1/* Allocation for dataflow support routines.
2   Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
3   2008, 2009, 2010 Free Software Foundation, Inc.
4   Originally contributed by Michael P. Hayes
5             (m.hayes@elec.canterbury.ac.nz, mhayes@redhat.com)
6   Major rewrite contributed by Danny Berlin (dberlin@dberlin.org)
7             and Kenneth Zadeck (zadeck@naturalbridge.com).
8
9This file is part of GCC.
10
11GCC is free software; you can redistribute it and/or modify it under
12the terms of the GNU General Public License as published by the Free
13Software Foundation; either version 3, or (at your option) any later
14version.
15
16GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17WARRANTY; without even the implied warranty of MERCHANTABILITY or
18FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
19for more details.
20
21You should have received a copy of the GNU General Public License
22along with GCC; see the file COPYING3.  If not see
23<http://www.gnu.org/licenses/>.  */
24
25/*
26OVERVIEW:
27
28The files in this collection (df*.c,df.h) provide a general framework
29for solving dataflow problems.  The global dataflow is performed using
30a good implementation of iterative dataflow analysis.
31
32The file df-problems.c provides problem instance for the most common
33dataflow problems: reaching defs, upward exposed uses, live variables,
34uninitialized variables, def-use chains, and use-def chains.  However,
35the interface allows other dataflow problems to be defined as well.
36
37Dataflow analysis is available in most of the rtl backend (the parts
38between pass_df_initialize and pass_df_finish).  It is quite likely
39that these boundaries will be expanded in the future.  The only
40requirement is that there be a correct control flow graph.
41
42There are three variations of the live variable problem that are
43available whenever dataflow is available.  The LR problem finds the
44areas that can reach a use of a variable, the UR problems finds the
45areas that can be reached from a definition of a variable.  The LIVE
46problem finds the intersection of these two areas.
47
48There are several optional problems.  These can be enabled when they
49are needed and disabled when they are not needed.
50
51Dataflow problems are generally solved in three layers.  The bottom
52layer is called scanning where a data structure is built for each rtl
53insn that describes the set of defs and uses of that insn.  Scanning
54is generally kept up to date, i.e. as the insns changes, the scanned
55version of that insn changes also.  There are various mechanisms for
56making this happen and are described in the INCREMENTAL SCANNING
57section.
58
59In the middle layer, basic blocks are scanned to produce transfer
60functions which describe the effects of that block on the global
61dataflow solution.  The transfer functions are only rebuilt if the
62some instruction within the block has changed.
63
64The top layer is the dataflow solution itself.  The dataflow solution
65is computed by using an efficient iterative solver and the transfer
66functions.  The dataflow solution must be recomputed whenever the
67control changes or if one of the transfer function changes.
68
69
70USAGE:
71
72Here is an example of using the dataflow routines.
73
74      df_[chain,live,note,rd]_add_problem (flags);
75
76      df_set_blocks (blocks);
77
78      df_analyze ();
79
80      df_dump (stderr);
81
82      df_finish_pass (false);
83
84DF_[chain,live,note,rd]_ADD_PROBLEM adds a problem, defined by an
85instance to struct df_problem, to the set of problems solved in this
86instance of df.  All calls to add a problem for a given instance of df
87must occur before the first call to DF_ANALYZE.
88
89Problems can be dependent on other problems.  For instance, solving
90def-use or use-def chains is dependent on solving reaching
91definitions. As long as these dependencies are listed in the problem
92definition, the order of adding the problems is not material.
93Otherwise, the problems will be solved in the order of calls to
94df_add_problem.  Note that it is not necessary to have a problem.  In
95that case, df will just be used to do the scanning.
96
97
98
99DF_SET_BLOCKS is an optional call used to define a region of the
100function on which the analysis will be performed.  The normal case is
101to analyze the entire function and no call to df_set_blocks is made.
102DF_SET_BLOCKS only effects the blocks that are effected when computing
103the transfer functions and final solution.  The insn level information
104is always kept up to date.
105
106When a subset is given, the analysis behaves as if the function only
107contains those blocks and any edges that occur directly between the
108blocks in the set.  Care should be taken to call df_set_blocks right
109before the call to analyze in order to eliminate the possibility that
110optimizations that reorder blocks invalidate the bitvector.
111
112DF_ANALYZE causes all of the defined problems to be (re)solved.  When
113DF_ANALYZE is completes, the IN and OUT sets for each basic block
114contain the computer information.  The DF_*_BB_INFO macros can be used
115to access these bitvectors.  All deferred rescannings are down before
116the transfer functions are recomputed.
117
118DF_DUMP can then be called to dump the information produce to some
119file.  This calls DF_DUMP_START, to print the information that is not
120basic block specific, and then calls DF_DUMP_TOP and DF_DUMP_BOTTOM
121for each block to print the basic specific information.  These parts
122can all be called separately as part of a larger dump function.
123
124
125DF_FINISH_PASS causes df_remove_problem to be called on all of the
126optional problems.  It also causes any insns whose scanning has been
127deferred to be rescanned as well as clears all of the changeable flags.
128Setting the pass manager TODO_df_finish flag causes this function to
129be run.  However, the pass manager will call df_finish_pass AFTER the
130pass dumping has been done, so if you want to see the results of the
131optional problems in the pass dumps, use the TODO flag rather than
132calling the function yourself.
133
134INCREMENTAL SCANNING
135
136There are four ways of doing the incremental scanning:
137
1381) Immediate rescanning - Calls to df_insn_rescan, df_notes_rescan,
139   df_bb_delete, df_insn_change_bb have been added to most of
140   the low level service functions that maintain the cfg and change
141   rtl.  Calling and of these routines many cause some number of insns
142   to be rescanned.
143
144   For most modern rtl passes, this is certainly the easiest way to
145   manage rescanning the insns.  This technique also has the advantage
146   that the scanning information is always correct and can be relied
147   upon even after changes have been made to the instructions.  This
148   technique is contra indicated in several cases:
149
150   a) If def-use chains OR use-def chains (but not both) are built,
151      using this is SIMPLY WRONG.  The problem is that when a ref is
152      deleted that is the target of an edge, there is not enough
153      information to efficiently find the source of the edge and
154      delete the edge.  This leaves a dangling reference that may
155      cause problems.
156
157   b) If def-use chains AND use-def chains are built, this may
158      produce unexpected results.  The problem is that the incremental
159      scanning of an insn does not know how to repair the chains that
160      point into an insn when the insn changes.  So the incremental
161      scanning just deletes the chains that enter and exit the insn
162      being changed.  The dangling reference issue in (a) is not a
163      problem here, but if the pass is depending on the chains being
164      maintained after insns have been modified, this technique will
165      not do the correct thing.
166
167   c) If the pass modifies insns several times, this incremental
168      updating may be expensive.
169
170   d) If the pass modifies all of the insns, as does register
171      allocation, it is simply better to rescan the entire function.
172
1732) Deferred rescanning - Calls to df_insn_rescan, df_notes_rescan, and
174   df_insn_delete do not immediately change the insn but instead make
175   a note that the insn needs to be rescanned.  The next call to
176   df_analyze, df_finish_pass, or df_process_deferred_rescans will
177   cause all of the pending rescans to be processed.
178
179   This is the technique of choice if either 1a, 1b, or 1c are issues
180   in the pass.  In the case of 1a or 1b, a call to df_finish_pass
181   (either manually or via TODO_df_finish) should be made before the
182   next call to df_analyze or df_process_deferred_rescans.
183
184   This mode is also used by a few passes that still rely on note_uses,
185   note_stores and for_each_rtx instead of using the DF data.  This
186   can be said to fall under case 1c.
187
188   To enable this mode, call df_set_flags (DF_DEFER_INSN_RESCAN).
189   (This mode can be cleared by calling df_clear_flags
190   (DF_DEFER_INSN_RESCAN) but this does not cause the deferred insns to
191   be rescanned.
192
1933) Total rescanning - In this mode the rescanning is disabled.
194   Only when insns are deleted is the df information associated with
195   it also deleted.  At the end of the pass, a call must be made to
196   df_insn_rescan_all.  This method is used by the register allocator
197   since it generally changes each insn multiple times (once for each ref)
198   and does not need to make use of the updated scanning information.
199
2004) Do it yourself - In this mechanism, the pass updates the insns
201   itself using the low level df primitives.  Currently no pass does
202   this, but it has the advantage that it is quite efficient given
203   that the pass generally has exact knowledge of what it is changing.
204
205DATA STRUCTURES
206
207Scanning produces a `struct df_ref' data structure (ref) is allocated
208for every register reference (def or use) and this records the insn
209and bb the ref is found within.  The refs are linked together in
210chains of uses and defs for each insn and for each register.  Each ref
211also has a chain field that links all the use refs for a def or all
212the def refs for a use.  This is used to create use-def or def-use
213chains.
214
215Different optimizations have different needs.  Ultimately, only
216register allocation and schedulers should be using the bitmaps
217produced for the live register and uninitialized register problems.
218The rest of the backend should be upgraded to using and maintaining
219the linked information such as def use or use def chains.
220
221
222PHILOSOPHY:
223
224While incremental bitmaps are not worthwhile to maintain, incremental
225chains may be perfectly reasonable.  The fastest way to build chains
226from scratch or after significant modifications is to build reaching
227definitions (RD) and build the chains from this.
228
229However, general algorithms for maintaining use-def or def-use chains
230are not practical.  The amount of work to recompute the chain any
231chain after an arbitrary change is large.  However, with a modest
232amount of work it is generally possible to have the application that
233uses the chains keep them up to date.  The high level knowledge of
234what is really happening is essential to crafting efficient
235incremental algorithms.
236
237As for the bit vector problems, there is no interface to give a set of
238blocks over with to resolve the iteration.  In general, restarting a
239dataflow iteration is difficult and expensive.  Again, the best way to
240keep the dataflow information up to data (if this is really what is
241needed) it to formulate a problem specific solution.
242
243There are fine grained calls for creating and deleting references from
244instructions in df-scan.c.  However, these are not currently connected
245to the engine that resolves the dataflow equations.
246
247
248DATA STRUCTURES:
249
250The basic object is a DF_REF (reference) and this may either be a
251DEF (definition) or a USE of a register.
252
253These are linked into a variety of lists; namely reg-def, reg-use,
254insn-def, insn-use, def-use, and use-def lists.  For example, the
255reg-def lists contain all the locations that define a given register
256while the insn-use lists contain all the locations that use a
257register.
258
259Note that the reg-def and reg-use chains are generally short for
260pseudos and long for the hard registers.
261
262ACCESSING INSNS:
263
2641) The df insn information is kept in an array of DF_INSN_INFO objects.
265   The array is indexed by insn uid, and every DF_REF points to the
266   DF_INSN_INFO object of the insn that contains the reference.
267
2682) Each insn has three sets of refs, which are linked into one of three
269   lists: The insn's defs list (accessed by the DF_INSN_INFO_DEFS,
270   DF_INSN_DEFS, or DF_INSN_UID_DEFS macros), the insn's uses list
271   (accessed by the DF_INSN_INFO_USES, DF_INSN_USES, or
272   DF_INSN_UID_USES macros) or the insn's eq_uses list (accessed by the
273   DF_INSN_INFO_EQ_USES, DF_INSN_EQ_USES or DF_INSN_UID_EQ_USES macros).
274   The latter list are the list of references in REG_EQUAL or REG_EQUIV
275   notes.  These macros produce a ref (or NULL), the rest of the list
276   can be obtained by traversal of the NEXT_REF field (accessed by the
277   DF_REF_NEXT_REF macro.)  There is no significance to the ordering of
278   the uses or refs in an instruction.
279
2803) Each insn has a logical uid field (LUID) which is stored in the
281   DF_INSN_INFO object for the insn.  The LUID field is accessed by
282   the DF_INSN_INFO_LUID, DF_INSN_LUID, and DF_INSN_UID_LUID macros.
283   When properly set, the LUID is an integer that numbers each insn in
284   the basic block, in order from the start of the block.
285   The numbers are only correct after a call to df_analyze.  They will
286   rot after insns are added deleted or moved round.
287
288ACCESSING REFS:
289
290There are 4 ways to obtain access to refs:
291
2921) References are divided into two categories, REAL and ARTIFICIAL.
293
294   REAL refs are associated with instructions.
295
296   ARTIFICIAL refs are associated with basic blocks.  The heads of
297   these lists can be accessed by calling df_get_artificial_defs or
298   df_get_artificial_uses for the particular basic block.
299
300   Artificial defs and uses occur both at the beginning and ends of blocks.
301
302     For blocks that area at the destination of eh edges, the
303     artificial uses and defs occur at the beginning.  The defs relate
304     to the registers specified in EH_RETURN_DATA_REGNO and the uses
305     relate to the registers specified in ED_USES.  Logically these
306     defs and uses should really occur along the eh edge, but there is
307     no convenient way to do this.  Artificial edges that occur at the
308     beginning of the block have the DF_REF_AT_TOP flag set.
309
310     Artificial uses occur at the end of all blocks.  These arise from
311     the hard registers that are always live, such as the stack
312     register and are put there to keep the code from forgetting about
313     them.
314
315     Artificial defs occur at the end of the entry block.  These arise
316     from registers that are live at entry to the function.
317
3182) There are three types of refs: defs, uses and eq_uses.  (Eq_uses are
319   uses that appear inside a REG_EQUAL or REG_EQUIV note.)
320
321   All of the eq_uses, uses and defs associated with each pseudo or
322   hard register may be linked in a bidirectional chain.  These are
323   called reg-use or reg_def chains.  If the changeable flag
324   DF_EQ_NOTES is set when the chains are built, the eq_uses will be
325   treated like uses.  If it is not set they are ignored.
326
327   The first use, eq_use or def for a register can be obtained using
328   the DF_REG_USE_CHAIN, DF_REG_EQ_USE_CHAIN or DF_REG_DEF_CHAIN
329   macros.  Subsequent uses for the same regno can be obtained by
330   following the next_reg field of the ref.  The number of elements in
331   each of the chains can be found by using the DF_REG_USE_COUNT,
332   DF_REG_EQ_USE_COUNT or DF_REG_DEF_COUNT macros.
333
334   In previous versions of this code, these chains were ordered.  It
335   has not been practical to continue this practice.
336
3373) If def-use or use-def chains are built, these can be traversed to
338   get to other refs.  If the flag DF_EQ_NOTES has been set, the chains
339   include the eq_uses.  Otherwise these are ignored when building the
340   chains.
341
3424) An array of all of the uses (and an array of all of the defs) can
343   be built.  These arrays are indexed by the value in the id
344   structure.  These arrays are only lazily kept up to date, and that
345   process can be expensive.  To have these arrays built, call
346   df_reorganize_defs or df_reorganize_uses.  If the flag DF_EQ_NOTES
347   has been set the array will contain the eq_uses.  Otherwise these
348   are ignored when building the array and assigning the ids.  Note
349   that the values in the id field of a ref may change across calls to
350   df_analyze or df_reorganize_defs or df_reorganize_uses.
351
352   If the only use of this array is to find all of the refs, it is
353   better to traverse all of the registers and then traverse all of
354   reg-use or reg-def chains.
355
356NOTES:
357
358Embedded addressing side-effects, such as POST_INC or PRE_INC, generate
359both a use and a def.  These are both marked read/write to show that they
360are dependent. For example, (set (reg 40) (mem (post_inc (reg 42))))
361will generate a use of reg 42 followed by a def of reg 42 (both marked
362read/write).  Similarly, (set (reg 40) (mem (pre_dec (reg 41))))
363generates a use of reg 41 then a def of reg 41 (both marked read/write),
364even though reg 41 is decremented before it is used for the memory
365address in this second example.
366
367A set to a REG inside a ZERO_EXTRACT, or a set to a non-paradoxical SUBREG
368for which the number of word_mode units covered by the outer mode is
369smaller than that covered by the inner mode, invokes a read-modify-write
370operation.  We generate both a use and a def and again mark them
371read/write.
372
373Paradoxical subreg writes do not leave a trace of the old content, so they
374are write-only operations.
375*/
376
377
378#include "config.h"
379#include "system.h"
380#include "coretypes.h"
381#include "tm.h"
382#include "rtl.h"
383#include "tm_p.h"
384#include "insn-config.h"
385#include "recog.h"
386#include "function.h"
387#include "regs.h"
388#include "output.h"
389#include "alloc-pool.h"
390#include "flags.h"
391#include "hard-reg-set.h"
392#include "basic-block.h"
393#include "sbitmap.h"
394#include "bitmap.h"
395#include "timevar.h"
396#include "df.h"
397#include "tree-pass.h"
398#include "params.h"
399
400static void *df_get_bb_info (struct dataflow *, unsigned int);
401static void df_set_bb_info (struct dataflow *, unsigned int, void *);
402#ifdef DF_DEBUG_CFG
403static void df_set_clean_cfg (void);
404#endif
405
406/* An obstack for bitmap not related to specific dataflow problems.
407   This obstack should e.g. be used for bitmaps with a short life time
408   such as temporary bitmaps.  */
409
410bitmap_obstack df_bitmap_obstack;
411
412
413/*----------------------------------------------------------------------------
414  Functions to create, destroy and manipulate an instance of df.
415----------------------------------------------------------------------------*/
416
417struct df *df;
418
419/* Add PROBLEM (and any dependent problems) to the DF instance.  */
420
421void
422df_add_problem (struct df_problem *problem)
423{
424  struct dataflow *dflow;
425  int i;
426
427  /* First try to add the dependent problem. */
428  if (problem->dependent_problem)
429    df_add_problem (problem->dependent_problem);
430
431  /* Check to see if this problem has already been defined.  If it
432     has, just return that instance, if not, add it to the end of the
433     vector.  */
434  dflow = df->problems_by_index[problem->id];
435  if (dflow)
436    return;
437
438  /* Make a new one and add it to the end.  */
439  dflow = XCNEW (struct dataflow);
440  dflow->problem = problem;
441  dflow->computed = false;
442  dflow->solutions_dirty = true;
443  df->problems_by_index[dflow->problem->id] = dflow;
444
445  /* Keep the defined problems ordered by index.  This solves the
446     problem that RI will use the information from UREC if UREC has
447     been defined, or from LIVE if LIVE is defined and otherwise LR.
448     However for this to work, the computation of RI must be pushed
449     after which ever of those problems is defined, but we do not
450     require any of those except for LR to have actually been
451     defined.  */
452  df->num_problems_defined++;
453  for (i = df->num_problems_defined - 2; i >= 0; i--)
454    {
455      if (problem->id < df->problems_in_order[i]->problem->id)
456	df->problems_in_order[i+1] = df->problems_in_order[i];
457      else
458	{
459	  df->problems_in_order[i+1] = dflow;
460	  return;
461	}
462    }
463  df->problems_in_order[0] = dflow;
464}
465
466
467/* Set the MASK flags in the DFLOW problem.  The old flags are
468   returned.  If a flag is not allowed to be changed this will fail if
469   checking is enabled.  */
470int
471df_set_flags (int changeable_flags)
472{
473  int old_flags = df->changeable_flags;
474  df->changeable_flags |= changeable_flags;
475  return old_flags;
476}
477
478
479/* Clear the MASK flags in the DFLOW problem.  The old flags are
480   returned.  If a flag is not allowed to be changed this will fail if
481   checking is enabled.  */
482int
483df_clear_flags (int changeable_flags)
484{
485  int old_flags = df->changeable_flags;
486  df->changeable_flags &= ~changeable_flags;
487  return old_flags;
488}
489
490
491/* Set the blocks that are to be considered for analysis.  If this is
492   not called or is called with null, the entire function in
493   analyzed.  */
494
495void
496df_set_blocks (bitmap blocks)
497{
498  if (blocks)
499    {
500      if (dump_file)
501	bitmap_print (dump_file, blocks, "setting blocks to analyze ", "\n");
502      if (df->blocks_to_analyze)
503	{
504	  /* This block is called to change the focus from one subset
505	     to another.  */
506	  int p;
507	  bitmap diff = BITMAP_ALLOC (&df_bitmap_obstack);
508	  bitmap_and_compl (diff, df->blocks_to_analyze, blocks);
509	  for (p = 0; p < df->num_problems_defined; p++)
510	    {
511	      struct dataflow *dflow = df->problems_in_order[p];
512	      if (dflow->optional_p && dflow->problem->reset_fun)
513		dflow->problem->reset_fun (df->blocks_to_analyze);
514	      else if (dflow->problem->free_blocks_on_set_blocks)
515		{
516		  bitmap_iterator bi;
517		  unsigned int bb_index;
518
519		  EXECUTE_IF_SET_IN_BITMAP (diff, 0, bb_index, bi)
520		    {
521		      basic_block bb = BASIC_BLOCK (bb_index);
522		      if (bb)
523			{
524			  void *bb_info = df_get_bb_info (dflow, bb_index);
525			  if (bb_info)
526			    {
527			      dflow->problem->free_bb_fun (bb, bb_info);
528			      df_set_bb_info (dflow, bb_index, NULL);
529			    }
530			}
531		    }
532		}
533	    }
534
535	  BITMAP_FREE (diff);
536	}
537      else
538	{
539	  /* This block of code is executed to change the focus from
540	     the entire function to a subset.  */
541	  bitmap blocks_to_reset = NULL;
542	  int p;
543	  for (p = 0; p < df->num_problems_defined; p++)
544	    {
545	      struct dataflow *dflow = df->problems_in_order[p];
546	      if (dflow->optional_p && dflow->problem->reset_fun)
547		{
548		  if (!blocks_to_reset)
549		    {
550		      basic_block bb;
551		      blocks_to_reset =
552			BITMAP_ALLOC (&df_bitmap_obstack);
553		      FOR_ALL_BB(bb)
554			{
555			  bitmap_set_bit (blocks_to_reset, bb->index);
556			}
557		    }
558		  dflow->problem->reset_fun (blocks_to_reset);
559		}
560	    }
561	  if (blocks_to_reset)
562	    BITMAP_FREE (blocks_to_reset);
563
564	  df->blocks_to_analyze = BITMAP_ALLOC (&df_bitmap_obstack);
565	}
566      bitmap_copy (df->blocks_to_analyze, blocks);
567      df->analyze_subset = true;
568    }
569  else
570    {
571      /* This block is executed to reset the focus to the entire
572	 function.  */
573      if (dump_file)
574	fprintf (dump_file, "clearing blocks_to_analyze\n");
575      if (df->blocks_to_analyze)
576	{
577	  BITMAP_FREE (df->blocks_to_analyze);
578	  df->blocks_to_analyze = NULL;
579	}
580      df->analyze_subset = false;
581    }
582
583  /* Setting the blocks causes the refs to be unorganized since only
584     the refs in the blocks are seen.  */
585  df_maybe_reorganize_def_refs (DF_REF_ORDER_NO_TABLE);
586  df_maybe_reorganize_use_refs (DF_REF_ORDER_NO_TABLE);
587  df_mark_solutions_dirty ();
588}
589
590
591/* Delete a DFLOW problem (and any problems that depend on this
592   problem).  */
593
594void
595df_remove_problem (struct dataflow *dflow)
596{
597  struct df_problem *problem;
598  int i;
599
600  if (!dflow)
601    return;
602
603  problem = dflow->problem;
604  gcc_assert (problem->remove_problem_fun);
605
606  /* Delete any problems that depended on this problem first.  */
607  for (i = 0; i < df->num_problems_defined; i++)
608    if (df->problems_in_order[i]->problem->dependent_problem == problem)
609      df_remove_problem (df->problems_in_order[i]);
610
611  /* Now remove this problem.  */
612  for (i = 0; i < df->num_problems_defined; i++)
613    if (df->problems_in_order[i] == dflow)
614      {
615	int j;
616	for (j = i + 1; j < df->num_problems_defined; j++)
617	  df->problems_in_order[j-1] = df->problems_in_order[j];
618	df->problems_in_order[j-1] = NULL;
619	df->num_problems_defined--;
620	break;
621      }
622
623  (problem->remove_problem_fun) ();
624  df->problems_by_index[problem->id] = NULL;
625}
626
627
628/* Remove all of the problems that are not permanent.  Scanning, LR
629   and (at -O2 or higher) LIVE are permanent, the rest are removable.
630   Also clear all of the changeable_flags.  */
631
632void
633df_finish_pass (bool verify ATTRIBUTE_UNUSED)
634{
635  int i;
636  int removed = 0;
637
638#ifdef ENABLE_DF_CHECKING
639  int saved_flags;
640#endif
641
642  if (!df)
643    return;
644
645  df_maybe_reorganize_def_refs (DF_REF_ORDER_NO_TABLE);
646  df_maybe_reorganize_use_refs (DF_REF_ORDER_NO_TABLE);
647
648#ifdef ENABLE_DF_CHECKING
649  saved_flags = df->changeable_flags;
650#endif
651
652  for (i = 0; i < df->num_problems_defined; i++)
653    {
654      struct dataflow *dflow = df->problems_in_order[i];
655      struct df_problem *problem = dflow->problem;
656
657      if (dflow->optional_p)
658	{
659	  gcc_assert (problem->remove_problem_fun);
660	  (problem->remove_problem_fun) ();
661	  df->problems_in_order[i] = NULL;
662	  df->problems_by_index[problem->id] = NULL;
663	  removed++;
664	}
665    }
666  df->num_problems_defined -= removed;
667
668  /* Clear all of the flags.  */
669  df->changeable_flags = 0;
670  df_process_deferred_rescans ();
671
672  /* Set the focus back to the whole function.  */
673  if (df->blocks_to_analyze)
674    {
675      BITMAP_FREE (df->blocks_to_analyze);
676      df->blocks_to_analyze = NULL;
677      df_mark_solutions_dirty ();
678      df->analyze_subset = false;
679    }
680
681#ifdef ENABLE_DF_CHECKING
682  /* Verification will fail in DF_NO_INSN_RESCAN.  */
683  if (!(saved_flags & DF_NO_INSN_RESCAN))
684    {
685      df_lr_verify_transfer_functions ();
686      if (df_live)
687	df_live_verify_transfer_functions ();
688    }
689
690#ifdef DF_DEBUG_CFG
691  df_set_clean_cfg ();
692#endif
693#endif
694
695#ifdef ENABLE_CHECKING
696  if (verify)
697    df->changeable_flags |= DF_VERIFY_SCHEDULED;
698#endif
699}
700
701
702/* Set up the dataflow instance for the entire back end.  */
703
704static unsigned int
705rest_of_handle_df_initialize (void)
706{
707  gcc_assert (!df);
708  df = XCNEW (struct df);
709  df->changeable_flags = 0;
710
711  bitmap_obstack_initialize (&df_bitmap_obstack);
712
713  /* Set this to a conservative value.  Stack_ptr_mod will compute it
714     correctly later.  */
715  current_function_sp_is_unchanging = 0;
716
717  df_scan_add_problem ();
718  df_scan_alloc (NULL);
719
720  /* These three problems are permanent.  */
721  df_lr_add_problem ();
722  if (optimize > 1)
723    df_live_add_problem ();
724
725  df->postorder = XNEWVEC (int, last_basic_block);
726  df->postorder_inverted = XNEWVEC (int, last_basic_block);
727  df->n_blocks = post_order_compute (df->postorder, true, true);
728  df->n_blocks_inverted = inverted_post_order_compute (df->postorder_inverted);
729  gcc_assert (df->n_blocks == df->n_blocks_inverted);
730
731  df->hard_regs_live_count = XNEWVEC (unsigned int, FIRST_PSEUDO_REGISTER);
732  memset (df->hard_regs_live_count, 0,
733	  sizeof (unsigned int) * FIRST_PSEUDO_REGISTER);
734
735  df_hard_reg_init ();
736  /* After reload, some ports add certain bits to regs_ever_live so
737     this cannot be reset.  */
738  df_compute_regs_ever_live (true);
739  df_scan_blocks ();
740  df_compute_regs_ever_live (false);
741  return 0;
742}
743
744
745static bool
746gate_opt (void)
747{
748  return optimize > 0;
749}
750
751
752struct rtl_opt_pass pass_df_initialize_opt =
753{
754 {
755  RTL_PASS,
756  "dfinit",                             /* name */
757  gate_opt,                             /* gate */
758  rest_of_handle_df_initialize,         /* execute */
759  NULL,                                 /* sub */
760  NULL,                                 /* next */
761  0,                                    /* static_pass_number */
762  TV_NONE,                              /* tv_id */
763  0,                                    /* properties_required */
764  0,                                    /* properties_provided */
765  0,                                    /* properties_destroyed */
766  0,                                    /* todo_flags_start */
767  0                                     /* todo_flags_finish */
768 }
769};
770
771
772static bool
773gate_no_opt (void)
774{
775  return optimize == 0;
776}
777
778
779struct rtl_opt_pass pass_df_initialize_no_opt =
780{
781 {
782  RTL_PASS,
783  "no-opt dfinit",                      /* name */
784  gate_no_opt,                          /* gate */
785  rest_of_handle_df_initialize,         /* execute */
786  NULL,                                 /* sub */
787  NULL,                                 /* next */
788  0,                                    /* static_pass_number */
789  TV_NONE,                              /* tv_id */
790  0,                                    /* properties_required */
791  0,                                    /* properties_provided */
792  0,                                    /* properties_destroyed */
793  0,                                    /* todo_flags_start */
794  0                                     /* todo_flags_finish */
795 }
796};
797
798
799/* Free all the dataflow info and the DF structure.  This should be
800   called from the df_finish macro which also NULLs the parm.  */
801
802static unsigned int
803rest_of_handle_df_finish (void)
804{
805  int i;
806
807  gcc_assert (df);
808
809  for (i = 0; i < df->num_problems_defined; i++)
810    {
811      struct dataflow *dflow = df->problems_in_order[i];
812      dflow->problem->free_fun ();
813    }
814
815  if (df->postorder)
816    free (df->postorder);
817  if (df->postorder_inverted)
818    free (df->postorder_inverted);
819  free (df->hard_regs_live_count);
820  free (df);
821  df = NULL;
822
823  bitmap_obstack_release (&df_bitmap_obstack);
824  return 0;
825}
826
827
828struct rtl_opt_pass pass_df_finish =
829{
830 {
831  RTL_PASS,
832  "dfinish",                            /* name */
833  NULL,					/* gate */
834  rest_of_handle_df_finish,             /* execute */
835  NULL,                                 /* sub */
836  NULL,                                 /* next */
837  0,                                    /* static_pass_number */
838  TV_NONE,                              /* tv_id */
839  0,                                    /* properties_required */
840  0,                                    /* properties_provided */
841  0,                                    /* properties_destroyed */
842  0,                                    /* todo_flags_start */
843  0                                     /* todo_flags_finish */
844 }
845};
846
847
848
849
850
851/*----------------------------------------------------------------------------
852   The general data flow analysis engine.
853----------------------------------------------------------------------------*/
854
855
856/* Helper function for df_worklist_dataflow.
857   Propagate the dataflow forward.
858   Given a BB_INDEX, do the dataflow propagation
859   and set bits on for successors in PENDING
860   if the out set of the dataflow has changed. */
861
862static void
863df_worklist_propagate_forward (struct dataflow *dataflow,
864                               unsigned bb_index,
865                               unsigned *bbindex_to_postorder,
866                               bitmap pending,
867                               sbitmap considered)
868{
869  edge e;
870  edge_iterator ei;
871  basic_block bb = BASIC_BLOCK (bb_index);
872
873  /*  Calculate <conf_op> of incoming edges.  */
874  if (EDGE_COUNT (bb->preds) > 0)
875    FOR_EACH_EDGE (e, ei, bb->preds)
876      {
877        if (TEST_BIT (considered, e->src->index))
878          dataflow->problem->con_fun_n (e);
879      }
880  else if (dataflow->problem->con_fun_0)
881    dataflow->problem->con_fun_0 (bb);
882
883  if (dataflow->problem->trans_fun (bb_index))
884    {
885      /* The out set of this block has changed.
886         Propagate to the outgoing blocks.  */
887      FOR_EACH_EDGE (e, ei, bb->succs)
888        {
889          unsigned ob_index = e->dest->index;
890
891          if (TEST_BIT (considered, ob_index))
892            bitmap_set_bit (pending, bbindex_to_postorder[ob_index]);
893        }
894    }
895}
896
897
898/* Helper function for df_worklist_dataflow.
899   Propagate the dataflow backward.  */
900
901static void
902df_worklist_propagate_backward (struct dataflow *dataflow,
903                                unsigned bb_index,
904                                unsigned *bbindex_to_postorder,
905                                bitmap pending,
906                                sbitmap considered)
907{
908  edge e;
909  edge_iterator ei;
910  basic_block bb = BASIC_BLOCK (bb_index);
911
912  /*  Calculate <conf_op> of incoming edges.  */
913  if (EDGE_COUNT (bb->succs) > 0)
914    FOR_EACH_EDGE (e, ei, bb->succs)
915      {
916        if (TEST_BIT (considered, e->dest->index))
917          dataflow->problem->con_fun_n (e);
918      }
919  else if (dataflow->problem->con_fun_0)
920    dataflow->problem->con_fun_0 (bb);
921
922  if (dataflow->problem->trans_fun (bb_index))
923    {
924      /* The out set of this block has changed.
925         Propagate to the outgoing blocks.  */
926      FOR_EACH_EDGE (e, ei, bb->preds)
927        {
928          unsigned ob_index = e->src->index;
929
930          if (TEST_BIT (considered, ob_index))
931            bitmap_set_bit (pending, bbindex_to_postorder[ob_index]);
932        }
933    }
934}
935
936
937
938/* This will free "pending". */
939
940static void
941df_worklist_dataflow_doublequeue (struct dataflow *dataflow,
942			  	  bitmap pending,
943                                  sbitmap considered,
944                                  int *blocks_in_postorder,
945				  unsigned *bbindex_to_postorder)
946{
947  enum df_flow_dir dir = dataflow->problem->dir;
948  int dcount = 0;
949  bitmap worklist = BITMAP_ALLOC (&df_bitmap_obstack);
950
951  /* Double-queueing. Worklist is for the current iteration,
952     and pending is for the next. */
953  while (!bitmap_empty_p (pending))
954    {
955      /* Swap pending and worklist. */
956      bitmap temp = worklist;
957      worklist = pending;
958      pending = temp;
959
960      do
961	{
962	  int index;
963	  unsigned bb_index;
964	  dcount++;
965
966	  index = bitmap_first_set_bit (worklist);
967	  bitmap_clear_bit (worklist, index);
968
969	  bb_index = blocks_in_postorder[index];
970
971	  if (dir == DF_FORWARD)
972	    df_worklist_propagate_forward (dataflow, bb_index,
973					   bbindex_to_postorder,
974					   pending, considered);
975	  else
976	    df_worklist_propagate_backward (dataflow, bb_index,
977					    bbindex_to_postorder,
978					    pending, considered);
979	}
980      while (!bitmap_empty_p (worklist));
981    }
982
983  BITMAP_FREE (worklist);
984  BITMAP_FREE (pending);
985
986  /* Dump statistics. */
987  if (dump_file)
988    fprintf (dump_file, "df_worklist_dataflow_doublequeue:"
989	     "n_basic_blocks %d n_edges %d"
990	     " count %d (%5.2g)\n",
991	     n_basic_blocks, n_edges,
992	     dcount, dcount / (float)n_basic_blocks);
993}
994
995/* Worklist-based dataflow solver. It uses sbitmap as a worklist,
996   with "n"-th bit representing the n-th block in the reverse-postorder order.
997   The solver is a double-queue algorithm similar to the "double stack" solver
998   from Cooper, Harvey and Kennedy, "Iterative data-flow analysis, Revisited".
999   The only significant difference is that the worklist in this implementation
1000   is always sorted in RPO of the CFG visiting direction.  */
1001
1002void
1003df_worklist_dataflow (struct dataflow *dataflow,
1004                      bitmap blocks_to_consider,
1005                      int *blocks_in_postorder,
1006                      int n_blocks)
1007{
1008  bitmap pending = BITMAP_ALLOC (&df_bitmap_obstack);
1009  sbitmap considered = sbitmap_alloc (last_basic_block);
1010  bitmap_iterator bi;
1011  unsigned int *bbindex_to_postorder;
1012  int i;
1013  unsigned int index;
1014  enum df_flow_dir dir = dataflow->problem->dir;
1015
1016  gcc_assert (dir != DF_NONE);
1017
1018  /* BBINDEX_TO_POSTORDER maps the bb->index to the reverse postorder.  */
1019  bbindex_to_postorder =
1020    (unsigned int *)xmalloc (last_basic_block * sizeof (unsigned int));
1021
1022  /* Initialize the array to an out-of-bound value.  */
1023  for (i = 0; i < last_basic_block; i++)
1024    bbindex_to_postorder[i] = last_basic_block;
1025
1026  /* Initialize the considered map.  */
1027  sbitmap_zero (considered);
1028  EXECUTE_IF_SET_IN_BITMAP (blocks_to_consider, 0, index, bi)
1029    {
1030      SET_BIT (considered, index);
1031    }
1032
1033  /* Initialize the mapping of block index to postorder.  */
1034  for (i = 0; i < n_blocks; i++)
1035    {
1036      bbindex_to_postorder[blocks_in_postorder[i]] = i;
1037      /* Add all blocks to the worklist.  */
1038      bitmap_set_bit (pending, i);
1039    }
1040
1041  /* Initialize the problem. */
1042  if (dataflow->problem->init_fun)
1043    dataflow->problem->init_fun (blocks_to_consider);
1044
1045  /* Solve it.  */
1046  df_worklist_dataflow_doublequeue (dataflow, pending, considered,
1047				    blocks_in_postorder,
1048				    bbindex_to_postorder);
1049
1050  sbitmap_free (considered);
1051  free (bbindex_to_postorder);
1052}
1053
1054
1055/* Remove the entries not in BLOCKS from the LIST of length LEN, preserving
1056   the order of the remaining entries.  Returns the length of the resulting
1057   list.  */
1058
1059static unsigned
1060df_prune_to_subcfg (int list[], unsigned len, bitmap blocks)
1061{
1062  unsigned act, last;
1063
1064  for (act = 0, last = 0; act < len; act++)
1065    if (bitmap_bit_p (blocks, list[act]))
1066      list[last++] = list[act];
1067
1068  return last;
1069}
1070
1071
1072/* Execute dataflow analysis on a single dataflow problem.
1073
1074   BLOCKS_TO_CONSIDER are the blocks whose solution can either be
1075   examined or will be computed.  For calls from DF_ANALYZE, this is
1076   the set of blocks that has been passed to DF_SET_BLOCKS.
1077*/
1078
1079void
1080df_analyze_problem (struct dataflow *dflow,
1081		    bitmap blocks_to_consider,
1082		    int *postorder, int n_blocks)
1083{
1084  timevar_push (dflow->problem->tv_id);
1085
1086#ifdef ENABLE_DF_CHECKING
1087  if (dflow->problem->verify_start_fun)
1088    dflow->problem->verify_start_fun ();
1089#endif
1090
1091  /* (Re)Allocate the datastructures necessary to solve the problem.  */
1092  if (dflow->problem->alloc_fun)
1093    dflow->problem->alloc_fun (blocks_to_consider);
1094
1095  /* Set up the problem and compute the local information.  */
1096  if (dflow->problem->local_compute_fun)
1097    dflow->problem->local_compute_fun (blocks_to_consider);
1098
1099  /* Solve the equations.  */
1100  if (dflow->problem->dataflow_fun)
1101    dflow->problem->dataflow_fun (dflow, blocks_to_consider,
1102				  postorder, n_blocks);
1103
1104  /* Massage the solution.  */
1105  if (dflow->problem->finalize_fun)
1106    dflow->problem->finalize_fun (blocks_to_consider);
1107
1108#ifdef ENABLE_DF_CHECKING
1109  if (dflow->problem->verify_end_fun)
1110    dflow->problem->verify_end_fun ();
1111#endif
1112
1113  timevar_pop (dflow->problem->tv_id);
1114
1115  dflow->computed = true;
1116}
1117
1118
1119/* Analyze dataflow info for the basic blocks specified by the bitmap
1120   BLOCKS, or for the whole CFG if BLOCKS is zero.  */
1121
1122void
1123df_analyze (void)
1124{
1125  bitmap current_all_blocks = BITMAP_ALLOC (&df_bitmap_obstack);
1126  bool everything;
1127  int i;
1128
1129  if (df->postorder)
1130    free (df->postorder);
1131  if (df->postorder_inverted)
1132    free (df->postorder_inverted);
1133  df->postorder = XNEWVEC (int, last_basic_block);
1134  df->postorder_inverted = XNEWVEC (int, last_basic_block);
1135  df->n_blocks = post_order_compute (df->postorder, true, true);
1136  df->n_blocks_inverted = inverted_post_order_compute (df->postorder_inverted);
1137
1138  /* These should be the same.  */
1139  gcc_assert (df->n_blocks == df->n_blocks_inverted);
1140
1141  /* We need to do this before the df_verify_all because this is
1142     not kept incrementally up to date.  */
1143  df_compute_regs_ever_live (false);
1144  df_process_deferred_rescans ();
1145
1146  if (dump_file)
1147    fprintf (dump_file, "df_analyze called\n");
1148
1149#ifndef ENABLE_DF_CHECKING
1150  if (df->changeable_flags & DF_VERIFY_SCHEDULED)
1151#endif
1152    df_verify ();
1153
1154  for (i = 0; i < df->n_blocks; i++)
1155    bitmap_set_bit (current_all_blocks, df->postorder[i]);
1156
1157#ifdef ENABLE_CHECKING
1158  /* Verify that POSTORDER_INVERTED only contains blocks reachable from
1159     the ENTRY block.  */
1160  for (i = 0; i < df->n_blocks_inverted; i++)
1161    gcc_assert (bitmap_bit_p (current_all_blocks, df->postorder_inverted[i]));
1162#endif
1163
1164  /* Make sure that we have pruned any unreachable blocks from these
1165     sets.  */
1166  if (df->analyze_subset)
1167    {
1168      everything = false;
1169      bitmap_and_into (df->blocks_to_analyze, current_all_blocks);
1170      df->n_blocks = df_prune_to_subcfg (df->postorder,
1171					 df->n_blocks, df->blocks_to_analyze);
1172      df->n_blocks_inverted = df_prune_to_subcfg (df->postorder_inverted,
1173			                          df->n_blocks_inverted,
1174                                                  df->blocks_to_analyze);
1175      BITMAP_FREE (current_all_blocks);
1176    }
1177  else
1178    {
1179      everything = true;
1180      df->blocks_to_analyze = current_all_blocks;
1181      current_all_blocks = NULL;
1182    }
1183
1184  /* Skip over the DF_SCAN problem. */
1185  for (i = 1; i < df->num_problems_defined; i++)
1186    {
1187      struct dataflow *dflow = df->problems_in_order[i];
1188      if (dflow->solutions_dirty)
1189        {
1190          if (dflow->problem->dir == DF_FORWARD)
1191            df_analyze_problem (dflow,
1192                                df->blocks_to_analyze,
1193                                df->postorder_inverted,
1194                                df->n_blocks_inverted);
1195          else
1196            df_analyze_problem (dflow,
1197                                df->blocks_to_analyze,
1198                                df->postorder,
1199                                df->n_blocks);
1200        }
1201    }
1202
1203  if (everything)
1204    {
1205      BITMAP_FREE (df->blocks_to_analyze);
1206      df->blocks_to_analyze = NULL;
1207    }
1208
1209#ifdef DF_DEBUG_CFG
1210  df_set_clean_cfg ();
1211#endif
1212}
1213
1214
1215/* Return the number of basic blocks from the last call to df_analyze.  */
1216
1217int
1218df_get_n_blocks (enum df_flow_dir dir)
1219{
1220  gcc_assert (dir != DF_NONE);
1221
1222  if (dir == DF_FORWARD)
1223    {
1224      gcc_assert (df->postorder_inverted);
1225      return df->n_blocks_inverted;
1226    }
1227
1228  gcc_assert (df->postorder);
1229  return df->n_blocks;
1230}
1231
1232
1233/* Return a pointer to the array of basic blocks in the reverse postorder.
1234   Depending on the direction of the dataflow problem,
1235   it returns either the usual reverse postorder array
1236   or the reverse postorder of inverted traversal. */
1237int *
1238df_get_postorder (enum df_flow_dir dir)
1239{
1240  gcc_assert (dir != DF_NONE);
1241
1242  if (dir == DF_FORWARD)
1243    {
1244      gcc_assert (df->postorder_inverted);
1245      return df->postorder_inverted;
1246    }
1247  gcc_assert (df->postorder);
1248  return df->postorder;
1249}
1250
1251static struct df_problem user_problem;
1252static struct dataflow user_dflow;
1253
1254/* Interface for calling iterative dataflow with user defined
1255   confluence and transfer functions.  All that is necessary is to
1256   supply DIR, a direction, CONF_FUN_0, a confluence function for
1257   blocks with no logical preds (or NULL), CONF_FUN_N, the normal
1258   confluence function, TRANS_FUN, the basic block transfer function,
1259   and BLOCKS, the set of blocks to examine, POSTORDER the blocks in
1260   postorder, and N_BLOCKS, the number of blocks in POSTORDER. */
1261
1262void
1263df_simple_dataflow (enum df_flow_dir dir,
1264		    df_init_function init_fun,
1265		    df_confluence_function_0 con_fun_0,
1266		    df_confluence_function_n con_fun_n,
1267		    df_transfer_function trans_fun,
1268		    bitmap blocks, int * postorder, int n_blocks)
1269{
1270  memset (&user_problem, 0, sizeof (struct df_problem));
1271  user_problem.dir = dir;
1272  user_problem.init_fun = init_fun;
1273  user_problem.con_fun_0 = con_fun_0;
1274  user_problem.con_fun_n = con_fun_n;
1275  user_problem.trans_fun = trans_fun;
1276  user_dflow.problem = &user_problem;
1277  df_worklist_dataflow (&user_dflow, blocks, postorder, n_blocks);
1278}
1279
1280
1281
1282/*----------------------------------------------------------------------------
1283   Functions to support limited incremental change.
1284----------------------------------------------------------------------------*/
1285
1286
1287/* Get basic block info.  */
1288
1289static void *
1290df_get_bb_info (struct dataflow *dflow, unsigned int index)
1291{
1292  if (dflow->block_info == NULL)
1293    return NULL;
1294  if (index >= dflow->block_info_size)
1295    return NULL;
1296  return (struct df_scan_bb_info *) dflow->block_info[index];
1297}
1298
1299
1300/* Set basic block info.  */
1301
1302static void
1303df_set_bb_info (struct dataflow *dflow, unsigned int index,
1304		void *bb_info)
1305{
1306  gcc_assert (dflow->block_info);
1307  dflow->block_info[index] = bb_info;
1308}
1309
1310
1311/* Mark the solutions as being out of date.  */
1312
1313void
1314df_mark_solutions_dirty (void)
1315{
1316  if (df)
1317    {
1318      int p;
1319      for (p = 1; p < df->num_problems_defined; p++)
1320	df->problems_in_order[p]->solutions_dirty = true;
1321    }
1322}
1323
1324
1325/* Return true if BB needs it's transfer functions recomputed.  */
1326
1327bool
1328df_get_bb_dirty (basic_block bb)
1329{
1330  if (df && df_live)
1331    return bitmap_bit_p (df_live->out_of_date_transfer_functions, bb->index);
1332  else
1333    return false;
1334}
1335
1336
1337/* Mark BB as needing it's transfer functions as being out of
1338   date.  */
1339
1340void
1341df_set_bb_dirty (basic_block bb)
1342{
1343  if (df)
1344    {
1345      int p;
1346      for (p = 1; p < df->num_problems_defined; p++)
1347	{
1348	  struct dataflow *dflow = df->problems_in_order[p];
1349	  if (dflow->out_of_date_transfer_functions)
1350	    bitmap_set_bit (dflow->out_of_date_transfer_functions, bb->index);
1351	}
1352      df_mark_solutions_dirty ();
1353    }
1354}
1355
1356
1357/* Mark BB as needing it's transfer functions as being out of
1358   date, except for LR problem.  Used when analyzing DEBUG_INSNs,
1359   as LR problem can trigger DCE, and DEBUG_INSNs shouldn't ever
1360   shorten or enlarge lifetime of regs.  */
1361
1362void
1363df_set_bb_dirty_nonlr (basic_block bb)
1364{
1365  if (df)
1366    {
1367      int p;
1368      for (p = 1; p < df->num_problems_defined; p++)
1369	{
1370	  struct dataflow *dflow = df->problems_in_order[p];
1371	  if (dflow == df_lr)
1372	    continue;
1373	  if (dflow->out_of_date_transfer_functions)
1374	    bitmap_set_bit (dflow->out_of_date_transfer_functions, bb->index);
1375	  dflow->solutions_dirty = true;
1376	}
1377    }
1378}
1379
1380
1381/* Clear the dirty bits.  This is called from places that delete
1382   blocks.  */
1383static void
1384df_clear_bb_dirty (basic_block bb)
1385{
1386  int p;
1387  for (p = 1; p < df->num_problems_defined; p++)
1388    {
1389      struct dataflow *dflow = df->problems_in_order[p];
1390      if (dflow->out_of_date_transfer_functions)
1391	bitmap_clear_bit (dflow->out_of_date_transfer_functions, bb->index);
1392    }
1393}
1394/* Called from the rtl_compact_blocks to reorganize the problems basic
1395   block info.  */
1396
1397void
1398df_compact_blocks (void)
1399{
1400  int i, p;
1401  basic_block bb;
1402  void **problem_temps;
1403  int size = last_basic_block * sizeof (void *);
1404  bitmap tmp = BITMAP_ALLOC (&df_bitmap_obstack);
1405  problem_temps = XNEWVAR (void *, size);
1406
1407  for (p = 0; p < df->num_problems_defined; p++)
1408    {
1409      struct dataflow *dflow = df->problems_in_order[p];
1410
1411      /* Need to reorganize the out_of_date_transfer_functions for the
1412	 dflow problem.  */
1413      if (dflow->out_of_date_transfer_functions)
1414	{
1415	  bitmap_copy (tmp, dflow->out_of_date_transfer_functions);
1416	  bitmap_clear (dflow->out_of_date_transfer_functions);
1417	  if (bitmap_bit_p (tmp, ENTRY_BLOCK))
1418	    bitmap_set_bit (dflow->out_of_date_transfer_functions, ENTRY_BLOCK);
1419	  if (bitmap_bit_p (tmp, EXIT_BLOCK))
1420	    bitmap_set_bit (dflow->out_of_date_transfer_functions, EXIT_BLOCK);
1421
1422	  i = NUM_FIXED_BLOCKS;
1423	  FOR_EACH_BB (bb)
1424	    {
1425	      if (bitmap_bit_p (tmp, bb->index))
1426		bitmap_set_bit (dflow->out_of_date_transfer_functions, i);
1427	      i++;
1428	    }
1429	}
1430
1431      /* Now shuffle the block info for the problem.  */
1432      if (dflow->problem->free_bb_fun)
1433	{
1434	  df_grow_bb_info (dflow);
1435	  memcpy (problem_temps, dflow->block_info, size);
1436
1437	  /* Copy the bb info from the problem tmps to the proper
1438	     place in the block_info vector.  Null out the copied
1439	     item.  The entry and exit blocks never move.  */
1440	  i = NUM_FIXED_BLOCKS;
1441	  FOR_EACH_BB (bb)
1442	    {
1443	      df_set_bb_info (dflow, i, problem_temps[bb->index]);
1444	      problem_temps[bb->index] = NULL;
1445	      i++;
1446	    }
1447	  memset (dflow->block_info + i, 0,
1448		  (last_basic_block - i) *sizeof (void *));
1449
1450	  /* Free any block infos that were not copied (and NULLed).
1451	     These are from orphaned blocks.  */
1452	  for (i = NUM_FIXED_BLOCKS; i < last_basic_block; i++)
1453	    {
1454	      basic_block bb = BASIC_BLOCK (i);
1455	      if (problem_temps[i] && bb)
1456		dflow->problem->free_bb_fun
1457		  (bb, problem_temps[i]);
1458	    }
1459	}
1460    }
1461
1462  /* Shuffle the bits in the basic_block indexed arrays.  */
1463
1464  if (df->blocks_to_analyze)
1465    {
1466      if (bitmap_bit_p (tmp, ENTRY_BLOCK))
1467	bitmap_set_bit (df->blocks_to_analyze, ENTRY_BLOCK);
1468      if (bitmap_bit_p (tmp, EXIT_BLOCK))
1469	bitmap_set_bit (df->blocks_to_analyze, EXIT_BLOCK);
1470      bitmap_copy (tmp, df->blocks_to_analyze);
1471      bitmap_clear (df->blocks_to_analyze);
1472      i = NUM_FIXED_BLOCKS;
1473      FOR_EACH_BB (bb)
1474	{
1475	  if (bitmap_bit_p (tmp, bb->index))
1476	    bitmap_set_bit (df->blocks_to_analyze, i);
1477	  i++;
1478	}
1479    }
1480
1481  BITMAP_FREE (tmp);
1482
1483  free (problem_temps);
1484
1485  i = NUM_FIXED_BLOCKS;
1486  FOR_EACH_BB (bb)
1487    {
1488      SET_BASIC_BLOCK (i, bb);
1489      bb->index = i;
1490      i++;
1491    }
1492
1493  gcc_assert (i == n_basic_blocks);
1494
1495  for (; i < last_basic_block; i++)
1496    SET_BASIC_BLOCK (i, NULL);
1497
1498#ifdef DF_DEBUG_CFG
1499  if (!df_lr->solutions_dirty)
1500    df_set_clean_cfg ();
1501#endif
1502}
1503
1504
1505/* Shove NEW_BLOCK in at OLD_INDEX.  Called from ifcvt to hack a
1506   block.  There is no excuse for people to do this kind of thing.  */
1507
1508void
1509df_bb_replace (int old_index, basic_block new_block)
1510{
1511  int new_block_index = new_block->index;
1512  int p;
1513
1514  if (dump_file)
1515    fprintf (dump_file, "shoving block %d into %d\n", new_block_index, old_index);
1516
1517  gcc_assert (df);
1518  gcc_assert (BASIC_BLOCK (old_index) == NULL);
1519
1520  for (p = 0; p < df->num_problems_defined; p++)
1521    {
1522      struct dataflow *dflow = df->problems_in_order[p];
1523      if (dflow->block_info)
1524	{
1525	  df_grow_bb_info (dflow);
1526	  gcc_assert (df_get_bb_info (dflow, old_index) == NULL);
1527	  df_set_bb_info (dflow, old_index,
1528			  df_get_bb_info (dflow, new_block_index));
1529	}
1530    }
1531
1532  df_clear_bb_dirty (new_block);
1533  SET_BASIC_BLOCK (old_index, new_block);
1534  new_block->index = old_index;
1535  df_set_bb_dirty (BASIC_BLOCK (old_index));
1536  SET_BASIC_BLOCK (new_block_index, NULL);
1537}
1538
1539
1540/* Free all of the per basic block dataflow from all of the problems.
1541   This is typically called before a basic block is deleted and the
1542   problem will be reanalyzed.  */
1543
1544void
1545df_bb_delete (int bb_index)
1546{
1547  basic_block bb = BASIC_BLOCK (bb_index);
1548  int i;
1549
1550  if (!df)
1551    return;
1552
1553  for (i = 0; i < df->num_problems_defined; i++)
1554    {
1555      struct dataflow *dflow = df->problems_in_order[i];
1556      if (dflow->problem->free_bb_fun)
1557	{
1558	  void *bb_info = df_get_bb_info (dflow, bb_index);
1559	  if (bb_info)
1560	    {
1561	      dflow->problem->free_bb_fun (bb, bb_info);
1562	      df_set_bb_info (dflow, bb_index, NULL);
1563	    }
1564	}
1565    }
1566  df_clear_bb_dirty (bb);
1567  df_mark_solutions_dirty ();
1568}
1569
1570
1571/* Verify that there is a place for everything and everything is in
1572   its place.  This is too expensive to run after every pass in the
1573   mainline.  However this is an excellent debugging tool if the
1574   dataflow information is not being updated properly.  You can just
1575   sprinkle calls in until you find the place that is changing an
1576   underlying structure without calling the proper updating
1577   routine.  */
1578
1579void
1580df_verify (void)
1581{
1582  df_scan_verify ();
1583#ifdef ENABLE_DF_CHECKING
1584  df_lr_verify_transfer_functions ();
1585  if (df_live)
1586    df_live_verify_transfer_functions ();
1587#endif
1588}
1589
1590#ifdef DF_DEBUG_CFG
1591
1592/* Compute an array of ints that describes the cfg.  This can be used
1593   to discover places where the cfg is modified by the appropriate
1594   calls have not been made to the keep df informed.  The internals of
1595   this are unexciting, the key is that two instances of this can be
1596   compared to see if any changes have been made to the cfg.  */
1597
1598static int *
1599df_compute_cfg_image (void)
1600{
1601  basic_block bb;
1602  int size = 2 + (2 * n_basic_blocks);
1603  int i;
1604  int * map;
1605
1606  FOR_ALL_BB (bb)
1607    {
1608      size += EDGE_COUNT (bb->succs);
1609    }
1610
1611  map = XNEWVEC (int, size);
1612  map[0] = size;
1613  i = 1;
1614  FOR_ALL_BB (bb)
1615    {
1616      edge_iterator ei;
1617      edge e;
1618
1619      map[i++] = bb->index;
1620      FOR_EACH_EDGE (e, ei, bb->succs)
1621	map[i++] = e->dest->index;
1622      map[i++] = -1;
1623    }
1624  map[i] = -1;
1625  return map;
1626}
1627
1628static int *saved_cfg = NULL;
1629
1630
1631/* This function compares the saved version of the cfg with the
1632   current cfg and aborts if the two are identical.  The function
1633   silently returns if the cfg has been marked as dirty or the two are
1634   the same.  */
1635
1636void
1637df_check_cfg_clean (void)
1638{
1639  int *new_map;
1640
1641  if (!df)
1642    return;
1643
1644  if (df_lr->solutions_dirty)
1645    return;
1646
1647  if (saved_cfg == NULL)
1648    return;
1649
1650  new_map = df_compute_cfg_image ();
1651  gcc_assert (memcmp (saved_cfg, new_map, saved_cfg[0] * sizeof (int)) == 0);
1652  free (new_map);
1653}
1654
1655
1656/* This function builds a cfg fingerprint and squirrels it away in
1657   saved_cfg.  */
1658
1659static void
1660df_set_clean_cfg (void)
1661{
1662  if (saved_cfg)
1663    free (saved_cfg);
1664  saved_cfg = df_compute_cfg_image ();
1665}
1666
1667#endif /* DF_DEBUG_CFG  */
1668/*----------------------------------------------------------------------------
1669   PUBLIC INTERFACES TO QUERY INFORMATION.
1670----------------------------------------------------------------------------*/
1671
1672
1673/* Return first def of REGNO within BB.  */
1674
1675df_ref
1676df_bb_regno_first_def_find (basic_block bb, unsigned int regno)
1677{
1678  rtx insn;
1679  df_ref *def_rec;
1680  unsigned int uid;
1681
1682  FOR_BB_INSNS (bb, insn)
1683    {
1684      if (!INSN_P (insn))
1685	continue;
1686
1687      uid = INSN_UID (insn);
1688      for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
1689	{
1690	  df_ref def = *def_rec;
1691	  if (DF_REF_REGNO (def) == regno)
1692	    return def;
1693	}
1694    }
1695  return NULL;
1696}
1697
1698
1699/* Return last def of REGNO within BB.  */
1700
1701df_ref
1702df_bb_regno_last_def_find (basic_block bb, unsigned int regno)
1703{
1704  rtx insn;
1705  df_ref *def_rec;
1706  unsigned int uid;
1707
1708  FOR_BB_INSNS_REVERSE (bb, insn)
1709    {
1710      if (!INSN_P (insn))
1711	continue;
1712
1713      uid = INSN_UID (insn);
1714      for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
1715	{
1716	  df_ref def = *def_rec;
1717	  if (DF_REF_REGNO (def) == regno)
1718	    return def;
1719	}
1720    }
1721
1722  return NULL;
1723}
1724
1725/* Finds the reference corresponding to the definition of REG in INSN.
1726   DF is the dataflow object.  */
1727
1728df_ref
1729df_find_def (rtx insn, rtx reg)
1730{
1731  unsigned int uid;
1732  df_ref *def_rec;
1733
1734  if (GET_CODE (reg) == SUBREG)
1735    reg = SUBREG_REG (reg);
1736  gcc_assert (REG_P (reg));
1737
1738  uid = INSN_UID (insn);
1739  for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
1740    {
1741      df_ref def = *def_rec;
1742      if (rtx_equal_p (DF_REF_REAL_REG (def), reg))
1743	return def;
1744    }
1745
1746  return NULL;
1747}
1748
1749
1750/* Return true if REG is defined in INSN, zero otherwise.  */
1751
1752bool
1753df_reg_defined (rtx insn, rtx reg)
1754{
1755  return df_find_def (insn, reg) != NULL;
1756}
1757
1758
1759/* Finds the reference corresponding to the use of REG in INSN.
1760   DF is the dataflow object.  */
1761
1762df_ref
1763df_find_use (rtx insn, rtx reg)
1764{
1765  unsigned int uid;
1766  df_ref *use_rec;
1767
1768  if (GET_CODE (reg) == SUBREG)
1769    reg = SUBREG_REG (reg);
1770  gcc_assert (REG_P (reg));
1771
1772  uid = INSN_UID (insn);
1773  for (use_rec = DF_INSN_UID_USES (uid); *use_rec; use_rec++)
1774    {
1775      df_ref use = *use_rec;
1776      if (rtx_equal_p (DF_REF_REAL_REG (use), reg))
1777	return use;
1778    }
1779  if (df->changeable_flags & DF_EQ_NOTES)
1780    for (use_rec = DF_INSN_UID_EQ_USES (uid); *use_rec; use_rec++)
1781      {
1782	df_ref use = *use_rec;
1783	if (rtx_equal_p (DF_REF_REAL_REG (use), reg))
1784	  return use;
1785      }
1786  return NULL;
1787}
1788
1789
1790/* Return true if REG is referenced in INSN, zero otherwise.  */
1791
1792bool
1793df_reg_used (rtx insn, rtx reg)
1794{
1795  return df_find_use (insn, reg) != NULL;
1796}
1797
1798
1799/*----------------------------------------------------------------------------
1800   Debugging and printing functions.
1801----------------------------------------------------------------------------*/
1802
1803
1804/* Write information about registers and basic blocks into FILE.
1805   This is part of making a debugging dump.  */
1806
1807void
1808df_print_regset (FILE *file, bitmap r)
1809{
1810  unsigned int i;
1811  bitmap_iterator bi;
1812
1813  if (r == NULL)
1814    fputs (" (nil)", file);
1815  else
1816    {
1817      EXECUTE_IF_SET_IN_BITMAP (r, 0, i, bi)
1818	{
1819	  fprintf (file, " %d", i);
1820	  if (i < FIRST_PSEUDO_REGISTER)
1821	    fprintf (file, " [%s]", reg_names[i]);
1822	}
1823    }
1824  fprintf (file, "\n");
1825}
1826
1827
1828/* Write information about registers and basic blocks into FILE.  The
1829   bitmap is in the form used by df_byte_lr.  This is part of making a
1830   debugging dump.  */
1831
1832void
1833df_print_byte_regset (FILE *file, bitmap r)
1834{
1835  unsigned int max_reg = max_reg_num ();
1836  bitmap_iterator bi;
1837
1838  if (r == NULL)
1839    fputs (" (nil)", file);
1840  else
1841    {
1842      unsigned int i;
1843      for (i = 0; i < max_reg; i++)
1844	{
1845	  unsigned int first = df_byte_lr_get_regno_start (i);
1846	  unsigned int len = df_byte_lr_get_regno_len (i);
1847
1848	  if (len > 1)
1849	    {
1850	      bool found = false;
1851	      unsigned int j;
1852
1853	      EXECUTE_IF_SET_IN_BITMAP (r, first, j, bi)
1854		{
1855		  found = j < first + len;
1856		  break;
1857		}
1858	      if (found)
1859		{
1860		  const char * sep = "";
1861		  fprintf (file, " %d", i);
1862		  if (i < FIRST_PSEUDO_REGISTER)
1863		    fprintf (file, " [%s]", reg_names[i]);
1864		  fprintf (file, "(");
1865		  EXECUTE_IF_SET_IN_BITMAP (r, first, j, bi)
1866		    {
1867		      if (j > first + len - 1)
1868			break;
1869		      fprintf (file, "%s%d", sep, j-first);
1870		      sep = ", ";
1871		    }
1872		  fprintf (file, ")");
1873		}
1874	    }
1875	  else
1876	    {
1877	      if (bitmap_bit_p (r, first))
1878		{
1879		  fprintf (file, " %d", i);
1880		  if (i < FIRST_PSEUDO_REGISTER)
1881		    fprintf (file, " [%s]", reg_names[i]);
1882		}
1883	    }
1884
1885	}
1886    }
1887  fprintf (file, "\n");
1888}
1889
1890
1891/* Dump dataflow info.  */
1892
1893void
1894df_dump (FILE *file)
1895{
1896  basic_block bb;
1897  df_dump_start (file);
1898
1899  FOR_ALL_BB (bb)
1900    {
1901      df_print_bb_index (bb, file);
1902      df_dump_top (bb, file);
1903      df_dump_bottom (bb, file);
1904    }
1905
1906  fprintf (file, "\n");
1907}
1908
1909
1910/* Dump dataflow info for df->blocks_to_analyze.  */
1911
1912void
1913df_dump_region (FILE *file)
1914{
1915  if (df->blocks_to_analyze)
1916    {
1917      bitmap_iterator bi;
1918      unsigned int bb_index;
1919
1920      fprintf (file, "\n\nstarting region dump\n");
1921      df_dump_start (file);
1922
1923      EXECUTE_IF_SET_IN_BITMAP (df->blocks_to_analyze, 0, bb_index, bi)
1924	{
1925	  basic_block bb = BASIC_BLOCK (bb_index);
1926
1927	  df_print_bb_index (bb, file);
1928	  df_dump_top (bb, file);
1929	  df_dump_bottom (bb, file);
1930	}
1931      fprintf (file, "\n");
1932    }
1933  else
1934    df_dump (file);
1935}
1936
1937
1938/* Dump the introductory information for each problem defined.  */
1939
1940void
1941df_dump_start (FILE *file)
1942{
1943  int i;
1944
1945  if (!df || !file)
1946    return;
1947
1948  fprintf (file, "\n\n%s\n", current_function_name ());
1949  fprintf (file, "\nDataflow summary:\n");
1950  if (df->blocks_to_analyze)
1951    fprintf (file, "def_info->table_size = %d, use_info->table_size = %d\n",
1952	     DF_DEFS_TABLE_SIZE (), DF_USES_TABLE_SIZE ());
1953
1954  for (i = 0; i < df->num_problems_defined; i++)
1955    {
1956      struct dataflow *dflow = df->problems_in_order[i];
1957      if (dflow->computed)
1958	{
1959	  df_dump_problem_function fun = dflow->problem->dump_start_fun;
1960	  if (fun)
1961	    fun(file);
1962	}
1963    }
1964}
1965
1966
1967/* Dump the top of the block information for BB.  */
1968
1969void
1970df_dump_top (basic_block bb, FILE *file)
1971{
1972  int i;
1973
1974  if (!df || !file)
1975    return;
1976
1977  for (i = 0; i < df->num_problems_defined; i++)
1978    {
1979      struct dataflow *dflow = df->problems_in_order[i];
1980      if (dflow->computed)
1981	{
1982	  df_dump_bb_problem_function bbfun = dflow->problem->dump_top_fun;
1983	  if (bbfun)
1984	    bbfun (bb, file);
1985	}
1986    }
1987}
1988
1989
1990/* Dump the bottom of the block information for BB.  */
1991
1992void
1993df_dump_bottom (basic_block bb, FILE *file)
1994{
1995  int i;
1996
1997  if (!df || !file)
1998    return;
1999
2000  for (i = 0; i < df->num_problems_defined; i++)
2001    {
2002      struct dataflow *dflow = df->problems_in_order[i];
2003      if (dflow->computed)
2004	{
2005	  df_dump_bb_problem_function bbfun = dflow->problem->dump_bottom_fun;
2006	  if (bbfun)
2007	    bbfun (bb, file);
2008	}
2009    }
2010}
2011
2012
2013static void
2014df_ref_dump (df_ref ref, FILE *file)
2015{
2016  fprintf (file, "%c%d(%d)",
2017	   DF_REF_REG_DEF_P (ref)
2018	   ? 'd'
2019	   : (DF_REF_FLAGS (ref) & DF_REF_IN_NOTE) ? 'e' : 'u',
2020	   DF_REF_ID (ref),
2021	   DF_REF_REGNO (ref));
2022}
2023
2024void
2025df_refs_chain_dump (df_ref *ref_rec, bool follow_chain, FILE *file)
2026{
2027  fprintf (file, "{ ");
2028  while (*ref_rec)
2029    {
2030      df_ref ref = *ref_rec;
2031      df_ref_dump (ref, file);
2032      if (follow_chain)
2033	df_chain_dump (DF_REF_CHAIN (ref), file);
2034      ref_rec++;
2035    }
2036  fprintf (file, "}");
2037}
2038
2039
2040/* Dump either a ref-def or reg-use chain.  */
2041
2042void
2043df_regs_chain_dump (df_ref ref,  FILE *file)
2044{
2045  fprintf (file, "{ ");
2046  while (ref)
2047    {
2048      df_ref_dump (ref, file);
2049      ref = DF_REF_NEXT_REG (ref);
2050    }
2051  fprintf (file, "}");
2052}
2053
2054
2055static void
2056df_mws_dump (struct df_mw_hardreg **mws, FILE *file)
2057{
2058  while (*mws)
2059    {
2060      fprintf (file, "mw %c r[%d..%d]\n",
2061	       (DF_MWS_REG_DEF_P (*mws)) ? 'd' : 'u',
2062	       (*mws)->start_regno, (*mws)->end_regno);
2063      mws++;
2064    }
2065}
2066
2067
2068static void
2069df_insn_uid_debug (unsigned int uid,
2070		   bool follow_chain, FILE *file)
2071{
2072  fprintf (file, "insn %d luid %d",
2073	   uid, DF_INSN_UID_LUID (uid));
2074
2075  if (DF_INSN_UID_DEFS (uid))
2076    {
2077      fprintf (file, " defs ");
2078      df_refs_chain_dump (DF_INSN_UID_DEFS (uid), follow_chain, file);
2079    }
2080
2081  if (DF_INSN_UID_USES (uid))
2082    {
2083      fprintf (file, " uses ");
2084      df_refs_chain_dump (DF_INSN_UID_USES (uid), follow_chain, file);
2085    }
2086
2087  if (DF_INSN_UID_EQ_USES (uid))
2088    {
2089      fprintf (file, " eq uses ");
2090      df_refs_chain_dump (DF_INSN_UID_EQ_USES (uid), follow_chain, file);
2091    }
2092
2093  if (DF_INSN_UID_MWS (uid))
2094    {
2095      fprintf (file, " mws ");
2096      df_mws_dump (DF_INSN_UID_MWS (uid), file);
2097    }
2098  fprintf (file, "\n");
2099}
2100
2101
2102void
2103df_insn_debug (rtx insn, bool follow_chain, FILE *file)
2104{
2105  df_insn_uid_debug (INSN_UID (insn), follow_chain, file);
2106}
2107
2108void
2109df_insn_debug_regno (rtx insn, FILE *file)
2110{
2111  struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
2112
2113  fprintf (file, "insn %d bb %d luid %d defs ",
2114	   INSN_UID (insn), BLOCK_FOR_INSN (insn)->index,
2115	   DF_INSN_INFO_LUID (insn_info));
2116  df_refs_chain_dump (DF_INSN_INFO_DEFS (insn_info), false, file);
2117
2118  fprintf (file, " uses ");
2119  df_refs_chain_dump (DF_INSN_INFO_USES (insn_info), false, file);
2120
2121  fprintf (file, " eq_uses ");
2122  df_refs_chain_dump (DF_INSN_INFO_EQ_USES (insn_info), false, file);
2123  fprintf (file, "\n");
2124}
2125
2126void
2127df_regno_debug (unsigned int regno, FILE *file)
2128{
2129  fprintf (file, "reg %d defs ", regno);
2130  df_regs_chain_dump (DF_REG_DEF_CHAIN (regno), file);
2131  fprintf (file, " uses ");
2132  df_regs_chain_dump (DF_REG_USE_CHAIN (regno), file);
2133  fprintf (file, " eq_uses ");
2134  df_regs_chain_dump (DF_REG_EQ_USE_CHAIN (regno), file);
2135  fprintf (file, "\n");
2136}
2137
2138
2139void
2140df_ref_debug (df_ref ref, FILE *file)
2141{
2142  fprintf (file, "%c%d ",
2143	   DF_REF_REG_DEF_P (ref) ? 'd' : 'u',
2144	   DF_REF_ID (ref));
2145  fprintf (file, "reg %d bb %d insn %d flag 0x%x type 0x%x ",
2146	   DF_REF_REGNO (ref),
2147	   DF_REF_BBNO (ref),
2148	   DF_REF_IS_ARTIFICIAL (ref) ? -1 : DF_REF_INSN_UID (ref),
2149	   DF_REF_FLAGS (ref),
2150	   DF_REF_TYPE (ref));
2151  if (DF_REF_LOC (ref))
2152    {
2153      if (flag_dump_noaddr)
2154	fprintf (file, "loc #(#) chain ");
2155      else
2156	fprintf (file, "loc %p(%p) chain ", (void *)DF_REF_LOC (ref),
2157		 (void *)*DF_REF_LOC (ref));
2158    }
2159  else
2160    fprintf (file, "chain ");
2161  df_chain_dump (DF_REF_CHAIN (ref), file);
2162  fprintf (file, "\n");
2163}
2164
2165/* Functions for debugging from GDB.  */
2166
2167void
2168debug_df_insn (rtx insn)
2169{
2170  df_insn_debug (insn, true, stderr);
2171  debug_rtx (insn);
2172}
2173
2174
2175void
2176debug_df_reg (rtx reg)
2177{
2178  df_regno_debug (REGNO (reg), stderr);
2179}
2180
2181
2182void
2183debug_df_regno (unsigned int regno)
2184{
2185  df_regno_debug (regno, stderr);
2186}
2187
2188
2189void
2190debug_df_ref (df_ref ref)
2191{
2192  df_ref_debug (ref, stderr);
2193}
2194
2195
2196void
2197debug_df_defno (unsigned int defno)
2198{
2199  df_ref_debug (DF_DEFS_GET (defno), stderr);
2200}
2201
2202
2203void
2204debug_df_useno (unsigned int defno)
2205{
2206  df_ref_debug (DF_USES_GET (defno), stderr);
2207}
2208
2209
2210void
2211debug_df_chain (struct df_link *link)
2212{
2213  df_chain_dump (link, stderr);
2214  fputc ('\n', stderr);
2215}
2216