1/* Definitions of target machine GNU compiler.  IA-64 version.
2   Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
3   2009 Free Software Foundation, Inc.
4   Contributed by James E. Wilson <wilson@cygnus.com> and
5   		  David Mosberger <davidm@hpl.hp.com>.
6
7This file is part of GCC.
8
9GCC is free software; you can redistribute it and/or modify
10it under the terms of the GNU General Public License as published by
11the Free Software Foundation; either version 3, or (at your option)
12any later version.
13
14GCC is distributed in the hope that it will be useful,
15but WITHOUT ANY WARRANTY; without even the implied warranty of
16MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17GNU General Public License for more details.
18
19You should have received a copy of the GNU General Public License
20along with GCC; see the file COPYING3.  If not see
21<http://www.gnu.org/licenses/>.  */
22
23/* ??? Look at ABI group documents for list of preprocessor macros and
24   other features required for ABI compliance.  */
25
26/* ??? Functions containing a non-local goto target save many registers.  Why?
27   See for instance execute/920428-2.c.  */
28
29
30/* Run-time target specifications */
31
32/* Target CPU builtins.  */
33#define TARGET_CPU_CPP_BUILTINS()		\
34do {						\
35	builtin_assert("cpu=ia64");		\
36	builtin_assert("machine=ia64");		\
37	builtin_define("__ia64");		\
38	builtin_define("__ia64__");		\
39	builtin_define("__itanium__");		\
40	if (TARGET_BIG_ENDIAN)			\
41	  builtin_define("__BIG_ENDIAN__");	\
42} while (0)
43
44#ifndef SUBTARGET_EXTRA_SPECS
45#define SUBTARGET_EXTRA_SPECS
46#endif
47
48#define EXTRA_SPECS \
49  { "asm_extra", ASM_EXTRA_SPEC }, \
50  SUBTARGET_EXTRA_SPECS
51
52#define CC1_SPEC "%(cc1_cpu) "
53
54#define ASM_EXTRA_SPEC ""
55
56/* Variables which are this size or smaller are put in the sdata/sbss
57   sections.  */
58extern unsigned int ia64_section_threshold;
59
60/* If the assembler supports thread-local storage, assume that the
61   system does as well.  If a particular target system has an
62   assembler that supports TLS -- but the rest of the system does not
63   support TLS -- that system should explicit define TARGET_HAVE_TLS
64   to false in its own configuration file.  */
65#if !defined(TARGET_HAVE_TLS) && defined(HAVE_AS_TLS)
66#define TARGET_HAVE_TLS true
67#endif
68
69#define TARGET_TLS14		(ia64_tls_size == 14)
70#define TARGET_TLS22		(ia64_tls_size == 22)
71#define TARGET_TLS64		(ia64_tls_size == 64)
72
73#define TARGET_HPUX		0
74#define TARGET_HPUX_LD		0
75
76#define TARGET_ABI_OPEN_VMS 0
77
78#ifndef TARGET_ILP32
79#define TARGET_ILP32 0
80#endif
81
82#ifndef HAVE_AS_LTOFFX_LDXMOV_RELOCS
83#define HAVE_AS_LTOFFX_LDXMOV_RELOCS 0
84#endif
85
86/* Values for TARGET_INLINE_FLOAT_DIV, TARGET_INLINE_INT_DIV, and
87   TARGET_INLINE_SQRT.  */
88
89enum ia64_inline_type
90{
91  INL_NO = 0,
92  INL_MIN_LAT = 1,
93  INL_MAX_THR = 2
94};
95
96/* Default target_flags if no switches are specified  */
97
98#ifndef TARGET_DEFAULT
99#define TARGET_DEFAULT (MASK_DWARF2_ASM | MASK_FUSED_MADD)
100#endif
101
102#ifndef TARGET_CPU_DEFAULT
103#define TARGET_CPU_DEFAULT 0
104#endif
105
106/* Which processor to schedule for. The cpu attribute defines a list
107   that mirrors this list, so changes to ia64.md must be made at the
108   same time.  */
109
110enum processor_type
111{
112  PROCESSOR_ITANIUM,			/* Original Itanium.  */
113  PROCESSOR_ITANIUM2,
114  PROCESSOR_max
115};
116
117extern enum processor_type ia64_tune;
118
119/* Sometimes certain combinations of command options do not make sense on a
120   particular target machine.  You can define a macro `OVERRIDE_OPTIONS' to
121   take account of this.  This macro, if defined, is executed once just after
122   all the command options have been parsed.  */
123
124#define OVERRIDE_OPTIONS ia64_override_options ()
125
126/* Some machines may desire to change what optimizations are performed for
127   various optimization levels.  This macro, if defined, is executed once just
128   after the optimization level is determined and before the remainder of the
129   command options have been parsed.  Values set in this macro are used as the
130   default values for the other command line options.  */
131
132/* #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) */
133
134/* Driver configuration */
135
136/* A C string constant that tells the GCC driver program options to pass to
137   `cc1'.  It can also specify how to translate options you give to GCC into
138   options for GCC to pass to the `cc1'.  */
139
140#undef CC1_SPEC
141#define CC1_SPEC "%{G*}"
142
143/* A C string constant that tells the GCC driver program options to pass to
144   `cc1plus'.  It can also specify how to translate options you give to GCC
145   into options for GCC to pass to the `cc1plus'.  */
146
147/* #define CC1PLUS_SPEC "" */
148
149/* Storage Layout */
150
151/* Define this macro to have the value 1 if the most significant bit in a byte
152   has the lowest number; otherwise define it to have the value zero.  */
153
154#define BITS_BIG_ENDIAN 0
155
156#define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
157
158/* Define this macro to have the value 1 if, in a multiword object, the most
159   significant word has the lowest number.  */
160
161#define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
162
163#if defined(__BIG_ENDIAN__)
164#define LIBGCC2_WORDS_BIG_ENDIAN 1
165#else
166#define LIBGCC2_WORDS_BIG_ENDIAN 0
167#endif
168
169#define UNITS_PER_WORD 8
170
171#define POINTER_SIZE (TARGET_ILP32 ? 32 : 64)
172
173/* A C expression whose value is zero if pointers that need to be extended
174   from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and one if
175   they are zero-extended and negative one if there is a ptr_extend operation.
176
177   You need not define this macro if the `POINTER_SIZE' is equal to the width
178   of `Pmode'.  */
179/* Need this for 32-bit pointers, see hpux.h for setting it.  */
180/* #define POINTERS_EXTEND_UNSIGNED */
181
182/* A macro to update MODE and UNSIGNEDP when an object whose type is TYPE and
183   which has the specified mode and signedness is to be stored in a register.
184   This macro is only called when TYPE is a scalar type.  */
185#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE)				\
186do									\
187  {									\
188    if (GET_MODE_CLASS (MODE) == MODE_INT				\
189	&& GET_MODE_SIZE (MODE) < 4)					\
190      (MODE) = SImode;							\
191  }									\
192while (0)
193
194#define PARM_BOUNDARY 64
195
196/* Define this macro if you wish to preserve a certain alignment for the stack
197   pointer.  The definition is a C expression for the desired alignment
198   (measured in bits).  */
199
200#define STACK_BOUNDARY 128
201
202/* Align frames on double word boundaries */
203#ifndef IA64_STACK_ALIGN
204#define IA64_STACK_ALIGN(LOC) (((LOC) + 15) & ~15)
205#endif
206
207#define FUNCTION_BOUNDARY 128
208
209/* Optional x86 80-bit float, quad-precision 128-bit float, and quad-word
210   128-bit integers all require 128-bit alignment.  */
211#define BIGGEST_ALIGNMENT 128
212
213/* If defined, a C expression to compute the alignment for a static variable.
214   TYPE is the data type, and ALIGN is the alignment that the object
215   would ordinarily have.  The value of this macro is used instead of that
216   alignment to align the object.  */
217
218#define DATA_ALIGNMENT(TYPE, ALIGN)		\
219  (TREE_CODE (TYPE) == ARRAY_TYPE		\
220   && TYPE_MODE (TREE_TYPE (TYPE)) == QImode	\
221   && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
222
223/* If defined, a C expression to compute the alignment given to a constant that
224   is being placed in memory.  CONSTANT is the constant and ALIGN is the
225   alignment that the object would ordinarily have.  The value of this macro is
226   used instead of that alignment to align the object.  */
227
228#define CONSTANT_ALIGNMENT(EXP, ALIGN)  \
229  (TREE_CODE (EXP) == STRING_CST	\
230   && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
231
232#define STRICT_ALIGNMENT 1
233
234/* Define this if you wish to imitate the way many other C compilers handle
235   alignment of bitfields and the structures that contain them.
236   The behavior is that the type written for a bit-field (`int', `short', or
237   other integer type) imposes an alignment for the entire structure, as if the
238   structure really did contain an ordinary field of that type.  In addition,
239   the bit-field is placed within the structure so that it would fit within such
240   a field, not crossing a boundary for it.  */
241#define PCC_BITFIELD_TYPE_MATTERS 1
242
243/* An integer expression for the size in bits of the largest integer machine
244   mode that should actually be used.  */
245
246/* Allow pairs of registers to be used, which is the intent of the default.  */
247#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
248
249/* By default, the C++ compiler will use function addresses in the
250   vtable entries.  Setting this nonzero tells the compiler to use
251   function descriptors instead.  The value of this macro says how
252   many words wide the descriptor is (normally 2).  It is assumed
253   that the address of a function descriptor may be treated as a
254   pointer to a function.
255
256   For reasons known only to HP, the vtable entries (as opposed to
257   normal function descriptors) are 16 bytes wide in 32-bit mode as
258   well, even though the 3rd and 4th words are unused.  */
259#define TARGET_VTABLE_USES_DESCRIPTORS (TARGET_ILP32 ? 4 : 2)
260
261/* Due to silliness in the HPUX linker, vtable entries must be
262   8-byte aligned even in 32-bit mode.  Rather than create multiple
263   ABIs, force this restriction on everyone else too.  */
264#define TARGET_VTABLE_ENTRY_ALIGN  64
265
266/* Due to the above, we need extra padding for the data entries below 0
267   to retain the alignment of the descriptors.  */
268#define TARGET_VTABLE_DATA_ENTRY_DISTANCE (TARGET_ILP32 ? 2 : 1)
269
270/* Layout of Source Language Data Types */
271
272#define INT_TYPE_SIZE 32
273
274#define SHORT_TYPE_SIZE 16
275
276#define LONG_TYPE_SIZE (TARGET_ILP32 ? 32 : 64)
277
278#define LONG_LONG_TYPE_SIZE 64
279
280#define FLOAT_TYPE_SIZE 32
281
282#define DOUBLE_TYPE_SIZE 64
283
284/* long double is XFmode normally, and TFmode for HPUX.  It should be
285   TFmode for VMS as well but we only support up to DFmode now.  */
286#define LONG_DOUBLE_TYPE_SIZE \
287  (TARGET_HPUX ? 128 \
288   : TARGET_ABI_OPEN_VMS ? 64 \
289   : 80)
290
291/* We always want the XFmode operations from libgcc2.c, except on VMS
292   where this yields references to unimplemented "insns".  */
293#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE  (TARGET_ABI_OPEN_VMS ? 64 : 80)
294
295
296/* On HP-UX, we use the l suffix for TFmode in libgcc2.c.  */
297#define LIBGCC2_TF_CEXT l
298
299#define DEFAULT_SIGNED_CHAR 1
300
301/* A C expression for a string describing the name of the data type to use for
302   size values.  The typedef name `size_t' is defined using the contents of the
303   string.  */
304/* ??? Needs to be defined for P64 code.  */
305/* #define SIZE_TYPE */
306
307/* A C expression for a string describing the name of the data type to use for
308   the result of subtracting two pointers.  The typedef name `ptrdiff_t' is
309   defined using the contents of the string.  See `SIZE_TYPE' above for more
310   information.  */
311/* ??? Needs to be defined for P64 code.  */
312/* #define PTRDIFF_TYPE */
313
314/* A C expression for a string describing the name of the data type to use for
315   wide characters.  The typedef name `wchar_t' is defined using the contents
316   of the string.  See `SIZE_TYPE' above for more information.  */
317/* #define WCHAR_TYPE */
318
319/* A C expression for the size in bits of the data type for wide characters.
320   This is used in `cpp', which cannot make use of `WCHAR_TYPE'.  */
321/* #define WCHAR_TYPE_SIZE */
322
323
324/* Register Basics */
325
326/* Number of hardware registers known to the compiler.
327   We have 128 general registers, 128 floating point registers,
328   64 predicate registers, 8 branch registers, one frame pointer,
329   and several "application" registers.  */
330
331#define FIRST_PSEUDO_REGISTER 334
332
333/* Ranges for the various kinds of registers.  */
334#define ADDL_REGNO_P(REGNO) ((unsigned HOST_WIDE_INT) (REGNO) <= 3)
335#define GR_REGNO_P(REGNO) ((unsigned HOST_WIDE_INT) (REGNO) <= 127)
336#define FR_REGNO_P(REGNO) ((REGNO) >= 128 && (REGNO) <= 255)
337#define FP_REGNO_P(REGNO) ((REGNO) >= 128 && (REGNO) <= 254 && (REGNO) != 159)
338#define PR_REGNO_P(REGNO) ((REGNO) >= 256 && (REGNO) <= 319)
339#define BR_REGNO_P(REGNO) ((REGNO) >= 320 && (REGNO) <= 327)
340#define GENERAL_REGNO_P(REGNO) \
341  (GR_REGNO_P (REGNO) || (REGNO) == FRAME_POINTER_REGNUM)
342
343#define GR_REG(REGNO) ((REGNO) + 0)
344#define FR_REG(REGNO) ((REGNO) + 128)
345#define PR_REG(REGNO) ((REGNO) + 256)
346#define BR_REG(REGNO) ((REGNO) + 320)
347#define OUT_REG(REGNO) ((REGNO) + 120)
348#define IN_REG(REGNO) ((REGNO) + 112)
349#define LOC_REG(REGNO) ((REGNO) + 32)
350
351#define AR_CCV_REGNUM	329
352#define AR_UNAT_REGNUM  330
353#define AR_PFS_REGNUM	331
354#define AR_LC_REGNUM	332
355#define AR_EC_REGNUM	333
356
357#define IN_REGNO_P(REGNO) ((REGNO) >= IN_REG (0) && (REGNO) <= IN_REG (7))
358#define LOC_REGNO_P(REGNO) ((REGNO) >= LOC_REG (0) && (REGNO) <= LOC_REG (79))
359#define OUT_REGNO_P(REGNO) ((REGNO) >= OUT_REG (0) && (REGNO) <= OUT_REG (7))
360
361#define AR_M_REGNO_P(REGNO) ((REGNO) == AR_CCV_REGNUM \
362			     || (REGNO) == AR_UNAT_REGNUM)
363#define AR_I_REGNO_P(REGNO) ((REGNO) >= AR_PFS_REGNUM \
364			     && (REGNO) < FIRST_PSEUDO_REGISTER)
365#define AR_REGNO_P(REGNO) ((REGNO) >= AR_CCV_REGNUM \
366			   && (REGNO) < FIRST_PSEUDO_REGISTER)
367
368
369/* ??? Don't really need two sets of macros.  I like this one better because
370   it is less typing.  */
371#define R_GR(REGNO) GR_REG (REGNO)
372#define R_FR(REGNO) FR_REG (REGNO)
373#define R_PR(REGNO) PR_REG (REGNO)
374#define R_BR(REGNO) BR_REG (REGNO)
375
376/* An initializer that says which registers are used for fixed purposes all
377   throughout the compiled code and are therefore not available for general
378   allocation.
379
380   r0: constant 0
381   r1: global pointer (gp)
382   r12: stack pointer (sp)
383   r13: thread pointer (tp)
384   f0: constant 0.0
385   f1: constant 1.0
386   p0: constant true
387   fp: eliminable frame pointer */
388
389/* The last 16 stacked regs are reserved for the 8 input and 8 output
390   registers.  */
391
392#define FIXED_REGISTERS \
393{ /* General registers.  */				\
394  1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0,	\
395  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
396  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
397  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
398  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
399  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
400  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
401  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
402  /* Floating-point registers.  */			\
403  1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
404  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
405  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
406  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
407  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
408  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
409  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
410  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
411  /* Predicate registers.  */				\
412  1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
413  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
414  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
415  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
416  /* Branch registers.  */				\
417  0, 0, 0, 0, 0, 0, 0, 0,				\
418  /*FP CCV UNAT PFS LC EC */				\
419     1,  1,   1,  1, 0, 1				\
420 }
421
422/* Like `FIXED_REGISTERS' but has 1 for each register that is clobbered
423   (in general) by function calls as well as for fixed registers.  This
424   macro therefore identifies the registers that are not available for
425   general allocation of values that must live across function calls.  */
426
427#define CALL_USED_REGISTERS \
428{ /* General registers.  */				\
429  1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,	\
430  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
431  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
432  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
433  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
434  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
435  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
436  0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,	\
437  /* Floating-point registers.  */			\
438  1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
439  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
440  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
441  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
442  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
443  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
444  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
445  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
446  /* Predicate registers.  */				\
447  1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
448  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
449  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
450  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
451  /* Branch registers.  */				\
452  1, 0, 0, 0, 0, 0, 1, 1,				\
453  /*FP CCV UNAT PFS LC EC */				\
454     1,  1,   1,  1, 0, 1				\
455}
456
457/* Like `CALL_USED_REGISTERS' but used to overcome a historical
458   problem which makes CALL_USED_REGISTERS *always* include
459   all the FIXED_REGISTERS.  Until this problem has been
460   resolved this macro can be used to overcome this situation.
461   In particular, block_propagate() requires this list
462   be accurate, or we can remove registers which should be live.
463   This macro is used in regs_invalidated_by_call.  */
464
465#define CALL_REALLY_USED_REGISTERS \
466{ /* General registers.  */				\
467  0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1,	\
468  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
469  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
470  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
471  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
472  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
473  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
474  0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,	\
475  /* Floating-point registers.  */			\
476  0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
477  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
478  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
479  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
480  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
481  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
482  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
483  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
484  /* Predicate registers.  */				\
485  0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\
486  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
487  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
488  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	\
489  /* Branch registers.  */				\
490  1, 0, 0, 0, 0, 0, 1, 1,				\
491  /*FP CCV UNAT PFS LC EC */				\
492     0,  1,   0,  1, 0, 0				\
493}
494
495
496/* Define this macro if the target machine has register windows.  This C
497   expression returns the register number as seen by the called function
498   corresponding to the register number OUT as seen by the calling function.
499   Return OUT if register number OUT is not an outbound register.  */
500
501#define INCOMING_REGNO(OUT) \
502  ((unsigned) ((OUT) - OUT_REG (0)) < 8 ? IN_REG ((OUT) - OUT_REG (0)) : (OUT))
503
504/* Define this macro if the target machine has register windows.  This C
505   expression returns the register number as seen by the calling function
506   corresponding to the register number IN as seen by the called function.
507   Return IN if register number IN is not an inbound register.  */
508
509#define OUTGOING_REGNO(IN) \
510  ((unsigned) ((IN) - IN_REG (0)) < 8 ? OUT_REG ((IN) - IN_REG (0)) : (IN))
511
512/* Define this macro if the target machine has register windows.  This
513   C expression returns true if the register is call-saved but is in the
514   register window.  */
515
516#define LOCAL_REGNO(REGNO) \
517  (IN_REGNO_P (REGNO) || LOC_REGNO_P (REGNO))
518
519/* We define CCImode in ia64-modes.def so we need a selector.  */
520
521#define SELECT_CC_MODE(OP,X,Y)  CCmode
522
523/* Order of allocation of registers */
524
525/* If defined, an initializer for a vector of integers, containing the numbers
526   of hard registers in the order in which GCC should prefer to use them
527   (from most preferred to least).
528
529   If this macro is not defined, registers are used lowest numbered first (all
530   else being equal).
531
532   One use of this macro is on machines where the highest numbered registers
533   must always be saved and the save-multiple-registers instruction supports
534   only sequences of consecutive registers.  On such machines, define
535   `REG_ALLOC_ORDER' to be an initializer that lists the highest numbered
536   allocatable register first.  */
537
538/* ??? Should the GR return value registers come before or after the rest
539   of the caller-save GRs?  */
540
541#define REG_ALLOC_ORDER							   \
542{									   \
543  /* Caller-saved general registers.  */				   \
544  R_GR (14), R_GR (15), R_GR (16), R_GR (17),				   \
545  R_GR (18), R_GR (19), R_GR (20), R_GR (21), R_GR (22), R_GR (23),	   \
546  R_GR (24), R_GR (25), R_GR (26), R_GR (27), R_GR (28), R_GR (29),	   \
547  R_GR (30), R_GR (31),							   \
548  /* Output registers.  */						   \
549  R_GR (120), R_GR (121), R_GR (122), R_GR (123), R_GR (124), R_GR (125),  \
550  R_GR (126), R_GR (127),						   \
551  /* Caller-saved general registers, also used for return values.  */	   \
552  R_GR (8), R_GR (9), R_GR (10), R_GR (11),				   \
553  /* addl caller-saved general registers.  */				   \
554  R_GR (2), R_GR (3),							   \
555  /* Caller-saved FP registers.  */					   \
556  R_FR (6), R_FR (7),							   \
557  /* Caller-saved FP registers, used for parameters and return values.  */ \
558  R_FR (8), R_FR (9), R_FR (10), R_FR (11),				   \
559  R_FR (12), R_FR (13), R_FR (14), R_FR (15),				   \
560  /* Rotating caller-saved FP registers.  */				   \
561  R_FR (32), R_FR (33), R_FR (34), R_FR (35),				   \
562  R_FR (36), R_FR (37), R_FR (38), R_FR (39), R_FR (40), R_FR (41),	   \
563  R_FR (42), R_FR (43), R_FR (44), R_FR (45), R_FR (46), R_FR (47),	   \
564  R_FR (48), R_FR (49), R_FR (50), R_FR (51), R_FR (52), R_FR (53),	   \
565  R_FR (54), R_FR (55), R_FR (56), R_FR (57), R_FR (58), R_FR (59),	   \
566  R_FR (60), R_FR (61), R_FR (62), R_FR (63), R_FR (64), R_FR (65),	   \
567  R_FR (66), R_FR (67), R_FR (68), R_FR (69), R_FR (70), R_FR (71),	   \
568  R_FR (72), R_FR (73), R_FR (74), R_FR (75), R_FR (76), R_FR (77),	   \
569  R_FR (78), R_FR (79), R_FR (80), R_FR (81), R_FR (82), R_FR (83),	   \
570  R_FR (84), R_FR (85), R_FR (86), R_FR (87), R_FR (88), R_FR (89),	   \
571  R_FR (90), R_FR (91), R_FR (92), R_FR (93), R_FR (94), R_FR (95),	   \
572  R_FR (96), R_FR (97), R_FR (98), R_FR (99), R_FR (100), R_FR (101),	   \
573  R_FR (102), R_FR (103), R_FR (104), R_FR (105), R_FR (106), R_FR (107),  \
574  R_FR (108), R_FR (109), R_FR (110), R_FR (111), R_FR (112), R_FR (113),  \
575  R_FR (114), R_FR (115), R_FR (116), R_FR (117), R_FR (118), R_FR (119),  \
576  R_FR (120), R_FR (121), R_FR (122), R_FR (123), R_FR (124), R_FR (125),  \
577  R_FR (126), R_FR (127),						   \
578  /* Caller-saved predicate registers.  */				   \
579  R_PR (6), R_PR (7), R_PR (8), R_PR (9), R_PR (10), R_PR (11),		   \
580  R_PR (12), R_PR (13), R_PR (14), R_PR (15),				   \
581  /* Rotating caller-saved predicate registers.  */			   \
582  R_PR (16), R_PR (17),							   \
583  R_PR (18), R_PR (19), R_PR (20), R_PR (21), R_PR (22), R_PR (23),	   \
584  R_PR (24), R_PR (25), R_PR (26), R_PR (27), R_PR (28), R_PR (29),	   \
585  R_PR (30), R_PR (31), R_PR (32), R_PR (33), R_PR (34), R_PR (35),	   \
586  R_PR (36), R_PR (37), R_PR (38), R_PR (39), R_PR (40), R_PR (41),	   \
587  R_PR (42), R_PR (43), R_PR (44), R_PR (45), R_PR (46), R_PR (47),	   \
588  R_PR (48), R_PR (49), R_PR (50), R_PR (51), R_PR (52), R_PR (53),	   \
589  R_PR (54), R_PR (55), R_PR (56), R_PR (57), R_PR (58), R_PR (59),	   \
590  R_PR (60), R_PR (61), R_PR (62), R_PR (63),				   \
591  /* Caller-saved branch registers.  */					   \
592  R_BR (6), R_BR (7),							   \
593									   \
594  /* Stacked callee-saved general registers.  */			   \
595  R_GR (32), R_GR (33), R_GR (34), R_GR (35),				   \
596  R_GR (36), R_GR (37), R_GR (38), R_GR (39), R_GR (40), R_GR (41),	   \
597  R_GR (42), R_GR (43), R_GR (44), R_GR (45), R_GR (46), R_GR (47),	   \
598  R_GR (48), R_GR (49), R_GR (50), R_GR (51), R_GR (52), R_GR (53),	   \
599  R_GR (54), R_GR (55), R_GR (56), R_GR (57), R_GR (58), R_GR (59),	   \
600  R_GR (60), R_GR (61), R_GR (62), R_GR (63), R_GR (64), R_GR (65),	   \
601  R_GR (66), R_GR (67), R_GR (68), R_GR (69), R_GR (70), R_GR (71),	   \
602  R_GR (72), R_GR (73), R_GR (74), R_GR (75), R_GR (76), R_GR (77),	   \
603  R_GR (78), R_GR (79), R_GR (80), R_GR (81), R_GR (82), R_GR (83),	   \
604  R_GR (84), R_GR (85), R_GR (86), R_GR (87), R_GR (88), R_GR (89),	   \
605  R_GR (90), R_GR (91), R_GR (92), R_GR (93), R_GR (94), R_GR (95),	   \
606  R_GR (96), R_GR (97), R_GR (98), R_GR (99), R_GR (100), R_GR (101),	   \
607  R_GR (102), R_GR (103), R_GR (104), R_GR (105), R_GR (106), R_GR (107),  \
608  R_GR (108),								   \
609  /* Input registers.  */						   \
610  R_GR (112), R_GR (113), R_GR (114), R_GR (115), R_GR (116), R_GR (117),  \
611  R_GR (118), R_GR (119),						   \
612  /* Callee-saved general registers.  */				   \
613  R_GR (4), R_GR (5), R_GR (6), R_GR (7),				   \
614  /* Callee-saved FP registers.  */					   \
615  R_FR (2), R_FR (3), R_FR (4), R_FR (5), R_FR (16), R_FR (17),		   \
616  R_FR (18), R_FR (19), R_FR (20), R_FR (21), R_FR (22), R_FR (23),	   \
617  R_FR (24), R_FR (25), R_FR (26), R_FR (27), R_FR (28), R_FR (29),	   \
618  R_FR (30), R_FR (31),							   \
619  /* Callee-saved predicate registers.  */				   \
620  R_PR (1), R_PR (2), R_PR (3), R_PR (4), R_PR (5),			   \
621  /* Callee-saved branch registers.  */					   \
622  R_BR (1), R_BR (2), R_BR (3), R_BR (4), R_BR (5),			   \
623									   \
624  /* ??? Stacked registers reserved for fp, rp, and ar.pfs.  */		   \
625  R_GR (109), R_GR (110), R_GR (111),					   \
626									   \
627  /* Special general registers.  */					   \
628  R_GR (0), R_GR (1), R_GR (12), R_GR (13),				   \
629  /* Special FP registers.  */						   \
630  R_FR (0), R_FR (1),							   \
631  /* Special predicate registers.  */					   \
632  R_PR (0),								   \
633  /* Special branch registers.  */					   \
634  R_BR (0),								   \
635  /* Other fixed registers.  */						   \
636  FRAME_POINTER_REGNUM, 						   \
637  AR_CCV_REGNUM, AR_UNAT_REGNUM, AR_PFS_REGNUM, AR_LC_REGNUM,		   \
638  AR_EC_REGNUM		  						   \
639}
640
641/* How Values Fit in Registers */
642
643/* A C expression for the number of consecutive hard registers, starting at
644   register number REGNO, required to hold a value of mode MODE.  */
645
646/* ??? We say that BImode PR values require two registers.  This allows us to
647   easily store the normal and inverted values.  We use CCImode to indicate
648   a single predicate register.  */
649
650#define HARD_REGNO_NREGS(REGNO, MODE)					\
651  ((REGNO) == PR_REG (0) && (MODE) == DImode ? 64			\
652   : PR_REGNO_P (REGNO) && (MODE) == BImode ? 2				\
653   : PR_REGNO_P (REGNO) && (MODE) == CCImode ? 1			\
654   : FR_REGNO_P (REGNO) && (MODE) == XFmode ? 1				\
655   : FR_REGNO_P (REGNO) && (MODE) == RFmode ? 1				\
656   : FR_REGNO_P (REGNO) && (MODE) == XCmode ? 2				\
657   : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
658
659/* A C expression that is nonzero if it is permissible to store a value of mode
660   MODE in hard register number REGNO (or in several registers starting with
661   that one).  */
662
663#define HARD_REGNO_MODE_OK(REGNO, MODE)				\
664  (FR_REGNO_P (REGNO) ?						\
665     GET_MODE_CLASS (MODE) != MODE_CC &&			\
666     (MODE) != BImode &&					\
667     (MODE) != TFmode 						\
668   : PR_REGNO_P (REGNO) ?					\
669     (MODE) == BImode || GET_MODE_CLASS (MODE) == MODE_CC	\
670   : GR_REGNO_P (REGNO) ?					\
671     (MODE) != CCImode && (MODE) != XFmode && (MODE) != XCmode && (MODE) != RFmode \
672   : AR_REGNO_P (REGNO) ? (MODE) == DImode			\
673   : BR_REGNO_P (REGNO) ? (MODE) == DImode			\
674   : 0)
675
676/* A C expression that is nonzero if it is desirable to choose register
677   allocation so as to avoid move instructions between a value of mode MODE1
678   and a value of mode MODE2.
679
680   If `HARD_REGNO_MODE_OK (R, MODE1)' and `HARD_REGNO_MODE_OK (R, MODE2)' are
681   ever different for any R, then `MODES_TIEABLE_P (MODE1, MODE2)' must be
682   zero.  */
683/* Don't tie integer and FP modes, as that causes us to get integer registers
684   allocated for FP instructions.  XFmode only supported in FP registers so
685   we can't tie it with any other modes.  */
686#define MODES_TIEABLE_P(MODE1, MODE2)			\
687  (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2)	\
688   && ((((MODE1) == XFmode) || ((MODE1) == XCmode) || ((MODE1) == RFmode))	\
689       == (((MODE2) == XFmode) || ((MODE2) == XCmode) || ((MODE2) == RFmode)))	\
690   && (((MODE1) == BImode) == ((MODE2) == BImode)))
691
692/* Specify the modes required to caller save a given hard regno.
693   We need to ensure floating pt regs are not saved as DImode.  */
694
695#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
696  ((FR_REGNO_P (REGNO) && (NREGS) == 1) ? RFmode        \
697   : choose_hard_reg_mode ((REGNO), (NREGS), false))
698
699/* Handling Leaf Functions */
700
701/* A C initializer for a vector, indexed by hard register number, which
702   contains 1 for a register that is allowable in a candidate for leaf function
703   treatment.  */
704/* ??? This might be useful.  */
705/* #define LEAF_REGISTERS */
706
707/* A C expression whose value is the register number to which REGNO should be
708   renumbered, when a function is treated as a leaf function.  */
709/* ??? This might be useful.  */
710/* #define LEAF_REG_REMAP(REGNO) */
711
712
713/* Register Classes */
714
715/* An enumeral type that must be defined with all the register class names as
716   enumeral values.  `NO_REGS' must be first.  `ALL_REGS' must be the last
717   register class, followed by one more enumeral value, `LIM_REG_CLASSES',
718   which is not a register class but rather tells how many classes there
719   are.  */
720/* ??? When compiling without optimization, it is possible for the only use of
721   a pseudo to be a parameter load from the stack with a REG_EQUIV note.
722   Regclass handles this case specially and does not assign any costs to the
723   pseudo.  The pseudo then ends up using the last class before ALL_REGS.
724   Thus we must not let either PR_REGS or BR_REGS be the last class.  The
725   testcase for this is gcc.c-torture/execute/va-arg-7.c.  */
726enum reg_class
727{
728  NO_REGS,
729  PR_REGS,
730  BR_REGS,
731  AR_M_REGS,
732  AR_I_REGS,
733  ADDL_REGS,
734  GR_REGS,
735  FP_REGS,
736  FR_REGS,
737  GR_AND_BR_REGS,
738  GR_AND_FR_REGS,
739  ALL_REGS,
740  LIM_REG_CLASSES
741};
742
743#define GENERAL_REGS GR_REGS
744
745/* The number of distinct register classes.  */
746#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
747
748/* An initializer containing the names of the register classes as C string
749   constants.  These names are used in writing some of the debugging dumps.  */
750#define REG_CLASS_NAMES \
751{ "NO_REGS", "PR_REGS", "BR_REGS", "AR_M_REGS", "AR_I_REGS", \
752  "ADDL_REGS", "GR_REGS", "FP_REGS", "FR_REGS", \
753  "GR_AND_BR_REGS", "GR_AND_FR_REGS", "ALL_REGS" }
754
755/* An initializer containing the contents of the register classes, as integers
756   which are bit masks.  The Nth integer specifies the contents of class N.
757   The way the integer MASK is interpreted is that register R is in the class
758   if `MASK & (1 << R)' is 1.  */
759#define REG_CLASS_CONTENTS \
760{ 							\
761  /* NO_REGS.  */					\
762  { 0x00000000, 0x00000000, 0x00000000, 0x00000000,	\
763    0x00000000, 0x00000000, 0x00000000, 0x00000000,	\
764    0x00000000, 0x00000000, 0x0000 },			\
765  /* PR_REGS.  */					\
766  { 0x00000000, 0x00000000, 0x00000000, 0x00000000,	\
767    0x00000000, 0x00000000, 0x00000000, 0x00000000,	\
768    0xFFFFFFFF, 0xFFFFFFFF, 0x0000 },			\
769  /* BR_REGS.  */					\
770  { 0x00000000, 0x00000000, 0x00000000, 0x00000000,	\
771    0x00000000, 0x00000000, 0x00000000, 0x00000000,	\
772    0x00000000, 0x00000000, 0x00FF },			\
773  /* AR_M_REGS.  */					\
774  { 0x00000000, 0x00000000, 0x00000000, 0x00000000,	\
775    0x00000000, 0x00000000, 0x00000000, 0x00000000,	\
776    0x00000000, 0x00000000, 0x0600 },			\
777  /* AR_I_REGS.  */					\
778  { 0x00000000, 0x00000000, 0x00000000, 0x00000000,	\
779    0x00000000, 0x00000000, 0x00000000, 0x00000000,	\
780    0x00000000, 0x00000000, 0x3800 },			\
781  /* ADDL_REGS.  */					\
782  { 0x0000000F, 0x00000000, 0x00000000, 0x00000000,	\
783    0x00000000, 0x00000000, 0x00000000, 0x00000000,	\
784    0x00000000, 0x00000000, 0x0000 },			\
785  /* GR_REGS.  */					\
786  { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,	\
787    0x00000000, 0x00000000, 0x00000000, 0x00000000,	\
788    0x00000000, 0x00000000, 0x0100 },			\
789  /* FP_REGS.  */					\
790  { 0x00000000, 0x00000000, 0x00000000, 0x00000000,	\
791    0x7FFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x7FFFFFFF,	\
792    0x00000000, 0x00000000, 0x0000 },			\
793  /* FR_REGS.  */					\
794  { 0x00000000, 0x00000000, 0x00000000, 0x00000000,	\
795    0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,	\
796    0x00000000, 0x00000000, 0x0000 },			\
797  /* GR_AND_BR_REGS.  */				\
798  { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,	\
799    0x00000000, 0x00000000, 0x00000000, 0x00000000,	\
800    0x00000000, 0x00000000, 0x01FF },			\
801  /* GR_AND_FR_REGS.  */				\
802  { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,	\
803    0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,	\
804    0x00000000, 0x00000000, 0x0100 },			\
805  /* ALL_REGS.  */					\
806  { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,	\
807    0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,	\
808    0xFFFFFFFF, 0xFFFFFFFF, 0x3FFF },			\
809}
810
811/* The following macro defines cover classes for Integrated Register
812   Allocator.  Cover classes is a set of non-intersected register
813   classes covering all hard registers used for register allocation
814   purpose.  Any move between two registers of a cover class should be
815   cheaper than load or store of the registers.  The macro value is
816   array of register classes with LIM_REG_CLASSES used as the end
817   marker.  */
818
819#define IRA_COVER_CLASSES						     \
820{									     \
821  PR_REGS, BR_REGS, AR_M_REGS, AR_I_REGS, GR_REGS, FR_REGS, LIM_REG_CLASSES  \
822}
823
824/* A C expression whose value is a register class containing hard register
825   REGNO.  In general there is more than one such class; choose a class which
826   is "minimal", meaning that no smaller class also contains the register.  */
827/* The NO_REGS case is primarily for the benefit of rws_access_reg, which
828   may call here with private (invalid) register numbers, such as
829   REG_VOLATILE.  */
830#define REGNO_REG_CLASS(REGNO) \
831(ADDL_REGNO_P (REGNO) ? ADDL_REGS	\
832 : GENERAL_REGNO_P (REGNO) ? GR_REGS	\
833 : FR_REGNO_P (REGNO) ? (REGNO) != R_FR (31) \
834			&& (REGNO) != R_FR(127) ? FP_REGS : FR_REGS \
835 : PR_REGNO_P (REGNO) ? PR_REGS		\
836 : BR_REGNO_P (REGNO) ? BR_REGS		\
837 : AR_M_REGNO_P (REGNO) ? AR_M_REGS	\
838 : AR_I_REGNO_P (REGNO) ? AR_I_REGS	\
839 : NO_REGS)
840
841/* A macro whose definition is the name of the class to which a valid base
842   register must belong.  A base register is one used in an address which is
843   the register value plus a displacement.  */
844#define BASE_REG_CLASS GENERAL_REGS
845
846/* A macro whose definition is the name of the class to which a valid index
847   register must belong.  An index register is one used in an address where its
848   value is either multiplied by a scale factor or added to another register
849   (as well as added to a displacement).  This is needed for POST_MODIFY.  */
850#define INDEX_REG_CLASS GENERAL_REGS
851
852/* A C expression which is nonzero if register number NUM is suitable for use
853   as a base register in operand addresses.  It may be either a suitable hard
854   register or a pseudo register that has been allocated such a hard reg.  */
855#define REGNO_OK_FOR_BASE_P(REGNO) \
856  (GENERAL_REGNO_P (REGNO) || GENERAL_REGNO_P (reg_renumber[REGNO]))
857
858/* A C expression which is nonzero if register number NUM is suitable for use
859   as an index register in operand addresses.  It may be either a suitable hard
860   register or a pseudo register that has been allocated such a hard reg.
861   This is needed for POST_MODIFY.  */
862#define REGNO_OK_FOR_INDEX_P(NUM) REGNO_OK_FOR_BASE_P (NUM)
863
864/* A C expression that places additional restrictions on the register class to
865   use when it is necessary to copy value X into a register in class CLASS.
866   The value is a register class; perhaps CLASS, or perhaps another, smaller
867   class.  */
868
869#define PREFERRED_RELOAD_CLASS(X, CLASS) \
870  ia64_preferred_reload_class (X, CLASS)
871
872/* You should define this macro to indicate to the reload phase that it may
873   need to allocate at least one register for a reload in addition to the
874   register to contain the data.  Specifically, if copying X to a register
875   CLASS in MODE requires an intermediate register, you should define this
876   to return the largest register class all of whose registers can be used
877   as intermediate registers or scratch registers.  */
878
879#define SECONDARY_RELOAD_CLASS(CLASS, MODE, X) \
880 ia64_secondary_reload_class (CLASS, MODE, X)
881
882/* Certain machines have the property that some registers cannot be copied to
883   some other registers without using memory.  Define this macro on those
884   machines to be a C expression that is nonzero if objects of mode M in
885   registers of CLASS1 can only be copied to registers of class CLASS2 by
886   storing a register of CLASS1 into memory and loading that memory location
887   into a register of CLASS2.  */
888
889#if 0
890/* ??? May need this, but since we've disallowed XFmode in GR_REGS,
891   I'm not quite sure how it could be invoked.  The normal problems
892   with unions should be solved with the addressof fiddling done by
893   movxf and friends.  */
894#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE)			\
895  (((MODE) == XFmode || (MODE) == XCmode)				\
896   && (((CLASS1) == GR_REGS && (CLASS2) == FR_REGS)			\
897       || ((CLASS1) == FR_REGS && (CLASS2) == GR_REGS)))
898#endif
899
900/* A C expression for the maximum number of consecutive registers of
901   class CLASS needed to hold a value of mode MODE.
902   This is closely related to the macro `HARD_REGNO_NREGS'.  */
903
904#define CLASS_MAX_NREGS(CLASS, MODE) \
905  ((MODE) == BImode && (CLASS) == PR_REGS ? 2			\
906   : (((CLASS) == FR_REGS || (CLASS) == FP_REGS) && (MODE) == XFmode) ? 1 \
907   : (((CLASS) == FR_REGS || (CLASS) == FP_REGS) && (MODE) == RFmode) ? 1 \
908   : (((CLASS) == FR_REGS || (CLASS) == FP_REGS) && (MODE) == XCmode) ? 2 \
909   : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
910
911/* In BR regs, we can't change the DImode at all.
912   In FP regs, we can't change FP values to integer values and vice versa,
913   but we can change e.g. DImode to SImode, and V2SFmode into DImode.  */
914
915#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) 		\
916  (reg_classes_intersect_p (CLASS, BR_REGS)			\
917   ? (FROM) != (TO)						\
918   : (SCALAR_FLOAT_MODE_P (FROM) != SCALAR_FLOAT_MODE_P (TO)	\
919      ? reg_classes_intersect_p (CLASS, FR_REGS)		\
920      : 0))
921
922/* Basic Stack Layout */
923
924/* Define this macro if pushing a word onto the stack moves the stack pointer
925   to a smaller address.  */
926#define STACK_GROWS_DOWNWARD 1
927
928/* Define this macro to nonzero if the addresses of local variable slots
929   are at negative offsets from the frame pointer.  */
930#define FRAME_GROWS_DOWNWARD 0
931
932/* Offset from the frame pointer to the first local variable slot to
933   be allocated.  */
934#define STARTING_FRAME_OFFSET 0
935
936/* Offset from the stack pointer register to the first location at which
937   outgoing arguments are placed.  If not specified, the default value of zero
938   is used.  This is the proper value for most machines.  */
939/* IA64 has a 16 byte scratch area that is at the bottom of the stack.  */
940#define STACK_POINTER_OFFSET 16
941
942/* Offset from the argument pointer register to the first argument's address.
943   On some machines it may depend on the data type of the function.  */
944#define FIRST_PARM_OFFSET(FUNDECL) 0
945
946/* A C expression whose value is RTL representing the value of the return
947   address for the frame COUNT steps up from the current frame, after the
948   prologue.  */
949
950/* ??? Frames other than zero would likely require interpreting the frame
951   unwind info, so we don't try to support them.  We would also need to define
952   DYNAMIC_CHAIN_ADDRESS and SETUP_FRAME_ADDRESS (for the reg stack flush).  */
953
954#define RETURN_ADDR_RTX(COUNT, FRAME) \
955  ia64_return_addr_rtx (COUNT, FRAME)
956
957/* A C expression whose value is RTL representing the location of the incoming
958   return address at the beginning of any function, before the prologue.  This
959   RTL is either a `REG', indicating that the return value is saved in `REG',
960   or a `MEM' representing a location in the stack.  This enables DWARF2
961   unwind info for C++ EH.  */
962#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, BR_REG (0))
963
964/* A C expression whose value is an integer giving the offset, in bytes, from
965   the value of the stack pointer register to the top of the stack frame at the
966   beginning of any function, before the prologue.  The top of the frame is
967   defined to be the value of the stack pointer in the previous frame, just
968   before the call instruction.  */
969/* The CFA is past the red zone, not at the entry-point stack
970   pointer.  */
971#define INCOMING_FRAME_SP_OFFSET STACK_POINTER_OFFSET
972
973/* We shorten debug info by using CFA-16 as DW_AT_frame_base.  */
974#define CFA_FRAME_BASE_OFFSET(FUNDECL) (-INCOMING_FRAME_SP_OFFSET)
975
976
977/* Register That Address the Stack Frame.  */
978
979/* The register number of the stack pointer register, which must also be a
980   fixed register according to `FIXED_REGISTERS'.  On most machines, the
981   hardware determines which register this is.  */
982
983#define STACK_POINTER_REGNUM 12
984
985/* The register number of the frame pointer register, which is used to access
986   automatic variables in the stack frame.  On some machines, the hardware
987   determines which register this is.  On other machines, you can choose any
988   register you wish for this purpose.  */
989
990#define FRAME_POINTER_REGNUM 328
991
992/* Base register for access to local variables of the function.  */
993#define HARD_FRAME_POINTER_REGNUM  LOC_REG (79)
994
995/* The register number of the arg pointer register, which is used to access the
996   function's argument list.  */
997/* r0 won't otherwise be used, so put the always eliminated argument pointer
998   in it.  */
999#define ARG_POINTER_REGNUM R_GR(0)
1000
1001/* Due to the way varargs and argument spilling happens, the argument
1002   pointer is not 16-byte aligned like the stack pointer.  */
1003#define INIT_EXPANDERS					\
1004  do {							\
1005    ia64_init_expanders ();                             \
1006    if (crtl->emit.regno_pointer_align)	\
1007      REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = 64;	\
1008  } while (0)
1009
1010/* Register numbers used for passing a function's static chain pointer.  */
1011/* ??? The ABI sez the static chain should be passed as a normal parameter.  */
1012#define STATIC_CHAIN_REGNUM 15
1013
1014/* Eliminating the Frame Pointer and the Arg Pointer */
1015
1016/* Show we can debug even without a frame pointer.  */
1017#define CAN_DEBUG_WITHOUT_FP
1018
1019/* If defined, this macro specifies a table of register pairs used to eliminate
1020   unneeded registers that point into the stack frame.  */
1021
1022#define ELIMINABLE_REGS							\
1023{									\
1024  {ARG_POINTER_REGNUM,	 STACK_POINTER_REGNUM},				\
1025  {ARG_POINTER_REGNUM,	 HARD_FRAME_POINTER_REGNUM},			\
1026  {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},				\
1027  {FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},			\
1028}
1029
1030/* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'.  It
1031   specifies the initial difference between the specified pair of
1032   registers.  This macro must be defined if `ELIMINABLE_REGS' is
1033   defined.  */
1034#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1035  ((OFFSET) = ia64_initial_elimination_offset ((FROM), (TO)))
1036
1037/* Passing Function Arguments on the Stack */
1038
1039/* If defined, the maximum amount of space required for outgoing arguments will
1040   be computed and placed into the variable
1041   `crtl->outgoing_args_size'.  */
1042
1043#define ACCUMULATE_OUTGOING_ARGS 1
1044
1045/* A C expression that should indicate the number of bytes of its own arguments
1046   that a function pops on returning, or 0 if the function pops no arguments
1047   and the caller must therefore pop them all after the function returns.  */
1048
1049#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, STACK_SIZE) 0
1050
1051
1052/* Function Arguments in Registers */
1053
1054#define MAX_ARGUMENT_SLOTS 8
1055#define MAX_INT_RETURN_SLOTS 4
1056#define GR_ARG_FIRST IN_REG (0)
1057#define GR_RET_FIRST GR_REG (8)
1058#define GR_RET_LAST  GR_REG (11)
1059#define FR_ARG_FIRST FR_REG (8)
1060#define FR_RET_FIRST FR_REG (8)
1061#define FR_RET_LAST  FR_REG (15)
1062#define AR_ARG_FIRST OUT_REG (0)
1063
1064/* A C expression that controls whether a function argument is passed in a
1065   register, and which register.  */
1066
1067#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1068  ia64_function_arg (&CUM, MODE, TYPE, NAMED, 0)
1069
1070/* Define this macro if the target machine has "register windows", so that the
1071   register in which a function sees an arguments is not necessarily the same
1072   as the one in which the caller passed the argument.  */
1073
1074#define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
1075  ia64_function_arg (&CUM, MODE, TYPE, NAMED, 1)
1076
1077/* A C type for declaring a variable that is used as the first argument of
1078   `FUNCTION_ARG' and other related values.  For some target machines, the type
1079   `int' suffices and can hold the number of bytes of argument so far.  */
1080
1081enum ivms_arg_type {I64, FF, FD, FG, FS, FT};
1082/* VMS floating point formats VAX F, VAX D, VAX G, IEEE S, IEEE T.  */
1083
1084typedef struct ia64_args
1085{
1086  int words;			/* # words of arguments so far  */
1087  int int_regs;			/* # GR registers used so far  */
1088  int fp_regs;			/* # FR registers used so far  */
1089  int prototype;		/* whether function prototyped  */
1090  enum ivms_arg_type atypes[8]; /* which VMS float type or if not float */
1091} CUMULATIVE_ARGS;
1092
1093/* A C statement (sans semicolon) for initializing the variable CUM for the
1094   state at the beginning of the argument list.  */
1095
1096#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
1097do {									\
1098  (CUM).words = 0;							\
1099  (CUM).int_regs = 0;							\
1100  (CUM).fp_regs = 0;							\
1101  (CUM).prototype = ((FNTYPE) && TYPE_ARG_TYPES (FNTYPE)) || (LIBNAME);	\
1102  (CUM).atypes[0] = (CUM).atypes[1] = (CUM).atypes[2] = I64;	        \
1103  (CUM).atypes[3] = (CUM).atypes[4] = (CUM).atypes[5] = I64;            \
1104  (CUM).atypes[6] = (CUM).atypes[7] = I64;                              \
1105} while (0)
1106
1107/* Like `INIT_CUMULATIVE_ARGS' but overrides it for the purposes of finding the
1108   arguments for the function being compiled.  If this macro is undefined,
1109   `INIT_CUMULATIVE_ARGS' is used instead.  */
1110
1111/* We set prototype to true so that we never try to return a PARALLEL from
1112   function_arg.  */
1113#define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1114do {									\
1115  (CUM).words = 0;							\
1116  (CUM).int_regs = 0;							\
1117  (CUM).fp_regs = 0;							\
1118  (CUM).prototype = 1;							\
1119  (CUM).atypes[0] = (CUM).atypes[1] = (CUM).atypes[2] = I64;	        \
1120  (CUM).atypes[3] = (CUM).atypes[4] = (CUM).atypes[5] = I64;            \
1121  (CUM).atypes[6] = (CUM).atypes[7] = I64;                              \
1122} while (0)
1123
1124/* A C statement (sans semicolon) to update the summarizer variable CUM to
1125   advance past an argument in the argument list.  The values MODE, TYPE and
1126   NAMED describe that argument.  Once this is done, the variable CUM is
1127   suitable for analyzing the *following* argument with `FUNCTION_ARG'.  */
1128
1129#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1130 ia64_function_arg_advance (&CUM, MODE, TYPE, NAMED)
1131
1132/* If defined, a C expression that gives the alignment boundary, in bits, of an
1133   argument with the specified mode and type.  */
1134
1135/* Return the alignment boundary in bits for an argument with a specified
1136   mode and type.  */
1137
1138#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1139  ia64_function_arg_boundary (MODE, TYPE)
1140
1141/* A C expression that is nonzero if REGNO is the number of a hard register in
1142   which function arguments are sometimes passed.  This does *not* include
1143   implicit arguments such as the static chain and the structure-value address.
1144   On many machines, no registers can be used for this purpose since all
1145   function arguments are pushed on the stack.  */
1146#define FUNCTION_ARG_REGNO_P(REGNO) \
1147(((REGNO) >= AR_ARG_FIRST && (REGNO) < (AR_ARG_FIRST + MAX_ARGUMENT_SLOTS)) \
1148 || ((REGNO) >= FR_ARG_FIRST && (REGNO) < (FR_ARG_FIRST + MAX_ARGUMENT_SLOTS)))
1149
1150/* How Scalar Function Values are Returned */
1151
1152/* A C expression to create an RTX representing the place where a function
1153   returns a value of data type VALTYPE.  */
1154
1155#define FUNCTION_VALUE(VALTYPE, FUNC) \
1156  ia64_function_value (VALTYPE, FUNC)
1157
1158/* A C expression to create an RTX representing the place where a library
1159   function returns a value of mode MODE.  */
1160
1161#define LIBCALL_VALUE(MODE) \
1162  gen_rtx_REG (MODE,							\
1163	       (((GET_MODE_CLASS (MODE) == MODE_FLOAT			\
1164		 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) &&	\
1165		      (MODE) != TFmode)	\
1166		? FR_RET_FIRST : GR_RET_FIRST))
1167
1168/* A C expression that is nonzero if REGNO is the number of a hard register in
1169   which the values of called function may come back.  */
1170
1171#define FUNCTION_VALUE_REGNO_P(REGNO)				\
1172  (((REGNO) >= GR_RET_FIRST && (REGNO) <= GR_RET_LAST)		\
1173   || ((REGNO) >= FR_RET_FIRST && (REGNO) <= FR_RET_LAST))
1174
1175
1176/* How Large Values are Returned */
1177
1178#define DEFAULT_PCC_STRUCT_RETURN 0
1179
1180
1181/* Caller-Saves Register Allocation */
1182
1183/* A C expression to determine whether it is worthwhile to consider placing a
1184   pseudo-register in a call-clobbered hard register and saving and restoring
1185   it around each function call.  The expression should be 1 when this is worth
1186   doing, and 0 otherwise.
1187
1188   If you don't define this macro, a default is used which is good on most
1189   machines: `4 * CALLS < REFS'.  */
1190/* ??? Investigate.  */
1191/* #define CALLER_SAVE_PROFITABLE(REFS, CALLS) */
1192
1193
1194/* Function Entry and Exit */
1195
1196/* Define this macro as a C expression that is nonzero if the return
1197   instruction or the function epilogue ignores the value of the stack pointer;
1198   in other words, if it is safe to delete an instruction to adjust the stack
1199   pointer before a return from the function.  */
1200
1201#define EXIT_IGNORE_STACK 1
1202
1203/* Define this macro as a C expression that is nonzero for registers
1204   used by the epilogue or the `return' pattern.  */
1205
1206#define EPILOGUE_USES(REGNO) ia64_epilogue_uses (REGNO)
1207
1208/* Nonzero for registers used by the exception handling mechanism.  */
1209
1210#define EH_USES(REGNO) ia64_eh_uses (REGNO)
1211
1212/* Output part N of a function descriptor for DECL.  For ia64, both
1213   words are emitted with a single relocation, so ignore N > 0.  */
1214#define ASM_OUTPUT_FDESC(FILE, DECL, PART)				\
1215do {									\
1216  if ((PART) == 0)							\
1217    {									\
1218      if (TARGET_ILP32)							\
1219        fputs ("\tdata8.ua @iplt(", FILE);				\
1220      else								\
1221        fputs ("\tdata16.ua @iplt(", FILE);				\
1222      mark_decl_referenced (DECL);					\
1223      assemble_name (FILE, XSTR (XEXP (DECL_RTL (DECL), 0), 0));	\
1224      fputs (")\n", FILE);						\
1225      if (TARGET_ILP32)							\
1226	fputs ("\tdata8.ua 0\n", FILE);					\
1227    }									\
1228} while (0)
1229
1230/* Generating Code for Profiling.  */
1231
1232/* A C statement or compound statement to output to FILE some assembler code to
1233   call the profiling subroutine `mcount'.  */
1234
1235#undef FUNCTION_PROFILER
1236#define FUNCTION_PROFILER(FILE, LABELNO) \
1237  ia64_output_function_profiler(FILE, LABELNO)
1238
1239/* Neither hpux nor linux use profile counters.  */
1240#define NO_PROFILE_COUNTERS 1
1241
1242/* Trampolines for Nested Functions.  */
1243
1244/* We need 32 bytes, so we can save the sp, ar.rnat, ar.bsp, and ar.pfs of
1245   the function containing a non-local goto target.  */
1246
1247#define STACK_SAVEAREA_MODE(LEVEL) \
1248  ((LEVEL) == SAVE_NONLOCAL ? OImode : Pmode)
1249
1250/* A C expression for the size in bytes of the trampoline, as an integer.  */
1251
1252#define TRAMPOLINE_SIZE		32
1253
1254/* Alignment required for trampolines, in bits.  */
1255
1256#define TRAMPOLINE_ALIGNMENT	64
1257
1258/* Addressing Modes */
1259
1260/* Define this macro if the machine supports post-increment addressing.  */
1261
1262#define HAVE_POST_INCREMENT 1
1263#define HAVE_POST_DECREMENT 1
1264#define HAVE_POST_MODIFY_DISP 1
1265#define HAVE_POST_MODIFY_REG 1
1266
1267/* A C expression that is 1 if the RTX X is a constant which is a valid
1268   address.  */
1269
1270#define CONSTANT_ADDRESS_P(X) 0
1271
1272/* The max number of registers that can appear in a valid memory address.  */
1273
1274#define MAX_REGS_PER_ADDRESS 2
1275
1276/* A C compound statement with a conditional `goto LABEL;' executed if X (an
1277   RTX) is a legitimate memory address on the target machine for a memory
1278   operand of mode MODE.  */
1279
1280#define LEGITIMATE_ADDRESS_REG(X)					\
1281  ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X))			\
1282   || (GET_CODE (X) == SUBREG && GET_CODE (XEXP (X, 0)) == REG		\
1283       && REG_OK_FOR_BASE_P (XEXP (X, 0))))
1284
1285#define LEGITIMATE_ADDRESS_DISP(R, X)					\
1286  (GET_CODE (X) == PLUS							\
1287   && rtx_equal_p (R, XEXP (X, 0))					\
1288   && (LEGITIMATE_ADDRESS_REG (XEXP (X, 1))				\
1289       || (GET_CODE (XEXP (X, 1)) == CONST_INT				\
1290	   && INTVAL (XEXP (X, 1)) >= -256				\
1291	   && INTVAL (XEXP (X, 1)) < 256)))
1292
1293#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL) 			\
1294do {									\
1295  if (LEGITIMATE_ADDRESS_REG (X))					\
1296    goto LABEL;								\
1297  else if ((GET_CODE (X) == POST_INC || GET_CODE (X) == POST_DEC)	\
1298	   && LEGITIMATE_ADDRESS_REG (XEXP (X, 0))			\
1299	   && XEXP (X, 0) != arg_pointer_rtx)				\
1300    goto LABEL;								\
1301  else if (GET_CODE (X) == POST_MODIFY					\
1302	   && LEGITIMATE_ADDRESS_REG (XEXP (X, 0))			\
1303	   && XEXP (X, 0) != arg_pointer_rtx				\
1304	   && LEGITIMATE_ADDRESS_DISP (XEXP (X, 0), XEXP (X, 1)))	\
1305    goto LABEL;								\
1306} while (0)
1307
1308/* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
1309   use as a base register.  */
1310
1311#ifdef REG_OK_STRICT
1312#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1313#else
1314#define REG_OK_FOR_BASE_P(X) \
1315  (GENERAL_REGNO_P (REGNO (X)) || (REGNO (X) >= FIRST_PSEUDO_REGISTER))
1316#endif
1317
1318/* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
1319   use as an index register.  This is needed for POST_MODIFY.  */
1320
1321#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_BASE_P (X)
1322
1323/* A C expression that is nonzero if X is a legitimate constant for an
1324   immediate operand on the target machine.  */
1325
1326#define LEGITIMATE_CONSTANT_P(X) ia64_legitimate_constant_p (X)
1327
1328/* Condition Code Status */
1329
1330/* One some machines not all possible comparisons are defined, but you can
1331   convert an invalid comparison into a valid one.  */
1332/* ??? Investigate.  See the alpha definition.  */
1333/* #define CANONICALIZE_COMPARISON(CODE, OP0, OP1) */
1334
1335
1336/* Describing Relative Costs of Operations */
1337
1338/* A C expression for the cost of moving data from a register in class FROM to
1339   one in class TO, using MODE.  */
1340
1341#define REGISTER_MOVE_COST  ia64_register_move_cost
1342
1343/* A C expression for the cost of moving data of mode M between a
1344   register and memory.  */
1345#define MEMORY_MOVE_COST(MODE,CLASS,IN) \
1346  ((CLASS) == GENERAL_REGS || (CLASS) == FR_REGS || (CLASS) == FP_REGS \
1347   || (CLASS) == GR_AND_FR_REGS ? 4 : 10)
1348
1349/* A C expression for the cost of a branch instruction.  A value of 1 is the
1350   default; other values are interpreted relative to that.  Used by the
1351   if-conversion code as max instruction count.  */
1352/* ??? This requires investigation.  The primary effect might be how
1353   many additional insn groups we run into, vs how good the dynamic
1354   branch predictor is.  */
1355
1356#define BRANCH_COST(speed_p, predictable_p) 6
1357
1358/* Define this macro as a C expression which is nonzero if accessing less than
1359   a word of memory (i.e. a `char' or a `short') is no faster than accessing a
1360   word of memory.  */
1361
1362#define SLOW_BYTE_ACCESS 1
1363
1364/* Define this macro if it is as good or better to call a constant function
1365   address than to call an address kept in a register.
1366
1367   Indirect function calls are more expensive that direct function calls, so
1368   don't cse function addresses.  */
1369
1370#define NO_FUNCTION_CSE
1371
1372
1373/* Dividing the output into sections.  */
1374
1375/* A C expression whose value is a string containing the assembler operation
1376   that should precede instructions and read-only data.  */
1377
1378#define TEXT_SECTION_ASM_OP "\t.text"
1379
1380/* A C expression whose value is a string containing the assembler operation to
1381   identify the following data as writable initialized data.  */
1382
1383#define DATA_SECTION_ASM_OP "\t.data"
1384
1385/* If defined, a C expression whose value is a string containing the assembler
1386   operation to identify the following data as uninitialized global data.  */
1387
1388#define BSS_SECTION_ASM_OP "\t.bss"
1389
1390#define IA64_DEFAULT_GVALUE 8
1391
1392/* Position Independent Code.  */
1393
1394/* The register number of the register used to address a table of static data
1395   addresses in memory.  */
1396
1397/* ??? Should modify ia64.md to use pic_offset_table_rtx instead of
1398   gen_rtx_REG (DImode, 1).  */
1399
1400/* ??? Should we set flag_pic?  Probably need to define
1401   LEGITIMIZE_PIC_OPERAND_P to make that work.  */
1402
1403#define PIC_OFFSET_TABLE_REGNUM GR_REG (1)
1404
1405/* Define this macro if the register defined by `PIC_OFFSET_TABLE_REGNUM' is
1406   clobbered by calls.  */
1407
1408#define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
1409
1410
1411/* The Overall Framework of an Assembler File.  */
1412
1413/* A C string constant describing how to begin a comment in the target
1414   assembler language.  The compiler assumes that the comment will end at the
1415   end of the line.  */
1416
1417#define ASM_COMMENT_START "//"
1418
1419/* A C string constant for text to be output before each `asm' statement or
1420   group of consecutive ones.  */
1421
1422#define ASM_APP_ON (TARGET_GNU_AS ? "#APP\n" : "//APP\n")
1423
1424/* A C string constant for text to be output after each `asm' statement or
1425   group of consecutive ones.  */
1426
1427#define ASM_APP_OFF (TARGET_GNU_AS ? "#NO_APP\n" : "//NO_APP\n")
1428
1429/* Output of Uninitialized Variables.  */
1430
1431/* This is all handled by svr4.h.  */
1432
1433
1434/* Output and Generation of Labels.  */
1435
1436/* A C statement (sans semicolon) to output to the stdio stream STREAM the
1437   assembler definition of a label named NAME.  */
1438
1439/* See the ASM_OUTPUT_LABELREF definition in sysv4.h for an explanation of
1440   why ia64_asm_output_label exists.  */
1441
1442extern int ia64_asm_output_label;
1443#define ASM_OUTPUT_LABEL(STREAM, NAME)					\
1444do {									\
1445  ia64_asm_output_label = 1;						\
1446  assemble_name (STREAM, NAME);						\
1447  fputs (":\n", STREAM);						\
1448  ia64_asm_output_label = 0;						\
1449} while (0)
1450
1451/* Globalizing directive for a label.  */
1452#define GLOBAL_ASM_OP "\t.global "
1453
1454/* A C statement (sans semicolon) to output to the stdio stream STREAM any text
1455   necessary for declaring the name of an external symbol named NAME which is
1456   referenced in this compilation but not defined.  */
1457
1458#define ASM_OUTPUT_EXTERNAL(FILE, DECL, NAME) \
1459  ia64_asm_output_external (FILE, DECL, NAME)
1460
1461/* A C statement to store into the string STRING a label whose name is made
1462   from the string PREFIX and the number NUM.  */
1463
1464#define ASM_GENERATE_INTERNAL_LABEL(LABEL, PREFIX, NUM) \
1465do {									\
1466  sprintf (LABEL, "*.%s%d", PREFIX, NUM);				\
1467} while (0)
1468
1469/* ??? Not sure if using a ? in the name for Intel as is safe.  */
1470
1471#define ASM_PN_FORMAT (TARGET_GNU_AS ? "%s.%lu" : "%s?%lu")
1472
1473/* A C statement to output to the stdio stream STREAM assembler code which
1474   defines (equates) the symbol NAME to have the value VALUE.  */
1475
1476#define ASM_OUTPUT_DEF(STREAM, NAME, VALUE) \
1477do {									\
1478  assemble_name (STREAM, NAME);						\
1479  fputs (" = ", STREAM);						\
1480  if (ISDIGIT (*VALUE))							\
1481    ia64_asm_output_label = 1;						\
1482  assemble_name (STREAM, VALUE);					\
1483  fputc ('\n', STREAM);							\
1484  ia64_asm_output_label = 0;						\
1485} while (0)
1486
1487
1488/* Macros Controlling Initialization Routines.  */
1489
1490/* This is handled by svr4.h and sysv4.h.  */
1491
1492
1493/* Output of Assembler Instructions.  */
1494
1495/* A C initializer containing the assembler's names for the machine registers,
1496   each one as a C string constant.  */
1497
1498#define REGISTER_NAMES \
1499{									\
1500  /* General registers.  */						\
1501  "ap", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9",		\
1502  "r10", "r11", "r12", "r13", "r14", "r15", "r16", "r17", "r18", "r19",	\
1503  "r20", "r21", "r22", "r23", "r24", "r25", "r26", "r27", "r28", "r29",	\
1504  "r30", "r31",								\
1505  /* Local registers.  */						\
1506  "loc0", "loc1", "loc2", "loc3", "loc4", "loc5", "loc6", "loc7",	\
1507  "loc8", "loc9", "loc10","loc11","loc12","loc13","loc14","loc15",	\
1508  "loc16","loc17","loc18","loc19","loc20","loc21","loc22","loc23",	\
1509  "loc24","loc25","loc26","loc27","loc28","loc29","loc30","loc31",	\
1510  "loc32","loc33","loc34","loc35","loc36","loc37","loc38","loc39",	\
1511  "loc40","loc41","loc42","loc43","loc44","loc45","loc46","loc47",	\
1512  "loc48","loc49","loc50","loc51","loc52","loc53","loc54","loc55",	\
1513  "loc56","loc57","loc58","loc59","loc60","loc61","loc62","loc63",	\
1514  "loc64","loc65","loc66","loc67","loc68","loc69","loc70","loc71",	\
1515  "loc72","loc73","loc74","loc75","loc76","loc77","loc78","loc79",	\
1516  /* Input registers.  */						\
1517  "in0",  "in1",  "in2",  "in3",  "in4",  "in5",  "in6",  "in7",	\
1518  /* Output registers.  */						\
1519  "out0", "out1", "out2", "out3", "out4", "out5", "out6", "out7",	\
1520  /* Floating-point registers.  */					\
1521  "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", "f8", "f9",		\
1522  "f10", "f11", "f12", "f13", "f14", "f15", "f16", "f17", "f18", "f19",	\
1523  "f20", "f21", "f22", "f23", "f24", "f25", "f26", "f27", "f28", "f29",	\
1524  "f30", "f31", "f32", "f33", "f34", "f35", "f36", "f37", "f38", "f39",	\
1525  "f40", "f41", "f42", "f43", "f44", "f45", "f46", "f47", "f48", "f49",	\
1526  "f50", "f51", "f52", "f53", "f54", "f55", "f56", "f57", "f58", "f59",	\
1527  "f60", "f61", "f62", "f63", "f64", "f65", "f66", "f67", "f68", "f69",	\
1528  "f70", "f71", "f72", "f73", "f74", "f75", "f76", "f77", "f78", "f79",	\
1529  "f80", "f81", "f82", "f83", "f84", "f85", "f86", "f87", "f88", "f89",	\
1530  "f90", "f91", "f92", "f93", "f94", "f95", "f96", "f97", "f98", "f99",	\
1531  "f100","f101","f102","f103","f104","f105","f106","f107","f108","f109",\
1532  "f110","f111","f112","f113","f114","f115","f116","f117","f118","f119",\
1533  "f120","f121","f122","f123","f124","f125","f126","f127",		\
1534  /* Predicate registers.  */						\
1535  "p0", "p1", "p2", "p3", "p4", "p5", "p6", "p7", "p8", "p9",		\
1536  "p10", "p11", "p12", "p13", "p14", "p15", "p16", "p17", "p18", "p19",	\
1537  "p20", "p21", "p22", "p23", "p24", "p25", "p26", "p27", "p28", "p29",	\
1538  "p30", "p31", "p32", "p33", "p34", "p35", "p36", "p37", "p38", "p39",	\
1539  "p40", "p41", "p42", "p43", "p44", "p45", "p46", "p47", "p48", "p49",	\
1540  "p50", "p51", "p52", "p53", "p54", "p55", "p56", "p57", "p58", "p59",	\
1541  "p60", "p61", "p62", "p63",						\
1542  /* Branch registers.  */						\
1543  "b0", "b1", "b2", "b3", "b4", "b5", "b6", "b7",			\
1544  /* Frame pointer.  Application registers.  */				\
1545  "sfp", "ar.ccv", "ar.unat", "ar.pfs", "ar.lc", "ar.ec",	\
1546}
1547
1548/* If defined, a C initializer for an array of structures containing a name and
1549   a register number.  This macro defines additional names for hard registers,
1550   thus allowing the `asm' option in declarations to refer to registers using
1551   alternate names.  */
1552
1553#define ADDITIONAL_REGISTER_NAMES \
1554{									\
1555  { "gp", R_GR (1) },							\
1556  { "sp", R_GR (12) },							\
1557  { "in0", IN_REG (0) },						\
1558  { "in1", IN_REG (1) },						\
1559  { "in2", IN_REG (2) },						\
1560  { "in3", IN_REG (3) },						\
1561  { "in4", IN_REG (4) },						\
1562  { "in5", IN_REG (5) },						\
1563  { "in6", IN_REG (6) },						\
1564  { "in7", IN_REG (7) },						\
1565  { "out0", OUT_REG (0) },						\
1566  { "out1", OUT_REG (1) },						\
1567  { "out2", OUT_REG (2) },						\
1568  { "out3", OUT_REG (3) },						\
1569  { "out4", OUT_REG (4) },						\
1570  { "out5", OUT_REG (5) },						\
1571  { "out6", OUT_REG (6) },						\
1572  { "out7", OUT_REG (7) },						\
1573  { "loc0", LOC_REG (0) },						\
1574  { "loc1", LOC_REG (1) },						\
1575  { "loc2", LOC_REG (2) },						\
1576  { "loc3", LOC_REG (3) },						\
1577  { "loc4", LOC_REG (4) },						\
1578  { "loc5", LOC_REG (5) },						\
1579  { "loc6", LOC_REG (6) },						\
1580  { "loc7", LOC_REG (7) },						\
1581  { "loc8", LOC_REG (8) }, 						\
1582  { "loc9", LOC_REG (9) }, 						\
1583  { "loc10", LOC_REG (10) }, 						\
1584  { "loc11", LOC_REG (11) }, 						\
1585  { "loc12", LOC_REG (12) }, 						\
1586  { "loc13", LOC_REG (13) }, 						\
1587  { "loc14", LOC_REG (14) }, 						\
1588  { "loc15", LOC_REG (15) }, 						\
1589  { "loc16", LOC_REG (16) }, 						\
1590  { "loc17", LOC_REG (17) }, 						\
1591  { "loc18", LOC_REG (18) }, 						\
1592  { "loc19", LOC_REG (19) }, 						\
1593  { "loc20", LOC_REG (20) }, 						\
1594  { "loc21", LOC_REG (21) }, 						\
1595  { "loc22", LOC_REG (22) }, 						\
1596  { "loc23", LOC_REG (23) }, 						\
1597  { "loc24", LOC_REG (24) }, 						\
1598  { "loc25", LOC_REG (25) }, 						\
1599  { "loc26", LOC_REG (26) }, 						\
1600  { "loc27", LOC_REG (27) }, 						\
1601  { "loc28", LOC_REG (28) }, 						\
1602  { "loc29", LOC_REG (29) }, 						\
1603  { "loc30", LOC_REG (30) }, 						\
1604  { "loc31", LOC_REG (31) }, 						\
1605  { "loc32", LOC_REG (32) }, 						\
1606  { "loc33", LOC_REG (33) }, 						\
1607  { "loc34", LOC_REG (34) }, 						\
1608  { "loc35", LOC_REG (35) }, 						\
1609  { "loc36", LOC_REG (36) }, 						\
1610  { "loc37", LOC_REG (37) }, 						\
1611  { "loc38", LOC_REG (38) }, 						\
1612  { "loc39", LOC_REG (39) }, 						\
1613  { "loc40", LOC_REG (40) }, 						\
1614  { "loc41", LOC_REG (41) }, 						\
1615  { "loc42", LOC_REG (42) }, 						\
1616  { "loc43", LOC_REG (43) }, 						\
1617  { "loc44", LOC_REG (44) }, 						\
1618  { "loc45", LOC_REG (45) }, 						\
1619  { "loc46", LOC_REG (46) }, 						\
1620  { "loc47", LOC_REG (47) }, 						\
1621  { "loc48", LOC_REG (48) }, 						\
1622  { "loc49", LOC_REG (49) }, 						\
1623  { "loc50", LOC_REG (50) }, 						\
1624  { "loc51", LOC_REG (51) }, 						\
1625  { "loc52", LOC_REG (52) }, 						\
1626  { "loc53", LOC_REG (53) }, 						\
1627  { "loc54", LOC_REG (54) }, 						\
1628  { "loc55", LOC_REG (55) }, 						\
1629  { "loc56", LOC_REG (56) }, 						\
1630  { "loc57", LOC_REG (57) }, 						\
1631  { "loc58", LOC_REG (58) }, 						\
1632  { "loc59", LOC_REG (59) }, 						\
1633  { "loc60", LOC_REG (60) }, 						\
1634  { "loc61", LOC_REG (61) }, 						\
1635  { "loc62", LOC_REG (62) }, 						\
1636  { "loc63", LOC_REG (63) }, 						\
1637  { "loc64", LOC_REG (64) }, 						\
1638  { "loc65", LOC_REG (65) }, 						\
1639  { "loc66", LOC_REG (66) }, 						\
1640  { "loc67", LOC_REG (67) }, 						\
1641  { "loc68", LOC_REG (68) }, 						\
1642  { "loc69", LOC_REG (69) }, 						\
1643  { "loc70", LOC_REG (70) }, 						\
1644  { "loc71", LOC_REG (71) }, 						\
1645  { "loc72", LOC_REG (72) }, 						\
1646  { "loc73", LOC_REG (73) }, 						\
1647  { "loc74", LOC_REG (74) }, 						\
1648  { "loc75", LOC_REG (75) }, 						\
1649  { "loc76", LOC_REG (76) }, 						\
1650  { "loc77", LOC_REG (77) }, 						\
1651  { "loc78", LOC_REG (78) }, 						\
1652  { "loc79", LOC_REG (79) }, 						\
1653}
1654
1655/* A C compound statement to output to stdio stream STREAM the assembler syntax
1656   for an instruction operand X.  X is an RTL expression.  */
1657
1658#define PRINT_OPERAND(STREAM, X, CODE) \
1659  ia64_print_operand (STREAM, X, CODE)
1660
1661/* A C expression which evaluates to true if CODE is a valid punctuation
1662   character for use in the `PRINT_OPERAND' macro.  */
1663
1664/* ??? Keep this around for now, as we might need it later.  */
1665
1666#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
1667  ((CODE) == '+' || (CODE) == ',')
1668
1669/* A C compound statement to output to stdio stream STREAM the assembler syntax
1670   for an instruction operand that is a memory reference whose address is X.  X
1671   is an RTL expression.  */
1672
1673#define PRINT_OPERAND_ADDRESS(STREAM, X) \
1674  ia64_print_operand_address (STREAM, X)
1675
1676/* If defined, C string expressions to be used for the `%R', `%L', `%U', and
1677   `%I' options of `asm_fprintf' (see `final.c').  */
1678
1679#define REGISTER_PREFIX ""
1680#define LOCAL_LABEL_PREFIX "."
1681#define USER_LABEL_PREFIX ""
1682#define IMMEDIATE_PREFIX ""
1683
1684
1685/* Output of dispatch tables.  */
1686
1687/* This macro should be provided on machines where the addresses in a dispatch
1688   table are relative to the table's own address.  */
1689
1690/* ??? Depends on the pointer size.  */
1691
1692#define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL)	\
1693  do {								\
1694  if (TARGET_ILP32)						\
1695    fprintf (STREAM, "\tdata4 @pcrel(.L%d)\n", VALUE);		\
1696  else								\
1697    fprintf (STREAM, "\tdata8 @pcrel(.L%d)\n", VALUE);		\
1698  } while (0)
1699
1700/* Jump tables only need 8 byte alignment.  */
1701
1702#define ADDR_VEC_ALIGN(ADDR_VEC) 3
1703
1704
1705/* Assembler Commands for Exception Regions.  */
1706
1707/* Select a format to encode pointers in exception handling data.  CODE
1708   is 0 for data, 1 for code labels, 2 for function pointers.  GLOBAL is
1709   true if the symbol may be affected by dynamic relocations.  */
1710#define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL)	\
1711  (((CODE) == 1 ? DW_EH_PE_textrel : DW_EH_PE_datarel)	\
1712   | ((GLOBAL) ? DW_EH_PE_indirect : 0)			\
1713   | (TARGET_ILP32 ? DW_EH_PE_udata4 : DW_EH_PE_udata8))
1714
1715/* Handle special EH pointer encodings.  Absolute, pc-relative, and
1716   indirect are handled automatically.  */
1717#define ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX(FILE, ENCODING, SIZE, ADDR, DONE) \
1718  do {									\
1719    const char *reltag = NULL;						\
1720    if (((ENCODING) & 0xF0) == DW_EH_PE_textrel)			\
1721      reltag = "@segrel(";						\
1722    else if (((ENCODING) & 0xF0) == DW_EH_PE_datarel)			\
1723      reltag = "@gprel(";						\
1724    if (reltag)								\
1725      {									\
1726	fputs (integer_asm_op (SIZE, FALSE), FILE);			\
1727	fputs (reltag, FILE);						\
1728	assemble_name (FILE, XSTR (ADDR, 0));				\
1729	fputc (')', FILE);						\
1730	goto DONE;							\
1731      }									\
1732  } while (0)
1733
1734
1735/* Assembler Commands for Alignment.  */
1736
1737/* ??? Investigate.  */
1738
1739/* The alignment (log base 2) to put in front of LABEL, which follows
1740   a BARRIER.  */
1741
1742/* #define LABEL_ALIGN_AFTER_BARRIER(LABEL) */
1743
1744/* The desired alignment for the location counter at the beginning
1745   of a loop.  */
1746
1747/* #define LOOP_ALIGN(LABEL) */
1748
1749/* Define this macro if `ASM_OUTPUT_SKIP' should not be used in the text
1750   section because it fails put zeros in the bytes that are skipped.  */
1751
1752#define ASM_NO_SKIP_IN_TEXT 1
1753
1754/* A C statement to output to the stdio stream STREAM an assembler command to
1755   advance the location counter to a multiple of 2 to the POWER bytes.  */
1756
1757#define ASM_OUTPUT_ALIGN(STREAM, POWER) \
1758  fprintf (STREAM, "\t.align %d\n", 1<<(POWER))
1759
1760
1761/* Macros Affecting all Debug Formats.  */
1762
1763/* This is handled in svr4.h and sysv4.h.  */
1764
1765
1766/* Specific Options for DBX Output.  */
1767
1768/* This is handled by dbxelf.h which is included by svr4.h.  */
1769
1770
1771/* Open ended Hooks for DBX Output.  */
1772
1773/* Likewise.  */
1774
1775
1776/* File names in DBX format.  */
1777
1778/* Likewise.  */
1779
1780
1781/* Macros for SDB and Dwarf Output.  */
1782
1783/* Define this macro if GCC should produce dwarf version 2 format debugging
1784   output in response to the `-g' option.  */
1785
1786#define DWARF2_DEBUGGING_INFO 1
1787
1788/* We do not want call-frame info to be output, since debuggers are
1789   supposed to use the target unwind info.  Leave this undefined it
1790   TARGET_UNWIND_INFO might ever be false.  */
1791
1792#define DWARF2_FRAME_INFO 0
1793
1794#define DWARF2_ASM_LINE_DEBUG_INFO (TARGET_DWARF2_ASM)
1795
1796/* Use tags for debug info labels, so that they don't break instruction
1797   bundles.  This also avoids getting spurious DV warnings from the
1798   assembler.  This is similar to (*targetm.asm_out.internal_label), except that we
1799   add brackets around the label.  */
1800
1801#define ASM_OUTPUT_DEBUG_LABEL(FILE, PREFIX, NUM) \
1802  fprintf (FILE, TARGET_GNU_AS ? "[.%s%d:]\n" : ".%s%d:\n", PREFIX, NUM)
1803
1804/* Use section-relative relocations for debugging offsets.  Unlike other
1805   targets that fake this by putting the section VMA at 0, IA-64 has
1806   proper relocations for them.  */
1807#define ASM_OUTPUT_DWARF_OFFSET(FILE, SIZE, LABEL, SECTION)	\
1808  do {								\
1809    fputs (integer_asm_op (SIZE, FALSE), FILE);			\
1810    fputs ("@secrel(", FILE);					\
1811    assemble_name (FILE, LABEL);				\
1812    fputc (')', FILE);						\
1813  } while (0)
1814
1815/* Emit a PC-relative relocation.  */
1816#define ASM_OUTPUT_DWARF_PCREL(FILE, SIZE, LABEL)	\
1817  do {							\
1818    fputs (integer_asm_op (SIZE, FALSE), FILE);		\
1819    fputs ("@pcrel(", FILE);				\
1820    assemble_name (FILE, LABEL);			\
1821    fputc (')', FILE);					\
1822  } while (0)
1823
1824/* Register Renaming Parameters.  */
1825
1826/* A C expression that is nonzero if hard register number REGNO2 can be
1827   considered for use as a rename register for REGNO1 */
1828
1829#define HARD_REGNO_RENAME_OK(REGNO1,REGNO2) \
1830  ia64_hard_regno_rename_ok((REGNO1), (REGNO2))
1831
1832
1833/* Miscellaneous Parameters.  */
1834
1835/* Flag to mark data that is in the small address area (addressable
1836   via "addl", that is, within a 2MByte offset of 0.  */
1837#define SYMBOL_FLAG_SMALL_ADDR		(SYMBOL_FLAG_MACH_DEP << 0)
1838#define SYMBOL_REF_SMALL_ADDR_P(X)	\
1839	((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_SMALL_ADDR) != 0)
1840
1841/* An alias for a machine mode name.  This is the machine mode that elements of
1842   a jump-table should have.  */
1843
1844#define CASE_VECTOR_MODE ptr_mode
1845
1846/* Define as C expression which evaluates to nonzero if the tablejump
1847   instruction expects the table to contain offsets from the address of the
1848   table.  */
1849
1850#define CASE_VECTOR_PC_RELATIVE 1
1851
1852/* Define this macro if operations between registers with integral mode smaller
1853   than a word are always performed on the entire register.  */
1854
1855#define WORD_REGISTER_OPERATIONS
1856
1857/* Define this macro to be a C expression indicating when insns that read
1858   memory in MODE, an integral mode narrower than a word, set the bits outside
1859   of MODE to be either the sign-extension or the zero-extension of the data
1860   read.  */
1861
1862#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1863
1864/* The maximum number of bytes that a single instruction can move quickly from
1865   memory to memory.  */
1866#define MOVE_MAX 8
1867
1868/* A C expression which is nonzero if on this machine it is safe to "convert"
1869   an integer of INPREC bits to one of OUTPREC bits (where OUTPREC is smaller
1870   than INPREC) by merely operating on it as if it had only OUTPREC bits.  */
1871
1872#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1873
1874/* A C expression describing the value returned by a comparison operator with
1875   an integral mode and stored by a store-flag instruction (`sCOND') when the
1876   condition is true.  */
1877
1878/* ??? Investigate using STORE_FLAG_VALUE of -1 instead of 1.  */
1879
1880/* An alias for the machine mode for pointers.  */
1881
1882/* ??? This would change if we had ILP32 support.  */
1883
1884#define Pmode DImode
1885
1886/* An alias for the machine mode used for memory references to functions being
1887   called, in `call' RTL expressions.  */
1888
1889#define FUNCTION_MODE Pmode
1890
1891/* Define this macro to handle System V style pragmas: #pragma pack and
1892   #pragma weak.  Note, #pragma weak will only be supported if SUPPORT_WEAK is
1893   defined.  */
1894
1895#define HANDLE_SYSV_PRAGMA 1
1896
1897/* A C expression for the maximum number of instructions to execute via
1898   conditional execution instructions instead of a branch.  A value of
1899   BRANCH_COST+1 is the default if the machine does not use
1900   cc0, and 1 if it does use cc0.  */
1901/* ??? Investigate.  */
1902#define MAX_CONDITIONAL_EXECUTE 12
1903
1904extern int ia64_final_schedule;
1905
1906#define TARGET_UNWIND_INFO	1
1907
1908#define TARGET_UNWIND_TABLES_DEFAULT true
1909
1910#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 15 : INVALID_REGNUM)
1911
1912/* This function contains machine specific function data.  */
1913struct GTY(()) machine_function
1914{
1915  /* The new stack pointer when unwinding from EH.  */
1916  rtx ia64_eh_epilogue_sp;
1917
1918  /* The new bsp value when unwinding from EH.  */
1919  rtx ia64_eh_epilogue_bsp;
1920
1921  /* The GP value save register.  */
1922  rtx ia64_gp_save;
1923
1924  /* The number of varargs registers to save.  */
1925  int n_varargs;
1926
1927  /* The number of the next unwind state to copy.  */
1928  int state_num;
1929};
1930
1931#define DONT_USE_BUILTIN_SETJMP
1932
1933/* Output any profiling code before the prologue.  */
1934
1935#undef  PROFILE_BEFORE_PROLOGUE
1936#define PROFILE_BEFORE_PROLOGUE 1
1937
1938/* Initialize library function table. */
1939#undef TARGET_INIT_LIBFUNCS
1940#define TARGET_INIT_LIBFUNCS ia64_init_libfuncs
1941
1942
1943/* Switch on code for querying unit reservations.  */
1944#define CPU_UNITS_QUERY 1
1945
1946/* Define this to change the optimizations performed by default.  */
1947#define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
1948  ia64_optimization_options ((LEVEL), (SIZE))
1949
1950/* End of ia64.h */
1951