1// script.cc -- handle linker scripts for gold.
2
3// Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4// Written by Ian Lance Taylor <iant@google.com>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
23#include "gold.h"
24
25#include <cstdio>
26#include <cstdlib>
27#include <cstring>
28#include <fnmatch.h>
29#include <string>
30#include <vector>
31#include "filenames.h"
32
33#include "elfcpp.h"
34#include "demangle.h"
35#include "dirsearch.h"
36#include "options.h"
37#include "fileread.h"
38#include "workqueue.h"
39#include "readsyms.h"
40#include "parameters.h"
41#include "layout.h"
42#include "symtab.h"
43#include "target-select.h"
44#include "script.h"
45#include "script-c.h"
46#include "incremental.h"
47
48namespace gold
49{
50
51// A token read from a script file.  We don't implement keywords here;
52// all keywords are simply represented as a string.
53
54class Token
55{
56 public:
57  // Token classification.
58  enum Classification
59  {
60    // Token is invalid.
61    TOKEN_INVALID,
62    // Token indicates end of input.
63    TOKEN_EOF,
64    // Token is a string of characters.
65    TOKEN_STRING,
66    // Token is a quoted string of characters.
67    TOKEN_QUOTED_STRING,
68    // Token is an operator.
69    TOKEN_OPERATOR,
70    // Token is a number (an integer).
71    TOKEN_INTEGER
72  };
73
74  // We need an empty constructor so that we can put this STL objects.
75  Token()
76    : classification_(TOKEN_INVALID), value_(NULL), value_length_(0),
77      opcode_(0), lineno_(0), charpos_(0)
78  { }
79
80  // A general token with no value.
81  Token(Classification classification, int lineno, int charpos)
82    : classification_(classification), value_(NULL), value_length_(0),
83      opcode_(0), lineno_(lineno), charpos_(charpos)
84  {
85    gold_assert(classification == TOKEN_INVALID
86		|| classification == TOKEN_EOF);
87  }
88
89  // A general token with a value.
90  Token(Classification classification, const char* value, size_t length,
91	int lineno, int charpos)
92    : classification_(classification), value_(value), value_length_(length),
93      opcode_(0), lineno_(lineno), charpos_(charpos)
94  {
95    gold_assert(classification != TOKEN_INVALID
96		&& classification != TOKEN_EOF);
97  }
98
99  // A token representing an operator.
100  Token(int opcode, int lineno, int charpos)
101    : classification_(TOKEN_OPERATOR), value_(NULL), value_length_(0),
102      opcode_(opcode), lineno_(lineno), charpos_(charpos)
103  { }
104
105  // Return whether the token is invalid.
106  bool
107  is_invalid() const
108  { return this->classification_ == TOKEN_INVALID; }
109
110  // Return whether this is an EOF token.
111  bool
112  is_eof() const
113  { return this->classification_ == TOKEN_EOF; }
114
115  // Return the token classification.
116  Classification
117  classification() const
118  { return this->classification_; }
119
120  // Return the line number at which the token starts.
121  int
122  lineno() const
123  { return this->lineno_; }
124
125  // Return the character position at this the token starts.
126  int
127  charpos() const
128  { return this->charpos_; }
129
130  // Get the value of a token.
131
132  const char*
133  string_value(size_t* length) const
134  {
135    gold_assert(this->classification_ == TOKEN_STRING
136		|| this->classification_ == TOKEN_QUOTED_STRING);
137    *length = this->value_length_;
138    return this->value_;
139  }
140
141  int
142  operator_value() const
143  {
144    gold_assert(this->classification_ == TOKEN_OPERATOR);
145    return this->opcode_;
146  }
147
148  uint64_t
149  integer_value() const
150  {
151    gold_assert(this->classification_ == TOKEN_INTEGER);
152    // Null terminate.
153    std::string s(this->value_, this->value_length_);
154    return strtoull(s.c_str(), NULL, 0);
155  }
156
157 private:
158  // The token classification.
159  Classification classification_;
160  // The token value, for TOKEN_STRING or TOKEN_QUOTED_STRING or
161  // TOKEN_INTEGER.
162  const char* value_;
163  // The length of the token value.
164  size_t value_length_;
165  // The token value, for TOKEN_OPERATOR.
166  int opcode_;
167  // The line number where this token started (one based).
168  int lineno_;
169  // The character position within the line where this token started
170  // (one based).
171  int charpos_;
172};
173
174// This class handles lexing a file into a sequence of tokens.
175
176class Lex
177{
178 public:
179  // We unfortunately have to support different lexing modes, because
180  // when reading different parts of a linker script we need to parse
181  // things differently.
182  enum Mode
183  {
184    // Reading an ordinary linker script.
185    LINKER_SCRIPT,
186    // Reading an expression in a linker script.
187    EXPRESSION,
188    // Reading a version script.
189    VERSION_SCRIPT,
190    // Reading a --dynamic-list file.
191    DYNAMIC_LIST
192  };
193
194  Lex(const char* input_string, size_t input_length, int parsing_token)
195    : input_string_(input_string), input_length_(input_length),
196      current_(input_string), mode_(LINKER_SCRIPT),
197      first_token_(parsing_token), token_(),
198      lineno_(1), linestart_(input_string)
199  { }
200
201  // Read a file into a string.
202  static void
203  read_file(Input_file*, std::string*);
204
205  // Return the next token.
206  const Token*
207  next_token();
208
209  // Return the current lexing mode.
210  Lex::Mode
211  mode() const
212  { return this->mode_; }
213
214  // Set the lexing mode.
215  void
216  set_mode(Mode mode)
217  { this->mode_ = mode; }
218
219 private:
220  Lex(const Lex&);
221  Lex& operator=(const Lex&);
222
223  // Make a general token with no value at the current location.
224  Token
225  make_token(Token::Classification c, const char* start) const
226  { return Token(c, this->lineno_, start - this->linestart_ + 1); }
227
228  // Make a general token with a value at the current location.
229  Token
230  make_token(Token::Classification c, const char* v, size_t len,
231	     const char* start)
232    const
233  { return Token(c, v, len, this->lineno_, start - this->linestart_ + 1); }
234
235  // Make an operator token at the current location.
236  Token
237  make_token(int opcode, const char* start) const
238  { return Token(opcode, this->lineno_, start - this->linestart_ + 1); }
239
240  // Make an invalid token at the current location.
241  Token
242  make_invalid_token(const char* start)
243  { return this->make_token(Token::TOKEN_INVALID, start); }
244
245  // Make an EOF token at the current location.
246  Token
247  make_eof_token(const char* start)
248  { return this->make_token(Token::TOKEN_EOF, start); }
249
250  // Return whether C can be the first character in a name.  C2 is the
251  // next character, since we sometimes need that.
252  inline bool
253  can_start_name(char c, char c2);
254
255  // If C can appear in a name which has already started, return a
256  // pointer to a character later in the token or just past
257  // it. Otherwise, return NULL.
258  inline const char*
259  can_continue_name(const char* c);
260
261  // Return whether C, C2, C3 can start a hex number.
262  inline bool
263  can_start_hex(char c, char c2, char c3);
264
265  // If C can appear in a hex number which has already started, return
266  // a pointer to a character later in the token or just past
267  // it. Otherwise, return NULL.
268  inline const char*
269  can_continue_hex(const char* c);
270
271  // Return whether C can start a non-hex number.
272  static inline bool
273  can_start_number(char c);
274
275  // If C can appear in a decimal number which has already started,
276  // return a pointer to a character later in the token or just past
277  // it. Otherwise, return NULL.
278  inline const char*
279  can_continue_number(const char* c)
280  { return Lex::can_start_number(*c) ? c + 1 : NULL; }
281
282  // If C1 C2 C3 form a valid three character operator, return the
283  // opcode.  Otherwise return 0.
284  static inline int
285  three_char_operator(char c1, char c2, char c3);
286
287  // If C1 C2 form a valid two character operator, return the opcode.
288  // Otherwise return 0.
289  static inline int
290  two_char_operator(char c1, char c2);
291
292  // If C1 is a valid one character operator, return the opcode.
293  // Otherwise return 0.
294  static inline int
295  one_char_operator(char c1);
296
297  // Read the next token.
298  Token
299  get_token(const char**);
300
301  // Skip a C style /* */ comment.  Return false if the comment did
302  // not end.
303  bool
304  skip_c_comment(const char**);
305
306  // Skip a line # comment.  Return false if there was no newline.
307  bool
308  skip_line_comment(const char**);
309
310  // Build a token CLASSIFICATION from all characters that match
311  // CAN_CONTINUE_FN.  The token starts at START.  Start matching from
312  // MATCH.  Set *PP to the character following the token.
313  inline Token
314  gather_token(Token::Classification,
315	       const char* (Lex::*can_continue_fn)(const char*),
316	       const char* start, const char* match, const char** pp);
317
318  // Build a token from a quoted string.
319  Token
320  gather_quoted_string(const char** pp);
321
322  // The string we are tokenizing.
323  const char* input_string_;
324  // The length of the string.
325  size_t input_length_;
326  // The current offset into the string.
327  const char* current_;
328  // The current lexing mode.
329  Mode mode_;
330  // The code to use for the first token.  This is set to 0 after it
331  // is used.
332  int first_token_;
333  // The current token.
334  Token token_;
335  // The current line number.
336  int lineno_;
337  // The start of the current line in the string.
338  const char* linestart_;
339};
340
341// Read the whole file into memory.  We don't expect linker scripts to
342// be large, so we just use a std::string as a buffer.  We ignore the
343// data we've already read, so that we read aligned buffers.
344
345void
346Lex::read_file(Input_file* input_file, std::string* contents)
347{
348  off_t filesize = input_file->file().filesize();
349  contents->clear();
350  contents->reserve(filesize);
351
352  off_t off = 0;
353  unsigned char buf[BUFSIZ];
354  while (off < filesize)
355    {
356      off_t get = BUFSIZ;
357      if (get > filesize - off)
358	get = filesize - off;
359      input_file->file().read(off, get, buf);
360      contents->append(reinterpret_cast<char*>(&buf[0]), get);
361      off += get;
362    }
363}
364
365// Return whether C can be the start of a name, if the next character
366// is C2.  A name can being with a letter, underscore, period, or
367// dollar sign.  Because a name can be a file name, we also permit
368// forward slash, backslash, and tilde.  Tilde is the tricky case
369// here; GNU ld also uses it as a bitwise not operator.  It is only
370// recognized as the operator if it is not immediately followed by
371// some character which can appear in a symbol.  That is, when we
372// don't know that we are looking at an expression, "~0" is a file
373// name, and "~ 0" is an expression using bitwise not.  We are
374// compatible.
375
376inline bool
377Lex::can_start_name(char c, char c2)
378{
379  switch (c)
380    {
381    case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
382    case 'G': case 'H': case 'I': case 'J': case 'K': case 'L':
383    case 'M': case 'N': case 'O': case 'Q': case 'P': case 'R':
384    case 'S': case 'T': case 'U': case 'V': case 'W': case 'X':
385    case 'Y': case 'Z':
386    case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
387    case 'g': case 'h': case 'i': case 'j': case 'k': case 'l':
388    case 'm': case 'n': case 'o': case 'q': case 'p': case 'r':
389    case 's': case 't': case 'u': case 'v': case 'w': case 'x':
390    case 'y': case 'z':
391    case '_': case '.': case '$':
392      return true;
393
394    case '/': case '\\':
395      return this->mode_ == LINKER_SCRIPT;
396
397    case '~':
398      return this->mode_ == LINKER_SCRIPT && can_continue_name(&c2);
399
400    case '*': case '[':
401      return (this->mode_ == VERSION_SCRIPT
402              || this->mode_ == DYNAMIC_LIST
403	      || (this->mode_ == LINKER_SCRIPT
404		  && can_continue_name(&c2)));
405
406    default:
407      return false;
408    }
409}
410
411// Return whether C can continue a name which has already started.
412// Subsequent characters in a name are the same as the leading
413// characters, plus digits and "=+-:[],?*".  So in general the linker
414// script language requires spaces around operators, unless we know
415// that we are parsing an expression.
416
417inline const char*
418Lex::can_continue_name(const char* c)
419{
420  switch (*c)
421    {
422    case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
423    case 'G': case 'H': case 'I': case 'J': case 'K': case 'L':
424    case 'M': case 'N': case 'O': case 'Q': case 'P': case 'R':
425    case 'S': case 'T': case 'U': case 'V': case 'W': case 'X':
426    case 'Y': case 'Z':
427    case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
428    case 'g': case 'h': case 'i': case 'j': case 'k': case 'l':
429    case 'm': case 'n': case 'o': case 'q': case 'p': case 'r':
430    case 's': case 't': case 'u': case 'v': case 'w': case 'x':
431    case 'y': case 'z':
432    case '_': case '.': case '$':
433    case '0': case '1': case '2': case '3': case '4':
434    case '5': case '6': case '7': case '8': case '9':
435      return c + 1;
436
437    // TODO(csilvers): why not allow ~ in names for version-scripts?
438    case '/': case '\\': case '~':
439    case '=': case '+':
440    case ',':
441      if (this->mode_ == LINKER_SCRIPT)
442        return c + 1;
443      return NULL;
444
445    case '[': case ']': case '*': case '?': case '-':
446      if (this->mode_ == LINKER_SCRIPT || this->mode_ == VERSION_SCRIPT
447          || this->mode_ == DYNAMIC_LIST)
448        return c + 1;
449      return NULL;
450
451    // TODO(csilvers): why allow this?  ^ is meaningless in version scripts.
452    case '^':
453      if (this->mode_ == VERSION_SCRIPT || this->mode_ == DYNAMIC_LIST)
454        return c + 1;
455      return NULL;
456
457    case ':':
458      if (this->mode_ == LINKER_SCRIPT)
459        return c + 1;
460      else if ((this->mode_ == VERSION_SCRIPT || this->mode_ == DYNAMIC_LIST)
461               && (c[1] == ':'))
462        {
463          // A name can have '::' in it, as that's a c++ namespace
464          // separator. But a single colon is not part of a name.
465          return c + 2;
466        }
467      return NULL;
468
469    default:
470      return NULL;
471    }
472}
473
474// For a number we accept 0x followed by hex digits, or any sequence
475// of digits.  The old linker accepts leading '$' for hex, and
476// trailing HXBOD.  Those are for MRI compatibility and we don't
477// accept them.  The old linker also accepts trailing MK for mega or
478// kilo.  FIXME: Those are mentioned in the documentation, and we
479// should accept them.
480
481// Return whether C1 C2 C3 can start a hex number.
482
483inline bool
484Lex::can_start_hex(char c1, char c2, char c3)
485{
486  if (c1 == '0' && (c2 == 'x' || c2 == 'X'))
487    return this->can_continue_hex(&c3);
488  return false;
489}
490
491// Return whether C can appear in a hex number.
492
493inline const char*
494Lex::can_continue_hex(const char* c)
495{
496  switch (*c)
497    {
498    case '0': case '1': case '2': case '3': case '4':
499    case '5': case '6': case '7': case '8': case '9':
500    case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
501    case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
502      return c + 1;
503
504    default:
505      return NULL;
506    }
507}
508
509// Return whether C can start a non-hex number.
510
511inline bool
512Lex::can_start_number(char c)
513{
514  switch (c)
515    {
516    case '0': case '1': case '2': case '3': case '4':
517    case '5': case '6': case '7': case '8': case '9':
518      return true;
519
520    default:
521      return false;
522    }
523}
524
525// If C1 C2 C3 form a valid three character operator, return the
526// opcode (defined in the yyscript.h file generated from yyscript.y).
527// Otherwise return 0.
528
529inline int
530Lex::three_char_operator(char c1, char c2, char c3)
531{
532  switch (c1)
533    {
534    case '<':
535      if (c2 == '<' && c3 == '=')
536	return LSHIFTEQ;
537      break;
538    case '>':
539      if (c2 == '>' && c3 == '=')
540	return RSHIFTEQ;
541      break;
542    default:
543      break;
544    }
545  return 0;
546}
547
548// If C1 C2 form a valid two character operator, return the opcode
549// (defined in the yyscript.h file generated from yyscript.y).
550// Otherwise return 0.
551
552inline int
553Lex::two_char_operator(char c1, char c2)
554{
555  switch (c1)
556    {
557    case '=':
558      if (c2 == '=')
559	return EQ;
560      break;
561    case '!':
562      if (c2 == '=')
563	return NE;
564      break;
565    case '+':
566      if (c2 == '=')
567	return PLUSEQ;
568      break;
569    case '-':
570      if (c2 == '=')
571	return MINUSEQ;
572      break;
573    case '*':
574      if (c2 == '=')
575	return MULTEQ;
576      break;
577    case '/':
578      if (c2 == '=')
579	return DIVEQ;
580      break;
581    case '|':
582      if (c2 == '=')
583	return OREQ;
584      if (c2 == '|')
585	return OROR;
586      break;
587    case '&':
588      if (c2 == '=')
589	return ANDEQ;
590      if (c2 == '&')
591	return ANDAND;
592      break;
593    case '>':
594      if (c2 == '=')
595	return GE;
596      if (c2 == '>')
597	return RSHIFT;
598      break;
599    case '<':
600      if (c2 == '=')
601	return LE;
602      if (c2 == '<')
603	return LSHIFT;
604      break;
605    default:
606      break;
607    }
608  return 0;
609}
610
611// If C1 is a valid operator, return the opcode.  Otherwise return 0.
612
613inline int
614Lex::one_char_operator(char c1)
615{
616  switch (c1)
617    {
618    case '+':
619    case '-':
620    case '*':
621    case '/':
622    case '%':
623    case '!':
624    case '&':
625    case '|':
626    case '^':
627    case '~':
628    case '<':
629    case '>':
630    case '=':
631    case '?':
632    case ',':
633    case '(':
634    case ')':
635    case '{':
636    case '}':
637    case '[':
638    case ']':
639    case ':':
640    case ';':
641      return c1;
642    default:
643      return 0;
644    }
645}
646
647// Skip a C style comment.  *PP points to just after the "/*".  Return
648// false if the comment did not end.
649
650bool
651Lex::skip_c_comment(const char** pp)
652{
653  const char* p = *pp;
654  while (p[0] != '*' || p[1] != '/')
655    {
656      if (*p == '\0')
657	{
658	  *pp = p;
659	  return false;
660	}
661
662      if (*p == '\n')
663	{
664	  ++this->lineno_;
665	  this->linestart_ = p + 1;
666	}
667      ++p;
668    }
669
670  *pp = p + 2;
671  return true;
672}
673
674// Skip a line # comment.  Return false if there was no newline.
675
676bool
677Lex::skip_line_comment(const char** pp)
678{
679  const char* p = *pp;
680  size_t skip = strcspn(p, "\n");
681  if (p[skip] == '\0')
682    {
683      *pp = p + skip;
684      return false;
685    }
686
687  p += skip + 1;
688  ++this->lineno_;
689  this->linestart_ = p;
690  *pp = p;
691
692  return true;
693}
694
695// Build a token CLASSIFICATION from all characters that match
696// CAN_CONTINUE_FN.  Update *PP.
697
698inline Token
699Lex::gather_token(Token::Classification classification,
700		  const char* (Lex::*can_continue_fn)(const char*),
701		  const char* start,
702		  const char* match,
703		  const char** pp)
704{
705  const char* new_match = NULL;
706  while ((new_match = (this->*can_continue_fn)(match)))
707    match = new_match;
708  *pp = match;
709  return this->make_token(classification, start, match - start, start);
710}
711
712// Build a token from a quoted string.
713
714Token
715Lex::gather_quoted_string(const char** pp)
716{
717  const char* start = *pp;
718  const char* p = start;
719  ++p;
720  size_t skip = strcspn(p, "\"\n");
721  if (p[skip] != '"')
722    return this->make_invalid_token(start);
723  *pp = p + skip + 1;
724  return this->make_token(Token::TOKEN_QUOTED_STRING, p, skip, start);
725}
726
727// Return the next token at *PP.  Update *PP.  General guideline: we
728// require linker scripts to be simple ASCII.  No unicode linker
729// scripts.  In particular we can assume that any '\0' is the end of
730// the input.
731
732Token
733Lex::get_token(const char** pp)
734{
735  const char* p = *pp;
736
737  while (true)
738    {
739      if (*p == '\0')
740	{
741	  *pp = p;
742	  return this->make_eof_token(p);
743	}
744
745      // Skip whitespace quickly.
746      while (*p == ' ' || *p == '\t' || *p == '\r')
747	++p;
748
749      if (*p == '\n')
750	{
751	  ++p;
752	  ++this->lineno_;
753	  this->linestart_ = p;
754	  continue;
755	}
756
757      // Skip C style comments.
758      if (p[0] == '/' && p[1] == '*')
759	{
760	  int lineno = this->lineno_;
761	  int charpos = p - this->linestart_ + 1;
762
763	  *pp = p + 2;
764	  if (!this->skip_c_comment(pp))
765	    return Token(Token::TOKEN_INVALID, lineno, charpos);
766	  p = *pp;
767
768	  continue;
769	}
770
771      // Skip line comments.
772      if (*p == '#')
773	{
774	  *pp = p + 1;
775	  if (!this->skip_line_comment(pp))
776	    return this->make_eof_token(p);
777	  p = *pp;
778	  continue;
779	}
780
781      // Check for a name.
782      if (this->can_start_name(p[0], p[1]))
783	return this->gather_token(Token::TOKEN_STRING,
784				  &Lex::can_continue_name,
785				  p, p + 1, pp);
786
787      // We accept any arbitrary name in double quotes, as long as it
788      // does not cross a line boundary.
789      if (*p == '"')
790	{
791	  *pp = p;
792	  return this->gather_quoted_string(pp);
793	}
794
795      // Check for a number.
796
797      if (this->can_start_hex(p[0], p[1], p[2]))
798	return this->gather_token(Token::TOKEN_INTEGER,
799				  &Lex::can_continue_hex,
800				  p, p + 3, pp);
801
802      if (Lex::can_start_number(p[0]))
803	return this->gather_token(Token::TOKEN_INTEGER,
804				  &Lex::can_continue_number,
805				  p, p + 1, pp);
806
807      // Check for operators.
808
809      int opcode = Lex::three_char_operator(p[0], p[1], p[2]);
810      if (opcode != 0)
811	{
812	  *pp = p + 3;
813	  return this->make_token(opcode, p);
814	}
815
816      opcode = Lex::two_char_operator(p[0], p[1]);
817      if (opcode != 0)
818	{
819	  *pp = p + 2;
820	  return this->make_token(opcode, p);
821	}
822
823      opcode = Lex::one_char_operator(p[0]);
824      if (opcode != 0)
825	{
826	  *pp = p + 1;
827	  return this->make_token(opcode, p);
828	}
829
830      return this->make_token(Token::TOKEN_INVALID, p);
831    }
832}
833
834// Return the next token.
835
836const Token*
837Lex::next_token()
838{
839  // The first token is special.
840  if (this->first_token_ != 0)
841    {
842      this->token_ = Token(this->first_token_, 0, 0);
843      this->first_token_ = 0;
844      return &this->token_;
845    }
846
847  this->token_ = this->get_token(&this->current_);
848
849  // Don't let an early null byte fool us into thinking that we've
850  // reached the end of the file.
851  if (this->token_.is_eof()
852      && (static_cast<size_t>(this->current_ - this->input_string_)
853	  < this->input_length_))
854    this->token_ = this->make_invalid_token(this->current_);
855
856  return &this->token_;
857}
858
859// class Symbol_assignment.
860
861// Add the symbol to the symbol table.  This makes sure the symbol is
862// there and defined.  The actual value is stored later.  We can't
863// determine the actual value at this point, because we can't
864// necessarily evaluate the expression until all ordinary symbols have
865// been finalized.
866
867// The GNU linker lets symbol assignments in the linker script
868// silently override defined symbols in object files.  We are
869// compatible.  FIXME: Should we issue a warning?
870
871void
872Symbol_assignment::add_to_table(Symbol_table* symtab)
873{
874  elfcpp::STV vis = this->hidden_ ? elfcpp::STV_HIDDEN : elfcpp::STV_DEFAULT;
875  this->sym_ = symtab->define_as_constant(this->name_.c_str(),
876					  NULL, // version
877					  (this->is_defsym_
878					   ? Symbol_table::DEFSYM
879					   : Symbol_table::SCRIPT),
880					  0, // value
881					  0, // size
882					  elfcpp::STT_NOTYPE,
883					  elfcpp::STB_GLOBAL,
884					  vis,
885					  0, // nonvis
886					  this->provide_,
887                                          true); // force_override
888}
889
890// Finalize a symbol value.
891
892void
893Symbol_assignment::finalize(Symbol_table* symtab, const Layout* layout)
894{
895  this->finalize_maybe_dot(symtab, layout, false, 0, NULL);
896}
897
898// Finalize a symbol value which can refer to the dot symbol.
899
900void
901Symbol_assignment::finalize_with_dot(Symbol_table* symtab,
902				     const Layout* layout,
903				     uint64_t dot_value,
904				     Output_section* dot_section)
905{
906  this->finalize_maybe_dot(symtab, layout, true, dot_value, dot_section);
907}
908
909// Finalize a symbol value, internal version.
910
911void
912Symbol_assignment::finalize_maybe_dot(Symbol_table* symtab,
913				      const Layout* layout,
914				      bool is_dot_available,
915				      uint64_t dot_value,
916				      Output_section* dot_section)
917{
918  // If we were only supposed to provide this symbol, the sym_ field
919  // will be NULL if the symbol was not referenced.
920  if (this->sym_ == NULL)
921    {
922      gold_assert(this->provide_);
923      return;
924    }
925
926  if (parameters->target().get_size() == 32)
927    {
928#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
929      this->sized_finalize<32>(symtab, layout, is_dot_available, dot_value,
930			       dot_section);
931#else
932      gold_unreachable();
933#endif
934    }
935  else if (parameters->target().get_size() == 64)
936    {
937#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
938      this->sized_finalize<64>(symtab, layout, is_dot_available, dot_value,
939			       dot_section);
940#else
941      gold_unreachable();
942#endif
943    }
944  else
945    gold_unreachable();
946}
947
948template<int size>
949void
950Symbol_assignment::sized_finalize(Symbol_table* symtab, const Layout* layout,
951				  bool is_dot_available, uint64_t dot_value,
952				  Output_section* dot_section)
953{
954  Output_section* section;
955  uint64_t final_val = this->val_->eval_maybe_dot(symtab, layout, true,
956						  is_dot_available,
957						  dot_value, dot_section,
958						  &section, NULL);
959  Sized_symbol<size>* ssym = symtab->get_sized_symbol<size>(this->sym_);
960  ssym->set_value(final_val);
961  if (section != NULL)
962    ssym->set_output_section(section);
963}
964
965// Set the symbol value if the expression yields an absolute value.
966
967void
968Symbol_assignment::set_if_absolute(Symbol_table* symtab, const Layout* layout,
969				   bool is_dot_available, uint64_t dot_value)
970{
971  if (this->sym_ == NULL)
972    return;
973
974  Output_section* val_section;
975  uint64_t val = this->val_->eval_maybe_dot(symtab, layout, false,
976					    is_dot_available, dot_value,
977					    NULL, &val_section, NULL);
978  if (val_section != NULL)
979    return;
980
981  if (parameters->target().get_size() == 32)
982    {
983#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
984      Sized_symbol<32>* ssym = symtab->get_sized_symbol<32>(this->sym_);
985      ssym->set_value(val);
986#else
987      gold_unreachable();
988#endif
989    }
990  else if (parameters->target().get_size() == 64)
991    {
992#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
993      Sized_symbol<64>* ssym = symtab->get_sized_symbol<64>(this->sym_);
994      ssym->set_value(val);
995#else
996      gold_unreachable();
997#endif
998    }
999  else
1000    gold_unreachable();
1001}
1002
1003// Print for debugging.
1004
1005void
1006Symbol_assignment::print(FILE* f) const
1007{
1008  if (this->provide_ && this->hidden_)
1009    fprintf(f, "PROVIDE_HIDDEN(");
1010  else if (this->provide_)
1011    fprintf(f, "PROVIDE(");
1012  else if (this->hidden_)
1013    gold_unreachable();
1014
1015  fprintf(f, "%s = ", this->name_.c_str());
1016  this->val_->print(f);
1017
1018  if (this->provide_ || this->hidden_)
1019    fprintf(f, ")");
1020
1021  fprintf(f, "\n");
1022}
1023
1024// Class Script_assertion.
1025
1026// Check the assertion.
1027
1028void
1029Script_assertion::check(const Symbol_table* symtab, const Layout* layout)
1030{
1031  if (!this->check_->eval(symtab, layout, true))
1032    gold_error("%s", this->message_.c_str());
1033}
1034
1035// Print for debugging.
1036
1037void
1038Script_assertion::print(FILE* f) const
1039{
1040  fprintf(f, "ASSERT(");
1041  this->check_->print(f);
1042  fprintf(f, ", \"%s\")\n", this->message_.c_str());
1043}
1044
1045// Class Script_options.
1046
1047Script_options::Script_options()
1048  : entry_(), symbol_assignments_(), symbol_definitions_(),
1049    symbol_references_(), version_script_info_(), script_sections_()
1050{
1051}
1052
1053// Returns true if NAME is on the list of symbol assignments waiting
1054// to be processed.
1055
1056bool
1057Script_options::is_pending_assignment(const char* name)
1058{
1059  for (Symbol_assignments::iterator p = this->symbol_assignments_.begin();
1060       p != this->symbol_assignments_.end();
1061       ++p)
1062    if ((*p)->name() == name)
1063      return true;
1064  return false;
1065}
1066
1067// Add a symbol to be defined.
1068
1069void
1070Script_options::add_symbol_assignment(const char* name, size_t length,
1071				      bool is_defsym, Expression* value,
1072				      bool provide, bool hidden)
1073{
1074  if (length != 1 || name[0] != '.')
1075    {
1076      if (this->script_sections_.in_sections_clause())
1077	{
1078	  gold_assert(!is_defsym);
1079	  this->script_sections_.add_symbol_assignment(name, length, value,
1080						       provide, hidden);
1081	}
1082      else
1083	{
1084	  Symbol_assignment* p = new Symbol_assignment(name, length, is_defsym,
1085						       value, provide, hidden);
1086	  this->symbol_assignments_.push_back(p);
1087	}
1088
1089      if (!provide)
1090	{
1091	  std::string n(name, length);
1092	  this->symbol_definitions_.insert(n);
1093	  this->symbol_references_.erase(n);
1094	}
1095    }
1096  else
1097    {
1098      if (provide || hidden)
1099	gold_error(_("invalid use of PROVIDE for dot symbol"));
1100
1101      // The GNU linker permits assignments to dot outside of SECTIONS
1102      // clauses and treats them as occurring inside, so we don't
1103      // check in_sections_clause here.
1104      this->script_sections_.add_dot_assignment(value);
1105    }
1106}
1107
1108// Add a reference to a symbol.
1109
1110void
1111Script_options::add_symbol_reference(const char* name, size_t length)
1112{
1113  if (length != 1 || name[0] != '.')
1114    {
1115      std::string n(name, length);
1116      if (this->symbol_definitions_.find(n) == this->symbol_definitions_.end())
1117	this->symbol_references_.insert(n);
1118    }
1119}
1120
1121// Add an assertion.
1122
1123void
1124Script_options::add_assertion(Expression* check, const char* message,
1125			      size_t messagelen)
1126{
1127  if (this->script_sections_.in_sections_clause())
1128    this->script_sections_.add_assertion(check, message, messagelen);
1129  else
1130    {
1131      Script_assertion* p = new Script_assertion(check, message, messagelen);
1132      this->assertions_.push_back(p);
1133    }
1134}
1135
1136// Create sections required by any linker scripts.
1137
1138void
1139Script_options::create_script_sections(Layout* layout)
1140{
1141  if (this->saw_sections_clause())
1142    this->script_sections_.create_sections(layout);
1143}
1144
1145// Add any symbols we are defining to the symbol table.
1146
1147void
1148Script_options::add_symbols_to_table(Symbol_table* symtab)
1149{
1150  for (Symbol_assignments::iterator p = this->symbol_assignments_.begin();
1151       p != this->symbol_assignments_.end();
1152       ++p)
1153    (*p)->add_to_table(symtab);
1154  this->script_sections_.add_symbols_to_table(symtab);
1155}
1156
1157// Finalize symbol values.  Also check assertions.
1158
1159void
1160Script_options::finalize_symbols(Symbol_table* symtab, const Layout* layout)
1161{
1162  // We finalize the symbols defined in SECTIONS first, because they
1163  // are the ones which may have changed.  This way if symbol outside
1164  // SECTIONS are defined in terms of symbols inside SECTIONS, they
1165  // will get the right value.
1166  this->script_sections_.finalize_symbols(symtab, layout);
1167
1168  for (Symbol_assignments::iterator p = this->symbol_assignments_.begin();
1169       p != this->symbol_assignments_.end();
1170       ++p)
1171    (*p)->finalize(symtab, layout);
1172
1173  for (Assertions::iterator p = this->assertions_.begin();
1174       p != this->assertions_.end();
1175       ++p)
1176    (*p)->check(symtab, layout);
1177}
1178
1179// Set section addresses.  We set all the symbols which have absolute
1180// values.  Then we let the SECTIONS clause do its thing.  This
1181// returns the segment which holds the file header and segment
1182// headers, if any.
1183
1184Output_segment*
1185Script_options::set_section_addresses(Symbol_table* symtab, Layout* layout)
1186{
1187  for (Symbol_assignments::iterator p = this->symbol_assignments_.begin();
1188       p != this->symbol_assignments_.end();
1189       ++p)
1190    (*p)->set_if_absolute(symtab, layout, false, 0);
1191
1192  return this->script_sections_.set_section_addresses(symtab, layout);
1193}
1194
1195// This class holds data passed through the parser to the lexer and to
1196// the parser support functions.  This avoids global variables.  We
1197// can't use global variables because we need not be called by a
1198// singleton thread.
1199
1200class Parser_closure
1201{
1202 public:
1203  Parser_closure(const char* filename,
1204		 const Position_dependent_options& posdep_options,
1205		 bool parsing_defsym, bool in_group, bool is_in_sysroot,
1206                 Command_line* command_line,
1207		 Script_options* script_options,
1208		 Lex* lex,
1209		 bool skip_on_incompatible_target)
1210    : filename_(filename), posdep_options_(posdep_options),
1211      parsing_defsym_(parsing_defsym), in_group_(in_group),
1212      is_in_sysroot_(is_in_sysroot),
1213      skip_on_incompatible_target_(skip_on_incompatible_target),
1214      found_incompatible_target_(false),
1215      command_line_(command_line), script_options_(script_options),
1216      version_script_info_(script_options->version_script_info()),
1217      lex_(lex), lineno_(0), charpos_(0), lex_mode_stack_(), inputs_(NULL)
1218  {
1219    // We start out processing C symbols in the default lex mode.
1220    this->language_stack_.push_back(Version_script_info::LANGUAGE_C);
1221    this->lex_mode_stack_.push_back(lex->mode());
1222  }
1223
1224  // Return the file name.
1225  const char*
1226  filename() const
1227  { return this->filename_; }
1228
1229  // Return the position dependent options.  The caller may modify
1230  // this.
1231  Position_dependent_options&
1232  position_dependent_options()
1233  { return this->posdep_options_; }
1234
1235  // Whether we are parsing a --defsym.
1236  bool
1237  parsing_defsym() const
1238  { return this->parsing_defsym_; }
1239
1240  // Return whether this script is being run in a group.
1241  bool
1242  in_group() const
1243  { return this->in_group_; }
1244
1245  // Return whether this script was found using a directory in the
1246  // sysroot.
1247  bool
1248  is_in_sysroot() const
1249  { return this->is_in_sysroot_; }
1250
1251  // Whether to skip to the next file with the same name if we find an
1252  // incompatible target in an OUTPUT_FORMAT statement.
1253  bool
1254  skip_on_incompatible_target() const
1255  { return this->skip_on_incompatible_target_; }
1256
1257  // Stop skipping to the next file on an incompatible target.  This
1258  // is called when we make some unrevocable change to the data
1259  // structures.
1260  void
1261  clear_skip_on_incompatible_target()
1262  { this->skip_on_incompatible_target_ = false; }
1263
1264  // Whether we found an incompatible target in an OUTPUT_FORMAT
1265  // statement.
1266  bool
1267  found_incompatible_target() const
1268  { return this->found_incompatible_target_; }
1269
1270  // Note that we found an incompatible target.
1271  void
1272  set_found_incompatible_target()
1273  { this->found_incompatible_target_ = true; }
1274
1275  // Returns the Command_line structure passed in at constructor time.
1276  // This value may be NULL.  The caller may modify this, which modifies
1277  // the passed-in Command_line object (not a copy).
1278  Command_line*
1279  command_line()
1280  { return this->command_line_; }
1281
1282  // Return the options which may be set by a script.
1283  Script_options*
1284  script_options()
1285  { return this->script_options_; }
1286
1287  // Return the object in which version script information should be stored.
1288  Version_script_info*
1289  version_script()
1290  { return this->version_script_info_; }
1291
1292  // Return the next token, and advance.
1293  const Token*
1294  next_token()
1295  {
1296    const Token* token = this->lex_->next_token();
1297    this->lineno_ = token->lineno();
1298    this->charpos_ = token->charpos();
1299    return token;
1300  }
1301
1302  // Set a new lexer mode, pushing the current one.
1303  void
1304  push_lex_mode(Lex::Mode mode)
1305  {
1306    this->lex_mode_stack_.push_back(this->lex_->mode());
1307    this->lex_->set_mode(mode);
1308  }
1309
1310  // Pop the lexer mode.
1311  void
1312  pop_lex_mode()
1313  {
1314    gold_assert(!this->lex_mode_stack_.empty());
1315    this->lex_->set_mode(this->lex_mode_stack_.back());
1316    this->lex_mode_stack_.pop_back();
1317  }
1318
1319  // Return the current lexer mode.
1320  Lex::Mode
1321  lex_mode() const
1322  { return this->lex_mode_stack_.back(); }
1323
1324  // Return the line number of the last token.
1325  int
1326  lineno() const
1327  { return this->lineno_; }
1328
1329  // Return the character position in the line of the last token.
1330  int
1331  charpos() const
1332  { return this->charpos_; }
1333
1334  // Return the list of input files, creating it if necessary.  This
1335  // is a space leak--we never free the INPUTS_ pointer.
1336  Input_arguments*
1337  inputs()
1338  {
1339    if (this->inputs_ == NULL)
1340      this->inputs_ = new Input_arguments();
1341    return this->inputs_;
1342  }
1343
1344  // Return whether we saw any input files.
1345  bool
1346  saw_inputs() const
1347  { return this->inputs_ != NULL && !this->inputs_->empty(); }
1348
1349  // Return the current language being processed in a version script
1350  // (eg, "C++").  The empty string represents unmangled C names.
1351  Version_script_info::Language
1352  get_current_language() const
1353  { return this->language_stack_.back(); }
1354
1355  // Push a language onto the stack when entering an extern block.
1356  void
1357  push_language(Version_script_info::Language lang)
1358  { this->language_stack_.push_back(lang); }
1359
1360  // Pop a language off of the stack when exiting an extern block.
1361  void
1362  pop_language()
1363  {
1364    gold_assert(!this->language_stack_.empty());
1365    this->language_stack_.pop_back();
1366  }
1367
1368 private:
1369  // The name of the file we are reading.
1370  const char* filename_;
1371  // The position dependent options.
1372  Position_dependent_options posdep_options_;
1373  // True if we are parsing a --defsym.
1374  bool parsing_defsym_;
1375  // Whether we are currently in a --start-group/--end-group.
1376  bool in_group_;
1377  // Whether the script was found in a sysrooted directory.
1378  bool is_in_sysroot_;
1379  // If this is true, then if we find an OUTPUT_FORMAT with an
1380  // incompatible target, then we tell the parser to abort so that we
1381  // can search for the next file with the same name.
1382  bool skip_on_incompatible_target_;
1383  // True if we found an OUTPUT_FORMAT with an incompatible target.
1384  bool found_incompatible_target_;
1385  // May be NULL if the user chooses not to pass one in.
1386  Command_line* command_line_;
1387  // Options which may be set from any linker script.
1388  Script_options* script_options_;
1389  // Information parsed from a version script.
1390  Version_script_info* version_script_info_;
1391  // The lexer.
1392  Lex* lex_;
1393  // The line number of the last token returned by next_token.
1394  int lineno_;
1395  // The column number of the last token returned by next_token.
1396  int charpos_;
1397  // A stack of lexer modes.
1398  std::vector<Lex::Mode> lex_mode_stack_;
1399  // A stack of which extern/language block we're inside. Can be C++,
1400  // java, or empty for C.
1401  std::vector<Version_script_info::Language> language_stack_;
1402  // New input files found to add to the link.
1403  Input_arguments* inputs_;
1404};
1405
1406// FILE was found as an argument on the command line.  Try to read it
1407// as a script.  Return true if the file was handled.
1408
1409bool
1410read_input_script(Workqueue* workqueue, Symbol_table* symtab, Layout* layout,
1411		  Dirsearch* dirsearch, int dirindex,
1412		  Input_objects* input_objects, Mapfile* mapfile,
1413		  Input_group* input_group,
1414		  const Input_argument* input_argument,
1415		  Input_file* input_file, Task_token* next_blocker,
1416		  bool* used_next_blocker)
1417{
1418  *used_next_blocker = false;
1419
1420  std::string input_string;
1421  Lex::read_file(input_file, &input_string);
1422
1423  Lex lex(input_string.c_str(), input_string.length(), PARSING_LINKER_SCRIPT);
1424
1425  Parser_closure closure(input_file->filename().c_str(),
1426			 input_argument->file().options(),
1427			 false,
1428			 input_group != NULL,
1429			 input_file->is_in_sysroot(),
1430                         NULL,
1431			 layout->script_options(),
1432			 &lex,
1433			 input_file->will_search_for());
1434
1435  bool old_saw_sections_clause =
1436    layout->script_options()->saw_sections_clause();
1437
1438  if (yyparse(&closure) != 0)
1439    {
1440      if (closure.found_incompatible_target())
1441	{
1442	  Read_symbols::incompatible_warning(input_argument, input_file);
1443	  Read_symbols::requeue(workqueue, input_objects, symtab, layout,
1444				dirsearch, dirindex, mapfile, input_argument,
1445				input_group, next_blocker);
1446	  return true;
1447	}
1448      return false;
1449    }
1450
1451  if (!old_saw_sections_clause
1452      && layout->script_options()->saw_sections_clause()
1453      && layout->have_added_input_section())
1454    gold_error(_("%s: SECTIONS seen after other input files; try -T/--script"),
1455	       input_file->filename().c_str());
1456
1457  if (!closure.saw_inputs())
1458    return true;
1459
1460  Task_token* this_blocker = NULL;
1461  for (Input_arguments::const_iterator p = closure.inputs()->begin();
1462       p != closure.inputs()->end();
1463       ++p)
1464    {
1465      Task_token* nb;
1466      if (p + 1 == closure.inputs()->end())
1467	nb = next_blocker;
1468      else
1469	{
1470	  nb = new Task_token(true);
1471	  nb->add_blocker();
1472	}
1473      workqueue->queue_soon(new Read_symbols(input_objects, symtab,
1474					     layout, dirsearch, 0, mapfile, &*p,
1475					     input_group, NULL, this_blocker, nb));
1476      this_blocker = nb;
1477    }
1478
1479  if (layout->incremental_inputs() != NULL)
1480    {
1481      // Like new Read_symbols(...) above, we rely on closure.inputs()
1482      // getting leaked by closure.
1483      const std::string& filename = input_file->filename();
1484      Script_info* info = new Script_info(closure.inputs());
1485      Timespec mtime = input_file->file().get_mtime();
1486      layout->incremental_inputs()->report_script(filename, info, mtime);
1487    }
1488
1489  *used_next_blocker = true;
1490
1491  return true;
1492}
1493
1494// Helper function for read_version_script() and
1495// read_commandline_script().  Processes the given file in the mode
1496// indicated by first_token and lex_mode.
1497
1498static bool
1499read_script_file(const char* filename, Command_line* cmdline,
1500                 Script_options* script_options,
1501                 int first_token, Lex::Mode lex_mode)
1502{
1503  // TODO: if filename is a relative filename, search for it manually
1504  // using "." + cmdline->options()->search_path() -- not dirsearch.
1505  Dirsearch dirsearch;
1506
1507  // The file locking code wants to record a Task, but we haven't
1508  // started the workqueue yet.  This is only for debugging purposes,
1509  // so we invent a fake value.
1510  const Task* task = reinterpret_cast<const Task*>(-1);
1511
1512  // We don't want this file to be opened in binary mode.
1513  Position_dependent_options posdep = cmdline->position_dependent_options();
1514  if (posdep.format_enum() == General_options::OBJECT_FORMAT_BINARY)
1515    posdep.set_format_enum(General_options::OBJECT_FORMAT_ELF);
1516  Input_file_argument input_argument(filename,
1517				     Input_file_argument::INPUT_FILE_TYPE_FILE,
1518				     "", false, posdep);
1519  Input_file input_file(&input_argument);
1520  int dummy = 0;
1521  if (!input_file.open(dirsearch, task, &dummy))
1522    return false;
1523
1524  std::string input_string;
1525  Lex::read_file(&input_file, &input_string);
1526
1527  Lex lex(input_string.c_str(), input_string.length(), first_token);
1528  lex.set_mode(lex_mode);
1529
1530  Parser_closure closure(filename,
1531			 cmdline->position_dependent_options(),
1532			 first_token == Lex::DYNAMIC_LIST,
1533			 false,
1534			 input_file.is_in_sysroot(),
1535                         cmdline,
1536			 script_options,
1537			 &lex,
1538			 false);
1539  if (yyparse(&closure) != 0)
1540    {
1541      input_file.file().unlock(task);
1542      return false;
1543    }
1544
1545  input_file.file().unlock(task);
1546
1547  gold_assert(!closure.saw_inputs());
1548
1549  return true;
1550}
1551
1552// FILENAME was found as an argument to --script (-T).
1553// Read it as a script, and execute its contents immediately.
1554
1555bool
1556read_commandline_script(const char* filename, Command_line* cmdline)
1557{
1558  return read_script_file(filename, cmdline, &cmdline->script_options(),
1559                          PARSING_LINKER_SCRIPT, Lex::LINKER_SCRIPT);
1560}
1561
1562// FILENAME was found as an argument to --version-script.  Read it as
1563// a version script, and store its contents in
1564// cmdline->script_options()->version_script_info().
1565
1566bool
1567read_version_script(const char* filename, Command_line* cmdline)
1568{
1569  return read_script_file(filename, cmdline, &cmdline->script_options(),
1570                          PARSING_VERSION_SCRIPT, Lex::VERSION_SCRIPT);
1571}
1572
1573// FILENAME was found as an argument to --dynamic-list.  Read it as a
1574// list of symbols, and store its contents in DYNAMIC_LIST.
1575
1576bool
1577read_dynamic_list(const char* filename, Command_line* cmdline,
1578                  Script_options* dynamic_list)
1579{
1580  return read_script_file(filename, cmdline, dynamic_list,
1581                          PARSING_DYNAMIC_LIST, Lex::DYNAMIC_LIST);
1582}
1583
1584// Implement the --defsym option on the command line.  Return true if
1585// all is well.
1586
1587bool
1588Script_options::define_symbol(const char* definition)
1589{
1590  Lex lex(definition, strlen(definition), PARSING_DEFSYM);
1591  lex.set_mode(Lex::EXPRESSION);
1592
1593  // Dummy value.
1594  Position_dependent_options posdep_options;
1595
1596  Parser_closure closure("command line", posdep_options, true,
1597			 false, false, NULL, this, &lex, false);
1598
1599  if (yyparse(&closure) != 0)
1600    return false;
1601
1602  gold_assert(!closure.saw_inputs());
1603
1604  return true;
1605}
1606
1607// Print the script to F for debugging.
1608
1609void
1610Script_options::print(FILE* f) const
1611{
1612  fprintf(f, "%s: Dumping linker script\n", program_name);
1613
1614  if (!this->entry_.empty())
1615    fprintf(f, "ENTRY(%s)\n", this->entry_.c_str());
1616
1617  for (Symbol_assignments::const_iterator p =
1618	 this->symbol_assignments_.begin();
1619       p != this->symbol_assignments_.end();
1620       ++p)
1621    (*p)->print(f);
1622
1623  for (Assertions::const_iterator p = this->assertions_.begin();
1624       p != this->assertions_.end();
1625       ++p)
1626    (*p)->print(f);
1627
1628  this->script_sections_.print(f);
1629
1630  this->version_script_info_.print(f);
1631}
1632
1633// Manage mapping from keywords to the codes expected by the bison
1634// parser.  We construct one global object for each lex mode with
1635// keywords.
1636
1637class Keyword_to_parsecode
1638{
1639 public:
1640  // The structure which maps keywords to parsecodes.
1641  struct Keyword_parsecode
1642  {
1643    // Keyword.
1644    const char* keyword;
1645    // Corresponding parsecode.
1646    int parsecode;
1647  };
1648
1649  Keyword_to_parsecode(const Keyword_parsecode* keywords,
1650                       int keyword_count)
1651      : keyword_parsecodes_(keywords), keyword_count_(keyword_count)
1652  { }
1653
1654  // Return the parsecode corresponding KEYWORD, or 0 if it is not a
1655  // keyword.
1656  int
1657  keyword_to_parsecode(const char* keyword, size_t len) const;
1658
1659 private:
1660  const Keyword_parsecode* keyword_parsecodes_;
1661  const int keyword_count_;
1662};
1663
1664// Mapping from keyword string to keyword parsecode.  This array must
1665// be kept in sorted order.  Parsecodes are looked up using bsearch.
1666// This array must correspond to the list of parsecodes in yyscript.y.
1667
1668static const Keyword_to_parsecode::Keyword_parsecode
1669script_keyword_parsecodes[] =
1670{
1671  { "ABSOLUTE", ABSOLUTE },
1672  { "ADDR", ADDR },
1673  { "ALIGN", ALIGN_K },
1674  { "ALIGNOF", ALIGNOF },
1675  { "ASSERT", ASSERT_K },
1676  { "AS_NEEDED", AS_NEEDED },
1677  { "AT", AT },
1678  { "BIND", BIND },
1679  { "BLOCK", BLOCK },
1680  { "BYTE", BYTE },
1681  { "CONSTANT", CONSTANT },
1682  { "CONSTRUCTORS", CONSTRUCTORS },
1683  { "COPY", COPY },
1684  { "CREATE_OBJECT_SYMBOLS", CREATE_OBJECT_SYMBOLS },
1685  { "DATA_SEGMENT_ALIGN", DATA_SEGMENT_ALIGN },
1686  { "DATA_SEGMENT_END", DATA_SEGMENT_END },
1687  { "DATA_SEGMENT_RELRO_END", DATA_SEGMENT_RELRO_END },
1688  { "DEFINED", DEFINED },
1689  { "DSECT", DSECT },
1690  { "ENTRY", ENTRY },
1691  { "EXCLUDE_FILE", EXCLUDE_FILE },
1692  { "EXTERN", EXTERN },
1693  { "FILL", FILL },
1694  { "FLOAT", FLOAT },
1695  { "FORCE_COMMON_ALLOCATION", FORCE_COMMON_ALLOCATION },
1696  { "GROUP", GROUP },
1697  { "HLL", HLL },
1698  { "INCLUDE", INCLUDE },
1699  { "INFO", INFO },
1700  { "INHIBIT_COMMON_ALLOCATION", INHIBIT_COMMON_ALLOCATION },
1701  { "INPUT", INPUT },
1702  { "KEEP", KEEP },
1703  { "LENGTH", LENGTH },
1704  { "LOADADDR", LOADADDR },
1705  { "LONG", LONG },
1706  { "MAP", MAP },
1707  { "MAX", MAX_K },
1708  { "MEMORY", MEMORY },
1709  { "MIN", MIN_K },
1710  { "NEXT", NEXT },
1711  { "NOCROSSREFS", NOCROSSREFS },
1712  { "NOFLOAT", NOFLOAT },
1713  { "NOLOAD", NOLOAD },
1714  { "ONLY_IF_RO", ONLY_IF_RO },
1715  { "ONLY_IF_RW", ONLY_IF_RW },
1716  { "OPTION", OPTION },
1717  { "ORIGIN", ORIGIN },
1718  { "OUTPUT", OUTPUT },
1719  { "OUTPUT_ARCH", OUTPUT_ARCH },
1720  { "OUTPUT_FORMAT", OUTPUT_FORMAT },
1721  { "OVERLAY", OVERLAY },
1722  { "PHDRS", PHDRS },
1723  { "PROVIDE", PROVIDE },
1724  { "PROVIDE_HIDDEN", PROVIDE_HIDDEN },
1725  { "QUAD", QUAD },
1726  { "SEARCH_DIR", SEARCH_DIR },
1727  { "SECTIONS", SECTIONS },
1728  { "SEGMENT_START", SEGMENT_START },
1729  { "SHORT", SHORT },
1730  { "SIZEOF", SIZEOF },
1731  { "SIZEOF_HEADERS", SIZEOF_HEADERS },
1732  { "SORT", SORT_BY_NAME },
1733  { "SORT_BY_ALIGNMENT", SORT_BY_ALIGNMENT },
1734  { "SORT_BY_NAME", SORT_BY_NAME },
1735  { "SPECIAL", SPECIAL },
1736  { "SQUAD", SQUAD },
1737  { "STARTUP", STARTUP },
1738  { "SUBALIGN", SUBALIGN },
1739  { "SYSLIB", SYSLIB },
1740  { "TARGET", TARGET_K },
1741  { "TRUNCATE", TRUNCATE },
1742  { "VERSION", VERSIONK },
1743  { "global", GLOBAL },
1744  { "l", LENGTH },
1745  { "len", LENGTH },
1746  { "local", LOCAL },
1747  { "o", ORIGIN },
1748  { "org", ORIGIN },
1749  { "sizeof_headers", SIZEOF_HEADERS },
1750};
1751
1752static const Keyword_to_parsecode
1753script_keywords(&script_keyword_parsecodes[0],
1754                (sizeof(script_keyword_parsecodes)
1755                 / sizeof(script_keyword_parsecodes[0])));
1756
1757static const Keyword_to_parsecode::Keyword_parsecode
1758version_script_keyword_parsecodes[] =
1759{
1760  { "extern", EXTERN },
1761  { "global", GLOBAL },
1762  { "local", LOCAL },
1763};
1764
1765static const Keyword_to_parsecode
1766version_script_keywords(&version_script_keyword_parsecodes[0],
1767                        (sizeof(version_script_keyword_parsecodes)
1768                         / sizeof(version_script_keyword_parsecodes[0])));
1769
1770static const Keyword_to_parsecode::Keyword_parsecode
1771dynamic_list_keyword_parsecodes[] =
1772{
1773  { "extern", EXTERN },
1774};
1775
1776static const Keyword_to_parsecode
1777dynamic_list_keywords(&dynamic_list_keyword_parsecodes[0],
1778                      (sizeof(dynamic_list_keyword_parsecodes)
1779                       / sizeof(dynamic_list_keyword_parsecodes[0])));
1780
1781
1782
1783// Comparison function passed to bsearch.
1784
1785extern "C"
1786{
1787
1788struct Ktt_key
1789{
1790  const char* str;
1791  size_t len;
1792};
1793
1794static int
1795ktt_compare(const void* keyv, const void* kttv)
1796{
1797  const Ktt_key* key = static_cast<const Ktt_key*>(keyv);
1798  const Keyword_to_parsecode::Keyword_parsecode* ktt =
1799    static_cast<const Keyword_to_parsecode::Keyword_parsecode*>(kttv);
1800  int i = strncmp(key->str, ktt->keyword, key->len);
1801  if (i != 0)
1802    return i;
1803  if (ktt->keyword[key->len] != '\0')
1804    return -1;
1805  return 0;
1806}
1807
1808} // End extern "C".
1809
1810int
1811Keyword_to_parsecode::keyword_to_parsecode(const char* keyword,
1812                                           size_t len) const
1813{
1814  Ktt_key key;
1815  key.str = keyword;
1816  key.len = len;
1817  void* kttv = bsearch(&key,
1818                       this->keyword_parsecodes_,
1819                       this->keyword_count_,
1820                       sizeof(this->keyword_parsecodes_[0]),
1821                       ktt_compare);
1822  if (kttv == NULL)
1823    return 0;
1824  Keyword_parsecode* ktt = static_cast<Keyword_parsecode*>(kttv);
1825  return ktt->parsecode;
1826}
1827
1828// The following structs are used within the VersionInfo class as well
1829// as in the bison helper functions.  They store the information
1830// parsed from the version script.
1831
1832// A single version expression.
1833// For example, pattern="std::map*" and language="C++".
1834struct Version_expression
1835{
1836  Version_expression(const std::string& a_pattern,
1837		     Version_script_info::Language a_language,
1838                     bool a_exact_match)
1839    : pattern(a_pattern), language(a_language), exact_match(a_exact_match),
1840      was_matched_by_symbol(false)
1841  { }
1842
1843  std::string pattern;
1844  Version_script_info::Language language;
1845  // If false, we use glob() to match pattern.  If true, we use strcmp().
1846  bool exact_match;
1847  // True if --no-undefined-version is in effect and we found this
1848  // version in get_symbol_version.  We use mutable because this
1849  // struct is generally not modifiable after it has been created.
1850  mutable bool was_matched_by_symbol;
1851};
1852
1853// A list of expressions.
1854struct Version_expression_list
1855{
1856  std::vector<struct Version_expression> expressions;
1857};
1858
1859// A list of which versions upon which another version depends.
1860// Strings should be from the Stringpool.
1861struct Version_dependency_list
1862{
1863  std::vector<std::string> dependencies;
1864};
1865
1866// The total definition of a version.  It includes the tag for the
1867// version, its global and local expressions, and any dependencies.
1868struct Version_tree
1869{
1870  Version_tree()
1871      : tag(), global(NULL), local(NULL), dependencies(NULL)
1872  { }
1873
1874  std::string tag;
1875  const struct Version_expression_list* global;
1876  const struct Version_expression_list* local;
1877  const struct Version_dependency_list* dependencies;
1878};
1879
1880// Helper class that calls cplus_demangle when needed and takes care of freeing
1881// the result.
1882
1883class Lazy_demangler
1884{
1885 public:
1886  Lazy_demangler(const char* symbol, int options)
1887    : symbol_(symbol), options_(options), demangled_(NULL), did_demangle_(false)
1888  { }
1889
1890  ~Lazy_demangler()
1891  { free(this->demangled_); }
1892
1893  // Return the demangled name. The actual demangling happens on the first call,
1894  // and the result is later cached.
1895  inline char*
1896  get();
1897
1898 private:
1899  // The symbol to demangle.
1900  const char* symbol_;
1901  // Option flags to pass to cplus_demagle.
1902  const int options_;
1903  // The cached demangled value, or NULL if demangling didn't happen yet or
1904  // failed.
1905  char* demangled_;
1906  // Whether we already called cplus_demangle
1907  bool did_demangle_;
1908};
1909
1910// Return the demangled name. The actual demangling happens on the first call,
1911// and the result is later cached. Returns NULL if the symbol cannot be
1912// demangled.
1913
1914inline char*
1915Lazy_demangler::get()
1916{
1917  if (!this->did_demangle_)
1918    {
1919      this->demangled_ = cplus_demangle(this->symbol_, this->options_);
1920      this->did_demangle_ = true;
1921    }
1922  return this->demangled_;
1923}
1924
1925// Class Version_script_info.
1926
1927Version_script_info::Version_script_info()
1928  : dependency_lists_(), expression_lists_(), version_trees_(), globs_(),
1929    default_version_(NULL), default_is_global_(false), is_finalized_(false)
1930{
1931  for (int i = 0; i < LANGUAGE_COUNT; ++i)
1932    this->exact_[i] = NULL;
1933}
1934
1935Version_script_info::~Version_script_info()
1936{
1937}
1938
1939// Forget all the known version script information.
1940
1941void
1942Version_script_info::clear()
1943{
1944  for (size_t k = 0; k < this->dependency_lists_.size(); ++k)
1945    delete this->dependency_lists_[k];
1946  this->dependency_lists_.clear();
1947  for (size_t k = 0; k < this->version_trees_.size(); ++k)
1948    delete this->version_trees_[k];
1949  this->version_trees_.clear();
1950  for (size_t k = 0; k < this->expression_lists_.size(); ++k)
1951    delete this->expression_lists_[k];
1952  this->expression_lists_.clear();
1953}
1954
1955// Finalize the version script information.
1956
1957void
1958Version_script_info::finalize()
1959{
1960  if (!this->is_finalized_)
1961    {
1962      this->build_lookup_tables();
1963      this->is_finalized_ = true;
1964    }
1965}
1966
1967// Return all the versions.
1968
1969std::vector<std::string>
1970Version_script_info::get_versions() const
1971{
1972  std::vector<std::string> ret;
1973  for (size_t j = 0; j < this->version_trees_.size(); ++j)
1974    if (!this->version_trees_[j]->tag.empty())
1975      ret.push_back(this->version_trees_[j]->tag);
1976  return ret;
1977}
1978
1979// Return the dependencies of VERSION.
1980
1981std::vector<std::string>
1982Version_script_info::get_dependencies(const char* version) const
1983{
1984  std::vector<std::string> ret;
1985  for (size_t j = 0; j < this->version_trees_.size(); ++j)
1986    if (this->version_trees_[j]->tag == version)
1987      {
1988        const struct Version_dependency_list* deps =
1989          this->version_trees_[j]->dependencies;
1990        if (deps != NULL)
1991          for (size_t k = 0; k < deps->dependencies.size(); ++k)
1992            ret.push_back(deps->dependencies[k]);
1993        return ret;
1994      }
1995  return ret;
1996}
1997
1998// A version script essentially maps a symbol name to a version tag
1999// and an indication of whether symbol is global or local within that
2000// version tag.  Each symbol maps to at most one version tag.
2001// Unfortunately, in practice, version scripts are ambiguous, and list
2002// symbols multiple times.  Thus, we have to document the matching
2003// process.
2004
2005// This is a description of what the GNU linker does as of 2010-01-11.
2006// It walks through the version tags in the order in which they appear
2007// in the version script.  For each tag, it first walks through the
2008// global patterns for that tag, then the local patterns.  When
2009// looking at a single pattern, it first applies any language specific
2010// demangling as specified for the pattern, and then matches the
2011// resulting symbol name to the pattern.  If it finds an exact match
2012// for a literal pattern (a pattern enclosed in quotes or with no
2013// wildcard characters), then that is the match that it uses.  If
2014// finds a match with a wildcard pattern, then it saves it and
2015// continues searching.  Wildcard patterns that are exactly "*" are
2016// saved separately.
2017
2018// If no exact match with a literal pattern is ever found, then if a
2019// wildcard match with a global pattern was found it is used,
2020// otherwise if a wildcard match with a local pattern was found it is
2021// used.
2022
2023// This is the result:
2024//   * If there is an exact match, then we use the first tag in the
2025//     version script where it matches.
2026//     + If the exact match in that tag is global, it is used.
2027//     + Otherwise the exact match in that tag is local, and is used.
2028//   * Otherwise, if there is any match with a global wildcard pattern:
2029//     + If there is any match with a wildcard pattern which is not
2030//       "*", then we use the tag in which the *last* such pattern
2031//       appears.
2032//     + Otherwise, we matched "*".  If there is no match with a local
2033//       wildcard pattern which is not "*", then we use the *last*
2034//       match with a global "*".  Otherwise, continue.
2035//   * Otherwise, if there is any match with a local wildcard pattern:
2036//     + If there is any match with a wildcard pattern which is not
2037//       "*", then we use the tag in which the *last* such pattern
2038//       appears.
2039//     + Otherwise, we matched "*", and we use the tag in which the
2040//       *last* such match occurred.
2041
2042// There is an additional wrinkle.  When the GNU linker finds a symbol
2043// with a version defined in an object file due to a .symver
2044// directive, it looks up that symbol name in that version tag.  If it
2045// finds it, it matches the symbol name against the patterns for that
2046// version.  If there is no match with a global pattern, but there is
2047// a match with a local pattern, then the GNU linker marks the symbol
2048// as local.
2049
2050// We want gold to be generally compatible, but we also want gold to
2051// be fast.  These are the rules that gold implements:
2052//   * If there is an exact match for the mangled name, we use it.
2053//     + If there is more than one exact match, we give a warning, and
2054//       we use the first tag in the script which matches.
2055//     + If a symbol has an exact match as both global and local for
2056//       the same version tag, we give an error.
2057//   * Otherwise, we look for an extern C++ or an extern Java exact
2058//     match.  If we find an exact match, we use it.
2059//     + If there is more than one exact match, we give a warning, and
2060//       we use the first tag in the script which matches.
2061//     + If a symbol has an exact match as both global and local for
2062//       the same version tag, we give an error.
2063//   * Otherwise, we look through the wildcard patterns, ignoring "*"
2064//     patterns.  We look through the version tags in reverse order.
2065//     For each version tag, we look through the global patterns and
2066//     then the local patterns.  We use the first match we find (i.e.,
2067//     the last matching version tag in the file).
2068//   * Otherwise, we use the "*" pattern if there is one.  We give an
2069//     error if there are multiple "*" patterns.
2070
2071// At least for now, gold does not look up the version tag for a
2072// symbol version found in an object file to see if it should be
2073// forced local.  There are other ways to force a symbol to be local,
2074// and I don't understand why this one is useful.
2075
2076// Build a set of fast lookup tables for a version script.
2077
2078void
2079Version_script_info::build_lookup_tables()
2080{
2081  size_t size = this->version_trees_.size();
2082  for (size_t j = 0; j < size; ++j)
2083    {
2084      const Version_tree* v = this->version_trees_[j];
2085      this->build_expression_list_lookup(v->local, v, false);
2086      this->build_expression_list_lookup(v->global, v, true);
2087    }
2088}
2089
2090// If a pattern has backlashes but no unquoted wildcard characters,
2091// then we apply backslash unquoting and look for an exact match.
2092// Otherwise we treat it as a wildcard pattern.  This function returns
2093// true for a wildcard pattern.  Otherwise, it does backslash
2094// unquoting on *PATTERN and returns false.  If this returns true,
2095// *PATTERN may have been partially unquoted.
2096
2097bool
2098Version_script_info::unquote(std::string* pattern) const
2099{
2100  bool saw_backslash = false;
2101  size_t len = pattern->length();
2102  size_t j = 0;
2103  for (size_t i = 0; i < len; ++i)
2104    {
2105      if (saw_backslash)
2106	saw_backslash = false;
2107      else
2108	{
2109	  switch ((*pattern)[i])
2110	    {
2111	    case '?': case '[': case '*':
2112	      return true;
2113	    case '\\':
2114	      saw_backslash = true;
2115	      continue;
2116	    default:
2117	      break;
2118	    }
2119	}
2120
2121      if (i != j)
2122	(*pattern)[j] = (*pattern)[i];
2123      ++j;
2124    }
2125  return false;
2126}
2127
2128// Add an exact match for MATCH to *PE.  The result of the match is
2129// V/IS_GLOBAL.
2130
2131void
2132Version_script_info::add_exact_match(const std::string& match,
2133				     const Version_tree* v, bool is_global,
2134				     const Version_expression* ve,
2135				     Exact* pe)
2136{
2137  std::pair<Exact::iterator, bool> ins =
2138    pe->insert(std::make_pair(match, Version_tree_match(v, is_global, ve)));
2139  if (ins.second)
2140    {
2141      // This is the first time we have seen this match.
2142      return;
2143    }
2144
2145  Version_tree_match& vtm(ins.first->second);
2146  if (vtm.real->tag != v->tag)
2147    {
2148      // This is an ambiguous match.  We still return the
2149      // first version that we found in the script, but we
2150      // record the new version to issue a warning if we
2151      // wind up looking up this symbol.
2152      if (vtm.ambiguous == NULL)
2153	vtm.ambiguous = v;
2154    }
2155  else if (is_global != vtm.is_global)
2156    {
2157      // We have a match for both the global and local entries for a
2158      // version tag.  That's got to be wrong.
2159      gold_error(_("'%s' appears as both a global and a local symbol "
2160		   "for version '%s' in script"),
2161		 match.c_str(), v->tag.c_str());
2162    }
2163}
2164
2165// Build fast lookup information for EXPLIST and store it in LOOKUP.
2166// All matches go to V, and IS_GLOBAL is true if they are global
2167// matches.
2168
2169void
2170Version_script_info::build_expression_list_lookup(
2171    const Version_expression_list* explist,
2172    const Version_tree* v,
2173    bool is_global)
2174{
2175  if (explist == NULL)
2176    return;
2177  size_t size = explist->expressions.size();
2178  for (size_t i = 0; i < size; ++i)
2179    {
2180      const Version_expression& exp(explist->expressions[i]);
2181
2182      if (exp.pattern.length() == 1 && exp.pattern[0] == '*')
2183	{
2184	  if (this->default_version_ != NULL
2185	      && this->default_version_->tag != v->tag)
2186	    gold_warning(_("wildcard match appears in both version '%s' "
2187			   "and '%s' in script"),
2188			 this->default_version_->tag.c_str(), v->tag.c_str());
2189	  else if (this->default_version_ != NULL
2190		   && this->default_is_global_ != is_global)
2191	    gold_error(_("wildcard match appears as both global and local "
2192			 "in version '%s' in script"),
2193		       v->tag.c_str());
2194	  this->default_version_ = v;
2195	  this->default_is_global_ = is_global;
2196	  continue;
2197	}
2198
2199      std::string pattern = exp.pattern;
2200      if (!exp.exact_match)
2201	{
2202	  if (this->unquote(&pattern))
2203	    {
2204	      this->globs_.push_back(Glob(&exp, v, is_global));
2205	      continue;
2206	    }
2207	}
2208
2209      if (this->exact_[exp.language] == NULL)
2210	this->exact_[exp.language] = new Exact();
2211      this->add_exact_match(pattern, v, is_global, &exp,
2212			    this->exact_[exp.language]);
2213    }
2214}
2215
2216// Return the name to match given a name, a language code, and two
2217// lazy demanglers.
2218
2219const char*
2220Version_script_info::get_name_to_match(const char* name,
2221				       int language,
2222				       Lazy_demangler* cpp_demangler,
2223				       Lazy_demangler* java_demangler) const
2224{
2225  switch (language)
2226    {
2227    case LANGUAGE_C:
2228      return name;
2229    case LANGUAGE_CXX:
2230      return cpp_demangler->get();
2231    case LANGUAGE_JAVA:
2232      return java_demangler->get();
2233    default:
2234      gold_unreachable();
2235    }
2236}
2237
2238// Look up SYMBOL_NAME in the list of versions.  Return true if the
2239// symbol is found, false if not.  If the symbol is found, then if
2240// PVERSION is not NULL, set *PVERSION to the version tag, and if
2241// P_IS_GLOBAL is not NULL, set *P_IS_GLOBAL according to whether the
2242// symbol is global or not.
2243
2244bool
2245Version_script_info::get_symbol_version(const char* symbol_name,
2246					std::string* pversion,
2247					bool* p_is_global) const
2248{
2249  Lazy_demangler cpp_demangled_name(symbol_name, DMGL_ANSI | DMGL_PARAMS);
2250  Lazy_demangler java_demangled_name(symbol_name,
2251				     DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
2252
2253  gold_assert(this->is_finalized_);
2254  for (int i = 0; i < LANGUAGE_COUNT; ++i)
2255    {
2256      Exact* exact = this->exact_[i];
2257      if (exact == NULL)
2258	continue;
2259
2260      const char* name_to_match = this->get_name_to_match(symbol_name, i,
2261							  &cpp_demangled_name,
2262							  &java_demangled_name);
2263      if (name_to_match == NULL)
2264	{
2265	  // If the name can not be demangled, the GNU linker goes
2266	  // ahead and tries to match it anyhow.  That does not
2267	  // make sense to me and I have not implemented it.
2268	  continue;
2269	}
2270
2271      Exact::const_iterator pe = exact->find(name_to_match);
2272      if (pe != exact->end())
2273	{
2274	  const Version_tree_match& vtm(pe->second);
2275	  if (vtm.ambiguous != NULL)
2276	    gold_warning(_("using '%s' as version for '%s' which is also "
2277			   "named in version '%s' in script"),
2278			 vtm.real->tag.c_str(), name_to_match,
2279			 vtm.ambiguous->tag.c_str());
2280
2281	  if (pversion != NULL)
2282	    *pversion = vtm.real->tag;
2283	  if (p_is_global != NULL)
2284	    *p_is_global = vtm.is_global;
2285
2286	  // If we are using --no-undefined-version, and this is a
2287	  // global symbol, we have to record that we have found this
2288	  // symbol, so that we don't warn about it.  We have to do
2289	  // this now, because otherwise we have no way to get from a
2290	  // non-C language back to the demangled name that we
2291	  // matched.
2292	  if (p_is_global != NULL && vtm.is_global)
2293	    vtm.expression->was_matched_by_symbol = true;
2294
2295	  return true;
2296	}
2297    }
2298
2299  // Look through the glob patterns in reverse order.
2300
2301  for (Globs::const_reverse_iterator p = this->globs_.rbegin();
2302       p != this->globs_.rend();
2303       ++p)
2304    {
2305      int language = p->expression->language;
2306      const char* name_to_match = this->get_name_to_match(symbol_name,
2307							  language,
2308							  &cpp_demangled_name,
2309							  &java_demangled_name);
2310      if (name_to_match == NULL)
2311	continue;
2312
2313      if (fnmatch(p->expression->pattern.c_str(), name_to_match,
2314		  FNM_NOESCAPE) == 0)
2315	{
2316	  if (pversion != NULL)
2317	    *pversion = p->version->tag;
2318	  if (p_is_global != NULL)
2319	    *p_is_global = p->is_global;
2320	  return true;
2321	}
2322    }
2323
2324  // Finally, there may be a wildcard.
2325  if (this->default_version_ != NULL)
2326    {
2327      if (pversion != NULL)
2328	*pversion = this->default_version_->tag;
2329      if (p_is_global != NULL)
2330	*p_is_global = this->default_is_global_;
2331      return true;
2332    }
2333
2334  return false;
2335}
2336
2337// Give an error if any exact symbol names (not wildcards) appear in a
2338// version script, but there is no such symbol.
2339
2340void
2341Version_script_info::check_unmatched_names(const Symbol_table* symtab) const
2342{
2343  for (size_t i = 0; i < this->version_trees_.size(); ++i)
2344    {
2345      const Version_tree* vt = this->version_trees_[i];
2346      if (vt->global == NULL)
2347	continue;
2348      for (size_t j = 0; j < vt->global->expressions.size(); ++j)
2349	{
2350	  const Version_expression& expression(vt->global->expressions[j]);
2351
2352	  // Ignore cases where we used the version because we saw a
2353	  // symbol that we looked up.  Note that
2354	  // WAS_MATCHED_BY_SYMBOL will be true even if the symbol was
2355	  // not a definition.  That's OK as in that case we most
2356	  // likely gave an undefined symbol error anyhow.
2357	  if (expression.was_matched_by_symbol)
2358	    continue;
2359
2360	  // Just ignore names which are in languages other than C.
2361	  // We have no way to look them up in the symbol table.
2362	  if (expression.language != LANGUAGE_C)
2363	    continue;
2364
2365	  // Remove backslash quoting, and ignore wildcard patterns.
2366	  std::string pattern = expression.pattern;
2367	  if (!expression.exact_match)
2368	    {
2369	      if (this->unquote(&pattern))
2370		continue;
2371	    }
2372
2373	  if (symtab->lookup(pattern.c_str(), vt->tag.c_str()) == NULL)
2374	    gold_error(_("version script assignment of %s to symbol %s "
2375			 "failed: symbol not defined"),
2376		       vt->tag.c_str(), pattern.c_str());
2377	}
2378    }
2379}
2380
2381struct Version_dependency_list*
2382Version_script_info::allocate_dependency_list()
2383{
2384  dependency_lists_.push_back(new Version_dependency_list);
2385  return dependency_lists_.back();
2386}
2387
2388struct Version_expression_list*
2389Version_script_info::allocate_expression_list()
2390{
2391  expression_lists_.push_back(new Version_expression_list);
2392  return expression_lists_.back();
2393}
2394
2395struct Version_tree*
2396Version_script_info::allocate_version_tree()
2397{
2398  version_trees_.push_back(new Version_tree);
2399  return version_trees_.back();
2400}
2401
2402// Print for debugging.
2403
2404void
2405Version_script_info::print(FILE* f) const
2406{
2407  if (this->empty())
2408    return;
2409
2410  fprintf(f, "VERSION {");
2411
2412  for (size_t i = 0; i < this->version_trees_.size(); ++i)
2413    {
2414      const Version_tree* vt = this->version_trees_[i];
2415
2416      if (vt->tag.empty())
2417	fprintf(f, "  {\n");
2418      else
2419	fprintf(f, "  %s {\n", vt->tag.c_str());
2420
2421      if (vt->global != NULL)
2422	{
2423	  fprintf(f, "    global :\n");
2424	  this->print_expression_list(f, vt->global);
2425	}
2426
2427      if (vt->local != NULL)
2428	{
2429	  fprintf(f, "    local :\n");
2430	  this->print_expression_list(f, vt->local);
2431	}
2432
2433      fprintf(f, "  }");
2434      if (vt->dependencies != NULL)
2435	{
2436	  const Version_dependency_list* deps = vt->dependencies;
2437	  for (size_t j = 0; j < deps->dependencies.size(); ++j)
2438	    {
2439	      if (j < deps->dependencies.size() - 1)
2440		fprintf(f, "\n");
2441	      fprintf(f, "    %s", deps->dependencies[j].c_str());
2442	    }
2443	}
2444      fprintf(f, ";\n");
2445    }
2446
2447  fprintf(f, "}\n");
2448}
2449
2450void
2451Version_script_info::print_expression_list(
2452    FILE* f,
2453    const Version_expression_list* vel) const
2454{
2455  Version_script_info::Language current_language = LANGUAGE_C;
2456  for (size_t i = 0; i < vel->expressions.size(); ++i)
2457    {
2458      const Version_expression& ve(vel->expressions[i]);
2459
2460      if (ve.language != current_language)
2461	{
2462	  if (current_language != LANGUAGE_C)
2463	    fprintf(f, "      }\n");
2464	  switch (ve.language)
2465	    {
2466	    case LANGUAGE_C:
2467	      break;
2468	    case LANGUAGE_CXX:
2469	      fprintf(f, "      extern \"C++\" {\n");
2470	      break;
2471	    case LANGUAGE_JAVA:
2472	      fprintf(f, "      extern \"Java\" {\n");
2473	      break;
2474	    default:
2475	      gold_unreachable();
2476	    }
2477	  current_language = ve.language;
2478	}
2479
2480      fprintf(f, "      ");
2481      if (current_language != LANGUAGE_C)
2482	fprintf(f, "  ");
2483
2484      if (ve.exact_match)
2485	fprintf(f, "\"");
2486      fprintf(f, "%s", ve.pattern.c_str());
2487      if (ve.exact_match)
2488	fprintf(f, "\"");
2489
2490      fprintf(f, "\n");
2491    }
2492
2493  if (current_language != LANGUAGE_C)
2494    fprintf(f, "      }\n");
2495}
2496
2497} // End namespace gold.
2498
2499// The remaining functions are extern "C", so it's clearer to not put
2500// them in namespace gold.
2501
2502using namespace gold;
2503
2504// This function is called by the bison parser to return the next
2505// token.
2506
2507extern "C" int
2508yylex(YYSTYPE* lvalp, void* closurev)
2509{
2510  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2511  const Token* token = closure->next_token();
2512  switch (token->classification())
2513    {
2514    default:
2515      gold_unreachable();
2516
2517    case Token::TOKEN_INVALID:
2518      yyerror(closurev, "invalid character");
2519      return 0;
2520
2521    case Token::TOKEN_EOF:
2522      return 0;
2523
2524    case Token::TOKEN_STRING:
2525      {
2526	// This is either a keyword or a STRING.
2527	size_t len;
2528	const char* str = token->string_value(&len);
2529	int parsecode = 0;
2530        switch (closure->lex_mode())
2531          {
2532          case Lex::LINKER_SCRIPT:
2533            parsecode = script_keywords.keyword_to_parsecode(str, len);
2534            break;
2535          case Lex::VERSION_SCRIPT:
2536            parsecode = version_script_keywords.keyword_to_parsecode(str, len);
2537            break;
2538          case Lex::DYNAMIC_LIST:
2539            parsecode = dynamic_list_keywords.keyword_to_parsecode(str, len);
2540            break;
2541          default:
2542            break;
2543          }
2544	if (parsecode != 0)
2545	  return parsecode;
2546	lvalp->string.value = str;
2547	lvalp->string.length = len;
2548	return STRING;
2549      }
2550
2551    case Token::TOKEN_QUOTED_STRING:
2552      lvalp->string.value = token->string_value(&lvalp->string.length);
2553      return QUOTED_STRING;
2554
2555    case Token::TOKEN_OPERATOR:
2556      return token->operator_value();
2557
2558    case Token::TOKEN_INTEGER:
2559      lvalp->integer = token->integer_value();
2560      return INTEGER;
2561    }
2562}
2563
2564// This function is called by the bison parser to report an error.
2565
2566extern "C" void
2567yyerror(void* closurev, const char* message)
2568{
2569  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2570  gold_error(_("%s:%d:%d: %s"), closure->filename(), closure->lineno(),
2571	     closure->charpos(), message);
2572}
2573
2574// Called by the bison parser to add an external symbol to the link.
2575
2576extern "C" void
2577script_add_extern(void* closurev, const char* name, size_t length)
2578{
2579  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2580  closure->script_options()->add_symbol_reference(name, length);
2581}
2582
2583// Called by the bison parser to add a file to the link.
2584
2585extern "C" void
2586script_add_file(void* closurev, const char* name, size_t length)
2587{
2588  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2589
2590  // If this is an absolute path, and we found the script in the
2591  // sysroot, then we want to prepend the sysroot to the file name.
2592  // For example, this is how we handle a cross link to the x86_64
2593  // libc.so, which refers to /lib/libc.so.6.
2594  std::string name_string(name, length);
2595  const char* extra_search_path = ".";
2596  std::string script_directory;
2597  if (IS_ABSOLUTE_PATH(name_string.c_str()))
2598    {
2599      if (closure->is_in_sysroot())
2600	{
2601	  const std::string& sysroot(parameters->options().sysroot());
2602	  gold_assert(!sysroot.empty());
2603	  name_string = sysroot + name_string;
2604	}
2605    }
2606  else
2607    {
2608      // In addition to checking the normal library search path, we
2609      // also want to check in the script-directory.
2610      const char* slash = strrchr(closure->filename(), '/');
2611      if (slash != NULL)
2612	{
2613	  script_directory.assign(closure->filename(),
2614				  slash - closure->filename() + 1);
2615	  extra_search_path = script_directory.c_str();
2616	}
2617    }
2618
2619  Input_file_argument file(name_string.c_str(),
2620			   Input_file_argument::INPUT_FILE_TYPE_FILE,
2621			   extra_search_path, false,
2622			   closure->position_dependent_options());
2623  closure->inputs()->add_file(file);
2624}
2625
2626// Called by the bison parser to add a library to the link.
2627
2628extern "C" void
2629script_add_library(void* closurev, const char* name, size_t length)
2630{
2631  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2632  std::string name_string(name, length);
2633
2634  if (name_string[0] != 'l')
2635    gold_error(_("library name must be prefixed with -l"));
2636
2637  Input_file_argument file(name_string.c_str() + 1,
2638			   Input_file_argument::INPUT_FILE_TYPE_LIBRARY,
2639			   "", false,
2640			   closure->position_dependent_options());
2641  closure->inputs()->add_file(file);
2642}
2643
2644// Called by the bison parser to start a group.  If we are already in
2645// a group, that means that this script was invoked within a
2646// --start-group --end-group sequence on the command line, or that
2647// this script was found in a GROUP of another script.  In that case,
2648// we simply continue the existing group, rather than starting a new
2649// one.  It is possible to construct a case in which this will do
2650// something other than what would happen if we did a recursive group,
2651// but it's hard to imagine why the different behaviour would be
2652// useful for a real program.  Avoiding recursive groups is simpler
2653// and more efficient.
2654
2655extern "C" void
2656script_start_group(void* closurev)
2657{
2658  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2659  if (!closure->in_group())
2660    closure->inputs()->start_group();
2661}
2662
2663// Called by the bison parser at the end of a group.
2664
2665extern "C" void
2666script_end_group(void* closurev)
2667{
2668  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2669  if (!closure->in_group())
2670    closure->inputs()->end_group();
2671}
2672
2673// Called by the bison parser to start an AS_NEEDED list.
2674
2675extern "C" void
2676script_start_as_needed(void* closurev)
2677{
2678  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2679  closure->position_dependent_options().set_as_needed(true);
2680}
2681
2682// Called by the bison parser at the end of an AS_NEEDED list.
2683
2684extern "C" void
2685script_end_as_needed(void* closurev)
2686{
2687  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2688  closure->position_dependent_options().set_as_needed(false);
2689}
2690
2691// Called by the bison parser to set the entry symbol.
2692
2693extern "C" void
2694script_set_entry(void* closurev, const char* entry, size_t length)
2695{
2696  // We'll parse this exactly the same as --entry=ENTRY on the commandline
2697  // TODO(csilvers): FIXME -- call set_entry directly.
2698  std::string arg("--entry=");
2699  arg.append(entry, length);
2700  script_parse_option(closurev, arg.c_str(), arg.size());
2701}
2702
2703// Called by the bison parser to set whether to define common symbols.
2704
2705extern "C" void
2706script_set_common_allocation(void* closurev, int set)
2707{
2708  const char* arg = set != 0 ? "--define-common" : "--no-define-common";
2709  script_parse_option(closurev, arg, strlen(arg));
2710}
2711
2712// Called by the bison parser to refer to a symbol.
2713
2714extern "C" Expression*
2715script_symbol(void* closurev, const char* name, size_t length)
2716{
2717  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2718  if (length != 1 || name[0] != '.')
2719    closure->script_options()->add_symbol_reference(name, length);
2720  return script_exp_string(name, length);
2721}
2722
2723// Called by the bison parser to define a symbol.
2724
2725extern "C" void
2726script_set_symbol(void* closurev, const char* name, size_t length,
2727		  Expression* value, int providei, int hiddeni)
2728{
2729  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2730  const bool provide = providei != 0;
2731  const bool hidden = hiddeni != 0;
2732  closure->script_options()->add_symbol_assignment(name, length,
2733						   closure->parsing_defsym(),
2734						   value, provide, hidden);
2735  closure->clear_skip_on_incompatible_target();
2736}
2737
2738// Called by the bison parser to add an assertion.
2739
2740extern "C" void
2741script_add_assertion(void* closurev, Expression* check, const char* message,
2742		     size_t messagelen)
2743{
2744  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2745  closure->script_options()->add_assertion(check, message, messagelen);
2746  closure->clear_skip_on_incompatible_target();
2747}
2748
2749// Called by the bison parser to parse an OPTION.
2750
2751extern "C" void
2752script_parse_option(void* closurev, const char* option, size_t length)
2753{
2754  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2755  // We treat the option as a single command-line option, even if
2756  // it has internal whitespace.
2757  if (closure->command_line() == NULL)
2758    {
2759      // There are some options that we could handle here--e.g.,
2760      // -lLIBRARY.  Should we bother?
2761      gold_warning(_("%s:%d:%d: ignoring command OPTION; OPTION is only valid"
2762		     " for scripts specified via -T/--script"),
2763		   closure->filename(), closure->lineno(), closure->charpos());
2764    }
2765  else
2766    {
2767      bool past_a_double_dash_option = false;
2768      const char* mutable_option = strndup(option, length);
2769      gold_assert(mutable_option != NULL);
2770      closure->command_line()->process_one_option(1, &mutable_option, 0,
2771                                                  &past_a_double_dash_option);
2772      // The General_options class will quite possibly store a pointer
2773      // into mutable_option, so we can't free it.  In cases the class
2774      // does not store such a pointer, this is a memory leak.  Alas. :(
2775    }
2776  closure->clear_skip_on_incompatible_target();
2777}
2778
2779// Called by the bison parser to handle OUTPUT_FORMAT.  OUTPUT_FORMAT
2780// takes either one or three arguments.  In the three argument case,
2781// the format depends on the endianness option, which we don't
2782// currently support (FIXME).  If we see an OUTPUT_FORMAT for the
2783// wrong format, then we want to search for a new file.  Returning 0
2784// here will cause the parser to immediately abort.
2785
2786extern "C" int
2787script_check_output_format(void* closurev,
2788			   const char* default_name, size_t default_length,
2789			   const char*, size_t, const char*, size_t)
2790{
2791  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2792  std::string name(default_name, default_length);
2793  Target* target = select_target_by_name(name.c_str());
2794  if (target == NULL || !parameters->is_compatible_target(target))
2795    {
2796      if (closure->skip_on_incompatible_target())
2797	{
2798	  closure->set_found_incompatible_target();
2799	  return 0;
2800	}
2801      // FIXME: Should we warn about the unknown target?
2802    }
2803  return 1;
2804}
2805
2806// Called by the bison parser to handle TARGET.
2807
2808extern "C" void
2809script_set_target(void* closurev, const char* target, size_t len)
2810{
2811  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2812  std::string s(target, len);
2813  General_options::Object_format format_enum;
2814  format_enum = General_options::string_to_object_format(s.c_str());
2815  closure->position_dependent_options().set_format_enum(format_enum);
2816}
2817
2818// Called by the bison parser to handle SEARCH_DIR.  This is handled
2819// exactly like a -L option.
2820
2821extern "C" void
2822script_add_search_dir(void* closurev, const char* option, size_t length)
2823{
2824  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2825  if (closure->command_line() == NULL)
2826    gold_warning(_("%s:%d:%d: ignoring SEARCH_DIR; SEARCH_DIR is only valid"
2827		   " for scripts specified via -T/--script"),
2828		 closure->filename(), closure->lineno(), closure->charpos());
2829  else if (!closure->command_line()->options().nostdlib())
2830    {
2831      std::string s = "-L" + std::string(option, length);
2832      script_parse_option(closurev, s.c_str(), s.size());
2833    }
2834}
2835
2836/* Called by the bison parser to push the lexer into expression
2837   mode.  */
2838
2839extern "C" void
2840script_push_lex_into_expression_mode(void* closurev)
2841{
2842  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2843  closure->push_lex_mode(Lex::EXPRESSION);
2844}
2845
2846/* Called by the bison parser to push the lexer into version
2847   mode.  */
2848
2849extern "C" void
2850script_push_lex_into_version_mode(void* closurev)
2851{
2852  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2853  if (closure->version_script()->is_finalized())
2854    gold_error(_("%s:%d:%d: invalid use of VERSION in input file"),
2855	       closure->filename(), closure->lineno(), closure->charpos());
2856  closure->push_lex_mode(Lex::VERSION_SCRIPT);
2857}
2858
2859/* Called by the bison parser to pop the lexer mode.  */
2860
2861extern "C" void
2862script_pop_lex_mode(void* closurev)
2863{
2864  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2865  closure->pop_lex_mode();
2866}
2867
2868// Register an entire version node. For example:
2869//
2870// GLIBC_2.1 {
2871//   global: foo;
2872// } GLIBC_2.0;
2873//
2874// - tag is "GLIBC_2.1"
2875// - tree contains the information "global: foo"
2876// - deps contains "GLIBC_2.0"
2877
2878extern "C" void
2879script_register_vers_node(void*,
2880			  const char* tag,
2881			  int taglen,
2882			  struct Version_tree* tree,
2883			  struct Version_dependency_list* deps)
2884{
2885  gold_assert(tree != NULL);
2886  tree->dependencies = deps;
2887  if (tag != NULL)
2888    tree->tag = std::string(tag, taglen);
2889}
2890
2891// Add a dependencies to the list of existing dependencies, if any,
2892// and return the expanded list.
2893
2894extern "C" struct Version_dependency_list*
2895script_add_vers_depend(void* closurev,
2896		       struct Version_dependency_list* all_deps,
2897		       const char* depend_to_add, int deplen)
2898{
2899  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2900  if (all_deps == NULL)
2901    all_deps = closure->version_script()->allocate_dependency_list();
2902  all_deps->dependencies.push_back(std::string(depend_to_add, deplen));
2903  return all_deps;
2904}
2905
2906// Add a pattern expression to an existing list of expressions, if any.
2907
2908extern "C" struct Version_expression_list*
2909script_new_vers_pattern(void* closurev,
2910			struct Version_expression_list* expressions,
2911			const char* pattern, int patlen, int exact_match)
2912{
2913  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2914  if (expressions == NULL)
2915    expressions = closure->version_script()->allocate_expression_list();
2916  expressions->expressions.push_back(
2917      Version_expression(std::string(pattern, patlen),
2918                         closure->get_current_language(),
2919                         static_cast<bool>(exact_match)));
2920  return expressions;
2921}
2922
2923// Attaches b to the end of a, and clears b.  So a = a + b and b = {}.
2924
2925extern "C" struct Version_expression_list*
2926script_merge_expressions(struct Version_expression_list* a,
2927                         struct Version_expression_list* b)
2928{
2929  a->expressions.insert(a->expressions.end(),
2930                        b->expressions.begin(), b->expressions.end());
2931  // We could delete b and remove it from expressions_lists_, but
2932  // that's a lot of work.  This works just as well.
2933  b->expressions.clear();
2934  return a;
2935}
2936
2937// Combine the global and local expressions into a a Version_tree.
2938
2939extern "C" struct Version_tree*
2940script_new_vers_node(void* closurev,
2941		     struct Version_expression_list* global,
2942		     struct Version_expression_list* local)
2943{
2944  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2945  Version_tree* tree = closure->version_script()->allocate_version_tree();
2946  tree->global = global;
2947  tree->local = local;
2948  return tree;
2949}
2950
2951// Handle a transition in language, such as at the
2952// start or end of 'extern "C++"'
2953
2954extern "C" void
2955version_script_push_lang(void* closurev, const char* lang, int langlen)
2956{
2957  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2958  std::string language(lang, langlen);
2959  Version_script_info::Language code;
2960  if (language.empty() || language == "C")
2961    code = Version_script_info::LANGUAGE_C;
2962  else if (language == "C++")
2963    code = Version_script_info::LANGUAGE_CXX;
2964  else if (language == "Java")
2965    code = Version_script_info::LANGUAGE_JAVA;
2966  else
2967    {
2968      char* buf = new char[langlen + 100];
2969      snprintf(buf, langlen + 100,
2970	       _("unrecognized version script language '%s'"),
2971	       language.c_str());
2972      yyerror(closurev, buf);
2973      delete[] buf;
2974      code = Version_script_info::LANGUAGE_C;
2975    }
2976  closure->push_language(code);
2977}
2978
2979extern "C" void
2980version_script_pop_lang(void* closurev)
2981{
2982  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2983  closure->pop_language();
2984}
2985
2986// Called by the bison parser to start a SECTIONS clause.
2987
2988extern "C" void
2989script_start_sections(void* closurev)
2990{
2991  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2992  closure->script_options()->script_sections()->start_sections();
2993  closure->clear_skip_on_incompatible_target();
2994}
2995
2996// Called by the bison parser to finish a SECTIONS clause.
2997
2998extern "C" void
2999script_finish_sections(void* closurev)
3000{
3001  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3002  closure->script_options()->script_sections()->finish_sections();
3003}
3004
3005// Start processing entries for an output section.
3006
3007extern "C" void
3008script_start_output_section(void* closurev, const char* name, size_t namelen,
3009			    const struct Parser_output_section_header* header)
3010{
3011  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3012  closure->script_options()->script_sections()->start_output_section(name,
3013								     namelen,
3014								     header);
3015}
3016
3017// Finish processing entries for an output section.
3018
3019extern "C" void
3020script_finish_output_section(void* closurev,
3021			     const struct Parser_output_section_trailer* trail)
3022{
3023  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3024  closure->script_options()->script_sections()->finish_output_section(trail);
3025}
3026
3027// Add a data item (e.g., "WORD (0)") to the current output section.
3028
3029extern "C" void
3030script_add_data(void* closurev, int data_token, Expression* val)
3031{
3032  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3033  int size;
3034  bool is_signed = true;
3035  switch (data_token)
3036    {
3037    case QUAD:
3038      size = 8;
3039      is_signed = false;
3040      break;
3041    case SQUAD:
3042      size = 8;
3043      break;
3044    case LONG:
3045      size = 4;
3046      break;
3047    case SHORT:
3048      size = 2;
3049      break;
3050    case BYTE:
3051      size = 1;
3052      break;
3053    default:
3054      gold_unreachable();
3055    }
3056  closure->script_options()->script_sections()->add_data(size, is_signed, val);
3057}
3058
3059// Add a clause setting the fill value to the current output section.
3060
3061extern "C" void
3062script_add_fill(void* closurev, Expression* val)
3063{
3064  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3065  closure->script_options()->script_sections()->add_fill(val);
3066}
3067
3068// Add a new input section specification to the current output
3069// section.
3070
3071extern "C" void
3072script_add_input_section(void* closurev,
3073			 const struct Input_section_spec* spec,
3074			 int keepi)
3075{
3076  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3077  bool keep = keepi != 0;
3078  closure->script_options()->script_sections()->add_input_section(spec, keep);
3079}
3080
3081// When we see DATA_SEGMENT_ALIGN we record that following output
3082// sections may be relro.
3083
3084extern "C" void
3085script_data_segment_align(void* closurev)
3086{
3087  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3088  if (!closure->script_options()->saw_sections_clause())
3089    gold_error(_("%s:%d:%d: DATA_SEGMENT_ALIGN not in SECTIONS clause"),
3090	       closure->filename(), closure->lineno(), closure->charpos());
3091  else
3092    closure->script_options()->script_sections()->data_segment_align();
3093}
3094
3095// When we see DATA_SEGMENT_RELRO_END we know that all output sections
3096// since DATA_SEGMENT_ALIGN should be relro.
3097
3098extern "C" void
3099script_data_segment_relro_end(void* closurev)
3100{
3101  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3102  if (!closure->script_options()->saw_sections_clause())
3103    gold_error(_("%s:%d:%d: DATA_SEGMENT_ALIGN not in SECTIONS clause"),
3104	       closure->filename(), closure->lineno(), closure->charpos());
3105  else
3106    closure->script_options()->script_sections()->data_segment_relro_end();
3107}
3108
3109// Create a new list of string/sort pairs.
3110
3111extern "C" String_sort_list_ptr
3112script_new_string_sort_list(const struct Wildcard_section* string_sort)
3113{
3114  return new String_sort_list(1, *string_sort);
3115}
3116
3117// Add an entry to a list of string/sort pairs.  The way the parser
3118// works permits us to simply modify the first parameter, rather than
3119// copy the vector.
3120
3121extern "C" String_sort_list_ptr
3122script_string_sort_list_add(String_sort_list_ptr pv,
3123			    const struct Wildcard_section* string_sort)
3124{
3125  if (pv == NULL)
3126    return script_new_string_sort_list(string_sort);
3127  else
3128    {
3129      pv->push_back(*string_sort);
3130      return pv;
3131    }
3132}
3133
3134// Create a new list of strings.
3135
3136extern "C" String_list_ptr
3137script_new_string_list(const char* str, size_t len)
3138{
3139  return new String_list(1, std::string(str, len));
3140}
3141
3142// Add an element to a list of strings.  The way the parser works
3143// permits us to simply modify the first parameter, rather than copy
3144// the vector.
3145
3146extern "C" String_list_ptr
3147script_string_list_push_back(String_list_ptr pv, const char* str, size_t len)
3148{
3149  if (pv == NULL)
3150    return script_new_string_list(str, len);
3151  else
3152    {
3153      pv->push_back(std::string(str, len));
3154      return pv;
3155    }
3156}
3157
3158// Concatenate two string lists.  Either or both may be NULL.  The way
3159// the parser works permits us to modify the parameters, rather than
3160// copy the vector.
3161
3162extern "C" String_list_ptr
3163script_string_list_append(String_list_ptr pv1, String_list_ptr pv2)
3164{
3165  if (pv1 == NULL)
3166    return pv2;
3167  if (pv2 == NULL)
3168    return pv1;
3169  pv1->insert(pv1->end(), pv2->begin(), pv2->end());
3170  return pv1;
3171}
3172
3173// Add a new program header.
3174
3175extern "C" void
3176script_add_phdr(void* closurev, const char* name, size_t namelen,
3177		unsigned int type, const Phdr_info* info)
3178{
3179  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3180  bool includes_filehdr = info->includes_filehdr != 0;
3181  bool includes_phdrs = info->includes_phdrs != 0;
3182  bool is_flags_valid = info->is_flags_valid != 0;
3183  Script_sections* ss = closure->script_options()->script_sections();
3184  ss->add_phdr(name, namelen, type, includes_filehdr, includes_phdrs,
3185	       is_flags_valid, info->flags, info->load_address);
3186  closure->clear_skip_on_incompatible_target();
3187}
3188
3189// Convert a program header string to a type.
3190
3191#define PHDR_TYPE(NAME) { #NAME, sizeof(#NAME) - 1, elfcpp::NAME }
3192
3193static struct
3194{
3195  const char* name;
3196  size_t namelen;
3197  unsigned int val;
3198} phdr_type_names[] =
3199{
3200  PHDR_TYPE(PT_NULL),
3201  PHDR_TYPE(PT_LOAD),
3202  PHDR_TYPE(PT_DYNAMIC),
3203  PHDR_TYPE(PT_INTERP),
3204  PHDR_TYPE(PT_NOTE),
3205  PHDR_TYPE(PT_SHLIB),
3206  PHDR_TYPE(PT_PHDR),
3207  PHDR_TYPE(PT_TLS),
3208  PHDR_TYPE(PT_GNU_EH_FRAME),
3209  PHDR_TYPE(PT_GNU_STACK),
3210  PHDR_TYPE(PT_GNU_RELRO)
3211};
3212
3213extern "C" unsigned int
3214script_phdr_string_to_type(void* closurev, const char* name, size_t namelen)
3215{
3216  for (unsigned int i = 0;
3217       i < sizeof(phdr_type_names) / sizeof(phdr_type_names[0]);
3218       ++i)
3219    if (namelen == phdr_type_names[i].namelen
3220	&& strncmp(name, phdr_type_names[i].name, namelen) == 0)
3221      return phdr_type_names[i].val;
3222  yyerror(closurev, _("unknown PHDR type (try integer)"));
3223  return elfcpp::PT_NULL;
3224}
3225
3226extern "C" void
3227script_saw_segment_start_expression(void* closurev)
3228{
3229  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3230  Script_sections* ss = closure->script_options()->script_sections();
3231  ss->set_saw_segment_start_expression(true);
3232}
3233
3234extern "C" void
3235script_set_section_region(void* closurev, const char* name, size_t namelen,
3236			  int set_vma)
3237{
3238  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3239  if (!closure->script_options()->saw_sections_clause())
3240    {
3241      gold_error(_("%s:%d:%d: MEMORY region '%.*s' referred to outside of "
3242		   "SECTIONS clause"),
3243		 closure->filename(), closure->lineno(), closure->charpos(),
3244		 static_cast<int>(namelen), name);
3245      return;
3246    }
3247
3248  Script_sections* ss = closure->script_options()->script_sections();
3249  Memory_region* mr = ss->find_memory_region(name, namelen);
3250  if (mr == NULL)
3251    {
3252      gold_error(_("%s:%d:%d: MEMORY region '%.*s' not declared"),
3253		 closure->filename(), closure->lineno(), closure->charpos(),
3254		 static_cast<int>(namelen), name);
3255      return;
3256    }
3257
3258  ss->set_memory_region(mr, set_vma);
3259}
3260
3261extern "C" void
3262script_add_memory(void* closurev, const char* name, size_t namelen,
3263		  unsigned int attrs, Expression* origin, Expression* length)
3264{
3265  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3266  Script_sections* ss = closure->script_options()->script_sections();
3267  ss->add_memory_region(name, namelen, attrs, origin, length);
3268}
3269
3270extern "C" unsigned int
3271script_parse_memory_attr(void* closurev, const char* attrs, size_t attrlen,
3272			 int invert)
3273{
3274  int attributes = 0;
3275
3276  while (attrlen--)
3277    switch (*attrs++)
3278      {
3279      case 'R':
3280      case 'r':
3281	attributes |= MEM_READABLE; break;
3282      case 'W':
3283      case 'w':
3284	attributes |= MEM_READABLE | MEM_WRITEABLE; break;
3285      case 'X':
3286      case 'x':
3287	attributes |= MEM_EXECUTABLE; break;
3288      case 'A':
3289      case 'a':
3290	attributes |= MEM_ALLOCATABLE; break;
3291      case 'I':
3292      case 'i':
3293      case 'L':
3294      case 'l':
3295	attributes |= MEM_INITIALIZED; break;
3296      default:
3297	yyerror(closurev, _("unknown MEMORY attribute"));
3298      }
3299
3300  if (invert)
3301    attributes = (~ attributes) & MEM_ATTR_MASK;
3302
3303  return attributes;
3304}
3305
3306extern "C" void
3307script_include_directive(void* closurev, const char*, size_t)
3308{
3309  // FIXME: Implement ?
3310  yyerror (closurev, _("GOLD does not currently support INCLUDE directives"));
3311}
3312
3313// Functions for memory regions.
3314
3315extern "C" Expression*
3316script_exp_function_origin(void* closurev, const char* name, size_t namelen)
3317{
3318  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3319  Script_sections* ss = closure->script_options()->script_sections();
3320  Expression* origin = ss->find_memory_region_origin(name, namelen);
3321
3322  if (origin == NULL)
3323    {
3324      gold_error(_("undefined memory region '%s' referenced "
3325		   "in ORIGIN expression"),
3326		 name);
3327      // Create a dummy expression to prevent crashes later on.
3328      origin = script_exp_integer(0);
3329    }
3330
3331  return origin;
3332}
3333
3334extern "C" Expression*
3335script_exp_function_length(void* closurev, const char* name, size_t namelen)
3336{
3337  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3338  Script_sections* ss = closure->script_options()->script_sections();
3339  Expression* length = ss->find_memory_region_length(name, namelen);
3340
3341  if (length == NULL)
3342    {
3343      gold_error(_("undefined memory region '%s' referenced "
3344		   "in LENGTH expression"),
3345		 name);
3346      // Create a dummy expression to prevent crashes later on.
3347      length = script_exp_integer(0);
3348    }
3349
3350  return length;
3351}
3352