1/* Alias analysis for GNU C
2   Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
3   2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4   Contributed by John Carr (jfc@mit.edu).
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 3, or (at your option) any later
11version.
12
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16for more details.
17
18You should have received a copy of the GNU General Public License
19along with GCC; see the file COPYING3.  If not see
20<http://www.gnu.org/licenses/>.  */
21
22#include "config.h"
23#include "system.h"
24#include "coretypes.h"
25#include "tm.h"
26#include "rtl.h"
27#include "tree.h"
28#include "tm_p.h"
29#include "function.h"
30#include "alias.h"
31#include "emit-rtl.h"
32#include "regs.h"
33#include "hard-reg-set.h"
34#include "basic-block.h"
35#include "flags.h"
36#include "output.h"
37#include "toplev.h"
38#include "cselib.h"
39#include "splay-tree.h"
40#include "ggc.h"
41#include "langhooks.h"
42#include "timevar.h"
43#include "target.h"
44#include "cgraph.h"
45#include "varray.h"
46#include "tree-pass.h"
47#include "ipa-type-escape.h"
48#include "df.h"
49#include "tree-ssa-alias.h"
50#include "pointer-set.h"
51#include "tree-flow.h"
52
53/* The aliasing API provided here solves related but different problems:
54
55   Say there exists (in c)
56
57   struct X {
58     struct Y y1;
59     struct Z z2;
60   } x1, *px1,  *px2;
61
62   struct Y y2, *py;
63   struct Z z2, *pz;
64
65
66   py = &px1.y1;
67   px2 = &x1;
68
69   Consider the four questions:
70
71   Can a store to x1 interfere with px2->y1?
72   Can a store to x1 interfere with px2->z2?
73   (*px2).z2
74   Can a store to x1 change the value pointed to by with py?
75   Can a store to x1 change the value pointed to by with pz?
76
77   The answer to these questions can be yes, yes, yes, and maybe.
78
79   The first two questions can be answered with a simple examination
80   of the type system.  If structure X contains a field of type Y then
81   a store thru a pointer to an X can overwrite any field that is
82   contained (recursively) in an X (unless we know that px1 != px2).
83
84   The last two of the questions can be solved in the same way as the
85   first two questions but this is too conservative.  The observation
86   is that in some cases analysis we can know if which (if any) fields
87   are addressed and if those addresses are used in bad ways.  This
88   analysis may be language specific.  In C, arbitrary operations may
89   be applied to pointers.  However, there is some indication that
90   this may be too conservative for some C++ types.
91
92   The pass ipa-type-escape does this analysis for the types whose
93   instances do not escape across the compilation boundary.
94
95   Historically in GCC, these two problems were combined and a single
96   data structure was used to represent the solution to these
97   problems.  We now have two similar but different data structures,
98   The data structure to solve the last two question is similar to the
99   first, but does not contain have the fields in it whose address are
100   never taken.  For types that do escape the compilation unit, the
101   data structures will have identical information.
102*/
103
104/* The alias sets assigned to MEMs assist the back-end in determining
105   which MEMs can alias which other MEMs.  In general, two MEMs in
106   different alias sets cannot alias each other, with one important
107   exception.  Consider something like:
108
109     struct S { int i; double d; };
110
111   a store to an `S' can alias something of either type `int' or type
112   `double'.  (However, a store to an `int' cannot alias a `double'
113   and vice versa.)  We indicate this via a tree structure that looks
114   like:
115	   struct S
116	    /   \
117	   /     \
118	 |/_     _\|
119	 int    double
120
121   (The arrows are directed and point downwards.)
122    In this situation we say the alias set for `struct S' is the
123   `superset' and that those for `int' and `double' are `subsets'.
124
125   To see whether two alias sets can point to the same memory, we must
126   see if either alias set is a subset of the other. We need not trace
127   past immediate descendants, however, since we propagate all
128   grandchildren up one level.
129
130   Alias set zero is implicitly a superset of all other alias sets.
131   However, this is no actual entry for alias set zero.  It is an
132   error to attempt to explicitly construct a subset of zero.  */
133
134struct GTY(()) alias_set_entry_d {
135  /* The alias set number, as stored in MEM_ALIAS_SET.  */
136  alias_set_type alias_set;
137
138  /* Nonzero if would have a child of zero: this effectively makes this
139     alias set the same as alias set zero.  */
140  int has_zero_child;
141
142  /* The children of the alias set.  These are not just the immediate
143     children, but, in fact, all descendants.  So, if we have:
144
145       struct T { struct S s; float f; }
146
147     continuing our example above, the children here will be all of
148     `int', `double', `float', and `struct S'.  */
149  splay_tree GTY((param1_is (int), param2_is (int))) children;
150};
151typedef struct alias_set_entry_d *alias_set_entry;
152
153static int rtx_equal_for_memref_p (const_rtx, const_rtx);
154static int memrefs_conflict_p (int, rtx, int, rtx, HOST_WIDE_INT);
155static void record_set (rtx, const_rtx, void *);
156static int base_alias_check (rtx, rtx, enum machine_mode,
157			     enum machine_mode);
158static rtx find_base_value (rtx);
159static int mems_in_disjoint_alias_sets_p (const_rtx, const_rtx);
160static int insert_subset_children (splay_tree_node, void*);
161static alias_set_entry get_alias_set_entry (alias_set_type);
162static const_rtx fixed_scalar_and_varying_struct_p (const_rtx, const_rtx, rtx, rtx,
163						    bool (*) (const_rtx, bool));
164static int aliases_everything_p (const_rtx);
165static bool nonoverlapping_component_refs_p (const_tree, const_tree);
166static tree decl_for_component_ref (tree);
167static rtx adjust_offset_for_component_ref (tree, rtx);
168static int write_dependence_p (const_rtx, const_rtx, int);
169
170static void memory_modified_1 (rtx, const_rtx, void *);
171
172/* Set up all info needed to perform alias analysis on memory references.  */
173
174/* Returns the size in bytes of the mode of X.  */
175#define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
176
177/* Returns nonzero if MEM1 and MEM2 do not alias because they are in
178   different alias sets.  We ignore alias sets in functions making use
179   of variable arguments because the va_arg macros on some systems are
180   not legal ANSI C.  */
181#define DIFFERENT_ALIAS_SETS_P(MEM1, MEM2)			\
182  mems_in_disjoint_alias_sets_p (MEM1, MEM2)
183
184/* Cap the number of passes we make over the insns propagating alias
185   information through set chains.   10 is a completely arbitrary choice.  */
186#define MAX_ALIAS_LOOP_PASSES 10
187
188/* reg_base_value[N] gives an address to which register N is related.
189   If all sets after the first add or subtract to the current value
190   or otherwise modify it so it does not point to a different top level
191   object, reg_base_value[N] is equal to the address part of the source
192   of the first set.
193
194   A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF.  ADDRESS
195   expressions represent certain special values: function arguments and
196   the stack, frame, and argument pointers.
197
198   The contents of an ADDRESS is not normally used, the mode of the
199   ADDRESS determines whether the ADDRESS is a function argument or some
200   other special value.  Pointer equality, not rtx_equal_p, determines whether
201   two ADDRESS expressions refer to the same base address.
202
203   The only use of the contents of an ADDRESS is for determining if the
204   current function performs nonlocal memory memory references for the
205   purposes of marking the function as a constant function.  */
206
207static GTY(()) VEC(rtx,gc) *reg_base_value;
208static rtx *new_reg_base_value;
209
210/* We preserve the copy of old array around to avoid amount of garbage
211   produced.  About 8% of garbage produced were attributed to this
212   array.  */
213static GTY((deletable)) VEC(rtx,gc) *old_reg_base_value;
214
215/* Static hunks of RTL used by the aliasing code; these are initialized
216   once per function to avoid unnecessary RTL allocations.  */
217static GTY (()) rtx static_reg_base_value[FIRST_PSEUDO_REGISTER];
218
219#define REG_BASE_VALUE(X)				\
220  (REGNO (X) < VEC_length (rtx, reg_base_value)		\
221   ? VEC_index (rtx, reg_base_value, REGNO (X)) : 0)
222
223/* Vector indexed by N giving the initial (unchanging) value known for
224   pseudo-register N.  This array is initialized in init_alias_analysis,
225   and does not change until end_alias_analysis is called.  */
226static GTY((length("reg_known_value_size"))) rtx *reg_known_value;
227
228/* Indicates number of valid entries in reg_known_value.  */
229static GTY(()) unsigned int reg_known_value_size;
230
231/* Vector recording for each reg_known_value whether it is due to a
232   REG_EQUIV note.  Future passes (viz., reload) may replace the
233   pseudo with the equivalent expression and so we account for the
234   dependences that would be introduced if that happens.
235
236   The REG_EQUIV notes created in assign_parms may mention the arg
237   pointer, and there are explicit insns in the RTL that modify the
238   arg pointer.  Thus we must ensure that such insns don't get
239   scheduled across each other because that would invalidate the
240   REG_EQUIV notes.  One could argue that the REG_EQUIV notes are
241   wrong, but solving the problem in the scheduler will likely give
242   better code, so we do it here.  */
243static bool *reg_known_equiv_p;
244
245/* True when scanning insns from the start of the rtl to the
246   NOTE_INSN_FUNCTION_BEG note.  */
247static bool copying_arguments;
248
249DEF_VEC_P(alias_set_entry);
250DEF_VEC_ALLOC_P(alias_set_entry,gc);
251
252/* The splay-tree used to store the various alias set entries.  */
253static GTY (()) VEC(alias_set_entry,gc) *alias_sets;
254
255/* Build a decomposed reference object for querying the alias-oracle
256   from the MEM rtx and store it in *REF.
257   Returns false if MEM is not suitable for the alias-oracle.  */
258
259static bool
260ao_ref_from_mem (ao_ref *ref, const_rtx mem)
261{
262  tree expr = MEM_EXPR (mem);
263  tree base;
264
265  if (!expr)
266    return false;
267
268  /* If MEM_OFFSET or MEM_SIZE are NULL punt.  */
269  if (!MEM_OFFSET (mem)
270      || !MEM_SIZE (mem))
271    return false;
272
273  ao_ref_init (ref, expr);
274
275  /* Get the base of the reference and see if we have to reject or
276     adjust it.  */
277  base = ao_ref_base (ref);
278  if (base == NULL_TREE)
279    return false;
280
281  /* If this is a pointer dereference of a non-SSA_NAME punt.
282     ???  We could replace it with a pointer to anything.  */
283  if (INDIRECT_REF_P (base)
284      && TREE_CODE (TREE_OPERAND (base, 0)) != SSA_NAME)
285    return false;
286
287  /* The tree oracle doesn't like to have these.  */
288  if (TREE_CODE (base) == FUNCTION_DECL
289      || TREE_CODE (base) == LABEL_DECL)
290    return false;
291
292  /* If this is a reference based on a partitioned decl replace the
293     base with an INDIRECT_REF of the pointer representative we
294     created during stack slot partitioning.  */
295  if (TREE_CODE (base) == VAR_DECL
296      && ! TREE_STATIC (base)
297      && cfun->gimple_df->decls_to_pointers != NULL)
298    {
299      void *namep;
300      namep = pointer_map_contains (cfun->gimple_df->decls_to_pointers, base);
301      if (namep)
302	{
303	  ref->base_alias_set = get_alias_set (base);
304	  ref->base = build1 (INDIRECT_REF, TREE_TYPE (base), *(tree *)namep);
305	}
306    }
307
308  ref->ref_alias_set = MEM_ALIAS_SET (mem);
309
310  /* If the base decl is a parameter we can have negative MEM_OFFSET in
311     case of promoted subregs on bigendian targets.  Trust the MEM_EXPR
312     here.  */
313  if (INTVAL (MEM_OFFSET (mem)) < 0
314      && ((INTVAL (MEM_SIZE (mem)) + INTVAL (MEM_OFFSET (mem)))
315	  * BITS_PER_UNIT) == ref->size)
316    return true;
317
318  ref->offset += INTVAL (MEM_OFFSET (mem)) * BITS_PER_UNIT;
319  ref->size = INTVAL (MEM_SIZE (mem)) * BITS_PER_UNIT;
320
321  /* The MEM may extend into adjacent fields, so adjust max_size if
322     necessary.  */
323  if (ref->max_size != -1
324      && ref->size > ref->max_size)
325    ref->max_size = ref->size;
326
327  /* If MEM_OFFSET and MEM_SIZE get us outside of the base object of
328     the MEM_EXPR punt.  This happens for STRICT_ALIGNMENT targets a lot.  */
329  if (MEM_EXPR (mem) != get_spill_slot_decl (false)
330      && (ref->offset < 0
331	  || (DECL_P (ref->base)
332	      && (!host_integerp (DECL_SIZE (ref->base), 1)
333		  || (TREE_INT_CST_LOW (DECL_SIZE ((ref->base)))
334		      < (unsigned HOST_WIDE_INT)(ref->offset + ref->size))))))
335    return false;
336
337  return true;
338}
339
340/* Query the alias-oracle on whether the two memory rtx X and MEM may
341   alias.  If TBAA_P is set also apply TBAA.  Returns true if the
342   two rtxen may alias, false otherwise.  */
343
344static bool
345rtx_refs_may_alias_p (const_rtx x, const_rtx mem, bool tbaa_p)
346{
347  ao_ref ref1, ref2;
348
349  if (!ao_ref_from_mem (&ref1, x)
350      || !ao_ref_from_mem (&ref2, mem))
351    return true;
352
353  return refs_may_alias_p_1 (&ref1, &ref2, tbaa_p);
354}
355
356/* Returns a pointer to the alias set entry for ALIAS_SET, if there is
357   such an entry, or NULL otherwise.  */
358
359static inline alias_set_entry
360get_alias_set_entry (alias_set_type alias_set)
361{
362  return VEC_index (alias_set_entry, alias_sets, alias_set);
363}
364
365/* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
366   the two MEMs cannot alias each other.  */
367
368static inline int
369mems_in_disjoint_alias_sets_p (const_rtx mem1, const_rtx mem2)
370{
371/* Perform a basic sanity check.  Namely, that there are no alias sets
372   if we're not using strict aliasing.  This helps to catch bugs
373   whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
374   where a MEM is allocated in some way other than by the use of
375   gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared.  If we begin to
376   use alias sets to indicate that spilled registers cannot alias each
377   other, we might need to remove this check.  */
378  gcc_assert (flag_strict_aliasing
379	      || (!MEM_ALIAS_SET (mem1) && !MEM_ALIAS_SET (mem2)));
380
381  return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1), MEM_ALIAS_SET (mem2));
382}
383
384/* Insert the NODE into the splay tree given by DATA.  Used by
385   record_alias_subset via splay_tree_foreach.  */
386
387static int
388insert_subset_children (splay_tree_node node, void *data)
389{
390  splay_tree_insert ((splay_tree) data, node->key, node->value);
391
392  return 0;
393}
394
395/* Return true if the first alias set is a subset of the second.  */
396
397bool
398alias_set_subset_of (alias_set_type set1, alias_set_type set2)
399{
400  alias_set_entry ase;
401
402  /* Everything is a subset of the "aliases everything" set.  */
403  if (set2 == 0)
404    return true;
405
406  /* Otherwise, check if set1 is a subset of set2.  */
407  ase = get_alias_set_entry (set2);
408  if (ase != 0
409      && (ase->has_zero_child
410	  || splay_tree_lookup (ase->children,
411			        (splay_tree_key) set1)))
412    return true;
413  return false;
414}
415
416/* Return 1 if the two specified alias sets may conflict.  */
417
418int
419alias_sets_conflict_p (alias_set_type set1, alias_set_type set2)
420{
421  alias_set_entry ase;
422
423  /* The easy case.  */
424  if (alias_sets_must_conflict_p (set1, set2))
425    return 1;
426
427  /* See if the first alias set is a subset of the second.  */
428  ase = get_alias_set_entry (set1);
429  if (ase != 0
430      && (ase->has_zero_child
431	  || splay_tree_lookup (ase->children,
432				(splay_tree_key) set2)))
433    return 1;
434
435  /* Now do the same, but with the alias sets reversed.  */
436  ase = get_alias_set_entry (set2);
437  if (ase != 0
438      && (ase->has_zero_child
439	  || splay_tree_lookup (ase->children,
440				(splay_tree_key) set1)))
441    return 1;
442
443  /* The two alias sets are distinct and neither one is the
444     child of the other.  Therefore, they cannot conflict.  */
445  return 0;
446}
447
448static int
449walk_mems_2 (rtx *x, rtx mem)
450{
451  if (MEM_P (*x))
452    {
453      if (alias_sets_conflict_p (MEM_ALIAS_SET(*x), MEM_ALIAS_SET(mem)))
454        return 1;
455
456      return -1;
457    }
458  return 0;
459}
460
461static int
462walk_mems_1 (rtx *x, rtx *pat)
463{
464  if (MEM_P (*x))
465    {
466      /* Visit all MEMs in *PAT and check indepedence.  */
467      if (for_each_rtx (pat, (rtx_function) walk_mems_2, *x))
468        /* Indicate that dependence was determined and stop traversal.  */
469        return 1;
470
471      return -1;
472    }
473  return 0;
474}
475
476/* Return 1 if two specified instructions have mem expr with conflict alias sets*/
477bool
478insn_alias_sets_conflict_p (rtx insn1, rtx insn2)
479{
480  /* For each pair of MEMs in INSN1 and INSN2 check their independence.  */
481  return  for_each_rtx (&PATTERN (insn1), (rtx_function) walk_mems_1,
482			 &PATTERN (insn2));
483}
484
485/* Return 1 if the two specified alias sets will always conflict.  */
486
487int
488alias_sets_must_conflict_p (alias_set_type set1, alias_set_type set2)
489{
490  if (set1 == 0 || set2 == 0 || set1 == set2)
491    return 1;
492
493  return 0;
494}
495
496/* Return 1 if any MEM object of type T1 will always conflict (using the
497   dependency routines in this file) with any MEM object of type T2.
498   This is used when allocating temporary storage.  If T1 and/or T2 are
499   NULL_TREE, it means we know nothing about the storage.  */
500
501int
502objects_must_conflict_p (tree t1, tree t2)
503{
504  alias_set_type set1, set2;
505
506  /* If neither has a type specified, we don't know if they'll conflict
507     because we may be using them to store objects of various types, for
508     example the argument and local variables areas of inlined functions.  */
509  if (t1 == 0 && t2 == 0)
510    return 0;
511
512  /* If they are the same type, they must conflict.  */
513  if (t1 == t2
514      /* Likewise if both are volatile.  */
515      || (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2)))
516    return 1;
517
518  set1 = t1 ? get_alias_set (t1) : 0;
519  set2 = t2 ? get_alias_set (t2) : 0;
520
521  /* We can't use alias_sets_conflict_p because we must make sure
522     that every subtype of t1 will conflict with every subtype of
523     t2 for which a pair of subobjects of these respective subtypes
524     overlaps on the stack.  */
525  return alias_sets_must_conflict_p (set1, set2);
526}
527
528/* Return true if all nested component references handled by
529   get_inner_reference in T are such that we should use the alias set
530   provided by the object at the heart of T.
531
532   This is true for non-addressable components (which don't have their
533   own alias set), as well as components of objects in alias set zero.
534   This later point is a special case wherein we wish to override the
535   alias set used by the component, but we don't have per-FIELD_DECL
536   assignable alias sets.  */
537
538bool
539component_uses_parent_alias_set (const_tree t)
540{
541  while (1)
542    {
543      /* If we're at the end, it vacuously uses its own alias set.  */
544      if (!handled_component_p (t))
545	return false;
546
547      switch (TREE_CODE (t))
548	{
549	case COMPONENT_REF:
550	  if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
551	    return true;
552	  break;
553
554	case ARRAY_REF:
555	case ARRAY_RANGE_REF:
556	  if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0))))
557	    return true;
558	  break;
559
560	case REALPART_EXPR:
561	case IMAGPART_EXPR:
562	  break;
563
564	default:
565	  /* Bitfields and casts are never addressable.  */
566	  return true;
567	}
568
569      t = TREE_OPERAND (t, 0);
570      if (get_alias_set (TREE_TYPE (t)) == 0)
571	return true;
572    }
573}
574
575/* Return the alias set for the memory pointed to by T, which may be
576   either a type or an expression.  Return -1 if there is nothing
577   special about dereferencing T.  */
578
579static alias_set_type
580get_deref_alias_set_1 (tree t)
581{
582  /* If we're not doing any alias analysis, just assume everything
583     aliases everything else.  */
584  if (!flag_strict_aliasing)
585    return 0;
586
587  /* All we care about is the type.  */
588  if (! TYPE_P (t))
589    t = TREE_TYPE (t);
590
591  /* If we have an INDIRECT_REF via a void pointer, we don't
592     know anything about what that might alias.  Likewise if the
593     pointer is marked that way.  */
594  if (TREE_CODE (TREE_TYPE (t)) == VOID_TYPE
595      || TYPE_REF_CAN_ALIAS_ALL (t))
596    return 0;
597
598  return -1;
599}
600
601/* Return the alias set for the memory pointed to by T, which may be
602   either a type or an expression.  */
603
604alias_set_type
605get_deref_alias_set (tree t)
606{
607  alias_set_type set = get_deref_alias_set_1 (t);
608
609  /* Fall back to the alias-set of the pointed-to type.  */
610  if (set == -1)
611    {
612      if (! TYPE_P (t))
613	t = TREE_TYPE (t);
614      set = get_alias_set (TREE_TYPE (t));
615    }
616
617  return set;
618}
619
620/* Return the alias set for T, which may be either a type or an
621   expression.  Call language-specific routine for help, if needed.  */
622
623alias_set_type
624get_alias_set (tree t)
625{
626  alias_set_type set;
627
628  /* If we're not doing any alias analysis, just assume everything
629     aliases everything else.  Also return 0 if this or its type is
630     an error.  */
631  if (! flag_strict_aliasing || t == error_mark_node
632      || (! TYPE_P (t)
633	  && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
634    return 0;
635
636  /* We can be passed either an expression or a type.  This and the
637     language-specific routine may make mutually-recursive calls to each other
638     to figure out what to do.  At each juncture, we see if this is a tree
639     that the language may need to handle specially.  First handle things that
640     aren't types.  */
641  if (! TYPE_P (t))
642    {
643      tree inner;
644
645      /* Remove any nops, then give the language a chance to do
646	 something with this tree before we look at it.  */
647      STRIP_NOPS (t);
648      set = lang_hooks.get_alias_set (t);
649      if (set != -1)
650	return set;
651
652      /* Retrieve the original memory reference if needed.  */
653      if (TREE_CODE (t) == TARGET_MEM_REF)
654	t = TMR_ORIGINAL (t);
655
656      /* First see if the actual object referenced is an INDIRECT_REF from a
657	 restrict-qualified pointer or a "void *".  */
658      inner = t;
659      while (handled_component_p (inner))
660	{
661	  inner = TREE_OPERAND (inner, 0);
662	  STRIP_NOPS (inner);
663	}
664
665      if (INDIRECT_REF_P (inner))
666	{
667	  set = get_deref_alias_set_1 (TREE_OPERAND (inner, 0));
668	  if (set != -1)
669	    return set;
670	}
671
672      /* Otherwise, pick up the outermost object that we could have a pointer
673	 to, processing conversions as above.  */
674      while (component_uses_parent_alias_set (t))
675	{
676	  t = TREE_OPERAND (t, 0);
677	  STRIP_NOPS (t);
678	}
679
680      /* If we've already determined the alias set for a decl, just return
681	 it.  This is necessary for C++ anonymous unions, whose component
682	 variables don't look like union members (boo!).  */
683      if (TREE_CODE (t) == VAR_DECL
684	  && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
685	return MEM_ALIAS_SET (DECL_RTL (t));
686
687      /* Now all we care about is the type.  */
688      t = TREE_TYPE (t);
689    }
690
691  /* Variant qualifiers don't affect the alias set, so get the main
692     variant.  */
693  t = TYPE_MAIN_VARIANT (t);
694
695  /* Always use the canonical type as well.  If this is a type that
696     requires structural comparisons to identify compatible types
697     use alias set zero.  */
698  if (TYPE_STRUCTURAL_EQUALITY_P (t))
699    {
700      /* Allow the language to specify another alias set for this
701	 type.  */
702      set = lang_hooks.get_alias_set (t);
703      if (set != -1)
704	return set;
705      return 0;
706    }
707  t = TYPE_CANONICAL (t);
708  /* Canonical types shouldn't form a tree nor should the canonical
709     type require structural equality checks.  */
710  gcc_assert (!TYPE_STRUCTURAL_EQUALITY_P (t) && TYPE_CANONICAL (t) == t);
711
712  /* If this is a type with a known alias set, return it.  */
713  if (TYPE_ALIAS_SET_KNOWN_P (t))
714    return TYPE_ALIAS_SET (t);
715
716  /* We don't want to set TYPE_ALIAS_SET for incomplete types.  */
717  if (!COMPLETE_TYPE_P (t))
718    {
719      /* For arrays with unknown size the conservative answer is the
720	 alias set of the element type.  */
721      if (TREE_CODE (t) == ARRAY_TYPE)
722	return get_alias_set (TREE_TYPE (t));
723
724      /* But return zero as a conservative answer for incomplete types.  */
725      return 0;
726    }
727
728  /* See if the language has special handling for this type.  */
729  set = lang_hooks.get_alias_set (t);
730  if (set != -1)
731    return set;
732
733  /* There are no objects of FUNCTION_TYPE, so there's no point in
734     using up an alias set for them.  (There are, of course, pointers
735     and references to functions, but that's different.)  */
736  else if (TREE_CODE (t) == FUNCTION_TYPE
737	   || TREE_CODE (t) == METHOD_TYPE)
738    set = 0;
739
740  /* Unless the language specifies otherwise, let vector types alias
741     their components.  This avoids some nasty type punning issues in
742     normal usage.  And indeed lets vectors be treated more like an
743     array slice.  */
744  else if (TREE_CODE (t) == VECTOR_TYPE)
745    set = get_alias_set (TREE_TYPE (t));
746
747  /* Unless the language specifies otherwise, treat array types the
748     same as their components.  This avoids the asymmetry we get
749     through recording the components.  Consider accessing a
750     character(kind=1) through a reference to a character(kind=1)[1:1].
751     Or consider if we want to assign integer(kind=4)[0:D.1387] and
752     integer(kind=4)[4] the same alias set or not.
753     Just be pragmatic here and make sure the array and its element
754     type get the same alias set assigned.  */
755  else if (TREE_CODE (t) == ARRAY_TYPE
756	   && !TYPE_NONALIASED_COMPONENT (t))
757    set = get_alias_set (TREE_TYPE (t));
758
759  else
760    /* Otherwise make a new alias set for this type.  */
761    set = new_alias_set ();
762
763  TYPE_ALIAS_SET (t) = set;
764
765  /* If this is an aggregate type, we must record any component aliasing
766     information.  */
767  if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
768    record_component_aliases (t);
769
770  return set;
771}
772
773/* Return a brand-new alias set.  */
774
775alias_set_type
776new_alias_set (void)
777{
778  if (flag_strict_aliasing)
779    {
780      if (alias_sets == 0)
781	VEC_safe_push (alias_set_entry, gc, alias_sets, 0);
782      VEC_safe_push (alias_set_entry, gc, alias_sets, 0);
783      return VEC_length (alias_set_entry, alias_sets) - 1;
784    }
785  else
786    return 0;
787}
788
789/* Indicate that things in SUBSET can alias things in SUPERSET, but that
790   not everything that aliases SUPERSET also aliases SUBSET.  For example,
791   in C, a store to an `int' can alias a load of a structure containing an
792   `int', and vice versa.  But it can't alias a load of a 'double' member
793   of the same structure.  Here, the structure would be the SUPERSET and
794   `int' the SUBSET.  This relationship is also described in the comment at
795   the beginning of this file.
796
797   This function should be called only once per SUPERSET/SUBSET pair.
798
799   It is illegal for SUPERSET to be zero; everything is implicitly a
800   subset of alias set zero.  */
801
802void
803record_alias_subset (alias_set_type superset, alias_set_type subset)
804{
805  alias_set_entry superset_entry;
806  alias_set_entry subset_entry;
807
808  /* It is possible in complex type situations for both sets to be the same,
809     in which case we can ignore this operation.  */
810  if (superset == subset)
811    return;
812
813  gcc_assert (superset);
814
815  superset_entry = get_alias_set_entry (superset);
816  if (superset_entry == 0)
817    {
818      /* Create an entry for the SUPERSET, so that we have a place to
819	 attach the SUBSET.  */
820      superset_entry = GGC_NEW (struct alias_set_entry_d);
821      superset_entry->alias_set = superset;
822      superset_entry->children
823	= splay_tree_new_ggc (splay_tree_compare_ints);
824      superset_entry->has_zero_child = 0;
825      VEC_replace (alias_set_entry, alias_sets, superset, superset_entry);
826    }
827
828  if (subset == 0)
829    superset_entry->has_zero_child = 1;
830  else
831    {
832      subset_entry = get_alias_set_entry (subset);
833      /* If there is an entry for the subset, enter all of its children
834	 (if they are not already present) as children of the SUPERSET.  */
835      if (subset_entry)
836	{
837	  if (subset_entry->has_zero_child)
838	    superset_entry->has_zero_child = 1;
839
840	  splay_tree_foreach (subset_entry->children, insert_subset_children,
841			      superset_entry->children);
842	}
843
844      /* Enter the SUBSET itself as a child of the SUPERSET.  */
845      splay_tree_insert (superset_entry->children,
846			 (splay_tree_key) subset, 0);
847    }
848}
849
850/* Record that component types of TYPE, if any, are part of that type for
851   aliasing purposes.  For record types, we only record component types
852   for fields that are not marked non-addressable.  For array types, we
853   only record the component type if it is not marked non-aliased.  */
854
855void
856record_component_aliases (tree type)
857{
858  alias_set_type superset = get_alias_set (type);
859  tree field;
860
861  if (superset == 0)
862    return;
863
864  switch (TREE_CODE (type))
865    {
866    case RECORD_TYPE:
867    case UNION_TYPE:
868    case QUAL_UNION_TYPE:
869      /* Recursively record aliases for the base classes, if there are any.  */
870      if (TYPE_BINFO (type))
871	{
872	  int i;
873	  tree binfo, base_binfo;
874
875	  for (binfo = TYPE_BINFO (type), i = 0;
876	       BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
877	    record_alias_subset (superset,
878				 get_alias_set (BINFO_TYPE (base_binfo)));
879	}
880      for (field = TYPE_FIELDS (type); field != 0; field = TREE_CHAIN (field))
881	if (TREE_CODE (field) == FIELD_DECL && !DECL_NONADDRESSABLE_P (field))
882	  record_alias_subset (superset, get_alias_set (TREE_TYPE (field)));
883      break;
884
885    case COMPLEX_TYPE:
886      record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
887      break;
888
889    /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
890       element type.  */
891
892    default:
893      break;
894    }
895}
896
897/* Allocate an alias set for use in storing and reading from the varargs
898   spill area.  */
899
900static GTY(()) alias_set_type varargs_set = -1;
901
902alias_set_type
903get_varargs_alias_set (void)
904{
905#if 1
906  /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
907     varargs alias set to an INDIRECT_REF (FIXME!), so we can't
908     consistently use the varargs alias set for loads from the varargs
909     area.  So don't use it anywhere.  */
910  return 0;
911#else
912  if (varargs_set == -1)
913    varargs_set = new_alias_set ();
914
915  return varargs_set;
916#endif
917}
918
919/* Likewise, but used for the fixed portions of the frame, e.g., register
920   save areas.  */
921
922static GTY(()) alias_set_type frame_set = -1;
923
924alias_set_type
925get_frame_alias_set (void)
926{
927  if (frame_set == -1)
928    frame_set = new_alias_set ();
929
930  return frame_set;
931}
932
933/* Inside SRC, the source of a SET, find a base address.  */
934
935static rtx
936find_base_value (rtx src)
937{
938  unsigned int regno;
939
940#if defined (FIND_BASE_TERM)
941  /* Try machine-dependent ways to find the base term.  */
942  src = FIND_BASE_TERM (src);
943#endif
944
945  switch (GET_CODE (src))
946    {
947    case SYMBOL_REF:
948    case LABEL_REF:
949      return src;
950
951    case REG:
952      regno = REGNO (src);
953      /* At the start of a function, argument registers have known base
954	 values which may be lost later.  Returning an ADDRESS
955	 expression here allows optimization based on argument values
956	 even when the argument registers are used for other purposes.  */
957      if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
958	return new_reg_base_value[regno];
959
960      /* If a pseudo has a known base value, return it.  Do not do this
961	 for non-fixed hard regs since it can result in a circular
962	 dependency chain for registers which have values at function entry.
963
964	 The test above is not sufficient because the scheduler may move
965	 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN.  */
966      if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
967	  && regno < VEC_length (rtx, reg_base_value))
968	{
969	  /* If we're inside init_alias_analysis, use new_reg_base_value
970	     to reduce the number of relaxation iterations.  */
971	  if (new_reg_base_value && new_reg_base_value[regno]
972	      && DF_REG_DEF_COUNT (regno) == 1)
973	    return new_reg_base_value[regno];
974
975	  if (VEC_index (rtx, reg_base_value, regno))
976	    return VEC_index (rtx, reg_base_value, regno);
977	}
978
979      return 0;
980
981    case MEM:
982      /* Check for an argument passed in memory.  Only record in the
983	 copying-arguments block; it is too hard to track changes
984	 otherwise.  */
985      if (copying_arguments
986	  && (XEXP (src, 0) == arg_pointer_rtx
987	      || (GET_CODE (XEXP (src, 0)) == PLUS
988		  && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
989	return gen_rtx_ADDRESS (VOIDmode, src);
990      return 0;
991
992    case CONST:
993      src = XEXP (src, 0);
994      if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
995	break;
996
997      /* ... fall through ...  */
998
999    case PLUS:
1000    case MINUS:
1001      {
1002	rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
1003
1004	/* If either operand is a REG that is a known pointer, then it
1005	   is the base.  */
1006	if (REG_P (src_0) && REG_POINTER (src_0))
1007	  return find_base_value (src_0);
1008	if (REG_P (src_1) && REG_POINTER (src_1))
1009	  return find_base_value (src_1);
1010
1011	/* If either operand is a REG, then see if we already have
1012	   a known value for it.  */
1013	if (REG_P (src_0))
1014	  {
1015	    temp = find_base_value (src_0);
1016	    if (temp != 0)
1017	      src_0 = temp;
1018	  }
1019
1020	if (REG_P (src_1))
1021	  {
1022	    temp = find_base_value (src_1);
1023	    if (temp!= 0)
1024	      src_1 = temp;
1025	  }
1026
1027	/* If either base is named object or a special address
1028	   (like an argument or stack reference), then use it for the
1029	   base term.  */
1030	if (src_0 != 0
1031	    && (GET_CODE (src_0) == SYMBOL_REF
1032		|| GET_CODE (src_0) == LABEL_REF
1033		|| (GET_CODE (src_0) == ADDRESS
1034		    && GET_MODE (src_0) != VOIDmode)))
1035	  return src_0;
1036
1037	if (src_1 != 0
1038	    && (GET_CODE (src_1) == SYMBOL_REF
1039		|| GET_CODE (src_1) == LABEL_REF
1040		|| (GET_CODE (src_1) == ADDRESS
1041		    && GET_MODE (src_1) != VOIDmode)))
1042	  return src_1;
1043
1044	/* Guess which operand is the base address:
1045	   If either operand is a symbol, then it is the base.  If
1046	   either operand is a CONST_INT, then the other is the base.  */
1047	if (CONST_INT_P (src_1) || CONSTANT_P (src_0))
1048	  return find_base_value (src_0);
1049	else if (CONST_INT_P (src_0) || CONSTANT_P (src_1))
1050	  return find_base_value (src_1);
1051
1052	return 0;
1053      }
1054
1055    case LO_SUM:
1056      /* The standard form is (lo_sum reg sym) so look only at the
1057	 second operand.  */
1058      return find_base_value (XEXP (src, 1));
1059
1060    case AND:
1061      /* If the second operand is constant set the base
1062	 address to the first operand.  */
1063      if (CONST_INT_P (XEXP (src, 1)) && INTVAL (XEXP (src, 1)) != 0)
1064	return find_base_value (XEXP (src, 0));
1065      return 0;
1066
1067    case TRUNCATE:
1068      /* As we do not know which address space the pointer is refering to, we can
1069	 handle this only if the target does not support different pointer or
1070	 address modes depending on the address space.  */
1071      if (!target_default_pointer_address_modes_p ())
1072	break;
1073      if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
1074	break;
1075      /* Fall through.  */
1076    case HIGH:
1077    case PRE_INC:
1078    case PRE_DEC:
1079    case POST_INC:
1080    case POST_DEC:
1081    case PRE_MODIFY:
1082    case POST_MODIFY:
1083      return find_base_value (XEXP (src, 0));
1084
1085    case ZERO_EXTEND:
1086    case SIGN_EXTEND:	/* used for NT/Alpha pointers */
1087      /* As we do not know which address space the pointer is refering to, we can
1088	 handle this only if the target does not support different pointer or
1089	 address modes depending on the address space.  */
1090      if (!target_default_pointer_address_modes_p ())
1091	break;
1092
1093      {
1094	rtx temp = find_base_value (XEXP (src, 0));
1095
1096	if (temp != 0 && CONSTANT_P (temp))
1097	  temp = convert_memory_address (Pmode, temp);
1098
1099	return temp;
1100      }
1101
1102    default:
1103      break;
1104    }
1105
1106  return 0;
1107}
1108
1109/* Called from init_alias_analysis indirectly through note_stores.  */
1110
1111/* While scanning insns to find base values, reg_seen[N] is nonzero if
1112   register N has been set in this function.  */
1113static char *reg_seen;
1114
1115/* Addresses which are known not to alias anything else are identified
1116   by a unique integer.  */
1117static int unique_id;
1118
1119static void
1120record_set (rtx dest, const_rtx set, void *data ATTRIBUTE_UNUSED)
1121{
1122  unsigned regno;
1123  rtx src;
1124  int n;
1125
1126  if (!REG_P (dest))
1127    return;
1128
1129  regno = REGNO (dest);
1130
1131  gcc_assert (regno < VEC_length (rtx, reg_base_value));
1132
1133  /* If this spans multiple hard registers, then we must indicate that every
1134     register has an unusable value.  */
1135  if (regno < FIRST_PSEUDO_REGISTER)
1136    n = hard_regno_nregs[regno][GET_MODE (dest)];
1137  else
1138    n = 1;
1139  if (n != 1)
1140    {
1141      while (--n >= 0)
1142	{
1143	  reg_seen[regno + n] = 1;
1144	  new_reg_base_value[regno + n] = 0;
1145	}
1146      return;
1147    }
1148
1149  if (set)
1150    {
1151      /* A CLOBBER wipes out any old value but does not prevent a previously
1152	 unset register from acquiring a base address (i.e. reg_seen is not
1153	 set).  */
1154      if (GET_CODE (set) == CLOBBER)
1155	{
1156	  new_reg_base_value[regno] = 0;
1157	  return;
1158	}
1159      src = SET_SRC (set);
1160    }
1161  else
1162    {
1163      if (reg_seen[regno])
1164	{
1165	  new_reg_base_value[regno] = 0;
1166	  return;
1167	}
1168      reg_seen[regno] = 1;
1169      new_reg_base_value[regno] = gen_rtx_ADDRESS (Pmode,
1170						   GEN_INT (unique_id++));
1171      return;
1172    }
1173
1174  /* If this is not the first set of REGNO, see whether the new value
1175     is related to the old one.  There are two cases of interest:
1176
1177	(1) The register might be assigned an entirely new value
1178	    that has the same base term as the original set.
1179
1180	(2) The set might be a simple self-modification that
1181	    cannot change REGNO's base value.
1182
1183     If neither case holds, reject the original base value as invalid.
1184     Note that the following situation is not detected:
1185
1186	 extern int x, y;  int *p = &x; p += (&y-&x);
1187
1188     ANSI C does not allow computing the difference of addresses
1189     of distinct top level objects.  */
1190  if (new_reg_base_value[regno] != 0
1191      && find_base_value (src) != new_reg_base_value[regno])
1192    switch (GET_CODE (src))
1193      {
1194      case LO_SUM:
1195      case MINUS:
1196	if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
1197	  new_reg_base_value[regno] = 0;
1198	break;
1199      case PLUS:
1200	/* If the value we add in the PLUS is also a valid base value,
1201	   this might be the actual base value, and the original value
1202	   an index.  */
1203	{
1204	  rtx other = NULL_RTX;
1205
1206	  if (XEXP (src, 0) == dest)
1207	    other = XEXP (src, 1);
1208	  else if (XEXP (src, 1) == dest)
1209	    other = XEXP (src, 0);
1210
1211	  if (! other || find_base_value (other))
1212	    new_reg_base_value[regno] = 0;
1213	  break;
1214	}
1215      case AND:
1216	if (XEXP (src, 0) != dest || !CONST_INT_P (XEXP (src, 1)))
1217	  new_reg_base_value[regno] = 0;
1218	break;
1219      default:
1220	new_reg_base_value[regno] = 0;
1221	break;
1222      }
1223  /* If this is the first set of a register, record the value.  */
1224  else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
1225	   && ! reg_seen[regno] && new_reg_base_value[regno] == 0)
1226    new_reg_base_value[regno] = find_base_value (src);
1227
1228  reg_seen[regno] = 1;
1229}
1230
1231/* Return REG_BASE_VALUE for REGNO.  Selective scheduler uses this to avoid
1232   using hard registers with non-null REG_BASE_VALUE for renaming.  */
1233rtx
1234get_reg_base_value (unsigned int regno)
1235{
1236  return VEC_index (rtx, reg_base_value, regno);
1237}
1238
1239/* If a value is known for REGNO, return it.  */
1240
1241rtx
1242get_reg_known_value (unsigned int regno)
1243{
1244  if (regno >= FIRST_PSEUDO_REGISTER)
1245    {
1246      regno -= FIRST_PSEUDO_REGISTER;
1247      if (regno < reg_known_value_size)
1248	return reg_known_value[regno];
1249    }
1250  return NULL;
1251}
1252
1253/* Set it.  */
1254
1255static void
1256set_reg_known_value (unsigned int regno, rtx val)
1257{
1258  if (regno >= FIRST_PSEUDO_REGISTER)
1259    {
1260      regno -= FIRST_PSEUDO_REGISTER;
1261      if (regno < reg_known_value_size)
1262	reg_known_value[regno] = val;
1263    }
1264}
1265
1266/* Similarly for reg_known_equiv_p.  */
1267
1268bool
1269get_reg_known_equiv_p (unsigned int regno)
1270{
1271  if (regno >= FIRST_PSEUDO_REGISTER)
1272    {
1273      regno -= FIRST_PSEUDO_REGISTER;
1274      if (regno < reg_known_value_size)
1275	return reg_known_equiv_p[regno];
1276    }
1277  return false;
1278}
1279
1280static void
1281set_reg_known_equiv_p (unsigned int regno, bool val)
1282{
1283  if (regno >= FIRST_PSEUDO_REGISTER)
1284    {
1285      regno -= FIRST_PSEUDO_REGISTER;
1286      if (regno < reg_known_value_size)
1287	reg_known_equiv_p[regno] = val;
1288    }
1289}
1290
1291
1292/* Returns a canonical version of X, from the point of view alias
1293   analysis.  (For example, if X is a MEM whose address is a register,
1294   and the register has a known value (say a SYMBOL_REF), then a MEM
1295   whose address is the SYMBOL_REF is returned.)  */
1296
1297rtx
1298canon_rtx (rtx x)
1299{
1300  /* Recursively look for equivalences.  */
1301  if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
1302    {
1303      rtx t = get_reg_known_value (REGNO (x));
1304      if (t == x)
1305	return x;
1306      if (t)
1307	return canon_rtx (t);
1308    }
1309
1310  if (GET_CODE (x) == PLUS)
1311    {
1312      rtx x0 = canon_rtx (XEXP (x, 0));
1313      rtx x1 = canon_rtx (XEXP (x, 1));
1314
1315      if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1316	{
1317	  if (CONST_INT_P (x0))
1318	    return plus_constant (x1, INTVAL (x0));
1319	  else if (CONST_INT_P (x1))
1320	    return plus_constant (x0, INTVAL (x1));
1321	  return gen_rtx_PLUS (GET_MODE (x), x0, x1);
1322	}
1323    }
1324
1325  /* This gives us much better alias analysis when called from
1326     the loop optimizer.   Note we want to leave the original
1327     MEM alone, but need to return the canonicalized MEM with
1328     all the flags with their original values.  */
1329  else if (MEM_P (x))
1330    x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
1331
1332  return x;
1333}
1334
1335/* Return 1 if X and Y are identical-looking rtx's.
1336   Expect that X and Y has been already canonicalized.
1337
1338   We use the data in reg_known_value above to see if two registers with
1339   different numbers are, in fact, equivalent.  */
1340
1341static int
1342rtx_equal_for_memref_p (const_rtx x, const_rtx y)
1343{
1344  int i;
1345  int j;
1346  enum rtx_code code;
1347  const char *fmt;
1348
1349  if (x == 0 && y == 0)
1350    return 1;
1351  if (x == 0 || y == 0)
1352    return 0;
1353
1354  if (x == y)
1355    return 1;
1356
1357  code = GET_CODE (x);
1358  /* Rtx's of different codes cannot be equal.  */
1359  if (code != GET_CODE (y))
1360    return 0;
1361
1362  /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1363     (REG:SI x) and (REG:HI x) are NOT equivalent.  */
1364
1365  if (GET_MODE (x) != GET_MODE (y))
1366    return 0;
1367
1368  /* Some RTL can be compared without a recursive examination.  */
1369  switch (code)
1370    {
1371    case REG:
1372      return REGNO (x) == REGNO (y);
1373
1374    case LABEL_REF:
1375      return XEXP (x, 0) == XEXP (y, 0);
1376
1377    case SYMBOL_REF:
1378      return XSTR (x, 0) == XSTR (y, 0);
1379
1380    case VALUE:
1381    case CONST_INT:
1382    case CONST_DOUBLE:
1383    case CONST_FIXED:
1384      /* There's no need to compare the contents of CONST_DOUBLEs or
1385	 CONST_INTs because pointer equality is a good enough
1386	 comparison for these nodes.  */
1387      return 0;
1388
1389    default:
1390      break;
1391    }
1392
1393  /* canon_rtx knows how to handle plus.  No need to canonicalize.  */
1394  if (code == PLUS)
1395    return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1396	     && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1397	    || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1398		&& rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
1399  /* For commutative operations, the RTX match if the operand match in any
1400     order.  Also handle the simple binary and unary cases without a loop.  */
1401  if (COMMUTATIVE_P (x))
1402    {
1403      rtx xop0 = canon_rtx (XEXP (x, 0));
1404      rtx yop0 = canon_rtx (XEXP (y, 0));
1405      rtx yop1 = canon_rtx (XEXP (y, 1));
1406
1407      return ((rtx_equal_for_memref_p (xop0, yop0)
1408	       && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1409	      || (rtx_equal_for_memref_p (xop0, yop1)
1410		  && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1411    }
1412  else if (NON_COMMUTATIVE_P (x))
1413    {
1414      return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1415				      canon_rtx (XEXP (y, 0)))
1416	      && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1417					 canon_rtx (XEXP (y, 1))));
1418    }
1419  else if (UNARY_P (x))
1420    return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1421				   canon_rtx (XEXP (y, 0)));
1422
1423  /* Compare the elements.  If any pair of corresponding elements
1424     fail to match, return 0 for the whole things.
1425
1426     Limit cases to types which actually appear in addresses.  */
1427
1428  fmt = GET_RTX_FORMAT (code);
1429  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1430    {
1431      switch (fmt[i])
1432	{
1433	case 'i':
1434	  if (XINT (x, i) != XINT (y, i))
1435	    return 0;
1436	  break;
1437
1438	case 'E':
1439	  /* Two vectors must have the same length.  */
1440	  if (XVECLEN (x, i) != XVECLEN (y, i))
1441	    return 0;
1442
1443	  /* And the corresponding elements must match.  */
1444	  for (j = 0; j < XVECLEN (x, i); j++)
1445	    if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1446					canon_rtx (XVECEXP (y, i, j))) == 0)
1447	      return 0;
1448	  break;
1449
1450	case 'e':
1451	  if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1452				      canon_rtx (XEXP (y, i))) == 0)
1453	    return 0;
1454	  break;
1455
1456	  /* This can happen for asm operands.  */
1457	case 's':
1458	  if (strcmp (XSTR (x, i), XSTR (y, i)))
1459	    return 0;
1460	  break;
1461
1462	/* This can happen for an asm which clobbers memory.  */
1463	case '0':
1464	  break;
1465
1466	  /* It is believed that rtx's at this level will never
1467	     contain anything but integers and other rtx's,
1468	     except for within LABEL_REFs and SYMBOL_REFs.  */
1469	default:
1470	  gcc_unreachable ();
1471	}
1472    }
1473  return 1;
1474}
1475
1476rtx
1477find_base_term (rtx x)
1478{
1479  cselib_val *val;
1480  struct elt_loc_list *l;
1481
1482#if defined (FIND_BASE_TERM)
1483  /* Try machine-dependent ways to find the base term.  */
1484  x = FIND_BASE_TERM (x);
1485#endif
1486
1487  switch (GET_CODE (x))
1488    {
1489    case REG:
1490      return REG_BASE_VALUE (x);
1491
1492    case TRUNCATE:
1493      /* As we do not know which address space the pointer is refering to, we can
1494	 handle this only if the target does not support different pointer or
1495	 address modes depending on the address space.  */
1496      if (!target_default_pointer_address_modes_p ())
1497	return 0;
1498      if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode))
1499	return 0;
1500      /* Fall through.  */
1501    case HIGH:
1502    case PRE_INC:
1503    case PRE_DEC:
1504    case POST_INC:
1505    case POST_DEC:
1506    case PRE_MODIFY:
1507    case POST_MODIFY:
1508      return find_base_term (XEXP (x, 0));
1509
1510    case ZERO_EXTEND:
1511    case SIGN_EXTEND:	/* Used for Alpha/NT pointers */
1512      /* As we do not know which address space the pointer is refering to, we can
1513	 handle this only if the target does not support different pointer or
1514	 address modes depending on the address space.  */
1515      if (!target_default_pointer_address_modes_p ())
1516	return 0;
1517
1518      {
1519	rtx temp = find_base_term (XEXP (x, 0));
1520
1521	if (temp != 0 && CONSTANT_P (temp))
1522	  temp = convert_memory_address (Pmode, temp);
1523
1524	return temp;
1525      }
1526
1527    case VALUE:
1528      val = CSELIB_VAL_PTR (x);
1529      if (!val)
1530	return 0;
1531      for (l = val->locs; l; l = l->next)
1532	if ((x = find_base_term (l->loc)) != 0)
1533	  return x;
1534      return 0;
1535
1536    case LO_SUM:
1537      /* The standard form is (lo_sum reg sym) so look only at the
1538         second operand.  */
1539      return find_base_term (XEXP (x, 1));
1540
1541    case CONST:
1542      x = XEXP (x, 0);
1543      if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1544	return 0;
1545      /* Fall through.  */
1546    case PLUS:
1547    case MINUS:
1548      {
1549	rtx tmp1 = XEXP (x, 0);
1550	rtx tmp2 = XEXP (x, 1);
1551
1552	/* This is a little bit tricky since we have to determine which of
1553	   the two operands represents the real base address.  Otherwise this
1554	   routine may return the index register instead of the base register.
1555
1556	   That may cause us to believe no aliasing was possible, when in
1557	   fact aliasing is possible.
1558
1559	   We use a few simple tests to guess the base register.  Additional
1560	   tests can certainly be added.  For example, if one of the operands
1561	   is a shift or multiply, then it must be the index register and the
1562	   other operand is the base register.  */
1563
1564	if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1565	  return find_base_term (tmp2);
1566
1567	/* If either operand is known to be a pointer, then use it
1568	   to determine the base term.  */
1569	if (REG_P (tmp1) && REG_POINTER (tmp1))
1570	  {
1571	    rtx base = find_base_term (tmp1);
1572	    if (base)
1573	      return base;
1574	  }
1575
1576	if (REG_P (tmp2) && REG_POINTER (tmp2))
1577	  {
1578	    rtx base = find_base_term (tmp2);
1579	    if (base)
1580	      return base;
1581	  }
1582
1583	/* Neither operand was known to be a pointer.  Go ahead and find the
1584	   base term for both operands.  */
1585	tmp1 = find_base_term (tmp1);
1586	tmp2 = find_base_term (tmp2);
1587
1588	/* If either base term is named object or a special address
1589	   (like an argument or stack reference), then use it for the
1590	   base term.  */
1591	if (tmp1 != 0
1592	    && (GET_CODE (tmp1) == SYMBOL_REF
1593		|| GET_CODE (tmp1) == LABEL_REF
1594		|| (GET_CODE (tmp1) == ADDRESS
1595		    && GET_MODE (tmp1) != VOIDmode)))
1596	  return tmp1;
1597
1598	if (tmp2 != 0
1599	    && (GET_CODE (tmp2) == SYMBOL_REF
1600		|| GET_CODE (tmp2) == LABEL_REF
1601		|| (GET_CODE (tmp2) == ADDRESS
1602		    && GET_MODE (tmp2) != VOIDmode)))
1603	  return tmp2;
1604
1605	/* We could not determine which of the two operands was the
1606	   base register and which was the index.  So we can determine
1607	   nothing from the base alias check.  */
1608	return 0;
1609      }
1610
1611    case AND:
1612      if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) != 0)
1613	return find_base_term (XEXP (x, 0));
1614      return 0;
1615
1616    case SYMBOL_REF:
1617    case LABEL_REF:
1618      return x;
1619
1620    default:
1621      return 0;
1622    }
1623}
1624
1625/* Return 0 if the addresses X and Y are known to point to different
1626   objects, 1 if they might be pointers to the same object.  */
1627
1628static int
1629base_alias_check (rtx x, rtx y, enum machine_mode x_mode,
1630		  enum machine_mode y_mode)
1631{
1632  rtx x_base = find_base_term (x);
1633  rtx y_base = find_base_term (y);
1634
1635  /* If the address itself has no known base see if a known equivalent
1636     value has one.  If either address still has no known base, nothing
1637     is known about aliasing.  */
1638  if (x_base == 0)
1639    {
1640      rtx x_c;
1641
1642      if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
1643	return 1;
1644
1645      x_base = find_base_term (x_c);
1646      if (x_base == 0)
1647	return 1;
1648    }
1649
1650  if (y_base == 0)
1651    {
1652      rtx y_c;
1653      if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
1654	return 1;
1655
1656      y_base = find_base_term (y_c);
1657      if (y_base == 0)
1658	return 1;
1659    }
1660
1661  /* If the base addresses are equal nothing is known about aliasing.  */
1662  if (rtx_equal_p (x_base, y_base))
1663    return 1;
1664
1665  /* The base addresses are different expressions.  If they are not accessed
1666     via AND, there is no conflict.  We can bring knowledge of object
1667     alignment into play here.  For example, on alpha, "char a, b;" can
1668     alias one another, though "char a; long b;" cannot.  AND addesses may
1669     implicitly alias surrounding objects; i.e. unaligned access in DImode
1670     via AND address can alias all surrounding object types except those
1671     with aligment 8 or higher.  */
1672  if (GET_CODE (x) == AND && GET_CODE (y) == AND)
1673    return 1;
1674  if (GET_CODE (x) == AND
1675      && (!CONST_INT_P (XEXP (x, 1))
1676	  || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
1677    return 1;
1678  if (GET_CODE (y) == AND
1679      && (!CONST_INT_P (XEXP (y, 1))
1680	  || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
1681    return 1;
1682
1683  /* Differing symbols not accessed via AND never alias.  */
1684  if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
1685    return 0;
1686
1687  /* If one address is a stack reference there can be no alias:
1688     stack references using different base registers do not alias,
1689     a stack reference can not alias a parameter, and a stack reference
1690     can not alias a global.  */
1691  if ((GET_CODE (x_base) == ADDRESS && GET_MODE (x_base) == Pmode)
1692      || (GET_CODE (y_base) == ADDRESS && GET_MODE (y_base) == Pmode))
1693    return 0;
1694
1695  if (! flag_argument_noalias)
1696    return 1;
1697
1698  if (flag_argument_noalias > 1)
1699    return 0;
1700
1701  /* Weak noalias assertion (arguments are distinct, but may match globals).  */
1702  return ! (GET_MODE (x_base) == VOIDmode && GET_MODE (y_base) == VOIDmode);
1703}
1704
1705/* Convert the address X into something we can use.  This is done by returning
1706   it unchanged unless it is a value; in the latter case we call cselib to get
1707   a more useful rtx.  */
1708
1709rtx
1710get_addr (rtx x)
1711{
1712  cselib_val *v;
1713  struct elt_loc_list *l;
1714
1715  if (GET_CODE (x) != VALUE)
1716    return x;
1717  v = CSELIB_VAL_PTR (x);
1718  if (v)
1719    {
1720      for (l = v->locs; l; l = l->next)
1721	if (CONSTANT_P (l->loc))
1722	  return l->loc;
1723      for (l = v->locs; l; l = l->next)
1724	if (!REG_P (l->loc) && !MEM_P (l->loc))
1725	  return l->loc;
1726      if (v->locs)
1727	return v->locs->loc;
1728    }
1729  return x;
1730}
1731
1732/*  Return the address of the (N_REFS + 1)th memory reference to ADDR
1733    where SIZE is the size in bytes of the memory reference.  If ADDR
1734    is not modified by the memory reference then ADDR is returned.  */
1735
1736static rtx
1737addr_side_effect_eval (rtx addr, int size, int n_refs)
1738{
1739  int offset = 0;
1740
1741  switch (GET_CODE (addr))
1742    {
1743    case PRE_INC:
1744      offset = (n_refs + 1) * size;
1745      break;
1746    case PRE_DEC:
1747      offset = -(n_refs + 1) * size;
1748      break;
1749    case POST_INC:
1750      offset = n_refs * size;
1751      break;
1752    case POST_DEC:
1753      offset = -n_refs * size;
1754      break;
1755
1756    default:
1757      return addr;
1758    }
1759
1760  if (offset)
1761    addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0),
1762			 GEN_INT (offset));
1763  else
1764    addr = XEXP (addr, 0);
1765  addr = canon_rtx (addr);
1766
1767  return addr;
1768}
1769
1770/* Return one if X and Y (memory addresses) reference the
1771   same location in memory or if the references overlap.
1772   Return zero if they do not overlap, else return
1773   minus one in which case they still might reference the same location.
1774
1775   C is an offset accumulator.  When
1776   C is nonzero, we are testing aliases between X and Y + C.
1777   XSIZE is the size in bytes of the X reference,
1778   similarly YSIZE is the size in bytes for Y.
1779   Expect that canon_rtx has been already called for X and Y.
1780
1781   If XSIZE or YSIZE is zero, we do not know the amount of memory being
1782   referenced (the reference was BLKmode), so make the most pessimistic
1783   assumptions.
1784
1785   If XSIZE or YSIZE is negative, we may access memory outside the object
1786   being referenced as a side effect.  This can happen when using AND to
1787   align memory references, as is done on the Alpha.
1788
1789   Nice to notice that varying addresses cannot conflict with fp if no
1790   local variables had their addresses taken, but that's too hard now.
1791
1792   ???  Contrary to the tree alias oracle this does not return
1793   one for X + non-constant and Y + non-constant when X and Y are equal.
1794   If that is fixed the TBAA hack for union type-punning can be removed.  */
1795
1796static int
1797memrefs_conflict_p (int xsize, rtx x, int ysize, rtx y, HOST_WIDE_INT c)
1798{
1799  if (GET_CODE (x) == VALUE)
1800    x = get_addr (x);
1801  if (GET_CODE (y) == VALUE)
1802    y = get_addr (y);
1803  if (GET_CODE (x) == HIGH)
1804    x = XEXP (x, 0);
1805  else if (GET_CODE (x) == LO_SUM)
1806    x = XEXP (x, 1);
1807  else
1808    x = addr_side_effect_eval (x, xsize, 0);
1809  if (GET_CODE (y) == HIGH)
1810    y = XEXP (y, 0);
1811  else if (GET_CODE (y) == LO_SUM)
1812    y = XEXP (y, 1);
1813  else
1814    y = addr_side_effect_eval (y, ysize, 0);
1815
1816  if (rtx_equal_for_memref_p (x, y))
1817    {
1818      if (xsize <= 0 || ysize <= 0)
1819	return 1;
1820      if (c >= 0 && xsize > c)
1821	return 1;
1822      if (c < 0 && ysize+c > 0)
1823	return 1;
1824      return 0;
1825    }
1826
1827  /* This code used to check for conflicts involving stack references and
1828     globals but the base address alias code now handles these cases.  */
1829
1830  if (GET_CODE (x) == PLUS)
1831    {
1832      /* The fact that X is canonicalized means that this
1833	 PLUS rtx is canonicalized.  */
1834      rtx x0 = XEXP (x, 0);
1835      rtx x1 = XEXP (x, 1);
1836
1837      if (GET_CODE (y) == PLUS)
1838	{
1839	  /* The fact that Y is canonicalized means that this
1840	     PLUS rtx is canonicalized.  */
1841	  rtx y0 = XEXP (y, 0);
1842	  rtx y1 = XEXP (y, 1);
1843
1844	  if (rtx_equal_for_memref_p (x1, y1))
1845	    return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1846	  if (rtx_equal_for_memref_p (x0, y0))
1847	    return memrefs_conflict_p (xsize, x1, ysize, y1, c);
1848	  if (CONST_INT_P (x1))
1849	    {
1850	      if (CONST_INT_P (y1))
1851		return memrefs_conflict_p (xsize, x0, ysize, y0,
1852					   c - INTVAL (x1) + INTVAL (y1));
1853	      else
1854		return memrefs_conflict_p (xsize, x0, ysize, y,
1855					   c - INTVAL (x1));
1856	    }
1857	  else if (CONST_INT_P (y1))
1858	    return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1859
1860	  return -1;
1861	}
1862      else if (CONST_INT_P (x1))
1863	return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
1864    }
1865  else if (GET_CODE (y) == PLUS)
1866    {
1867      /* The fact that Y is canonicalized means that this
1868	 PLUS rtx is canonicalized.  */
1869      rtx y0 = XEXP (y, 0);
1870      rtx y1 = XEXP (y, 1);
1871
1872      if (CONST_INT_P (y1))
1873	return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1874      else
1875	return -1;
1876    }
1877
1878  if (GET_CODE (x) == GET_CODE (y))
1879    switch (GET_CODE (x))
1880      {
1881      case MULT:
1882	{
1883	  /* Handle cases where we expect the second operands to be the
1884	     same, and check only whether the first operand would conflict
1885	     or not.  */
1886	  rtx x0, y0;
1887	  rtx x1 = canon_rtx (XEXP (x, 1));
1888	  rtx y1 = canon_rtx (XEXP (y, 1));
1889	  if (! rtx_equal_for_memref_p (x1, y1))
1890	    return -1;
1891	  x0 = canon_rtx (XEXP (x, 0));
1892	  y0 = canon_rtx (XEXP (y, 0));
1893	  if (rtx_equal_for_memref_p (x0, y0))
1894	    return (xsize == 0 || ysize == 0
1895		    || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1896
1897	  /* Can't properly adjust our sizes.  */
1898	  if (!CONST_INT_P (x1))
1899	    return -1;
1900	  xsize /= INTVAL (x1);
1901	  ysize /= INTVAL (x1);
1902	  c /= INTVAL (x1);
1903	  return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1904	}
1905
1906      default:
1907	break;
1908      }
1909
1910  /* Treat an access through an AND (e.g. a subword access on an Alpha)
1911     as an access with indeterminate size.  Assume that references
1912     besides AND are aligned, so if the size of the other reference is
1913     at least as large as the alignment, assume no other overlap.  */
1914  if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1)))
1915    {
1916      if (GET_CODE (y) == AND || ysize < -INTVAL (XEXP (x, 1)))
1917	xsize = -1;
1918      return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)), ysize, y, c);
1919    }
1920  if (GET_CODE (y) == AND && CONST_INT_P (XEXP (y, 1)))
1921    {
1922      /* ??? If we are indexing far enough into the array/structure, we
1923	 may yet be able to determine that we can not overlap.  But we
1924	 also need to that we are far enough from the end not to overlap
1925	 a following reference, so we do nothing with that for now.  */
1926      if (GET_CODE (x) == AND || xsize < -INTVAL (XEXP (y, 1)))
1927	ysize = -1;
1928      return memrefs_conflict_p (xsize, x, ysize, canon_rtx (XEXP (y, 0)), c);
1929    }
1930
1931  if (CONSTANT_P (x))
1932    {
1933      if (CONST_INT_P (x) && CONST_INT_P (y))
1934	{
1935	  c += (INTVAL (y) - INTVAL (x));
1936	  return (xsize <= 0 || ysize <= 0
1937		  || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1938	}
1939
1940      if (GET_CODE (x) == CONST)
1941	{
1942	  if (GET_CODE (y) == CONST)
1943	    return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1944				       ysize, canon_rtx (XEXP (y, 0)), c);
1945	  else
1946	    return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1947				       ysize, y, c);
1948	}
1949      if (GET_CODE (y) == CONST)
1950	return memrefs_conflict_p (xsize, x, ysize,
1951				   canon_rtx (XEXP (y, 0)), c);
1952
1953      if (CONSTANT_P (y))
1954	return (xsize <= 0 || ysize <= 0
1955		|| (rtx_equal_for_memref_p (x, y)
1956		    && ((c >= 0 && xsize > c) || (c < 0 && ysize+c > 0))));
1957
1958      return -1;
1959    }
1960
1961  return -1;
1962}
1963
1964/* Functions to compute memory dependencies.
1965
1966   Since we process the insns in execution order, we can build tables
1967   to keep track of what registers are fixed (and not aliased), what registers
1968   are varying in known ways, and what registers are varying in unknown
1969   ways.
1970
1971   If both memory references are volatile, then there must always be a
1972   dependence between the two references, since their order can not be
1973   changed.  A volatile and non-volatile reference can be interchanged
1974   though.
1975
1976   A MEM_IN_STRUCT reference at a non-AND varying address can never
1977   conflict with a non-MEM_IN_STRUCT reference at a fixed address.  We
1978   also must allow AND addresses, because they may generate accesses
1979   outside the object being referenced.  This is used to generate
1980   aligned addresses from unaligned addresses, for instance, the alpha
1981   storeqi_unaligned pattern.  */
1982
1983/* Read dependence: X is read after read in MEM takes place.  There can
1984   only be a dependence here if both reads are volatile.  */
1985
1986int
1987read_dependence (const_rtx mem, const_rtx x)
1988{
1989  return MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem);
1990}
1991
1992/* Returns MEM1 if and only if MEM1 is a scalar at a fixed address and
1993   MEM2 is a reference to a structure at a varying address, or returns
1994   MEM2 if vice versa.  Otherwise, returns NULL_RTX.  If a non-NULL
1995   value is returned MEM1 and MEM2 can never alias.  VARIES_P is used
1996   to decide whether or not an address may vary; it should return
1997   nonzero whenever variation is possible.
1998   MEM1_ADDR and MEM2_ADDR are the addresses of MEM1 and MEM2.  */
1999
2000static const_rtx
2001fixed_scalar_and_varying_struct_p (const_rtx mem1, const_rtx mem2, rtx mem1_addr,
2002				   rtx mem2_addr,
2003				   bool (*varies_p) (const_rtx, bool))
2004{
2005  if (! flag_strict_aliasing)
2006    return NULL_RTX;
2007
2008  if (MEM_ALIAS_SET (mem2)
2009      && MEM_SCALAR_P (mem1) && MEM_IN_STRUCT_P (mem2)
2010      && !varies_p (mem1_addr, 1) && varies_p (mem2_addr, 1))
2011    /* MEM1 is a scalar at a fixed address; MEM2 is a struct at a
2012       varying address.  */
2013    return mem1;
2014
2015  if (MEM_ALIAS_SET (mem1)
2016      && MEM_IN_STRUCT_P (mem1) && MEM_SCALAR_P (mem2)
2017      && varies_p (mem1_addr, 1) && !varies_p (mem2_addr, 1))
2018    /* MEM2 is a scalar at a fixed address; MEM1 is a struct at a
2019       varying address.  */
2020    return mem2;
2021
2022  return NULL_RTX;
2023}
2024
2025/* Returns nonzero if something about the mode or address format MEM1
2026   indicates that it might well alias *anything*.  */
2027
2028static int
2029aliases_everything_p (const_rtx mem)
2030{
2031  if (GET_CODE (XEXP (mem, 0)) == AND)
2032    /* If the address is an AND, it's very hard to know at what it is
2033       actually pointing.  */
2034    return 1;
2035
2036  return 0;
2037}
2038
2039/* Return true if we can determine that the fields referenced cannot
2040   overlap for any pair of objects.  */
2041
2042static bool
2043nonoverlapping_component_refs_p (const_tree x, const_tree y)
2044{
2045  const_tree fieldx, fieldy, typex, typey, orig_y;
2046
2047  if (!flag_strict_aliasing)
2048    return false;
2049
2050  do
2051    {
2052      /* The comparison has to be done at a common type, since we don't
2053	 know how the inheritance hierarchy works.  */
2054      orig_y = y;
2055      do
2056	{
2057	  fieldx = TREE_OPERAND (x, 1);
2058	  typex = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldx));
2059
2060	  y = orig_y;
2061	  do
2062	    {
2063	      fieldy = TREE_OPERAND (y, 1);
2064	      typey = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldy));
2065
2066	      if (typex == typey)
2067		goto found;
2068
2069	      y = TREE_OPERAND (y, 0);
2070	    }
2071	  while (y && TREE_CODE (y) == COMPONENT_REF);
2072
2073	  x = TREE_OPERAND (x, 0);
2074	}
2075      while (x && TREE_CODE (x) == COMPONENT_REF);
2076      /* Never found a common type.  */
2077      return false;
2078
2079    found:
2080      /* If we're left with accessing different fields of a structure,
2081	 then no overlap.  */
2082      if (TREE_CODE (typex) == RECORD_TYPE
2083	  && fieldx != fieldy)
2084	return true;
2085
2086      /* The comparison on the current field failed.  If we're accessing
2087	 a very nested structure, look at the next outer level.  */
2088      x = TREE_OPERAND (x, 0);
2089      y = TREE_OPERAND (y, 0);
2090    }
2091  while (x && y
2092	 && TREE_CODE (x) == COMPONENT_REF
2093	 && TREE_CODE (y) == COMPONENT_REF);
2094
2095  return false;
2096}
2097
2098/* Look at the bottom of the COMPONENT_REF list for a DECL, and return it.  */
2099
2100static tree
2101decl_for_component_ref (tree x)
2102{
2103  do
2104    {
2105      x = TREE_OPERAND (x, 0);
2106    }
2107  while (x && TREE_CODE (x) == COMPONENT_REF);
2108
2109  return x && DECL_P (x) ? x : NULL_TREE;
2110}
2111
2112/* Walk up the COMPONENT_REF list and adjust OFFSET to compensate for the
2113   offset of the field reference.  */
2114
2115static rtx
2116adjust_offset_for_component_ref (tree x, rtx offset)
2117{
2118  HOST_WIDE_INT ioffset;
2119
2120  if (! offset)
2121    return NULL_RTX;
2122
2123  ioffset = INTVAL (offset);
2124  do
2125    {
2126      tree offset = component_ref_field_offset (x);
2127      tree field = TREE_OPERAND (x, 1);
2128
2129      if (! host_integerp (offset, 1))
2130	return NULL_RTX;
2131      ioffset += (tree_low_cst (offset, 1)
2132		  + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2133		     / BITS_PER_UNIT));
2134
2135      x = TREE_OPERAND (x, 0);
2136    }
2137  while (x && TREE_CODE (x) == COMPONENT_REF);
2138
2139  return GEN_INT (ioffset);
2140}
2141
2142/* Return nonzero if we can determine the exprs corresponding to memrefs
2143   X and Y and they do not overlap.  */
2144
2145int
2146nonoverlapping_memrefs_p (const_rtx x, const_rtx y)
2147{
2148  tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
2149  rtx rtlx, rtly;
2150  rtx basex, basey;
2151  rtx moffsetx, moffsety;
2152  HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey, tem;
2153
2154  /* Unless both have exprs, we can't tell anything.  */
2155  if (exprx == 0 || expry == 0)
2156    return 0;
2157
2158  /* For spill-slot accesses make sure we have valid offsets.  */
2159  if ((exprx == get_spill_slot_decl (false)
2160       && ! MEM_OFFSET (x))
2161      || (expry == get_spill_slot_decl (false)
2162	  && ! MEM_OFFSET (y)))
2163    return 0;
2164
2165  /* If both are field references, we may be able to determine something.  */
2166  if (TREE_CODE (exprx) == COMPONENT_REF
2167      && TREE_CODE (expry) == COMPONENT_REF
2168      && nonoverlapping_component_refs_p (exprx, expry))
2169    return 1;
2170
2171
2172  /* If the field reference test failed, look at the DECLs involved.  */
2173  moffsetx = MEM_OFFSET (x);
2174  if (TREE_CODE (exprx) == COMPONENT_REF)
2175    {
2176      if (TREE_CODE (expry) == VAR_DECL
2177	  && POINTER_TYPE_P (TREE_TYPE (expry)))
2178	{
2179	 tree field = TREE_OPERAND (exprx, 1);
2180	 tree fieldcontext = DECL_FIELD_CONTEXT (field);
2181	 if (ipa_type_escape_field_does_not_clobber_p (fieldcontext,
2182						       TREE_TYPE (field)))
2183	   return 1;
2184	}
2185      {
2186	tree t = decl_for_component_ref (exprx);
2187	if (! t)
2188	  return 0;
2189	moffsetx = adjust_offset_for_component_ref (exprx, moffsetx);
2190	exprx = t;
2191      }
2192    }
2193  else if (INDIRECT_REF_P (exprx))
2194    {
2195      exprx = TREE_OPERAND (exprx, 0);
2196      if (flag_argument_noalias < 2
2197	  || TREE_CODE (exprx) != PARM_DECL)
2198	return 0;
2199    }
2200
2201  moffsety = MEM_OFFSET (y);
2202  if (TREE_CODE (expry) == COMPONENT_REF)
2203    {
2204      if (TREE_CODE (exprx) == VAR_DECL
2205	  && POINTER_TYPE_P (TREE_TYPE (exprx)))
2206	{
2207	 tree field = TREE_OPERAND (expry, 1);
2208	 tree fieldcontext = DECL_FIELD_CONTEXT (field);
2209	 if (ipa_type_escape_field_does_not_clobber_p (fieldcontext,
2210						       TREE_TYPE (field)))
2211	   return 1;
2212	}
2213      {
2214	tree t = decl_for_component_ref (expry);
2215	if (! t)
2216	  return 0;
2217	moffsety = adjust_offset_for_component_ref (expry, moffsety);
2218	expry = t;
2219      }
2220    }
2221  else if (INDIRECT_REF_P (expry))
2222    {
2223      expry = TREE_OPERAND (expry, 0);
2224      if (flag_argument_noalias < 2
2225	  || TREE_CODE (expry) != PARM_DECL)
2226	return 0;
2227    }
2228
2229  if (! DECL_P (exprx) || ! DECL_P (expry))
2230    return 0;
2231
2232  /* With invalid code we can end up storing into the constant pool.
2233     Bail out to avoid ICEing when creating RTL for this.
2234     See gfortran.dg/lto/20091028-2_0.f90.  */
2235  if (TREE_CODE (exprx) == CONST_DECL
2236      || TREE_CODE (expry) == CONST_DECL)
2237    return 1;
2238
2239  rtlx = DECL_RTL (exprx);
2240  rtly = DECL_RTL (expry);
2241
2242  /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2243     can't overlap unless they are the same because we never reuse that part
2244     of the stack frame used for locals for spilled pseudos.  */
2245  if ((!MEM_P (rtlx) || !MEM_P (rtly))
2246      && ! rtx_equal_p (rtlx, rtly))
2247    return 1;
2248
2249  /* If we have MEMs refering to different address spaces (which can
2250     potentially overlap), we cannot easily tell from the addresses
2251     whether the references overlap.  */
2252  if (MEM_P (rtlx) && MEM_P (rtly)
2253      && MEM_ADDR_SPACE (rtlx) != MEM_ADDR_SPACE (rtly))
2254    return 0;
2255
2256  /* Get the base and offsets of both decls.  If either is a register, we
2257     know both are and are the same, so use that as the base.  The only
2258     we can avoid overlap is if we can deduce that they are nonoverlapping
2259     pieces of that decl, which is very rare.  */
2260  basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
2261  if (GET_CODE (basex) == PLUS && CONST_INT_P (XEXP (basex, 1)))
2262    offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
2263
2264  basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
2265  if (GET_CODE (basey) == PLUS && CONST_INT_P (XEXP (basey, 1)))
2266    offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
2267
2268  /* If the bases are different, we know they do not overlap if both
2269     are constants or if one is a constant and the other a pointer into the
2270     stack frame.  Otherwise a different base means we can't tell if they
2271     overlap or not.  */
2272  if (! rtx_equal_p (basex, basey))
2273    return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2274	    || (CONSTANT_P (basex) && REG_P (basey)
2275		&& REGNO_PTR_FRAME_P (REGNO (basey)))
2276	    || (CONSTANT_P (basey) && REG_P (basex)
2277		&& REGNO_PTR_FRAME_P (REGNO (basex))));
2278
2279  sizex = (!MEM_P (rtlx) ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
2280	   : MEM_SIZE (rtlx) ? INTVAL (MEM_SIZE (rtlx))
2281	   : -1);
2282  sizey = (!MEM_P (rtly) ? (int) GET_MODE_SIZE (GET_MODE (rtly))
2283	   : MEM_SIZE (rtly) ? INTVAL (MEM_SIZE (rtly)) :
2284	   -1);
2285
2286  /* If we have an offset for either memref, it can update the values computed
2287     above.  */
2288  if (moffsetx)
2289    offsetx += INTVAL (moffsetx), sizex -= INTVAL (moffsetx);
2290  if (moffsety)
2291    offsety += INTVAL (moffsety), sizey -= INTVAL (moffsety);
2292
2293  /* If a memref has both a size and an offset, we can use the smaller size.
2294     We can't do this if the offset isn't known because we must view this
2295     memref as being anywhere inside the DECL's MEM.  */
2296  if (MEM_SIZE (x) && moffsetx)
2297    sizex = INTVAL (MEM_SIZE (x));
2298  if (MEM_SIZE (y) && moffsety)
2299    sizey = INTVAL (MEM_SIZE (y));
2300
2301  /* Put the values of the memref with the lower offset in X's values.  */
2302  if (offsetx > offsety)
2303    {
2304      tem = offsetx, offsetx = offsety, offsety = tem;
2305      tem = sizex, sizex = sizey, sizey = tem;
2306    }
2307
2308  /* If we don't know the size of the lower-offset value, we can't tell
2309     if they conflict.  Otherwise, we do the test.  */
2310  return sizex >= 0 && offsety >= offsetx + sizex;
2311}
2312
2313/* True dependence: X is read after store in MEM takes place.  */
2314
2315int
2316true_dependence (const_rtx mem, enum machine_mode mem_mode, const_rtx x,
2317		 bool (*varies) (const_rtx, bool))
2318{
2319  rtx x_addr, mem_addr;
2320  rtx base;
2321  int ret;
2322
2323  if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2324    return 1;
2325
2326  /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2327     This is used in epilogue deallocation functions, and in cselib.  */
2328  if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2329    return 1;
2330  if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2331    return 1;
2332  if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2333      || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2334    return 1;
2335
2336  /* Read-only memory is by definition never modified, and therefore can't
2337     conflict with anything.  We don't expect to find read-only set on MEM,
2338     but stupid user tricks can produce them, so don't die.  */
2339  if (MEM_READONLY_P (x))
2340    return 0;
2341
2342  /* If we have MEMs refering to different address spaces (which can
2343     potentially overlap), we cannot easily tell from the addresses
2344     whether the references overlap.  */
2345  if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2346    return 1;
2347
2348  if (mem_mode == VOIDmode)
2349    mem_mode = GET_MODE (mem);
2350
2351  x_addr = XEXP (x, 0);
2352  mem_addr = XEXP (mem, 0);
2353  if (!((GET_CODE (x_addr) == VALUE
2354	 && GET_CODE (mem_addr) != VALUE
2355	 && reg_mentioned_p (x_addr, mem_addr))
2356	|| (GET_CODE (x_addr) != VALUE
2357	    && GET_CODE (mem_addr) == VALUE
2358	    && reg_mentioned_p (mem_addr, x_addr))))
2359    {
2360      x_addr = get_addr (x_addr);
2361      mem_addr = get_addr (mem_addr);
2362    }
2363
2364  base = find_base_term (x_addr);
2365  if (base && (GET_CODE (base) == LABEL_REF
2366	       || (GET_CODE (base) == SYMBOL_REF
2367		   && CONSTANT_POOL_ADDRESS_P (base))))
2368    return 0;
2369
2370  if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2371    return 0;
2372
2373  x_addr = canon_rtx (x_addr);
2374  mem_addr = canon_rtx (mem_addr);
2375
2376  if ((ret = memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2377				 SIZE_FOR_MODE (x), x_addr, 0)) != -1)
2378    return ret;
2379
2380  if (DIFFERENT_ALIAS_SETS_P (x, mem))
2381    return 0;
2382
2383  if (nonoverlapping_memrefs_p (mem, x))
2384    return 0;
2385
2386  if (aliases_everything_p (x))
2387    return 1;
2388
2389  /* We cannot use aliases_everything_p to test MEM, since we must look
2390     at MEM_MODE, rather than GET_MODE (MEM).  */
2391  if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
2392    return 1;
2393
2394  /* In true_dependence we also allow BLKmode to alias anything.  Why
2395     don't we do this in anti_dependence and output_dependence?  */
2396  if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2397    return 1;
2398
2399  if (fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr, varies))
2400    return 0;
2401
2402  return rtx_refs_may_alias_p (x, mem, true);
2403}
2404
2405/* Canonical true dependence: X is read after store in MEM takes place.
2406   Variant of true_dependence which assumes MEM has already been
2407   canonicalized (hence we no longer do that here).
2408   The mem_addr argument has been added, since true_dependence computed
2409   this value prior to canonicalizing.
2410   If x_addr is non-NULL, it is used in preference of XEXP (x, 0).  */
2411
2412int
2413canon_true_dependence (const_rtx mem, enum machine_mode mem_mode, rtx mem_addr,
2414		       const_rtx x, rtx x_addr, bool (*varies) (const_rtx, bool))
2415{
2416  int ret;
2417
2418  if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2419    return 1;
2420
2421  /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2422     This is used in epilogue deallocation functions.  */
2423  if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2424    return 1;
2425  if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2426    return 1;
2427  if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2428      || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2429    return 1;
2430
2431  /* Read-only memory is by definition never modified, and therefore can't
2432     conflict with anything.  We don't expect to find read-only set on MEM,
2433     but stupid user tricks can produce them, so don't die.  */
2434  if (MEM_READONLY_P (x))
2435    return 0;
2436
2437  /* If we have MEMs refering to different address spaces (which can
2438     potentially overlap), we cannot easily tell from the addresses
2439     whether the references overlap.  */
2440  if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2441    return 1;
2442
2443  if (! x_addr)
2444    {
2445      x_addr = XEXP (x, 0);
2446      if (!((GET_CODE (x_addr) == VALUE
2447	     && GET_CODE (mem_addr) != VALUE
2448	     && reg_mentioned_p (x_addr, mem_addr))
2449	    || (GET_CODE (x_addr) != VALUE
2450		&& GET_CODE (mem_addr) == VALUE
2451		&& reg_mentioned_p (mem_addr, x_addr))))
2452	x_addr = get_addr (x_addr);
2453    }
2454
2455  if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2456    return 0;
2457
2458  x_addr = canon_rtx (x_addr);
2459  if ((ret = memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2460				 SIZE_FOR_MODE (x), x_addr, 0)) != -1)
2461    return ret;
2462
2463  if (DIFFERENT_ALIAS_SETS_P (x, mem))
2464    return 0;
2465
2466  if (nonoverlapping_memrefs_p (x, mem))
2467    return 0;
2468
2469  if (aliases_everything_p (x))
2470    return 1;
2471
2472  /* We cannot use aliases_everything_p to test MEM, since we must look
2473     at MEM_MODE, rather than GET_MODE (MEM).  */
2474  if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
2475    return 1;
2476
2477  /* In true_dependence we also allow BLKmode to alias anything.  Why
2478     don't we do this in anti_dependence and output_dependence?  */
2479  if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2480    return 1;
2481
2482  if (fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr, varies))
2483    return 0;
2484
2485  return rtx_refs_may_alias_p (x, mem, true);
2486}
2487
2488/* Returns nonzero if a write to X might alias a previous read from
2489   (or, if WRITEP is nonzero, a write to) MEM.  */
2490
2491static int
2492write_dependence_p (const_rtx mem, const_rtx x, int writep)
2493{
2494  rtx x_addr, mem_addr;
2495  const_rtx fixed_scalar;
2496  rtx base;
2497  int ret;
2498
2499  if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2500    return 1;
2501
2502  /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2503     This is used in epilogue deallocation functions.  */
2504  if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2505    return 1;
2506  if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2507    return 1;
2508  if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2509      || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2510    return 1;
2511
2512  /* A read from read-only memory can't conflict with read-write memory.  */
2513  if (!writep && MEM_READONLY_P (mem))
2514    return 0;
2515
2516  /* If we have MEMs refering to different address spaces (which can
2517     potentially overlap), we cannot easily tell from the addresses
2518     whether the references overlap.  */
2519  if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2520    return 1;
2521
2522  x_addr = XEXP (x, 0);
2523  mem_addr = XEXP (mem, 0);
2524  if (!((GET_CODE (x_addr) == VALUE
2525	 && GET_CODE (mem_addr) != VALUE
2526	 && reg_mentioned_p (x_addr, mem_addr))
2527	|| (GET_CODE (x_addr) != VALUE
2528	    && GET_CODE (mem_addr) == VALUE
2529	    && reg_mentioned_p (mem_addr, x_addr))))
2530    {
2531      x_addr = get_addr (x_addr);
2532      mem_addr = get_addr (mem_addr);
2533    }
2534
2535  if (! writep)
2536    {
2537      base = find_base_term (mem_addr);
2538      if (base && (GET_CODE (base) == LABEL_REF
2539		   || (GET_CODE (base) == SYMBOL_REF
2540		       && CONSTANT_POOL_ADDRESS_P (base))))
2541	return 0;
2542    }
2543
2544  if (! base_alias_check (x_addr, mem_addr, GET_MODE (x),
2545			  GET_MODE (mem)))
2546    return 0;
2547
2548  x_addr = canon_rtx (x_addr);
2549  mem_addr = canon_rtx (mem_addr);
2550
2551  if ((ret = memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
2552				 SIZE_FOR_MODE (x), x_addr, 0)) != -1)
2553    return ret;
2554
2555  if (nonoverlapping_memrefs_p (x, mem))
2556    return 0;
2557
2558  fixed_scalar
2559    = fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2560					 rtx_addr_varies_p);
2561
2562  if ((fixed_scalar == mem && !aliases_everything_p (x))
2563      || (fixed_scalar == x && !aliases_everything_p (mem)))
2564    return 0;
2565
2566  return rtx_refs_may_alias_p (x, mem, false);
2567}
2568
2569/* Anti dependence: X is written after read in MEM takes place.  */
2570
2571int
2572anti_dependence (const_rtx mem, const_rtx x)
2573{
2574  return write_dependence_p (mem, x, /*writep=*/0);
2575}
2576
2577/* Output dependence: X is written after store in MEM takes place.  */
2578
2579int
2580output_dependence (const_rtx mem, const_rtx x)
2581{
2582  return write_dependence_p (mem, x, /*writep=*/1);
2583}
2584
2585
2586void
2587init_alias_target (void)
2588{
2589  int i;
2590
2591  memset (static_reg_base_value, 0, sizeof static_reg_base_value);
2592
2593  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2594    /* Check whether this register can hold an incoming pointer
2595       argument.  FUNCTION_ARG_REGNO_P tests outgoing register
2596       numbers, so translate if necessary due to register windows.  */
2597    if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
2598	&& HARD_REGNO_MODE_OK (i, Pmode))
2599      static_reg_base_value[i]
2600	= gen_rtx_ADDRESS (VOIDmode, gen_rtx_REG (Pmode, i));
2601
2602  static_reg_base_value[STACK_POINTER_REGNUM]
2603    = gen_rtx_ADDRESS (Pmode, stack_pointer_rtx);
2604  static_reg_base_value[ARG_POINTER_REGNUM]
2605    = gen_rtx_ADDRESS (Pmode, arg_pointer_rtx);
2606  static_reg_base_value[FRAME_POINTER_REGNUM]
2607    = gen_rtx_ADDRESS (Pmode, frame_pointer_rtx);
2608#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2609  static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
2610    = gen_rtx_ADDRESS (Pmode, hard_frame_pointer_rtx);
2611#endif
2612}
2613
2614/* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
2615   to be memory reference.  */
2616static bool memory_modified;
2617static void
2618memory_modified_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
2619{
2620  if (MEM_P (x))
2621    {
2622      if (anti_dependence (x, (const_rtx)data) || output_dependence (x, (const_rtx)data))
2623	memory_modified = true;
2624    }
2625}
2626
2627
2628/* Return true when INSN possibly modify memory contents of MEM
2629   (i.e. address can be modified).  */
2630bool
2631memory_modified_in_insn_p (const_rtx mem, const_rtx insn)
2632{
2633  if (!INSN_P (insn))
2634    return false;
2635  memory_modified = false;
2636  note_stores (PATTERN (insn), memory_modified_1, CONST_CAST_RTX(mem));
2637  return memory_modified;
2638}
2639
2640/* Initialize the aliasing machinery.  Initialize the REG_KNOWN_VALUE
2641   array.  */
2642
2643void
2644init_alias_analysis (void)
2645{
2646  unsigned int maxreg = max_reg_num ();
2647  int changed, pass;
2648  int i;
2649  unsigned int ui;
2650  rtx insn;
2651
2652  timevar_push (TV_ALIAS_ANALYSIS);
2653
2654  reg_known_value_size = maxreg - FIRST_PSEUDO_REGISTER;
2655  reg_known_value = GGC_CNEWVEC (rtx, reg_known_value_size);
2656  reg_known_equiv_p = XCNEWVEC (bool, reg_known_value_size);
2657
2658  /* If we have memory allocated from the previous run, use it.  */
2659  if (old_reg_base_value)
2660    reg_base_value = old_reg_base_value;
2661
2662  if (reg_base_value)
2663    VEC_truncate (rtx, reg_base_value, 0);
2664
2665  VEC_safe_grow_cleared (rtx, gc, reg_base_value, maxreg);
2666
2667  new_reg_base_value = XNEWVEC (rtx, maxreg);
2668  reg_seen = XNEWVEC (char, maxreg);
2669
2670  /* The basic idea is that each pass through this loop will use the
2671     "constant" information from the previous pass to propagate alias
2672     information through another level of assignments.
2673
2674     This could get expensive if the assignment chains are long.  Maybe
2675     we should throttle the number of iterations, possibly based on
2676     the optimization level or flag_expensive_optimizations.
2677
2678     We could propagate more information in the first pass by making use
2679     of DF_REG_DEF_COUNT to determine immediately that the alias information
2680     for a pseudo is "constant".
2681
2682     A program with an uninitialized variable can cause an infinite loop
2683     here.  Instead of doing a full dataflow analysis to detect such problems
2684     we just cap the number of iterations for the loop.
2685
2686     The state of the arrays for the set chain in question does not matter
2687     since the program has undefined behavior.  */
2688
2689  pass = 0;
2690  do
2691    {
2692      /* Assume nothing will change this iteration of the loop.  */
2693      changed = 0;
2694
2695      /* We want to assign the same IDs each iteration of this loop, so
2696	 start counting from zero each iteration of the loop.  */
2697      unique_id = 0;
2698
2699      /* We're at the start of the function each iteration through the
2700	 loop, so we're copying arguments.  */
2701      copying_arguments = true;
2702
2703      /* Wipe the potential alias information clean for this pass.  */
2704      memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
2705
2706      /* Wipe the reg_seen array clean.  */
2707      memset (reg_seen, 0, maxreg);
2708
2709      /* Mark all hard registers which may contain an address.
2710	 The stack, frame and argument pointers may contain an address.
2711	 An argument register which can hold a Pmode value may contain
2712	 an address even if it is not in BASE_REGS.
2713
2714	 The address expression is VOIDmode for an argument and
2715	 Pmode for other registers.  */
2716
2717      memcpy (new_reg_base_value, static_reg_base_value,
2718	      FIRST_PSEUDO_REGISTER * sizeof (rtx));
2719
2720      /* Walk the insns adding values to the new_reg_base_value array.  */
2721      for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2722	{
2723	  if (INSN_P (insn))
2724	    {
2725	      rtx note, set;
2726
2727#if defined (HAVE_prologue) || defined (HAVE_epilogue)
2728	      /* The prologue/epilogue insns are not threaded onto the
2729		 insn chain until after reload has completed.  Thus,
2730		 there is no sense wasting time checking if INSN is in
2731		 the prologue/epilogue until after reload has completed.  */
2732	      if (reload_completed
2733		  && prologue_epilogue_contains (insn))
2734		continue;
2735#endif
2736
2737	      /* If this insn has a noalias note, process it,  Otherwise,
2738		 scan for sets.  A simple set will have no side effects
2739		 which could change the base value of any other register.  */
2740
2741	      if (GET_CODE (PATTERN (insn)) == SET
2742		  && REG_NOTES (insn) != 0
2743		  && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
2744		record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
2745	      else
2746		note_stores (PATTERN (insn), record_set, NULL);
2747
2748	      set = single_set (insn);
2749
2750	      if (set != 0
2751		  && REG_P (SET_DEST (set))
2752		  && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
2753		{
2754		  unsigned int regno = REGNO (SET_DEST (set));
2755		  rtx src = SET_SRC (set);
2756		  rtx t;
2757
2758		  note = find_reg_equal_equiv_note (insn);
2759		  if (note && REG_NOTE_KIND (note) == REG_EQUAL
2760		      && DF_REG_DEF_COUNT (regno) != 1)
2761		    note = NULL_RTX;
2762
2763		  if (note != NULL_RTX
2764		      && GET_CODE (XEXP (note, 0)) != EXPR_LIST
2765		      && ! rtx_varies_p (XEXP (note, 0), 1)
2766		      && ! reg_overlap_mentioned_p (SET_DEST (set),
2767						    XEXP (note, 0)))
2768		    {
2769		      set_reg_known_value (regno, XEXP (note, 0));
2770		      set_reg_known_equiv_p (regno,
2771			REG_NOTE_KIND (note) == REG_EQUIV);
2772		    }
2773		  else if (DF_REG_DEF_COUNT (regno) == 1
2774			   && GET_CODE (src) == PLUS
2775			   && REG_P (XEXP (src, 0))
2776			   && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
2777			   && CONST_INT_P (XEXP (src, 1)))
2778		    {
2779		      t = plus_constant (t, INTVAL (XEXP (src, 1)));
2780		      set_reg_known_value (regno, t);
2781		      set_reg_known_equiv_p (regno, 0);
2782		    }
2783		  else if (DF_REG_DEF_COUNT (regno) == 1
2784			   && ! rtx_varies_p (src, 1))
2785		    {
2786		      set_reg_known_value (regno, src);
2787		      set_reg_known_equiv_p (regno, 0);
2788		    }
2789		}
2790	    }
2791	  else if (NOTE_P (insn)
2792		   && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
2793	    copying_arguments = false;
2794	}
2795
2796      /* Now propagate values from new_reg_base_value to reg_base_value.  */
2797      gcc_assert (maxreg == (unsigned int) max_reg_num ());
2798
2799      for (ui = 0; ui < maxreg; ui++)
2800	{
2801	  if (new_reg_base_value[ui]
2802	      && new_reg_base_value[ui] != VEC_index (rtx, reg_base_value, ui)
2803	      && ! rtx_equal_p (new_reg_base_value[ui],
2804				VEC_index (rtx, reg_base_value, ui)))
2805	    {
2806	      VEC_replace (rtx, reg_base_value, ui, new_reg_base_value[ui]);
2807	      changed = 1;
2808	    }
2809	}
2810    }
2811  while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
2812
2813  /* Fill in the remaining entries.  */
2814  for (i = 0; i < (int)reg_known_value_size; i++)
2815    if (reg_known_value[i] == 0)
2816      reg_known_value[i] = regno_reg_rtx[i + FIRST_PSEUDO_REGISTER];
2817
2818  /* Clean up.  */
2819  free (new_reg_base_value);
2820  new_reg_base_value = 0;
2821  free (reg_seen);
2822  reg_seen = 0;
2823  timevar_pop (TV_ALIAS_ANALYSIS);
2824}
2825
2826void
2827end_alias_analysis (void)
2828{
2829  old_reg_base_value = reg_base_value;
2830  ggc_free (reg_known_value);
2831  reg_known_value = 0;
2832  reg_known_value_size = 0;
2833  free (reg_known_equiv_p);
2834  reg_known_equiv_p = 0;
2835}
2836
2837#include "gt-alias.h"
2838