-def chains.  */
278  df_set_flags (DF_EQ_NOTES);
279  df_md_add_problem ();
280  df_note_add_problem ();
281  df_analyze ();
282  df_maybe_reorganize_use_refs (DF_REF_ORDER_BY_INSN_WITH_NOTES);
283
284  use_def_ref = VEC_alloc (df_ref, heap, DF_USES_TABLE_SIZE ());
285  VEC_safe_grow_cleared (df_ref, heap, use_def_ref, DF_USES_TABLE_SIZE ());
286
287  reg_defs = VEC_alloc (df_ref, heap, max_reg_num ());
288  VEC_safe_grow_cleared (df_ref, heap, reg_defs, max_reg_num ());
289
290  reg_defs_stack = VEC_alloc (df_ref, heap, n_basic_blocks * 10);
291  local_md = BITMAP_ALLOC (NULL);
292  local_lr = BITMAP_ALLOC (NULL);
293
294  /* Walk the dominator tree looking for single reaching definitions
295     dominating the uses.  This is similar to how SSA form is built.  */
296  walk_data.dom_direction = CDI_DOMINATORS;
297  walk_data.initialize_block_local_data = NULL;
298  walk_data.before_dom_children = single_def_use_enter_block;
299  walk_data.after_dom_children = single_def_use_leave_block;
300
301  init_walk_dominator_tree (&walk_data);
302  walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
303  fini_walk_dominator_tree (&walk_data);
304
305  BITMAP_FREE (local_lr);
306  BITMAP_FREE (local_md);
307  VEC_free (df_ref, heap, reg_defs);
308  VEC_free (df_ref, heap, reg_defs_stack);
309}
310
311
312/* Do not try to replace constant addresses or addresses of local and
313   argument slots.  These MEM expressions are made only once and inserted
314   in many instructions, as well as being used to control symbol table
315   output.  It is not safe to clobber them.
316
317   There are some uncommon cases where the address is already in a register
318   for some reason, but we cannot take advantage of that because we have
319   no easy way to unshare the MEM.  In addition, looking up all stack
320   addresses is costly.  */
321
322static bool
323can_simplify_addr (rtx addr)
324{
325  rtx reg;
326
327  if (CONSTANT_ADDRESS_P (addr))
328    return false;
329
330  if (GET_CODE (addr) == PLUS)
331    reg = XEXP (addr, 0);
332  else
333    reg = addr;
334
335  return (!REG_P (reg)
336	  || (REGNO (reg) != FRAME_POINTER_REGNUM
337	      && REGNO (reg) != HARD_FRAME_POINTER_REGNUM
338	      && REGNO (reg) != ARG_POINTER_REGNUM));
339}
340
341/* Returns a canonical version of X for the address, from the point of view,
342   that all multiplications are represented as MULT instead of the multiply
343   by a power of 2 being represented as ASHIFT.
344
345   Every ASHIFT we find has been made by simplify_gen_binary and was not
346   there before, so it is not shared.  So we can do this in place.  */
347
348static void
349canonicalize_address (rtx x)
350{
351  for (;;)
352    switch (GET_CODE (x))
353      {
354      case ASHIFT:
355        if (CONST_INT_P (XEXP (x, 1))
356            && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (GET_MODE (x))
357            && INTVAL (XEXP (x, 1)) >= 0)
358	  {
359	    HOST_WIDE_INT shift = INTVAL (XEXP (x, 1));
360	    PUT_CODE (x, MULT);
361	    XEXP (x, 1) = gen_int_mode ((HOST_WIDE_INT) 1 << shift,
362					GET_MODE (x));
363	  }
364
365	x = XEXP (x, 0);
366        break;
367
368      case PLUS:
369        if (GET_CODE (XEXP (x, 0)) == PLUS
370	    || GET_CODE (XEXP (x, 0)) == ASHIFT
371	    || GET_CODE (XEXP (x, 0)) == CONST)
372	  canonicalize_address (XEXP (x, 0));
373
374	x = XEXP (x, 1);
375        break;
376
377      case CONST:
378	x = XEXP (x, 0);
379        break;
380
381      default:
382        return;
383      }
384}
385
386/* OLD is a memory address.  Return whether it is good to use NEW instead,
387   for a memory access in the given MODE.  */
388
389static bool
390should_replace_address (rtx old_rtx, rtx new_rtx, enum machine_mode mode,
391			addr_space_t as, bool speed)
392{
393  int gain;
394
395  if (rtx_equal_p (old_rtx, new_rtx)
396      || !memory_address_addr_space_p (mode, new_rtx, as))
397    return false;
398
399  /* Copy propagation is always ok.  */
400  if (REG_P (old_rtx) && REG_P (new_rtx))
401    return true;
402
403  /* Prefer the new address if it is less expensive.  */
404  gain = (address_cost (old_rtx, mode, as, speed)
405	  - address_cost (new_rtx, mode, as, speed));
406
407  /* If the addresses have equivalent cost, prefer the new address
408     if it has the highest `rtx_cost'.  That has the potential of
409     eliminating the most insns without additional costs, and it
410     is the same that cse.c used to do.  */
411  if (gain == 0)
412    gain = rtx_cost (new_rtx, SET, speed) - rtx_cost (old_rtx, SET, speed);
413
414  return (gain > 0);
415}
416
417
418/* Flags for the last parameter of propagate_rtx_1.  */
419
420enum {
421  /* If PR_CAN_APPEAR is true, propagate_rtx_1 always returns true;
422     if it is false, propagate_rtx_1 returns false if, for at least
423     one occurrence OLD, it failed to collapse the result to a constant.
424     For example, (mult:M (reg:M A) (minus:M (reg:M B) (reg:M A))) may
425     collapse to zero if replacing (reg:M B) with (reg:M A).
426
427     PR_CAN_APPEAR is disregarded inside MEMs: in that case,
428     propagate_rtx_1 just tries to make cheaper and valid memory
429     addresses.  */
430  PR_CAN_APPEAR = 1,
431
432  /* If PR_HANDLE_MEM is not set, propagate_rtx_1 won't attempt any replacement
433     outside memory addresses.  This is needed because propagate_rtx_1 does
434     not do any analysis on memory; thus it is very conservative and in general
435     it will fail if non-read-only MEMs are found in the source expression.
436
437     PR_HANDLE_MEM is set when the source of the propagation was not
438     another MEM.  Then, it is safe not to treat non-read-only MEMs as
439     ``opaque'' objects.  */
440  PR_HANDLE_MEM = 2,
441
442  /* Set when costs should be optimized for speed.  */
443  PR_OPTIMIZE_FOR_SPEED = 4
444};
445
446
447/* Replace all occurrences of OLD in *PX with NEW and try to simplify the
448   resulting expression.  Replace *PX with a new RTL expression if an
449   occurrence of OLD was found.
450
451   This is only a wrapper around simplify-rtx.c: do not add any pattern
452   matching code here.  (The sole exception is the handling of LO_SUM, but
453   that is because there is no simplify_gen_* function for LO_SUM).  */
454
455static bool
456propagate_rtx_1 (rtx *px, rtx old_rtx, rtx new_rtx, int flags)
457{
458  rtx x = *px, tem = NULL_RTX, op0, op1, op2;
459  enum rtx_code code = GET_CODE (x);
460  enum machine_mode mode = GET_MODE (x);
461  enum machine_mode op_mode;
462  bool can_appear = (flags & PR_CAN_APPEAR) != 0;
463  bool valid_ops = true;
464
465  if (!(flags & PR_HANDLE_MEM) && MEM_P (x) && !MEM_READONLY_P (x))
466    {
467      /* If unsafe, change MEMs to CLOBBERs or SCRATCHes (to preserve whether
468	 they have side effects or not).  */
469      *px = (side_effects_p (x)
470	     ? gen_rtx_CLOBBER (GET_MODE (x), const0_rtx)
471	     : gen_rtx_SCRATCH (GET_MODE (x)));
472      return false;
473    }
474
475  /* If X is OLD_RTX, return NEW_RTX.  But not if replacing only within an
476     address, and we are *not* inside one.  */
477  if (x == old_rtx)
478    {
479      *px = new_rtx;
480      return can_appear;
481    }
482
483  /* If this is an expression, try recursive substitution.  */
484  switch (GET_RTX_CLASS (code))
485    {
486    case RTX_UNARY:
487      op0 = XEXP (x, 0);
488      op_mode = GET_MODE (op0);
489      valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
490      if (op0 == XEXP (x, 0))
491	return true;
492      tem = simplify_gen_unary (code, mode, op0, op_mode);
493      break;
494
495    case RTX_BIN_ARITH:
496    case RTX_COMM_ARITH:
497      op0 = XEXP (x, 0);
498      op1 = XEXP (x, 1);
499      valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
500      valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
501      if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
502	return true;
503      tem = simplify_gen_binary (code, mode, op0, op1);
504      break;
505
506    case RTX_COMPARE:
507    case RTX_COMM_COMPARE:
508      op0 = XEXP (x, 0);
509      op1 = XEXP (x, 1);
510      op_mode = GET_MODE (op0) != VOIDmode ? GET_MODE (op0) : GET_MODE (op1);
511      valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
512      valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
513      if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
514	return true;
515      tem = simplify_gen_relational (code, mode, op_mode, op0, op1);
516      break;
517
518    case RTX_TERNARY:
519    case RTX_BITFIELD_OPS:
520      op0 = XEXP (x, 0);
521      op1 = XEXP (x, 1);
522      op2 = XEXP (x, 2);
523      op_mode = GET_MODE (op0);
524      valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
525      valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
526      valid_ops &= propagate_rtx_1 (&op2, old_rtx, new_rtx, flags);
527      if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1) && op2 == XEXP (x, 2))
528	return true;
529      if (op_mode == VOIDmode)
530	op_mode = GET_MODE (op0);
531      tem = simplify_gen_ternary (code, mode, op_mode, op0, op1, op2);
532      break;
533
534    case RTX_EXTRA:
535      /* The only case we try to handle is a SUBREG.  */
536      if (code == SUBREG)
537	{
538          op0 = XEXP (x, 0);
539	  valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
540          if (op0 == XEXP (x, 0))
541	    return true;
542	  tem = simplify_gen_subreg (mode, op0, GET_MODE (SUBREG_REG (x)),
543				     SUBREG_BYTE (x));
544	}
545      break;
546
547    case RTX_OBJ:
548      if (code == MEM && x != new_rtx)
549	{
550	  rtx new_op0;
551	  op0 = XEXP (x, 0);
552
553	  /* There are some addresses that we cannot work on.  */
554	  if (!can_simplify_addr (op0))
555	    return true;
556
557	  op0 = new_op0 = targetm.delegitimize_address (op0);
558	  valid_ops &= propagate_rtx_1 (&new_op0, old_rtx, new_rtx,
559					flags | PR_CAN_APPEAR);
560
561	  /* Dismiss transformation that we do not want to carry on.  */
562	  if (!valid_ops
563	      || new_op0 == op0
564	      || !(GET_MODE (new_op0) == GET_MODE (op0)
565		   || GET_MODE (new_op0) == VOIDmode))
566	    return true;
567
568	  canonicalize_address (new_op0);
569
570	  /* Copy propagations are always ok.  Otherwise check the costs.  */
571	  if (!(REG_P (old_rtx) && REG_P (new_rtx))
572	      && !should_replace_address (op0, new_op0, GET_MODE (x),
573					  MEM_ADDR_SPACE (x),
574	      			 	  flags & PR_OPTIMIZE_FOR_SPEED))
575	    return true;
576
577	  tem = replace_equiv_address_nv (x, new_op0);
578	}
579
580      else if (code == LO_SUM)
581	{
582          op0 = XEXP (x, 0);
583          op1 = XEXP (x, 1);
584
585	  /* The only simplification we do attempts to remove references to op0
586	     or make it constant -- in both cases, op0's invalidity will not
587	     make the result invalid.  */
588	  propagate_rtx_1 (&op0, old_rtx, new_rtx, flags | PR_CAN_APPEAR);
589	  valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
590          if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
591	    return true;
592
593	  /* (lo_sum (high x) x) -> x  */
594	  if (GET_CODE (op0) == HIGH && rtx_equal_p (XEXP (op0, 0), op1))
595	    tem = op1;
596	  else
597	    tem = gen_rtx_LO_SUM (mode, op0, op1);
598
599	  /* OP1 is likely not a legitimate address, otherwise there would have
600	     been no LO_SUM.  We want it to disappear if it is invalid, return
601	     false in that case.  */
602	  return memory_address_p (mode, tem);
603	}
604
605      else if (code == REG)
606	{
607	  if (rtx_equal_p (x, old_rtx))
608	    {
609              *px = new_rtx;
610              return can_appear;
611	    }
612	}
613      break;
614
615    default:
616      break;
617    }
618
619  /* No change, no trouble.  */
620  if (tem == NULL_RTX)
621    return true;
622
623  *px = tem;
624
625  /* The replacement we made so far is valid, if all of the recursive
626     replacements were valid, or we could simplify everything to
627     a constant.  */
628  return valid_ops || can_appear || CONSTANT_P (tem);
629}
630
631
632/* for_each_rtx traversal function that returns 1 if BODY points to
633   a non-constant mem.  */
634
635static int
636varying_mem_p (rtx *body, void *data ATTRIBUTE_UNUSED)
637{
638  rtx x = *body;
639  return MEM_P (x) && !MEM_READONLY_P (x);
640}
641
642
643/* Replace all occurrences of OLD in X with NEW and try to simplify the
644   resulting expression (in mode MODE).  Return a new expression if it is
645   a constant, otherwise X.
646
647   Simplifications where occurrences of NEW collapse to a constant are always
648   accepted.  All simplifications are accepted if NEW is a pseudo too.
649   Otherwise, we accept simplifications that have a lower or equal cost.  */
650
651static rtx
652propagate_rtx (rtx x, enum machine_mode mode, rtx old_rtx, rtx new_rtx,
653	       bool speed)
654{
655  rtx tem;
656  bool collapsed;
657  int flags;
658
659  if (REG_P (new_rtx) && REGNO (new_rtx) < FIRST_PSEUDO_REGISTER)
660    return NULL_RTX;
661
662  flags = 0;
663  if (REG_P (new_rtx) || CONSTANT_P (new_rtx))
664    flags |= PR_CAN_APPEAR;
665  if (!for_each_rtx (&new_rtx, varying_mem_p, NULL))
666    flags |= PR_HANDLE_MEM;
667
668  if (speed)
669    flags |= PR_OPTIMIZE_FOR_SPEED;
670
671  tem = x;
672  collapsed = propagate_rtx_1 (&tem, old_rtx, copy_rtx (new_rtx), flags);
673  if (tem == x || !collapsed)
674    return NULL_RTX;
675
676  /* gen_lowpart_common will not be able to process VOIDmode entities other
677     than CONST_INTs.  */
678  if (GET_MODE (tem) == VOIDmode && !CONST_INT_P (tem))
679    return NULL_RTX;
680
681  if (GET_MODE (tem) == VOIDmode)
682    tem = rtl_hooks.gen_lowpart_no_emit (mode, tem);
683  else
684    gcc_assert (GET_MODE (tem) == mode);
685
686  return tem;
687}
688
689
690
691
692/* Return true if the register from reference REF is killed
693   between FROM to (but not including) TO.  */
694
695static bool
696local_ref_killed_between_p (df_ref ref, rtx from, rtx to)
697{
698  rtx insn;
699
700  for (insn = from; insn != to; insn = NEXT_INSN (insn))
701    {
702      df_ref *def_rec;
703      if (!INSN_P (insn))
704	continue;
705
706      for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
707	{
708	  df_ref def = *def_rec;
709	  if (DF_REF_REGNO (ref) == DF_REF_REGNO (def))
710	    return true;
711	}
712    }
713  return false;
714}
715
716
717/* Check if the given DEF is available in INSN.  This would require full
718   computation of available expressions; we check only restricted conditions:
719   - if DEF is the sole definition of its register, go ahead;
720   - in the same basic block, we check for no definitions killing the
721     definition of DEF_INSN;
722   - if USE's basic block has DEF's basic block as the sole predecessor,
723     we check if the definition is killed after DEF_INSN or before
724     TARGET_INSN insn, in their respective basic blocks.  */
725static bool
726use_killed_between (df_ref use, rtx def_insn, rtx target_insn)
727{
728  basic_block def_bb = BLOCK_FOR_INSN (def_insn);
729  basic_block target_bb = BLOCK_FOR_INSN (target_insn);
730  int regno;
731  df_ref def;
732
733  /* We used to have a def reaching a use that is _before_ the def,
734     with the def not dominating the use even though the use and def
735     are in the same basic block, when a register may be used
736     uninitialized in a loop.  This should not happen anymore since
737     we do not use reaching definitions, but still we test for such
738     cases and assume that DEF is not available.  */
739  if (def_bb == target_bb
740      ? DF_INSN_LUID (def_insn) >= DF_INSN_LUID (target_insn)
741      : !dominated_by_p (CDI_DOMINATORS, target_bb, def_bb))
742    return true;
743
744  /* Check if the reg in USE has only one definition.  We already
745     know that this definition reaches use, or we wouldn't be here.
746     However, this is invalid for hard registers because if they are
747     live at the beginning of the function it does not mean that we
748     have an uninitialized access.  */
749  regno = DF_REF_REGNO (use);
750  def = DF_REG_DEF_CHAIN (regno);
751  if (def
752      && DF_REF_NEXT_REG (def) == NULL
753      && regno >= FIRST_PSEUDO_REGISTER)
754    return false;
755
756  /* Check locally if we are in the same basic block.  */
757  if (def_bb == target_bb)
758    return local_ref_killed_between_p (use, def_insn, target_insn);
759
760  /* Finally, if DEF_BB is the sole predecessor of TARGET_BB.  */
761  if (single_pred_p (target_bb)
762      && single_pred (target_bb) == def_bb)
763    {
764      df_ref x;
765
766      /* See if USE is killed between DEF_INSN and the last insn in the
767	 basic block containing DEF_INSN.  */
768      x = df_bb_regno_last_def_find (def_bb, regno);
769      if (x && DF_INSN_LUID (DF_REF_INSN (x)) >= DF_INSN_LUID (def_insn))
770	return true;
771
772      /* See if USE is killed between TARGET_INSN and the first insn in the
773	 basic block containing TARGET_INSN.  */
774      x = df_bb_regno_first_def_find (target_bb, regno);
775      if (x && DF_INSN_LUID (DF_REF_INSN (x)) < DF_INSN_LUID (target_insn))
776	return true;
777
778      return false;
779    }
780
781  /* Otherwise assume the worst case.  */
782  return true;
783}
784
785
786/* Check if all uses in DEF_INSN can be used in TARGET_INSN.  This
787   would require full computation of available expressions;
788   we check only restricted conditions, see use_killed_between.  */
789static bool
790all_uses_available_at (rtx def_insn, rtx target_insn)
791{
792  df_ref *use_rec;
793  struct df_insn_info *insn_info = DF_INSN_INFO_GET (def_insn);
794  rtx def_set = single_set (def_insn);
795
796  gcc_assert (def_set);
797
798  /* If target_insn comes right after def_insn, which is very common
799     for addresses, we can use a quicker test.  */
800  if (NEXT_INSN (def_insn) == target_insn
801      && REG_P (SET_DEST (def_set)))
802    {
803      rtx def_reg = SET_DEST (def_set);
804
805      /* If the insn uses the reg that it defines, the substitution is
806         invalid.  */
807      for (use_rec = DF_INSN_INFO_USES (insn_info); *use_rec; use_rec++)
808	{
809	  df_ref use = *use_rec;
810	  if (rtx_equal_p (DF_REF_REG (use), def_reg))
811	    return false;
812	}
813      for (use_rec = DF_INSN_INFO_EQ_USES (insn_info); *use_rec; use_rec++)
814	{
815	  df_ref use = *use_rec;
816	  if (rtx_equal_p (DF_REF_REG (use), def_reg))
817	    return false;
818	}
819    }
820  else
821    {
822      rtx def_reg = REG_P (SET_DEST (def_set)) ? SET_DEST (def_set) : NULL_RTX;
823
824      /* Look at all the uses of DEF_INSN, and see if they are not
825	 killed between DEF_INSN and TARGET_INSN.  */
826      for (use_rec = DF_INSN_INFO_USES (insn_info); *use_rec; use_rec++)
827	{
828	  df_ref use = *use_rec;
829	  if (def_reg && rtx_equal_p (DF_REF_REG (use), def_reg))
830	    return false;
831	  if (use_killed_between (use, def_insn, target_insn))
832	    return false;
833	}
834      for (use_rec = DF_INSN_INFO_EQ_USES (insn_info); *use_rec; use_rec++)
835	{
836	  df_ref use = *use_rec;
837	  if (def_reg && rtx_equal_p (DF_REF_REG (use), def_reg))
838	    return false;
839	  if (use_killed_between (use, def_insn, target_insn))
840	    return false;
841	}
842    }
843
844  return true;
845}
846
847
848struct find_occurrence_data
849{
850  rtx find;
851  rtx *retval;
852};
853
854/* Callback for for_each_rtx, used in find_occurrence.
855   See if PX is the rtx we have to find.  Return 1 to stop for_each_rtx
856   if successful, or 0 to continue traversing otherwise.  */
857
858static int
859find_occurrence_callback (rtx *px, void *data)
860{
861  struct find_occurrence_data *fod = (struct find_occurrence_data *) data;
862  rtx x = *px;
863  rtx find = fod->find;
864
865  if (x == find)
866    {
867      fod->retval = px;
868      return 1;
869    }
870
871  return 0;
872}
873
874/* Return a pointer to one of the occurrences of register FIND in *PX.  */
875
876static rtx *
877find_occurrence (rtx *px, rtx find)
878{
879  struct find_occurrence_data data;
880
881  gcc_assert (REG_P (find)
882	      || (GET_CODE (find) == SUBREG
883		  && REG_P (SUBREG_REG (find))));
884
885  data.find = find;
886  data.retval = NULL;
887  for_each_rtx (px, find_occurrence_callback, &data);
888  return data.retval;
889}
890
891
892/* Inside INSN, the expression rooted at *LOC has been changed, moving some
893   uses from USE_VEC.  Find those that are present, and create new items
894   in the data flow object of the pass.  Mark any new uses as having the
895   given TYPE.  */
896static void
897update_df (rtx insn, rtx *loc, df_ref *use_rec, enum df_ref_type type,
898	   int new_flags)
899{
900  bool changed = false;
901
902  /* Add a use for the registers that were propagated.  */
903  while (*use_rec)
904    {
905      df_ref use = *use_rec;
906      df_ref orig_use = use, new_use;
907      int width = -1;
908      int offset = -1;
909      enum machine_mode mode = VOIDmode;
910      rtx *new_loc = find_occurrence (loc, DF_REF_REG (orig_use));
911      use_rec++;
912
913      if (!new_loc)
914	continue;
915
916      if (DF_REF_FLAGS_IS_SET (orig_use, DF_REF_SIGN_EXTRACT | DF_REF_ZERO_EXTRACT))
917	{
918	  width = DF_REF_EXTRACT_WIDTH (orig_use);
919	  offset = DF_REF_EXTRACT_OFFSET (orig_use);
920	  mode = DF_REF_EXTRACT_MODE (orig_use);
921	}
922
923      /* Add a new insn use.  Use the original type, because it says if the
924         use was within a MEM.  */
925      new_use = df_ref_create (DF_REF_REG (orig_use), new_loc,
926			       insn, BLOCK_FOR_INSN (insn),
927			       type, DF_REF_FLAGS (orig_use) | new_flags,
928			       width, offset, mode);
929
930      /* Set up the use-def chain.  */
931      gcc_assert (DF_REF_ID (new_use) == (int) VEC_length (df_ref, use_def_ref));
932      VEC_safe_push (df_ref, heap, use_def_ref, get_def_for_use (orig_use));
933      changed = true;
934    }
935  if (changed)
936    df_insn_rescan (insn);
937}
938
939
940/* Try substituting NEW into LOC, which originated from forward propagation
941   of USE's value from DEF_INSN.  SET_REG_EQUAL says whether we are
942   substituting the whole SET_SRC, so we can set a REG_EQUAL note if the
943   new insn is not recognized.  Return whether the substitution was
944   performed.  */
945
946static bool
947try_fwprop_subst (df_ref use, rtx *loc, rtx new_rtx, rtx def_insn, bool set_reg_equal)
948{
949  rtx insn = DF_REF_INSN (use);
950  enum df_ref_type type = DF_REF_TYPE (use);
951  int flags = DF_REF_FLAGS (use);
952  rtx set = single_set (insn);
953  bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
954  int old_cost = 0;
955  bool ok;
956
957  /* forward_propagate_subreg may be operating on an instruction with
958     multiple sets.  If so, assume the cost of the new instruction is
959     not greater than the old one.  */
960  if (set)
961    old_cost = rtx_cost (SET_SRC (set), SET, speed);
962  if (dump_file)
963    {
964      fprintf (dump_file, "\nIn insn %d, replacing\n ", INSN_UID (insn));
965      print_inline_rtx (dump_file, *loc, 2);
966      fprintf (dump_file, "\n with ");
967      print_inline_rtx (dump_file, new_rtx, 2);
968      fprintf (dump_file, "\n");
969    }
970
971  validate_unshare_change (insn, loc, new_rtx, true);
972  if (!verify_changes (0))
973    {
974      if (dump_file)
975	fprintf (dump_file, "Changes to insn %d not recognized\n",
976		 INSN_UID (insn));
977      ok = false;
978    }
979
980  else if (DF_REF_TYPE (use) == DF_REF_REG_USE
981	   && set
982	   && rtx_cost (SET_SRC (set), SET, speed) > old_cost)
983    {
984      if (dump_file)
985	fprintf (dump_file, "Changes to insn %d not profitable\n",
986		 INSN_UID (insn));
987      ok = false;
988    }
989
990  else
991    {
992      if (dump_file)
993	fprintf (dump_file, "Changed insn %d\n", INSN_UID (insn));
994      ok = true;
995    }
996
997  if (ok)
998    {
999      confirm_change_group ();
1000      num_changes++;
1001
1002      df_ref_remove (use);
1003      if (!CONSTANT_P (new_rtx))
1004	{
1005	  struct df_insn_info *insn_info = DF_INSN_INFO_GET (def_insn);
1006	  update_df (insn, loc, DF_INSN_INFO_USES (insn_info), type, flags);
1007	  update_df (insn, loc, DF_INSN_INFO_EQ_USES (insn_info), type, flags);
1008	}
1009    }
1010  else
1011    {
1012      cancel_changes (0);
1013
1014      /* Can also record a simplified value in a REG_EQUAL note,
1015	 making a new one if one does not already exist.  */
1016      if (set_reg_equal)
1017	{
1018	  if (dump_file)
1019	    fprintf (dump_file, " Setting REG_EQUAL note\n");
1020
1021	  set_unique_reg_note (insn, REG_EQUAL, copy_rtx (new_rtx));
1022
1023	  /* ??? Is this still necessary if we add the note through
1024	     set_unique_reg_note?  */
1025          if (!CONSTANT_P (new_rtx))
1026	    {
1027	      struct df_insn_info *insn_info = DF_INSN_INFO_GET (def_insn);
1028	      update_df (insn, loc, DF_INSN_INFO_USES (insn_info),
1029			 type, DF_REF_IN_NOTE);
1030	      update_df (insn, loc, DF_INSN_INFO_EQ_USES (insn_info),
1031			 type, DF_REF_IN_NOTE);
1032	    }
1033	}
1034    }
1035
1036  return ok;
1037}
1038
1039/* For the given single_set INSN, containing SRC known to be a
1040   ZERO_EXTEND or SIGN_EXTEND of a register, return true if INSN
1041   is redundant due to the register being set by a LOAD_EXTEND_OP
1042   load from memory.  */
1043
1044static bool
1045free_load_extend (rtx src, rtx insn)
1046{
1047  rtx reg;
1048  df_ref *use_vec;
1049  df_ref use = 0, def;
1050
1051  reg = XEXP (src, 0);
1052#ifdef LOAD_EXTEND_OP
1053  if (LOAD_EXTEND_OP (GET_MODE (reg)) != GET_CODE (src))
1054#endif
1055    return false;
1056
1057  for (use_vec = DF_INSN_USES (insn); *use_vec; use_vec++)
1058    {
1059      use = *use_vec;
1060
1061      if (!DF_REF_IS_ARTIFICIAL (use)
1062	  && DF_REF_TYPE (use) == DF_REF_REG_USE
1063	  && DF_REF_REG (use) == reg)
1064	break;
1065    }
1066  if (!use)
1067    return false;
1068
1069  def = get_def_for_use (use);
1070  if (!def)
1071    return false;
1072
1073  if (DF_REF_IS_ARTIFICIAL (def))
1074    return false;
1075
1076  if (NONJUMP_INSN_P (DF_REF_INSN (def)))
1077    {
1078      rtx patt = PATTERN (DF_REF_INSN (def));
1079
1080      if (GET_CODE (patt) == SET
1081	  && GET_CODE (SET_SRC (patt)) == MEM
1082	  && rtx_equal_p (SET_DEST (patt), reg))
1083	return true;
1084    }
1085  return false;
1086}
1087
1088/* If USE is a subreg, see if it can be replaced by a pseudo.  */
1089
1090static bool
1091forward_propagate_subreg (df_ref use, rtx def_insn, rtx def_set)
1092{
1093  rtx use_reg = DF_REF_REG (use);
1094  rtx use_insn, src;
1095
1096  /* Only consider subregs... */
1097  enum machine_mode use_mode = GET_MODE (use_reg);
1098  if (GET_CODE (use_reg) != SUBREG
1099      || !REG_P (SET_DEST (def_set)))
1100    return false;
1101
1102  /* If this is a paradoxical SUBREG...  */
1103  if (GET_MODE_SIZE (use_mode)
1104      > GET_MODE_SIZE (GET_MODE (SUBREG_REG (use_reg))))
1105    {
1106      /* If this is a paradoxical SUBREG, we have no idea what value the
1107	 extra bits would have.  However, if the operand is equivalent to
1108	 a SUBREG whose operand is the same as our mode, and all the modes
1109	 are within a word, we can just use the inner operand because
1110	 these SUBREGs just say how to treat the register.  */
1111      use_insn = DF_REF_INSN (use);
1112      src = SET_SRC (def_set);
1113      if (GET_CODE (src) == SUBREG
1114	  && REG_P (SUBREG_REG (src))
1115	  && GET_MODE (SUBREG_REG (src)) == use_mode
1116	  && subreg_lowpart_p (src)
1117	  && all_uses_available_at (def_insn, use_insn))
1118	return try_fwprop_subst (use, DF_REF_LOC (use), SUBREG_REG (src),
1119				 def_insn, false);
1120    }
1121
1122  /* If this is a SUBREG of a ZERO_EXTEND or SIGN_EXTEND, and the SUBREG
1123     is the low part of the reg being extended then just use the inner
1124     operand.  Don't do this if the ZERO_EXTEND or SIGN_EXTEND insn will
1125     be removed due to it matching a LOAD_EXTEND_OP load from memory.  */
1126  else if (subreg_lowpart_p (use_reg))
1127    {
1128      use_insn = DF_REF_INSN (use);
1129      src = SET_SRC (def_set);
1130      if ((GET_CODE (src) == ZERO_EXTEND
1131	   || GET_CODE (src) == SIGN_EXTEND)
1132	  && REG_P (XEXP (src, 0))
1133	  && GET_MODE (XEXP (src, 0)) == use_mode
1134	  && !free_load_extend (src, def_insn)
1135	  && all_uses_available_at (def_insn, use_insn))
1136	return try_fwprop_subst (use, DF_REF_LOC (use), XEXP (src, 0),
1137				 def_insn, false);
1138    }
1139
1140  return false;
1141}
1142
1143/* Try to replace USE with SRC (defined in DEF_INSN) in __asm.  */
1144
1145static bool
1146forward_propagate_asm (df_ref use, rtx def_insn, rtx def_set, rtx reg)
1147{
1148  rtx use_insn = DF_REF_INSN (use), src, use_pat, asm_operands, new_rtx, *loc;
1149  int speed_p, i;
1150  df_ref *use_vec;
1151
1152  gcc_assert ((DF_REF_FLAGS (use) & DF_REF_IN_NOTE) == 0);
1153
1154  src = SET_SRC (def_set);
1155  use_pat = PATTERN (use_insn);
1156
1157  /* In __asm don't replace if src might need more registers than
1158     reg, as that could increase register pressure on the __asm.  */
1159  use_vec = DF_INSN_USES (def_insn);
1160  if (use_vec[0] && use_vec[1])
1161    return false;
1162
1163  speed_p = optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn));
1164  asm_operands = NULL_RTX;
1165  switch (GET_CODE (use_pat))
1166    {
1167    case ASM_OPERANDS:
1168      asm_operands = use_pat;
1169      break;
1170    case SET:
1171      if (MEM_P (SET_DEST (use_pat)))
1172	{
1173	  loc = &SET_DEST (use_pat);
1174	  new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg, src, speed_p);
1175	  if (new_rtx)
1176	    validate_unshare_change (use_insn, loc, new_rtx, true);
1177	}
1178      asm_operands = SET_SRC (use_pat);
1179      break;
1180    case PARALLEL:
1181      for (i = 0; i < XVECLEN (use_pat, 0); i++)
1182	if (GET_CODE (XVECEXP (use_pat, 0, i)) == SET)
1183	  {
1184	    if (MEM_P (SET_DEST (XVECEXP (use_pat, 0, i))))
1185	      {
1186		loc = &SET_DEST (XVECEXP (use_pat, 0, i));
1187		new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg,
1188					 src, speed_p);
1189		if (new_rtx)
1190		  validate_unshare_change (use_insn, loc, new_rtx, true);
1191	      }
1192	    asm_operands = SET_SRC (XVECEXP (use_pat, 0, i));
1193	  }
1194	else if (GET_CODE (XVECEXP (use_pat, 0, i)) == ASM_OPERANDS)
1195	  asm_operands = XVECEXP (use_pat, 0, i);
1196      break;
1197    default:
1198      gcc_unreachable ();
1199    }
1200
1201  gcc_assert (asm_operands && GET_CODE (asm_operands) == ASM_OPERANDS);
1202  for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (asm_operands); i++)
1203    {
1204      loc = &ASM_OPERANDS_INPUT (asm_operands, i);
1205      new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg, src, speed_p);
1206      if (new_rtx)
1207	validate_unshare_change (use_insn, loc, new_rtx, true);
1208    }
1209
1210  if (num_changes_pending () == 0 || !apply_change_group ())
1211    return false;
1212
1213  num_changes++;
1214  return true;
1215}
1216
1217/* Try to replace USE with SRC (defined in DEF_INSN) and simplify the
1218   result.  */
1219
1220static bool
1221forward_propagate_and_simplify (df_ref use, rtx def_insn, rtx def_set)
1222{
1223  rtx use_insn = DF_REF_INSN (use);
1224  rtx use_set = single_set (use_insn);
1225  rtx src, reg, new_rtx, *loc;
1226  bool set_reg_equal;
1227  enum machine_mode mode;
1228  int asm_use = -1;
1229
1230  if (INSN_CODE (use_insn) < 0)
1231    asm_use = asm_noperands (PATTERN (use_insn));
1232
1233  if (!use_set && asm_use < 0 && !DEBUG_INSN_P (use_insn))
1234    return false;
1235
1236  /* Do not propagate into PC, CC0, etc.  */
1237  if (use_set && GET_MODE (SET_DEST (use_set)) == VOIDmode)
1238    return false;
1239
1240  /* If def and use are subreg, check if they match.  */
1241  reg = DF_REF_REG (use);
1242  if (GET_CODE (reg) == SUBREG
1243      && GET_CODE (SET_DEST (def_set)) == SUBREG
1244      && (SUBREG_BYTE (SET_DEST (def_set)) != SUBREG_BYTE (reg)
1245	  || GET_MODE (SET_DEST (def_set)) != GET_MODE (reg)))
1246    return false;
1247
1248  /* Check if the def had a subreg, but the use has the whole reg.  */
1249  if (REG_P (reg) && GET_CODE (SET_DEST (def_set)) == SUBREG)
1250    return false;
1251
1252  /* Check if the use has a subreg, but the def had the whole reg.  Unlike the
1253     previous case, the optimization is possible and often useful indeed.  */
1254  if (GET_CODE (reg) == SUBREG && REG_P (SET_DEST (def_set)))
1255    reg = SUBREG_REG (reg);
1256
1257  /* Check if the substitution is valid (last, because it's the most
1258     expensive check!).  */
1259  src = SET_SRC (def_set);
1260  if (!CONSTANT_P (src) && !all_uses_available_at (def_insn, use_insn))
1261    return false;
1262
1263  /* Check if the def is loading something from the constant pool; in this
1264     case we would undo optimization such as compress_float_constant.
1265     Still, we can set a REG_EQUAL note.  */
1266  if (MEM_P (src) && MEM_READONLY_P (src))
1267    {
1268      rtx x = avoid_constant_pool_reference (src);
1269      if (x != src && use_set)
1270	{
1271          rtx note = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1272	  rtx old_rtx = note ? XEXP (note, 0) : SET_SRC (use_set);
1273	  rtx new_rtx = simplify_replace_rtx (old_rtx, src, x);
1274	  if (old_rtx != new_rtx)
1275            set_unique_reg_note (use_insn, REG_EQUAL, copy_rtx (new_rtx));
1276	}
1277      return false;
1278    }
1279
1280  if (asm_use >= 0)
1281    return forward_propagate_asm (use, def_insn, def_set, reg);
1282
1283  /* Else try simplifying.  */
1284
1285  if (DF_REF_TYPE (use) == DF_REF_REG_MEM_STORE)
1286    {
1287      loc = &SET_DEST (use_set);
1288      set_reg_equal = false;
1289    }
1290  else if (!use_set)
1291    {
1292      loc = &INSN_VAR_LOCATION_LOC (use_insn);
1293      set_reg_equal = false;
1294    }
1295  else
1296    {
1297      rtx note = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1298      if (DF_REF_FLAGS (use) & DF_REF_IN_NOTE)
1299	loc = &XEXP (note, 0);
1300      else
1301	loc = &SET_SRC (use_set);
1302
1303      /* Do not replace an existing REG_EQUAL note if the insn is not
1304	 recognized.  Either we're already replacing in the note, or
1305	 we'll separately try plugging the definition in the note and
1306	 simplifying.  */
1307      set_reg_equal = (note == NULL_RTX);
1308    }
1309
1310  if (GET_MODE (*loc) == VOIDmode)
1311    mode = GET_MODE (SET_DEST (use_set));
1312  else
1313    mode = GET_MODE (*loc);
1314
1315  new_rtx = propagate_rtx (*loc, mode, reg, src,
1316  			   optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn)));
1317
1318  if (!new_rtx)
1319    return false;
1320
1321  return try_fwprop_subst (use, loc, new_rtx, def_insn, set_reg_equal);
1322}
1323
1324
1325/* Given a use USE of an insn, if it has a single reaching
1326   definition, try to forward propagate it into that insn.  */
1327
1328static void
1329forward_propagate_into (df_ref use)
1330{
1331  df_ref def;
1332  rtx def_insn, def_set, use_insn;
1333  rtx parent;
1334
1335  if (DF_REF_FLAGS (use) & DF_REF_READ_WRITE)
1336    return;
1337  if (DF_REF_IS_ARTIFICIAL (use))
1338    return;
1339
1340  /* Only consider uses that have a single definition.  */
1341  def = get_def_for_use (use);
1342  if (!def)
1343    return;
1344  if (DF_REF_FLAGS (def) & DF_REF_READ_WRITE)
1345    return;
1346  if (DF_REF_IS_ARTIFICIAL (def))
1347    return;
1348
1349  /* Do not propagate loop invariant definitions inside the loop.  */
1350  if (DF_REF_BB (def)->loop_father != DF_REF_BB (use)->loop_father)
1351    return;
1352
1353  /* Check if the use is still present in the insn!  */
1354  use_insn = DF_REF_INSN (use);
1355  if (DF_REF_FLAGS (use) & DF_REF_IN_NOTE)
1356    parent = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1357  else
1358    parent = PATTERN (use_insn);
1359
1360  if (!reg_mentioned_p (DF_REF_REG (use), parent))
1361    return;
1362
1363  def_insn = DF_REF_INSN (def);
1364  if (multiple_sets (def_insn))
1365    return;
1366  def_set = single_set (def_insn);
1367  if (!def_set)
1368    return;
1369
1370  /* Only try one kind of propagation.  If two are possible, we'll
1371     do it on the following iterations.  */
1372  if (!forward_propagate_and_simplify (use, def_insn, def_set))
1373    forward_propagate_subreg (use, def_insn, def_set);
1374}
1375
1376
1377static void
1378fwprop_init (void)
1379{
1380  num_changes = 0;
1381  calculate_dominance_info (CDI_DOMINATORS);
1382
1383  /* We do not always want to propagate into loops, so we have to find
1384     loops and be careful about them.  But we have to call flow_loops_find
1385     before df_analyze, because flow_loops_find may introduce new jump
1386     insns (sadly) if we are not working in cfglayout mode.  */
1387  loop_optimizer_init (0);
1388
1389  build_single_def_use_links ();
1390  df_set_flags (DF_DEFER_INSN_RESCAN);
1391}
1392
1393static void
1394fwprop_done (void)
1395{
1396  loop_optimizer_finalize ();
1397
1398  VEC_free (df_ref, heap, use_def_ref);
1399  free_dominance_info (CDI_DOMINATORS);
1400  cleanup_cfg (0);
1401  delete_trivially_dead_insns (get_insns (), max_reg_num ());
1402
1403  if (dump_file)
1404    fprintf (dump_file,
1405	     "\nNumber of successful forward propagations: %d\n\n",
1406	     num_changes);
1407}
1408
1409
1410/* Main entry point.  */
1411
1412static bool
1413gate_fwprop (void)
1414{
1415  return optimize > 0 && flag_forward_propagate;
1416}
1417
1418static unsigned int
1419fwprop (void)
1420{
1421  unsigned i;
1422
1423  fwprop_init ();
1424
1425  /* Go through all the uses.  update_df will create new ones at the
1426     end, and we'll go through them as well.
1427
1428     Do not forward propagate addresses into loops until after unrolling.
1429     CSE did so because it was able to fix its own mess, but we are not.  */
1430
1431  for (i = 0; i < DF_USES_TABLE_SIZE (); i++)
1432    {
1433      df_ref use = DF_USES_GET (i);
1434      if (use)
1435	if (DF_REF_TYPE (use) == DF_REF_REG_USE
1436	    || DF_REF_BB (use)->loop_father == NULL
1437	    /* The outer most loop is not really a loop.  */
1438	    || loop_outer (DF_REF_BB (use)->loop_father) == NULL)
1439	  forward_propagate_into (use);
1440    }
1441
1442  fwprop_done ();
1443  return 0;
1444}
1445
1446struct rtl_opt_pass pass_rtl_fwprop =
1447{
1448 {
1449  RTL_PASS,
1450  "fwprop1",                            /* name */
1451  gate_fwprop,				/* gate */
1452  fwprop,				/* execute */
1453  NULL,                                 /* sub */
1454  NULL,                                 /* next */
1455  0,                                    /* static_pass_number */
1456  TV_FWPROP,                            /* tv_id */
1457  0,                                    /* properties_required */
1458  0,                                    /* properties_provided */
1459  0,                                    /* properties_destroyed */
1460  0,                                    /* todo_flags_start */
1461  TODO_df_finish | TODO_verify_rtl_sharing |
1462  TODO_dump_func                        /* todo_flags_finish */
1463 }
1464};
1465
1466static unsigned int
1467fwprop_addr (void)
1468{
1469  unsigned i;
1470  fwprop_init ();
1471
1472  /* Go through all the uses.  update_df will create new ones at the
1473     end, and we'll go through them as well.  */
1474  for (i = 0; i < DF_USES_TABLE_SIZE (); i++)
1475    {
1476      df_ref use = DF_USES_GET (i);
1477      if (use)
1478	if (DF_REF_TYPE (use) != DF_REF_REG_USE
1479	    && DF_REF_BB (use)->loop_father != NULL
1480	    /* The outer most loop is not really a loop.  */
1481	    && loop_outer (DF_REF_BB (use)->loop_father) != NULL)
1482	  forward_propagate_into (use);
1483    }
1484
1485  fwprop_done ();
1486
1487  return 0;
1488}
1489
1490struct rtl_opt_pass pass_rtl_fwprop_addr =
1491{
1492 {
1493  RTL_PASS,
1494  "fwprop2",                            /* name */
1495  gate_fwprop,				/* gate */
1496  fwprop_addr,				/* execute */
1497  NULL,                                 /* sub */
1498  NULL,                                 /* next */
1499  0,                                    /* static_pass_number */
1500  TV_FWPROP,                            /* tv_id */
1501  0,                                    /* properties_required */
1502  0,                                    /* properties_provided */
1503  0,                                    /* properties_destroyed */
1504  0,                                    /* todo_flags_start */
1505  TODO_df_finish | TODO_verify_rtl_sharing |
1506  TODO_dump_func                        /* todo_flags_finish */
1507 }
1508};
1509