1// output.h -- manage the output file for gold   -*- C++ -*-
2
3// Copyright 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4// Written by Ian Lance Taylor <iant@google.com>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
23#ifndef GOLD_OUTPUT_H
24#define GOLD_OUTPUT_H
25
26#include <list>
27#include <vector>
28
29#include "elfcpp.h"
30#include "mapfile.h"
31#include "layout.h"
32#include "reloc-types.h"
33
34namespace gold
35{
36
37class General_options;
38class Object;
39class Symbol;
40class Output_file;
41class Output_merge_base;
42class Output_section;
43class Relocatable_relocs;
44class Target;
45template<int size, bool big_endian>
46class Sized_target;
47template<int size, bool big_endian>
48class Sized_relobj;
49
50// An abtract class for data which has to go into the output file.
51
52class Output_data
53{
54 public:
55  explicit Output_data()
56    : address_(0), data_size_(0), offset_(-1),
57      is_address_valid_(false), is_data_size_valid_(false),
58      is_offset_valid_(false), is_data_size_fixed_(false),
59      has_dynamic_reloc_(false)
60  { }
61
62  virtual
63  ~Output_data();
64
65  // Return the address.  For allocated sections, this is only valid
66  // after Layout::finalize is finished.
67  uint64_t
68  address() const
69  {
70    gold_assert(this->is_address_valid_);
71    return this->address_;
72  }
73
74  // Return the size of the data.  For allocated sections, this must
75  // be valid after Layout::finalize calls set_address, but need not
76  // be valid before then.
77  off_t
78  data_size() const
79  {
80    gold_assert(this->is_data_size_valid_);
81    return this->data_size_;
82  }
83
84  // Return true if data size is fixed.
85  bool
86  is_data_size_fixed() const
87  { return this->is_data_size_fixed_; }
88
89  // Return the file offset.  This is only valid after
90  // Layout::finalize is finished.  For some non-allocated sections,
91  // it may not be valid until near the end of the link.
92  off_t
93  offset() const
94  {
95    gold_assert(this->is_offset_valid_);
96    return this->offset_;
97  }
98
99  // Reset the address and file offset.  This essentially disables the
100  // sanity testing about duplicate and unknown settings.
101  void
102  reset_address_and_file_offset()
103  {
104    this->is_address_valid_ = false;
105    this->is_offset_valid_ = false;
106    if (!this->is_data_size_fixed_)
107      this->is_data_size_valid_ = false;
108    this->do_reset_address_and_file_offset();
109  }
110
111  // Return true if address and file offset already have reset values. In
112  // other words, calling reset_address_and_file_offset will not change them.
113  bool
114  address_and_file_offset_have_reset_values() const
115  { return this->do_address_and_file_offset_have_reset_values(); }
116
117  // Return the required alignment.
118  uint64_t
119  addralign() const
120  { return this->do_addralign(); }
121
122  // Return whether this has a load address.
123  bool
124  has_load_address() const
125  { return this->do_has_load_address(); }
126
127  // Return the load address.
128  uint64_t
129  load_address() const
130  { return this->do_load_address(); }
131
132  // Return whether this is an Output_section.
133  bool
134  is_section() const
135  { return this->do_is_section(); }
136
137  // Return whether this is an Output_section of the specified type.
138  bool
139  is_section_type(elfcpp::Elf_Word stt) const
140  { return this->do_is_section_type(stt); }
141
142  // Return whether this is an Output_section with the specified flag
143  // set.
144  bool
145  is_section_flag_set(elfcpp::Elf_Xword shf) const
146  { return this->do_is_section_flag_set(shf); }
147
148  // Return the output section that this goes in, if there is one.
149  Output_section*
150  output_section()
151  { return this->do_output_section(); }
152
153  const Output_section*
154  output_section() const
155  { return this->do_output_section(); }
156
157  // Return the output section index, if there is an output section.
158  unsigned int
159  out_shndx() const
160  { return this->do_out_shndx(); }
161
162  // Set the output section index, if this is an output section.
163  void
164  set_out_shndx(unsigned int shndx)
165  { this->do_set_out_shndx(shndx); }
166
167  // Set the address and file offset of this data, and finalize the
168  // size of the data.  This is called during Layout::finalize for
169  // allocated sections.
170  void
171  set_address_and_file_offset(uint64_t addr, off_t off)
172  {
173    this->set_address(addr);
174    this->set_file_offset(off);
175    this->finalize_data_size();
176  }
177
178  // Set the address.
179  void
180  set_address(uint64_t addr)
181  {
182    gold_assert(!this->is_address_valid_);
183    this->address_ = addr;
184    this->is_address_valid_ = true;
185  }
186
187  // Set the file offset.
188  void
189  set_file_offset(off_t off)
190  {
191    gold_assert(!this->is_offset_valid_);
192    this->offset_ = off;
193    this->is_offset_valid_ = true;
194  }
195
196  // Finalize the data size.
197  void
198  finalize_data_size()
199  {
200    if (!this->is_data_size_valid_)
201      {
202	// Tell the child class to set the data size.
203	this->set_final_data_size();
204	gold_assert(this->is_data_size_valid_);
205      }
206  }
207
208  // Set the TLS offset.  Called only for SHT_TLS sections.
209  void
210  set_tls_offset(uint64_t tls_base)
211  { this->do_set_tls_offset(tls_base); }
212
213  // Return the TLS offset, relative to the base of the TLS segment.
214  // Valid only for SHT_TLS sections.
215  uint64_t
216  tls_offset() const
217  { return this->do_tls_offset(); }
218
219  // Write the data to the output file.  This is called after
220  // Layout::finalize is complete.
221  void
222  write(Output_file* file)
223  { this->do_write(file); }
224
225  // This is called by Layout::finalize to note that the sizes of
226  // allocated sections must now be fixed.
227  static void
228  layout_complete()
229  { Output_data::allocated_sizes_are_fixed = true; }
230
231  // Used to check that layout has been done.
232  static bool
233  is_layout_complete()
234  { return Output_data::allocated_sizes_are_fixed; }
235
236  // Note that a dynamic reloc has been applied to this data.
237  void
238  add_dynamic_reloc()
239  { this->has_dynamic_reloc_ = true; }
240
241  // Return whether a dynamic reloc has been applied.
242  bool
243  has_dynamic_reloc() const
244  { return this->has_dynamic_reloc_; }
245
246  // Whether the address is valid.
247  bool
248  is_address_valid() const
249  { return this->is_address_valid_; }
250
251  // Whether the file offset is valid.
252  bool
253  is_offset_valid() const
254  { return this->is_offset_valid_; }
255
256  // Whether the data size is valid.
257  bool
258  is_data_size_valid() const
259  { return this->is_data_size_valid_; }
260
261  // Print information to the map file.
262  void
263  print_to_mapfile(Mapfile* mapfile) const
264  { return this->do_print_to_mapfile(mapfile); }
265
266 protected:
267  // Functions that child classes may or in some cases must implement.
268
269  // Write the data to the output file.
270  virtual void
271  do_write(Output_file*) = 0;
272
273  // Return the required alignment.
274  virtual uint64_t
275  do_addralign() const = 0;
276
277  // Return whether this has a load address.
278  virtual bool
279  do_has_load_address() const
280  { return false; }
281
282  // Return the load address.
283  virtual uint64_t
284  do_load_address() const
285  { gold_unreachable(); }
286
287  // Return whether this is an Output_section.
288  virtual bool
289  do_is_section() const
290  { return false; }
291
292  // Return whether this is an Output_section of the specified type.
293  // This only needs to be implement by Output_section.
294  virtual bool
295  do_is_section_type(elfcpp::Elf_Word) const
296  { return false; }
297
298  // Return whether this is an Output_section with the specific flag
299  // set.  This only needs to be implemented by Output_section.
300  virtual bool
301  do_is_section_flag_set(elfcpp::Elf_Xword) const
302  { return false; }
303
304  // Return the output section, if there is one.
305  virtual Output_section*
306  do_output_section()
307  { return NULL; }
308
309  virtual const Output_section*
310  do_output_section() const
311  { return NULL; }
312
313  // Return the output section index, if there is an output section.
314  virtual unsigned int
315  do_out_shndx() const
316  { gold_unreachable(); }
317
318  // Set the output section index, if this is an output section.
319  virtual void
320  do_set_out_shndx(unsigned int)
321  { gold_unreachable(); }
322
323  // This is a hook for derived classes to set the data size.  This is
324  // called by finalize_data_size, normally called during
325  // Layout::finalize, when the section address is set.
326  virtual void
327  set_final_data_size()
328  { gold_unreachable(); }
329
330  // A hook for resetting the address and file offset.
331  virtual void
332  do_reset_address_and_file_offset()
333  { }
334
335  // Return true if address and file offset already have reset values. In
336  // other words, calling reset_address_and_file_offset will not change them.
337  // A child class overriding do_reset_address_and_file_offset may need to
338  // also override this.
339  virtual bool
340  do_address_and_file_offset_have_reset_values() const
341  { return !this->is_address_valid_ && !this->is_offset_valid_; }
342
343  // Set the TLS offset.  Called only for SHT_TLS sections.
344  virtual void
345  do_set_tls_offset(uint64_t)
346  { gold_unreachable(); }
347
348  // Return the TLS offset, relative to the base of the TLS segment.
349  // Valid only for SHT_TLS sections.
350  virtual uint64_t
351  do_tls_offset() const
352  { gold_unreachable(); }
353
354  // Print to the map file.  This only needs to be implemented by
355  // classes which may appear in a PT_LOAD segment.
356  virtual void
357  do_print_to_mapfile(Mapfile*) const
358  { gold_unreachable(); }
359
360  // Functions that child classes may call.
361
362  // Reset the address.  The Output_section class needs this when an
363  // SHF_ALLOC input section is added to an output section which was
364  // formerly not SHF_ALLOC.
365  void
366  mark_address_invalid()
367  { this->is_address_valid_ = false; }
368
369  // Set the size of the data.
370  void
371  set_data_size(off_t data_size)
372  {
373    gold_assert(!this->is_data_size_valid_
374		&& !this->is_data_size_fixed_);
375    this->data_size_ = data_size;
376    this->is_data_size_valid_ = true;
377  }
378
379  // Fix the data size.  Once it is fixed, it cannot be changed
380  // and the data size remains always valid.
381  void
382  fix_data_size()
383  {
384    gold_assert(this->is_data_size_valid_);
385    this->is_data_size_fixed_ = true;
386  }
387
388  // Get the current data size--this is for the convenience of
389  // sections which build up their size over time.
390  off_t
391  current_data_size_for_child() const
392  { return this->data_size_; }
393
394  // Set the current data size--this is for the convenience of
395  // sections which build up their size over time.
396  void
397  set_current_data_size_for_child(off_t data_size)
398  {
399    gold_assert(!this->is_data_size_valid_);
400    this->data_size_ = data_size;
401  }
402
403  // Return default alignment for the target size.
404  static uint64_t
405  default_alignment();
406
407  // Return default alignment for a specified size--32 or 64.
408  static uint64_t
409  default_alignment_for_size(int size);
410
411 private:
412  Output_data(const Output_data&);
413  Output_data& operator=(const Output_data&);
414
415  // This is used for verification, to make sure that we don't try to
416  // change any sizes of allocated sections after we set the section
417  // addresses.
418  static bool allocated_sizes_are_fixed;
419
420  // Memory address in output file.
421  uint64_t address_;
422  // Size of data in output file.
423  off_t data_size_;
424  // File offset of contents in output file.
425  off_t offset_;
426  // Whether address_ is valid.
427  bool is_address_valid_ : 1;
428  // Whether data_size_ is valid.
429  bool is_data_size_valid_ : 1;
430  // Whether offset_ is valid.
431  bool is_offset_valid_ : 1;
432  // Whether data size is fixed.
433  bool is_data_size_fixed_ : 1;
434  // Whether any dynamic relocs have been applied to this section.
435  bool has_dynamic_reloc_ : 1;
436};
437
438// Output the section headers.
439
440class Output_section_headers : public Output_data
441{
442 public:
443  Output_section_headers(const Layout*,
444			 const Layout::Segment_list*,
445			 const Layout::Section_list*,
446			 const Layout::Section_list*,
447			 const Stringpool*,
448			 const Output_section*);
449
450 protected:
451  // Write the data to the file.
452  void
453  do_write(Output_file*);
454
455  // Return the required alignment.
456  uint64_t
457  do_addralign() const
458  { return Output_data::default_alignment(); }
459
460  // Write to a map file.
461  void
462  do_print_to_mapfile(Mapfile* mapfile) const
463  { mapfile->print_output_data(this, _("** section headers")); }
464
465  // Set final data size.
466  void
467  set_final_data_size()
468  { this->set_data_size(this->do_size()); }
469
470 private:
471  // Write the data to the file with the right size and endianness.
472  template<int size, bool big_endian>
473  void
474  do_sized_write(Output_file*);
475
476  // Compute data size.
477  off_t
478  do_size() const;
479
480  const Layout* layout_;
481  const Layout::Segment_list* segment_list_;
482  const Layout::Section_list* section_list_;
483  const Layout::Section_list* unattached_section_list_;
484  const Stringpool* secnamepool_;
485  const Output_section* shstrtab_section_;
486};
487
488// Output the segment headers.
489
490class Output_segment_headers : public Output_data
491{
492 public:
493  Output_segment_headers(const Layout::Segment_list& segment_list);
494
495 protected:
496  // Write the data to the file.
497  void
498  do_write(Output_file*);
499
500  // Return the required alignment.
501  uint64_t
502  do_addralign() const
503  { return Output_data::default_alignment(); }
504
505  // Write to a map file.
506  void
507  do_print_to_mapfile(Mapfile* mapfile) const
508  { mapfile->print_output_data(this, _("** segment headers")); }
509
510  // Set final data size.
511  void
512  set_final_data_size()
513  { this->set_data_size(this->do_size()); }
514
515 private:
516  // Write the data to the file with the right size and endianness.
517  template<int size, bool big_endian>
518  void
519  do_sized_write(Output_file*);
520
521  // Compute the current size.
522  off_t
523  do_size() const;
524
525  const Layout::Segment_list& segment_list_;
526};
527
528// Output the ELF file header.
529
530class Output_file_header : public Output_data
531{
532 public:
533  Output_file_header(const Target*,
534		     const Symbol_table*,
535		     const Output_segment_headers*,
536		     const char* entry);
537
538  // Add information about the section headers.  We lay out the ELF
539  // file header before we create the section headers.
540  void set_section_info(const Output_section_headers*,
541			const Output_section* shstrtab);
542
543 protected:
544  // Write the data to the file.
545  void
546  do_write(Output_file*);
547
548  // Return the required alignment.
549  uint64_t
550  do_addralign() const
551  { return Output_data::default_alignment(); }
552
553  // Write to a map file.
554  void
555  do_print_to_mapfile(Mapfile* mapfile) const
556  { mapfile->print_output_data(this, _("** file header")); }
557
558  // Set final data size.
559  void
560  set_final_data_size(void)
561  { this->set_data_size(this->do_size()); }
562
563 private:
564  // Write the data to the file with the right size and endianness.
565  template<int size, bool big_endian>
566  void
567  do_sized_write(Output_file*);
568
569  // Return the value to use for the entry address.
570  template<int size>
571  typename elfcpp::Elf_types<size>::Elf_Addr
572  entry();
573
574  // Compute the current data size.
575  off_t
576  do_size() const;
577
578  const Target* target_;
579  const Symbol_table* symtab_;
580  const Output_segment_headers* segment_header_;
581  const Output_section_headers* section_header_;
582  const Output_section* shstrtab_;
583  const char* entry_;
584};
585
586// Output sections are mainly comprised of input sections.  However,
587// there are cases where we have data to write out which is not in an
588// input section.  Output_section_data is used in such cases.  This is
589// an abstract base class.
590
591class Output_section_data : public Output_data
592{
593 public:
594  Output_section_data(off_t data_size, uint64_t addralign,
595		      bool is_data_size_fixed)
596    : Output_data(), output_section_(NULL), addralign_(addralign)
597  {
598    this->set_data_size(data_size);
599    if (is_data_size_fixed)
600      this->fix_data_size();
601  }
602
603  Output_section_data(uint64_t addralign)
604    : Output_data(), output_section_(NULL), addralign_(addralign)
605  { }
606
607  // Return the output section.
608  Output_section*
609  output_section()
610  { return this->output_section_; }
611
612  const Output_section*
613  output_section() const
614  { return this->output_section_; }
615
616  // Record the output section.
617  void
618  set_output_section(Output_section* os);
619
620  // Add an input section, for SHF_MERGE sections.  This returns true
621  // if the section was handled.
622  bool
623  add_input_section(Relobj* object, unsigned int shndx)
624  { return this->do_add_input_section(object, shndx); }
625
626  // Given an input OBJECT, an input section index SHNDX within that
627  // object, and an OFFSET relative to the start of that input
628  // section, return whether or not the corresponding offset within
629  // the output section is known.  If this function returns true, it
630  // sets *POUTPUT to the output offset.  The value -1 indicates that
631  // this input offset is being discarded.
632  bool
633  output_offset(const Relobj* object, unsigned int shndx,
634		section_offset_type offset,
635		section_offset_type* poutput) const
636  { return this->do_output_offset(object, shndx, offset, poutput); }
637
638  // Return whether this is the merge section for the input section
639  // SHNDX in OBJECT.  This should return true when output_offset
640  // would return true for some values of OFFSET.
641  bool
642  is_merge_section_for(const Relobj* object, unsigned int shndx) const
643  { return this->do_is_merge_section_for(object, shndx); }
644
645  // Write the contents to a buffer.  This is used for sections which
646  // require postprocessing, such as compression.
647  void
648  write_to_buffer(unsigned char* buffer)
649  { this->do_write_to_buffer(buffer); }
650
651  // Print merge stats to stderr.  This should only be called for
652  // SHF_MERGE sections.
653  void
654  print_merge_stats(const char* section_name)
655  { this->do_print_merge_stats(section_name); }
656
657 protected:
658  // The child class must implement do_write.
659
660  // The child class may implement specific adjustments to the output
661  // section.
662  virtual void
663  do_adjust_output_section(Output_section*)
664  { }
665
666  // May be implemented by child class.  Return true if the section
667  // was handled.
668  virtual bool
669  do_add_input_section(Relobj*, unsigned int)
670  { gold_unreachable(); }
671
672  // The child class may implement output_offset.
673  virtual bool
674  do_output_offset(const Relobj*, unsigned int, section_offset_type,
675		   section_offset_type*) const
676  { return false; }
677
678  // The child class may implement is_merge_section_for.
679  virtual bool
680  do_is_merge_section_for(const Relobj*, unsigned int) const
681  { return false; }
682
683  // The child class may implement write_to_buffer.  Most child
684  // classes can not appear in a compressed section, and they do not
685  // implement this.
686  virtual void
687  do_write_to_buffer(unsigned char*)
688  { gold_unreachable(); }
689
690  // Print merge statistics.
691  virtual void
692  do_print_merge_stats(const char*)
693  { gold_unreachable(); }
694
695  // Return the required alignment.
696  uint64_t
697  do_addralign() const
698  { return this->addralign_; }
699
700  // Return the output section.
701  Output_section*
702  do_output_section()
703  { return this->output_section_; }
704
705  const Output_section*
706  do_output_section() const
707  { return this->output_section_; }
708
709  // Return the section index of the output section.
710  unsigned int
711  do_out_shndx() const;
712
713  // Set the alignment.
714  void
715  set_addralign(uint64_t addralign);
716
717 private:
718  // The output section for this section.
719  Output_section* output_section_;
720  // The required alignment.
721  uint64_t addralign_;
722};
723
724// Some Output_section_data classes build up their data step by step,
725// rather than all at once.  This class provides an interface for
726// them.
727
728class Output_section_data_build : public Output_section_data
729{
730 public:
731  Output_section_data_build(uint64_t addralign)
732    : Output_section_data(addralign)
733  { }
734
735  // Get the current data size.
736  off_t
737  current_data_size() const
738  { return this->current_data_size_for_child(); }
739
740  // Set the current data size.
741  void
742  set_current_data_size(off_t data_size)
743  { this->set_current_data_size_for_child(data_size); }
744
745 protected:
746  // Set the final data size.
747  virtual void
748  set_final_data_size()
749  { this->set_data_size(this->current_data_size_for_child()); }
750};
751
752// A simple case of Output_data in which we have constant data to
753// output.
754
755class Output_data_const : public Output_section_data
756{
757 public:
758  Output_data_const(const std::string& data, uint64_t addralign)
759    : Output_section_data(data.size(), addralign, true), data_(data)
760  { }
761
762  Output_data_const(const char* p, off_t len, uint64_t addralign)
763    : Output_section_data(len, addralign, true), data_(p, len)
764  { }
765
766  Output_data_const(const unsigned char* p, off_t len, uint64_t addralign)
767    : Output_section_data(len, addralign, true),
768      data_(reinterpret_cast<const char*>(p), len)
769  { }
770
771 protected:
772  // Write the data to the output file.
773  void
774  do_write(Output_file*);
775
776  // Write the data to a buffer.
777  void
778  do_write_to_buffer(unsigned char* buffer)
779  { memcpy(buffer, this->data_.data(), this->data_.size()); }
780
781  // Write to a map file.
782  void
783  do_print_to_mapfile(Mapfile* mapfile) const
784  { mapfile->print_output_data(this, _("** fill")); }
785
786 private:
787  std::string data_;
788};
789
790// Another version of Output_data with constant data, in which the
791// buffer is allocated by the caller.
792
793class Output_data_const_buffer : public Output_section_data
794{
795 public:
796  Output_data_const_buffer(const unsigned char* p, off_t len,
797			   uint64_t addralign, const char* map_name)
798    : Output_section_data(len, addralign, true),
799      p_(p), map_name_(map_name)
800  { }
801
802 protected:
803  // Write the data the output file.
804  void
805  do_write(Output_file*);
806
807  // Write the data to a buffer.
808  void
809  do_write_to_buffer(unsigned char* buffer)
810  { memcpy(buffer, this->p_, this->data_size()); }
811
812  // Write to a map file.
813  void
814  do_print_to_mapfile(Mapfile* mapfile) const
815  { mapfile->print_output_data(this, _(this->map_name_)); }
816
817 private:
818  // The data to output.
819  const unsigned char* p_;
820  // Name to use in a map file.  Maps are a rarely used feature, but
821  // the space usage is minor as aren't very many of these objects.
822  const char* map_name_;
823};
824
825// A place holder for a fixed amount of data written out via some
826// other mechanism.
827
828class Output_data_fixed_space : public Output_section_data
829{
830 public:
831  Output_data_fixed_space(off_t data_size, uint64_t addralign,
832			  const char* map_name)
833    : Output_section_data(data_size, addralign, true),
834      map_name_(map_name)
835  { }
836
837 protected:
838  // Write out the data--the actual data must be written out
839  // elsewhere.
840  void
841  do_write(Output_file*)
842  { }
843
844  // Write to a map file.
845  void
846  do_print_to_mapfile(Mapfile* mapfile) const
847  { mapfile->print_output_data(this, _(this->map_name_)); }
848
849 private:
850  // Name to use in a map file.  Maps are a rarely used feature, but
851  // the space usage is minor as aren't very many of these objects.
852  const char* map_name_;
853};
854
855// A place holder for variable sized data written out via some other
856// mechanism.
857
858class Output_data_space : public Output_section_data_build
859{
860 public:
861  explicit Output_data_space(uint64_t addralign, const char* map_name)
862    : Output_section_data_build(addralign),
863      map_name_(map_name)
864  { }
865
866  // Set the alignment.
867  void
868  set_space_alignment(uint64_t align)
869  { this->set_addralign(align); }
870
871 protected:
872  // Write out the data--the actual data must be written out
873  // elsewhere.
874  void
875  do_write(Output_file*)
876  { }
877
878  // Write to a map file.
879  void
880  do_print_to_mapfile(Mapfile* mapfile) const
881  { mapfile->print_output_data(this, _(this->map_name_)); }
882
883 private:
884  // Name to use in a map file.  Maps are a rarely used feature, but
885  // the space usage is minor as aren't very many of these objects.
886  const char* map_name_;
887};
888
889// Fill fixed space with zeroes.  This is just like
890// Output_data_fixed_space, except that the map name is known.
891
892class Output_data_zero_fill : public Output_section_data
893{
894 public:
895  Output_data_zero_fill(off_t data_size, uint64_t addralign)
896    : Output_section_data(data_size, addralign, true)
897  { }
898
899 protected:
900  // There is no data to write out.
901  void
902  do_write(Output_file*)
903  { }
904
905  // Write to a map file.
906  void
907  do_print_to_mapfile(Mapfile* mapfile) const
908  { mapfile->print_output_data(this, "** zero fill"); }
909};
910
911// A string table which goes into an output section.
912
913class Output_data_strtab : public Output_section_data
914{
915 public:
916  Output_data_strtab(Stringpool* strtab)
917    : Output_section_data(1), strtab_(strtab)
918  { }
919
920 protected:
921  // This is called to set the address and file offset.  Here we make
922  // sure that the Stringpool is finalized.
923  void
924  set_final_data_size();
925
926  // Write out the data.
927  void
928  do_write(Output_file*);
929
930  // Write the data to a buffer.
931  void
932  do_write_to_buffer(unsigned char* buffer)
933  { this->strtab_->write_to_buffer(buffer, this->data_size()); }
934
935  // Write to a map file.
936  void
937  do_print_to_mapfile(Mapfile* mapfile) const
938  { mapfile->print_output_data(this, _("** string table")); }
939
940 private:
941  Stringpool* strtab_;
942};
943
944// This POD class is used to represent a single reloc in the output
945// file.  This could be a private class within Output_data_reloc, but
946// the templatization is complex enough that I broke it out into a
947// separate class.  The class is templatized on either elfcpp::SHT_REL
948// or elfcpp::SHT_RELA, and also on whether this is a dynamic
949// relocation or an ordinary relocation.
950
951// A relocation can be against a global symbol, a local symbol, a
952// local section symbol, an output section, or the undefined symbol at
953// index 0.  We represent the latter by using a NULL global symbol.
954
955template<int sh_type, bool dynamic, int size, bool big_endian>
956class Output_reloc;
957
958template<bool dynamic, int size, bool big_endian>
959class Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>
960{
961 public:
962  typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
963  typedef typename elfcpp::Elf_types<size>::Elf_Addr Addend;
964
965  static const Address invalid_address = static_cast<Address>(0) - 1;
966
967  // An uninitialized entry.  We need this because we want to put
968  // instances of this class into an STL container.
969  Output_reloc()
970    : local_sym_index_(INVALID_CODE)
971  { }
972
973  // We have a bunch of different constructors.  They come in pairs
974  // depending on how the address of the relocation is specified.  It
975  // can either be an offset in an Output_data or an offset in an
976  // input section.
977
978  // A reloc against a global symbol.
979
980  Output_reloc(Symbol* gsym, unsigned int type, Output_data* od,
981	       Address address, bool is_relative, bool is_symbolless);
982
983  Output_reloc(Symbol* gsym, unsigned int type,
984               Sized_relobj<size, big_endian>* relobj,
985	       unsigned int shndx, Address address, bool is_relative,
986	       bool is_symbolless);
987
988  // A reloc against a local symbol or local section symbol.
989
990  Output_reloc(Sized_relobj<size, big_endian>* relobj,
991	       unsigned int local_sym_index, unsigned int type,
992	       Output_data* od, Address address, bool is_relative,
993               bool is_symbolless, bool is_section_symbol);
994
995  Output_reloc(Sized_relobj<size, big_endian>* relobj,
996	       unsigned int local_sym_index, unsigned int type,
997	       unsigned int shndx, Address address, bool is_relative,
998               bool is_symbolless, bool is_section_symbol);
999
1000  // A reloc against the STT_SECTION symbol of an output section.
1001
1002  Output_reloc(Output_section* os, unsigned int type, Output_data* od,
1003	       Address address);
1004
1005  Output_reloc(Output_section* os, unsigned int type,
1006               Sized_relobj<size, big_endian>* relobj,
1007	       unsigned int shndx, Address address);
1008
1009  // An absolute relocation with no symbol.
1010
1011  Output_reloc(unsigned int type, Output_data* od, Address address);
1012
1013  Output_reloc(unsigned int type, Sized_relobj<size, big_endian>* relobj,
1014	       unsigned int shndx, Address address);
1015
1016  // A target specific relocation.  The target will be called to get
1017  // the symbol index, passing ARG.  The type and offset will be set
1018  // as for other relocation types.
1019
1020  Output_reloc(unsigned int type, void* arg, Output_data* od,
1021	       Address address);
1022
1023  Output_reloc(unsigned int type, void* arg,
1024	       Sized_relobj<size, big_endian>* relobj,
1025	       unsigned int shndx, Address address);
1026
1027  // Return the reloc type.
1028  unsigned int
1029  type() const
1030  { return this->type_; }
1031
1032  // Return whether this is a RELATIVE relocation.
1033  bool
1034  is_relative() const
1035  { return this->is_relative_; }
1036
1037  // Return whether this is a relocation which should not use
1038  // a symbol, but which obtains its addend from a symbol.
1039  bool
1040  is_symbolless() const
1041  { return this->is_symbolless_; }
1042
1043  // Return whether this is against a local section symbol.
1044  bool
1045  is_local_section_symbol() const
1046  {
1047    return (this->local_sym_index_ != GSYM_CODE
1048            && this->local_sym_index_ != SECTION_CODE
1049            && this->local_sym_index_ != INVALID_CODE
1050	    && this->local_sym_index_ != TARGET_CODE
1051            && this->is_section_symbol_);
1052  }
1053
1054  // Return whether this is a target specific relocation.
1055  bool
1056  is_target_specific() const
1057  { return this->local_sym_index_ == TARGET_CODE; }
1058
1059  // Return the argument to pass to the target for a target specific
1060  // relocation.
1061  void*
1062  target_arg() const
1063  {
1064    gold_assert(this->local_sym_index_ == TARGET_CODE);
1065    return this->u1_.arg;
1066  }
1067
1068  // For a local section symbol, return the offset of the input
1069  // section within the output section.  ADDEND is the addend being
1070  // applied to the input section.
1071  Address
1072  local_section_offset(Addend addend) const;
1073
1074  // Get the value of the symbol referred to by a Rel relocation when
1075  // we are adding the given ADDEND.
1076  Address
1077  symbol_value(Addend addend) const;
1078
1079  // Write the reloc entry to an output view.
1080  void
1081  write(unsigned char* pov) const;
1082
1083  // Write the offset and info fields to Write_rel.
1084  template<typename Write_rel>
1085  void write_rel(Write_rel*) const;
1086
1087  // This is used when sorting dynamic relocs.  Return -1 to sort this
1088  // reloc before R2, 0 to sort the same as R2, 1 to sort after R2.
1089  int
1090  compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1091    const;
1092
1093  // Return whether this reloc should be sorted before the argument
1094  // when sorting dynamic relocs.
1095  bool
1096  sort_before(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>&
1097	      r2) const
1098  { return this->compare(r2) < 0; }
1099
1100 private:
1101  // Record that we need a dynamic symbol index.
1102  void
1103  set_needs_dynsym_index();
1104
1105  // Return the symbol index.
1106  unsigned int
1107  get_symbol_index() const;
1108
1109  // Return the output address.
1110  Address
1111  get_address() const;
1112
1113  // Codes for local_sym_index_.
1114  enum
1115  {
1116    // Global symbol.
1117    GSYM_CODE = -1U,
1118    // Output section.
1119    SECTION_CODE = -2U,
1120    // Target specific.
1121    TARGET_CODE = -3U,
1122    // Invalid uninitialized entry.
1123    INVALID_CODE = -4U
1124  };
1125
1126  union
1127  {
1128    // For a local symbol or local section symbol
1129    // (this->local_sym_index_ >= 0), the object.  We will never
1130    // generate a relocation against a local symbol in a dynamic
1131    // object; that doesn't make sense.  And our callers will always
1132    // be templatized, so we use Sized_relobj here.
1133    Sized_relobj<size, big_endian>* relobj;
1134    // For a global symbol (this->local_sym_index_ == GSYM_CODE, the
1135    // symbol.  If this is NULL, it indicates a relocation against the
1136    // undefined 0 symbol.
1137    Symbol* gsym;
1138    // For a relocation against an output section
1139    // (this->local_sym_index_ == SECTION_CODE), the output section.
1140    Output_section* os;
1141    // For a target specific relocation, an argument to pass to the
1142    // target.
1143    void* arg;
1144  } u1_;
1145  union
1146  {
1147    // If this->shndx_ is not INVALID CODE, the object which holds the
1148    // input section being used to specify the reloc address.
1149    Sized_relobj<size, big_endian>* relobj;
1150    // If this->shndx_ is INVALID_CODE, the output data being used to
1151    // specify the reloc address.  This may be NULL if the reloc
1152    // address is absolute.
1153    Output_data* od;
1154  } u2_;
1155  // The address offset within the input section or the Output_data.
1156  Address address_;
1157  // This is GSYM_CODE for a global symbol, or SECTION_CODE for a
1158  // relocation against an output section, or TARGET_CODE for a target
1159  // specific relocation, or INVALID_CODE for an uninitialized value.
1160  // Otherwise, for a local symbol (this->is_section_symbol_ is
1161  // false), the local symbol index.  For a local section symbol
1162  // (this->is_section_symbol_ is true), the section index in the
1163  // input file.
1164  unsigned int local_sym_index_;
1165  // The reloc type--a processor specific code.
1166  unsigned int type_ : 29;
1167  // True if the relocation is a RELATIVE relocation.
1168  bool is_relative_ : 1;
1169  // True if the relocation is one which should not use
1170  // a symbol, but which obtains its addend from a symbol.
1171  bool is_symbolless_ : 1;
1172  // True if the relocation is against a section symbol.
1173  bool is_section_symbol_ : 1;
1174  // If the reloc address is an input section in an object, the
1175  // section index.  This is INVALID_CODE if the reloc address is
1176  // specified in some other way.
1177  unsigned int shndx_;
1178};
1179
1180// The SHT_RELA version of Output_reloc<>.  This is just derived from
1181// the SHT_REL version of Output_reloc, but it adds an addend.
1182
1183template<bool dynamic, int size, bool big_endian>
1184class Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>
1185{
1186 public:
1187  typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1188  typedef typename elfcpp::Elf_types<size>::Elf_Addr Addend;
1189
1190  // An uninitialized entry.
1191  Output_reloc()
1192    : rel_()
1193  { }
1194
1195  // A reloc against a global symbol.
1196
1197  Output_reloc(Symbol* gsym, unsigned int type, Output_data* od,
1198	       Address address, Addend addend, bool is_relative,
1199	       bool is_symbolless)
1200    : rel_(gsym, type, od, address, is_relative, is_symbolless),
1201      addend_(addend)
1202  { }
1203
1204  Output_reloc(Symbol* gsym, unsigned int type,
1205               Sized_relobj<size, big_endian>* relobj,
1206	       unsigned int shndx, Address address, Addend addend,
1207	       bool is_relative, bool is_symbolless)
1208    : rel_(gsym, type, relobj, shndx, address, is_relative,
1209	   is_symbolless), addend_(addend)
1210  { }
1211
1212  // A reloc against a local symbol.
1213
1214  Output_reloc(Sized_relobj<size, big_endian>* relobj,
1215	       unsigned int local_sym_index, unsigned int type,
1216	       Output_data* od, Address address,
1217	       Addend addend, bool is_relative,
1218	       bool is_symbolless, bool is_section_symbol)
1219    : rel_(relobj, local_sym_index, type, od, address, is_relative,
1220           is_symbolless, is_section_symbol),
1221      addend_(addend)
1222  { }
1223
1224  Output_reloc(Sized_relobj<size, big_endian>* relobj,
1225	       unsigned int local_sym_index, unsigned int type,
1226	       unsigned int shndx, Address address,
1227	       Addend addend, bool is_relative,
1228	       bool is_symbolless, bool is_section_symbol)
1229    : rel_(relobj, local_sym_index, type, shndx, address, is_relative,
1230           is_symbolless, is_section_symbol),
1231      addend_(addend)
1232  { }
1233
1234  // A reloc against the STT_SECTION symbol of an output section.
1235
1236  Output_reloc(Output_section* os, unsigned int type, Output_data* od,
1237	       Address address, Addend addend)
1238    : rel_(os, type, od, address), addend_(addend)
1239  { }
1240
1241  Output_reloc(Output_section* os, unsigned int type,
1242               Sized_relobj<size, big_endian>* relobj,
1243	       unsigned int shndx, Address address, Addend addend)
1244    : rel_(os, type, relobj, shndx, address), addend_(addend)
1245  { }
1246
1247  // An absolute relocation with no symbol.
1248
1249  Output_reloc(unsigned int type, Output_data* od, Address address,
1250	       Addend addend)
1251    : rel_(type, od, address), addend_(addend)
1252  { }
1253
1254  Output_reloc(unsigned int type, Sized_relobj<size, big_endian>* relobj,
1255	       unsigned int shndx, Address address, Addend addend)
1256    : rel_(type, relobj, shndx, address), addend_(addend)
1257  { }
1258
1259  // A target specific relocation.  The target will be called to get
1260  // the symbol index and the addend, passing ARG.  The type and
1261  // offset will be set as for other relocation types.
1262
1263  Output_reloc(unsigned int type, void* arg, Output_data* od,
1264	       Address address, Addend addend)
1265    : rel_(type, arg, od, address), addend_(addend)
1266  { }
1267
1268  Output_reloc(unsigned int type, void* arg,
1269	       Sized_relobj<size, big_endian>* relobj,
1270	       unsigned int shndx, Address address, Addend addend)
1271    : rel_(type, arg, relobj, shndx, address), addend_(addend)
1272  { }
1273
1274  // Return whether this is a RELATIVE relocation.
1275  bool
1276  is_relative() const
1277  { return this->rel_.is_relative(); }
1278
1279  // Return whether this is a relocation which should not use
1280  // a symbol, but which obtains its addend from a symbol.
1281  bool
1282  is_symbolless() const
1283  { return this->rel_.is_symbolless(); }
1284
1285  // Write the reloc entry to an output view.
1286  void
1287  write(unsigned char* pov) const;
1288
1289  // Return whether this reloc should be sorted before the argument
1290  // when sorting dynamic relocs.
1291  bool
1292  sort_before(const Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>&
1293	      r2) const
1294  {
1295    int i = this->rel_.compare(r2.rel_);
1296    if (i < 0)
1297      return true;
1298    else if (i > 0)
1299      return false;
1300    else
1301      return this->addend_ < r2.addend_;
1302  }
1303
1304 private:
1305  // The basic reloc.
1306  Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian> rel_;
1307  // The addend.
1308  Addend addend_;
1309};
1310
1311// Output_data_reloc_generic is a non-template base class for
1312// Output_data_reloc_base.  This gives the generic code a way to hold
1313// a pointer to a reloc section.
1314
1315class Output_data_reloc_generic : public Output_section_data_build
1316{
1317 public:
1318  Output_data_reloc_generic(int size, bool sort_relocs)
1319    : Output_section_data_build(Output_data::default_alignment_for_size(size)),
1320      relative_reloc_count_(0), sort_relocs_(sort_relocs)
1321  { }
1322
1323  // Return the number of relative relocs in this section.
1324  size_t
1325  relative_reloc_count() const
1326  { return this->relative_reloc_count_; }
1327
1328  // Whether we should sort the relocs.
1329  bool
1330  sort_relocs() const
1331  { return this->sort_relocs_; }
1332
1333 protected:
1334  // Note that we've added another relative reloc.
1335  void
1336  bump_relative_reloc_count()
1337  { ++this->relative_reloc_count_; }
1338
1339 private:
1340  // The number of relative relocs added to this section.  This is to
1341  // support DT_RELCOUNT.
1342  size_t relative_reloc_count_;
1343  // Whether to sort the relocations when writing them out, to make
1344  // the dynamic linker more efficient.
1345  bool sort_relocs_;
1346};
1347
1348// Output_data_reloc is used to manage a section containing relocs.
1349// SH_TYPE is either elfcpp::SHT_REL or elfcpp::SHT_RELA.  DYNAMIC
1350// indicates whether this is a dynamic relocation or a normal
1351// relocation.  Output_data_reloc_base is a base class.
1352// Output_data_reloc is the real class, which we specialize based on
1353// the reloc type.
1354
1355template<int sh_type, bool dynamic, int size, bool big_endian>
1356class Output_data_reloc_base : public Output_data_reloc_generic
1357{
1358 public:
1359  typedef Output_reloc<sh_type, dynamic, size, big_endian> Output_reloc_type;
1360  typedef typename Output_reloc_type::Address Address;
1361  static const int reloc_size =
1362    Reloc_types<sh_type, size, big_endian>::reloc_size;
1363
1364  // Construct the section.
1365  Output_data_reloc_base(bool sort_relocs)
1366    : Output_data_reloc_generic(size, sort_relocs)
1367  { }
1368
1369 protected:
1370  // Write out the data.
1371  void
1372  do_write(Output_file*);
1373
1374  // Set the entry size and the link.
1375  void
1376  do_adjust_output_section(Output_section* os);
1377
1378  // Write to a map file.
1379  void
1380  do_print_to_mapfile(Mapfile* mapfile) const
1381  {
1382    mapfile->print_output_data(this,
1383			       (dynamic
1384				? _("** dynamic relocs")
1385				: _("** relocs")));
1386  }
1387
1388  // Add a relocation entry.
1389  void
1390  add(Output_data* od, const Output_reloc_type& reloc)
1391  {
1392    this->relocs_.push_back(reloc);
1393    this->set_current_data_size(this->relocs_.size() * reloc_size);
1394    od->add_dynamic_reloc();
1395    if (reloc.is_relative())
1396      this->bump_relative_reloc_count();
1397  }
1398
1399 private:
1400  typedef std::vector<Output_reloc_type> Relocs;
1401
1402  // The class used to sort the relocations.
1403  struct Sort_relocs_comparison
1404  {
1405    bool
1406    operator()(const Output_reloc_type& r1, const Output_reloc_type& r2) const
1407    { return r1.sort_before(r2); }
1408  };
1409
1410  // The relocations in this section.
1411  Relocs relocs_;
1412};
1413
1414// The class which callers actually create.
1415
1416template<int sh_type, bool dynamic, int size, bool big_endian>
1417class Output_data_reloc;
1418
1419// The SHT_REL version of Output_data_reloc.
1420
1421template<bool dynamic, int size, bool big_endian>
1422class Output_data_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>
1423  : public Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, big_endian>
1424{
1425 private:
1426  typedef Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size,
1427				 big_endian> Base;
1428
1429 public:
1430  typedef typename Base::Output_reloc_type Output_reloc_type;
1431  typedef typename Output_reloc_type::Address Address;
1432
1433  Output_data_reloc(bool sr)
1434    : Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, big_endian>(sr)
1435  { }
1436
1437  // Add a reloc against a global symbol.
1438
1439  void
1440  add_global(Symbol* gsym, unsigned int type, Output_data* od, Address address)
1441  { this->add(od, Output_reloc_type(gsym, type, od, address, false, false)); }
1442
1443  void
1444  add_global(Symbol* gsym, unsigned int type, Output_data* od,
1445             Sized_relobj<size, big_endian>* relobj,
1446	     unsigned int shndx, Address address)
1447  { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1448                                    false, false)); }
1449
1450  // These are to simplify the Copy_relocs class.
1451
1452  void
1453  add_global(Symbol* gsym, unsigned int type, Output_data* od, Address address,
1454	     Address addend)
1455  {
1456    gold_assert(addend == 0);
1457    this->add_global(gsym, type, od, address);
1458  }
1459
1460  void
1461  add_global(Symbol* gsym, unsigned int type, Output_data* od,
1462             Sized_relobj<size, big_endian>* relobj,
1463	     unsigned int shndx, Address address, Address addend)
1464  {
1465    gold_assert(addend == 0);
1466    this->add_global(gsym, type, od, relobj, shndx, address);
1467  }
1468
1469  // Add a RELATIVE reloc against a global symbol.  The final relocation
1470  // will not reference the symbol.
1471
1472  void
1473  add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1474                      Address address)
1475  { this->add(od, Output_reloc_type(gsym, type, od, address, true, true)); }
1476
1477  void
1478  add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1479                      Sized_relobj<size, big_endian>* relobj,
1480                      unsigned int shndx, Address address)
1481  {
1482    this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1483                                    true, true));
1484  }
1485
1486  // Add a global relocation which does not use a symbol for the relocation,
1487  // but which gets its addend from a symbol.
1488
1489  void
1490  add_symbolless_global_addend(Symbol* gsym, unsigned int type,
1491			       Output_data* od, Address address)
1492  { this->add(od, Output_reloc_type(gsym, type, od, address, false, true)); }
1493
1494  void
1495  add_symbolless_global_addend(Symbol* gsym, unsigned int type,
1496			       Output_data* od,
1497			       Sized_relobj<size, big_endian>* relobj,
1498			       unsigned int shndx, Address address)
1499  {
1500    this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1501                                    false, true));
1502  }
1503
1504  // Add a reloc against a local symbol.
1505
1506  void
1507  add_local(Sized_relobj<size, big_endian>* relobj,
1508	    unsigned int local_sym_index, unsigned int type,
1509	    Output_data* od, Address address)
1510  {
1511    this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
1512                                    address, false, false, false));
1513  }
1514
1515  void
1516  add_local(Sized_relobj<size, big_endian>* relobj,
1517	    unsigned int local_sym_index, unsigned int type,
1518	    Output_data* od, unsigned int shndx, Address address)
1519  {
1520    this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1521				    address, false, false, false));
1522  }
1523
1524  // Add a RELATIVE reloc against a local symbol.
1525
1526  void
1527  add_local_relative(Sized_relobj<size, big_endian>* relobj,
1528	             unsigned int local_sym_index, unsigned int type,
1529	             Output_data* od, Address address)
1530  {
1531    this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
1532                                    address, true, true, false));
1533  }
1534
1535  void
1536  add_local_relative(Sized_relobj<size, big_endian>* relobj,
1537	             unsigned int local_sym_index, unsigned int type,
1538	             Output_data* od, unsigned int shndx, Address address)
1539  {
1540    this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1541				    address, true, true, false));
1542  }
1543
1544  // Add a local relocation which does not use a symbol for the relocation,
1545  // but which gets its addend from a symbol.
1546
1547  void
1548  add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
1549			      unsigned int local_sym_index, unsigned int type,
1550			      Output_data* od, Address address)
1551  {
1552    this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
1553                                    address, false, true, false));
1554  }
1555
1556  void
1557  add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
1558			      unsigned int local_sym_index, unsigned int type,
1559			      Output_data* od, unsigned int shndx,
1560			      Address address)
1561  {
1562    this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1563				    address, false, true, false));
1564  }
1565
1566  // Add a reloc against a local section symbol.  This will be
1567  // converted into a reloc against the STT_SECTION symbol of the
1568  // output section.
1569
1570  void
1571  add_local_section(Sized_relobj<size, big_endian>* relobj,
1572                    unsigned int input_shndx, unsigned int type,
1573                    Output_data* od, Address address)
1574  {
1575    this->add(od, Output_reloc_type(relobj, input_shndx, type, od,
1576                                    address, false, false, true));
1577  }
1578
1579  void
1580  add_local_section(Sized_relobj<size, big_endian>* relobj,
1581                    unsigned int input_shndx, unsigned int type,
1582                    Output_data* od, unsigned int shndx, Address address)
1583  {
1584    this->add(od, Output_reloc_type(relobj, input_shndx, type, shndx,
1585                                    address, false, false, true));
1586  }
1587
1588  // A reloc against the STT_SECTION symbol of an output section.
1589  // OS is the Output_section that the relocation refers to; OD is
1590  // the Output_data object being relocated.
1591
1592  void
1593  add_output_section(Output_section* os, unsigned int type,
1594		     Output_data* od, Address address)
1595  { this->add(od, Output_reloc_type(os, type, od, address)); }
1596
1597  void
1598  add_output_section(Output_section* os, unsigned int type, Output_data* od,
1599		     Sized_relobj<size, big_endian>* relobj,
1600                     unsigned int shndx, Address address)
1601  { this->add(od, Output_reloc_type(os, type, relobj, shndx, address)); }
1602
1603  // Add an absolute relocation.
1604
1605  void
1606  add_absolute(unsigned int type, Output_data* od, Address address)
1607  { this->add(od, Output_reloc_type(type, od, address)); }
1608
1609  void
1610  add_absolute(unsigned int type, Output_data* od,
1611	       Sized_relobj<size, big_endian>* relobj,
1612	       unsigned int shndx, Address address)
1613  { this->add(od, Output_reloc_type(type, relobj, shndx, address)); }
1614
1615  // Add a target specific relocation.  A target which calls this must
1616  // define the reloc_symbol_index and reloc_addend virtual functions.
1617
1618  void
1619  add_target_specific(unsigned int type, void* arg, Output_data* od,
1620		      Address address)
1621  { this->add(od, Output_reloc_type(type, arg, od, address)); }
1622
1623  void
1624  add_target_specific(unsigned int type, void* arg, Output_data* od,
1625		      Sized_relobj<size, big_endian>* relobj,
1626		      unsigned int shndx, Address address)
1627  { this->add(od, Output_reloc_type(type, arg, relobj, shndx, address)); }
1628};
1629
1630// The SHT_RELA version of Output_data_reloc.
1631
1632template<bool dynamic, int size, bool big_endian>
1633class Output_data_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>
1634  : public Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, big_endian>
1635{
1636 private:
1637  typedef Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size,
1638				 big_endian> Base;
1639
1640 public:
1641  typedef typename Base::Output_reloc_type Output_reloc_type;
1642  typedef typename Output_reloc_type::Address Address;
1643  typedef typename Output_reloc_type::Addend Addend;
1644
1645  Output_data_reloc(bool sr)
1646    : Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, big_endian>(sr)
1647  { }
1648
1649  // Add a reloc against a global symbol.
1650
1651  void
1652  add_global(Symbol* gsym, unsigned int type, Output_data* od,
1653	     Address address, Addend addend)
1654  { this->add(od, Output_reloc_type(gsym, type, od, address, addend,
1655                                    false, false)); }
1656
1657  void
1658  add_global(Symbol* gsym, unsigned int type, Output_data* od,
1659             Sized_relobj<size, big_endian>* relobj,
1660	     unsigned int shndx, Address address,
1661	     Addend addend)
1662  { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1663                                    addend, false, false)); }
1664
1665  // Add a RELATIVE reloc against a global symbol.  The final output
1666  // relocation will not reference the symbol, but we must keep the symbol
1667  // information long enough to set the addend of the relocation correctly
1668  // when it is written.
1669
1670  void
1671  add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1672	              Address address, Addend addend)
1673  { this->add(od, Output_reloc_type(gsym, type, od, address, addend, true,
1674				    true)); }
1675
1676  void
1677  add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1678                      Sized_relobj<size, big_endian>* relobj,
1679                      unsigned int shndx, Address address, Addend addend)
1680  { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1681                                    addend, true, true)); }
1682
1683  // Add a global relocation which does not use a symbol for the relocation,
1684  // but which gets its addend from a symbol.
1685
1686  void
1687  add_symbolless_global_addend(Symbol* gsym, unsigned int type, Output_data* od,
1688			       Address address, Addend addend)
1689  { this->add(od, Output_reloc_type(gsym, type, od, address, addend,
1690				    false, true)); }
1691
1692  void
1693  add_symbolless_global_addend(Symbol* gsym, unsigned int type,
1694			       Output_data* od,
1695			       Sized_relobj<size, big_endian>* relobj,
1696			       unsigned int shndx, Address address, Addend addend)
1697  { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1698                                    addend, false, true)); }
1699
1700  // Add a reloc against a local symbol.
1701
1702  void
1703  add_local(Sized_relobj<size, big_endian>* relobj,
1704	    unsigned int local_sym_index, unsigned int type,
1705	    Output_data* od, Address address, Addend addend)
1706  {
1707    this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
1708				    addend, false, false, false));
1709  }
1710
1711  void
1712  add_local(Sized_relobj<size, big_endian>* relobj,
1713	    unsigned int local_sym_index, unsigned int type,
1714	    Output_data* od, unsigned int shndx, Address address,
1715	    Addend addend)
1716  {
1717    this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1718                                    address, addend, false, false, false));
1719  }
1720
1721  // Add a RELATIVE reloc against a local symbol.
1722
1723  void
1724  add_local_relative(Sized_relobj<size, big_endian>* relobj,
1725	             unsigned int local_sym_index, unsigned int type,
1726	             Output_data* od, Address address, Addend addend)
1727  {
1728    this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
1729				    addend, true, true, false));
1730  }
1731
1732  void
1733  add_local_relative(Sized_relobj<size, big_endian>* relobj,
1734	             unsigned int local_sym_index, unsigned int type,
1735	             Output_data* od, unsigned int shndx, Address address,
1736	             Addend addend)
1737  {
1738    this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1739                                    address, addend, true, true, false));
1740  }
1741
1742  // Add a local relocation which does not use a symbol for the relocation,
1743  // but which gets it's addend from a symbol.
1744
1745  void
1746  add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
1747			      unsigned int local_sym_index, unsigned int type,
1748			      Output_data* od, Address address, Addend addend)
1749  {
1750    this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
1751				    addend, false, true, false));
1752  }
1753
1754  void
1755  add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
1756			      unsigned int local_sym_index, unsigned int type,
1757			      Output_data* od, unsigned int shndx,
1758			      Address address, Addend addend)
1759  {
1760    this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1761                                    address, addend, false, true, false));
1762  }
1763
1764  // Add a reloc against a local section symbol.  This will be
1765  // converted into a reloc against the STT_SECTION symbol of the
1766  // output section.
1767
1768  void
1769  add_local_section(Sized_relobj<size, big_endian>* relobj,
1770                    unsigned int input_shndx, unsigned int type,
1771                    Output_data* od, Address address, Addend addend)
1772  {
1773    this->add(od, Output_reloc_type(relobj, input_shndx, type, od, address,
1774				    addend, false, false, true));
1775  }
1776
1777  void
1778  add_local_section(Sized_relobj<size, big_endian>* relobj,
1779	             unsigned int input_shndx, unsigned int type,
1780	             Output_data* od, unsigned int shndx, Address address,
1781	             Addend addend)
1782  {
1783    this->add(od, Output_reloc_type(relobj, input_shndx, type, shndx,
1784                                    address, addend, false, false, true));
1785  }
1786
1787  // A reloc against the STT_SECTION symbol of an output section.
1788
1789  void
1790  add_output_section(Output_section* os, unsigned int type, Output_data* od,
1791		     Address address, Addend addend)
1792  { this->add(od, Output_reloc_type(os, type, od, address, addend)); }
1793
1794  void
1795  add_output_section(Output_section* os, unsigned int type, Output_data* od,
1796                     Sized_relobj<size, big_endian>* relobj,
1797		     unsigned int shndx, Address address, Addend addend)
1798  { this->add(od, Output_reloc_type(os, type, relobj, shndx, address,
1799                                    addend)); }
1800
1801  // Add an absolute relocation.
1802
1803  void
1804  add_absolute(unsigned int type, Output_data* od, Address address,
1805	       Addend addend)
1806  { this->add(od, Output_reloc_type(type, od, address, addend)); }
1807
1808  void
1809  add_absolute(unsigned int type, Output_data* od,
1810	       Sized_relobj<size, big_endian>* relobj,
1811	       unsigned int shndx, Address address, Addend addend)
1812  { this->add(od, Output_reloc_type(type, relobj, shndx, address, addend)); }
1813
1814  // Add a target specific relocation.  A target which calls this must
1815  // define the reloc_symbol_index and reloc_addend virtual functions.
1816
1817  void
1818  add_target_specific(unsigned int type, void* arg, Output_data* od,
1819		      Address address, Addend addend)
1820  { this->add(od, Output_reloc_type(type, arg, od, address, addend)); }
1821
1822  void
1823  add_target_specific(unsigned int type, void* arg, Output_data* od,
1824		      Sized_relobj<size, big_endian>* relobj,
1825		      unsigned int shndx, Address address, Addend addend)
1826  {
1827    this->add(od, Output_reloc_type(type, arg, relobj, shndx, address,
1828				    addend));
1829  }
1830};
1831
1832// Output_relocatable_relocs represents a relocation section in a
1833// relocatable link.  The actual data is written out in the target
1834// hook relocate_for_relocatable.  This just saves space for it.
1835
1836template<int sh_type, int size, bool big_endian>
1837class Output_relocatable_relocs : public Output_section_data
1838{
1839 public:
1840  Output_relocatable_relocs(Relocatable_relocs* rr)
1841    : Output_section_data(Output_data::default_alignment_for_size(size)),
1842      rr_(rr)
1843  { }
1844
1845  void
1846  set_final_data_size();
1847
1848  // Write out the data.  There is nothing to do here.
1849  void
1850  do_write(Output_file*)
1851  { }
1852
1853  // Write to a map file.
1854  void
1855  do_print_to_mapfile(Mapfile* mapfile) const
1856  { mapfile->print_output_data(this, _("** relocs")); }
1857
1858 private:
1859  // The relocs associated with this input section.
1860  Relocatable_relocs* rr_;
1861};
1862
1863// Handle a GROUP section.
1864
1865template<int size, bool big_endian>
1866class Output_data_group : public Output_section_data
1867{
1868 public:
1869  // The constructor clears *INPUT_SHNDXES.
1870  Output_data_group(Sized_relobj<size, big_endian>* relobj,
1871		    section_size_type entry_count,
1872		    elfcpp::Elf_Word flags,
1873		    std::vector<unsigned int>* input_shndxes);
1874
1875  void
1876  do_write(Output_file*);
1877
1878  // Write to a map file.
1879  void
1880  do_print_to_mapfile(Mapfile* mapfile) const
1881  { mapfile->print_output_data(this, _("** group")); }
1882
1883  // Set final data size.
1884  void
1885  set_final_data_size()
1886  { this->set_data_size((this->input_shndxes_.size() + 1) * 4); }
1887
1888 private:
1889  // The input object.
1890  Sized_relobj<size, big_endian>* relobj_;
1891  // The group flag word.
1892  elfcpp::Elf_Word flags_;
1893  // The section indexes of the input sections in this group.
1894  std::vector<unsigned int> input_shndxes_;
1895};
1896
1897// Output_data_got is used to manage a GOT.  Each entry in the GOT is
1898// for one symbol--either a global symbol or a local symbol in an
1899// object.  The target specific code adds entries to the GOT as
1900// needed.
1901
1902template<int size, bool big_endian>
1903class Output_data_got : public Output_section_data_build
1904{
1905 public:
1906  typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
1907  typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian> Rel_dyn;
1908  typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Rela_dyn;
1909
1910  Output_data_got()
1911    : Output_section_data_build(Output_data::default_alignment_for_size(size)),
1912      entries_()
1913  { }
1914
1915  // Add an entry for a global symbol to the GOT.  Return true if this
1916  // is a new GOT entry, false if the symbol was already in the GOT.
1917  bool
1918  add_global(Symbol* gsym, unsigned int got_type);
1919
1920  // Like add_global, but use the PLT offset of the global symbol if
1921  // it has one.
1922  bool
1923  add_global_plt(Symbol* gsym, unsigned int got_type);
1924
1925  // Add an entry for a global symbol to the GOT, and add a dynamic
1926  // relocation of type R_TYPE for the GOT entry.
1927  void
1928  add_global_with_rel(Symbol* gsym, unsigned int got_type,
1929                      Rel_dyn* rel_dyn, unsigned int r_type);
1930
1931  void
1932  add_global_with_rela(Symbol* gsym, unsigned int got_type,
1933                       Rela_dyn* rela_dyn, unsigned int r_type);
1934
1935  // Add a pair of entries for a global symbol to the GOT, and add
1936  // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1937  void
1938  add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
1939                           Rel_dyn* rel_dyn, unsigned int r_type_1,
1940                           unsigned int r_type_2);
1941
1942  void
1943  add_global_pair_with_rela(Symbol* gsym, unsigned int got_type,
1944                            Rela_dyn* rela_dyn, unsigned int r_type_1,
1945                            unsigned int r_type_2);
1946
1947  // Add an entry for a local symbol to the GOT.  This returns true if
1948  // this is a new GOT entry, false if the symbol already has a GOT
1949  // entry.
1950  bool
1951  add_local(Sized_relobj<size, big_endian>* object, unsigned int sym_index,
1952            unsigned int got_type);
1953
1954  // Like add_local, but use the PLT offset of the local symbol if it
1955  // has one.
1956  bool
1957  add_local_plt(Sized_relobj<size, big_endian>* object, unsigned int sym_index,
1958		unsigned int got_type);
1959
1960  // Add an entry for a local symbol to the GOT, and add a dynamic
1961  // relocation of type R_TYPE for the GOT entry.
1962  void
1963  add_local_with_rel(Sized_relobj<size, big_endian>* object,
1964                     unsigned int sym_index, unsigned int got_type,
1965                     Rel_dyn* rel_dyn, unsigned int r_type);
1966
1967  void
1968  add_local_with_rela(Sized_relobj<size, big_endian>* object,
1969                      unsigned int sym_index, unsigned int got_type,
1970                      Rela_dyn* rela_dyn, unsigned int r_type);
1971
1972  // Add a pair of entries for a local symbol to the GOT, and add
1973  // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1974  void
1975  add_local_pair_with_rel(Sized_relobj<size, big_endian>* object,
1976                          unsigned int sym_index, unsigned int shndx,
1977                          unsigned int got_type, Rel_dyn* rel_dyn,
1978                          unsigned int r_type_1, unsigned int r_type_2);
1979
1980  void
1981  add_local_pair_with_rela(Sized_relobj<size, big_endian>* object,
1982                          unsigned int sym_index, unsigned int shndx,
1983                          unsigned int got_type, Rela_dyn* rela_dyn,
1984                          unsigned int r_type_1, unsigned int r_type_2);
1985
1986  // Add a constant to the GOT.  This returns the offset of the new
1987  // entry from the start of the GOT.
1988  unsigned int
1989  add_constant(Valtype constant)
1990  {
1991    this->entries_.push_back(Got_entry(constant));
1992    this->set_got_size();
1993    return this->last_got_offset();
1994  }
1995
1996 protected:
1997  // Write out the GOT table.
1998  void
1999  do_write(Output_file*);
2000
2001  // Write to a map file.
2002  void
2003  do_print_to_mapfile(Mapfile* mapfile) const
2004  { mapfile->print_output_data(this, _("** GOT")); }
2005
2006 private:
2007  // This POD class holds a single GOT entry.
2008  class Got_entry
2009  {
2010   public:
2011    // Create a zero entry.
2012    Got_entry()
2013      : local_sym_index_(CONSTANT_CODE), use_plt_offset_(false)
2014    { this->u_.constant = 0; }
2015
2016    // Create a global symbol entry.
2017    Got_entry(Symbol* gsym, bool use_plt_offset)
2018      : local_sym_index_(GSYM_CODE), use_plt_offset_(use_plt_offset)
2019    { this->u_.gsym = gsym; }
2020
2021    // Create a local symbol entry.
2022    Got_entry(Sized_relobj<size, big_endian>* object,
2023              unsigned int local_sym_index, bool use_plt_offset)
2024      : local_sym_index_(local_sym_index), use_plt_offset_(use_plt_offset)
2025    {
2026      gold_assert(local_sym_index != GSYM_CODE
2027		  && local_sym_index != CONSTANT_CODE
2028		  && local_sym_index == this->local_sym_index_);
2029      this->u_.object = object;
2030    }
2031
2032    // Create a constant entry.  The constant is a host value--it will
2033    // be swapped, if necessary, when it is written out.
2034    explicit Got_entry(Valtype constant)
2035      : local_sym_index_(CONSTANT_CODE), use_plt_offset_(false)
2036    { this->u_.constant = constant; }
2037
2038    // Write the GOT entry to an output view.
2039    void
2040    write(unsigned char* pov) const;
2041
2042   private:
2043    enum
2044    {
2045      GSYM_CODE = 0x7fffffff,
2046      CONSTANT_CODE = 0x7ffffffe
2047    };
2048
2049    union
2050    {
2051      // For a local symbol, the object.
2052      Sized_relobj<size, big_endian>* object;
2053      // For a global symbol, the symbol.
2054      Symbol* gsym;
2055      // For a constant, the constant.
2056      Valtype constant;
2057    } u_;
2058    // For a local symbol, the local symbol index.  This is GSYM_CODE
2059    // for a global symbol, or CONSTANT_CODE for a constant.
2060    unsigned int local_sym_index_ : 31;
2061    // Whether to use the PLT offset of the symbol if it has one.
2062    bool use_plt_offset_ : 1;
2063  };
2064
2065  typedef std::vector<Got_entry> Got_entries;
2066
2067  // Return the offset into the GOT of GOT entry I.
2068  unsigned int
2069  got_offset(unsigned int i) const
2070  { return i * (size / 8); }
2071
2072  // Return the offset into the GOT of the last entry added.
2073  unsigned int
2074  last_got_offset() const
2075  { return this->got_offset(this->entries_.size() - 1); }
2076
2077  // Set the size of the section.
2078  void
2079  set_got_size()
2080  { this->set_current_data_size(this->got_offset(this->entries_.size())); }
2081
2082  // The list of GOT entries.
2083  Got_entries entries_;
2084};
2085
2086// Output_data_dynamic is used to hold the data in SHT_DYNAMIC
2087// section.
2088
2089class Output_data_dynamic : public Output_section_data
2090{
2091 public:
2092  Output_data_dynamic(Stringpool* pool)
2093    : Output_section_data(Output_data::default_alignment()),
2094      entries_(), pool_(pool)
2095  { }
2096
2097  // Add a new dynamic entry with a fixed numeric value.
2098  void
2099  add_constant(elfcpp::DT tag, unsigned int val)
2100  { this->add_entry(Dynamic_entry(tag, val)); }
2101
2102  // Add a new dynamic entry with the address of output data.
2103  void
2104  add_section_address(elfcpp::DT tag, const Output_data* od)
2105  { this->add_entry(Dynamic_entry(tag, od, false)); }
2106
2107  // Add a new dynamic entry with the address of output data
2108  // plus a constant offset.
2109  void
2110  add_section_plus_offset(elfcpp::DT tag, const Output_data* od,
2111                          unsigned int offset)
2112  { this->add_entry(Dynamic_entry(tag, od, offset)); }
2113
2114  // Add a new dynamic entry with the size of output data.
2115  void
2116  add_section_size(elfcpp::DT tag, const Output_data* od)
2117  { this->add_entry(Dynamic_entry(tag, od, true)); }
2118
2119  // Add a new dynamic entry with the total size of two output datas.
2120  void
2121  add_section_size(elfcpp::DT tag, const Output_data* od,
2122		   const Output_data* od2)
2123  { this->add_entry(Dynamic_entry(tag, od, od2)); }
2124
2125  // Add a new dynamic entry with the address of a symbol.
2126  void
2127  add_symbol(elfcpp::DT tag, const Symbol* sym)
2128  { this->add_entry(Dynamic_entry(tag, sym)); }
2129
2130  // Add a new dynamic entry with a string.
2131  void
2132  add_string(elfcpp::DT tag, const char* str)
2133  { this->add_entry(Dynamic_entry(tag, this->pool_->add(str, true, NULL))); }
2134
2135  void
2136  add_string(elfcpp::DT tag, const std::string& str)
2137  { this->add_string(tag, str.c_str()); }
2138
2139 protected:
2140  // Adjust the output section to set the entry size.
2141  void
2142  do_adjust_output_section(Output_section*);
2143
2144  // Set the final data size.
2145  void
2146  set_final_data_size();
2147
2148  // Write out the dynamic entries.
2149  void
2150  do_write(Output_file*);
2151
2152  // Write to a map file.
2153  void
2154  do_print_to_mapfile(Mapfile* mapfile) const
2155  { mapfile->print_output_data(this, _("** dynamic")); }
2156
2157 private:
2158  // This POD class holds a single dynamic entry.
2159  class Dynamic_entry
2160  {
2161   public:
2162    // Create an entry with a fixed numeric value.
2163    Dynamic_entry(elfcpp::DT tag, unsigned int val)
2164      : tag_(tag), offset_(DYNAMIC_NUMBER)
2165    { this->u_.val = val; }
2166
2167    // Create an entry with the size or address of a section.
2168    Dynamic_entry(elfcpp::DT tag, const Output_data* od, bool section_size)
2169      : tag_(tag),
2170	offset_(section_size
2171		? DYNAMIC_SECTION_SIZE
2172		: DYNAMIC_SECTION_ADDRESS)
2173    {
2174      this->u_.od = od;
2175      this->od2 = NULL;
2176    }
2177
2178    // Create an entry with the size of two sections.
2179    Dynamic_entry(elfcpp::DT tag, const Output_data* od, const Output_data* od2)
2180      : tag_(tag),
2181	offset_(DYNAMIC_SECTION_SIZE)
2182    {
2183      this->u_.od = od;
2184      this->od2 = od2;
2185    }
2186
2187    // Create an entry with the address of a section plus a constant offset.
2188    Dynamic_entry(elfcpp::DT tag, const Output_data* od, unsigned int offset)
2189      : tag_(tag),
2190	offset_(offset)
2191    { this->u_.od = od; }
2192
2193    // Create an entry with the address of a symbol.
2194    Dynamic_entry(elfcpp::DT tag, const Symbol* sym)
2195      : tag_(tag), offset_(DYNAMIC_SYMBOL)
2196    { this->u_.sym = sym; }
2197
2198    // Create an entry with a string.
2199    Dynamic_entry(elfcpp::DT tag, const char* str)
2200      : tag_(tag), offset_(DYNAMIC_STRING)
2201    { this->u_.str = str; }
2202
2203    // Return the tag of this entry.
2204    elfcpp::DT
2205    tag() const
2206    { return this->tag_; }
2207
2208    // Write the dynamic entry to an output view.
2209    template<int size, bool big_endian>
2210    void
2211    write(unsigned char* pov, const Stringpool*) const;
2212
2213   private:
2214    // Classification is encoded in the OFFSET field.
2215    enum Classification
2216    {
2217      // Section address.
2218      DYNAMIC_SECTION_ADDRESS = 0,
2219      // Number.
2220      DYNAMIC_NUMBER = -1U,
2221      // Section size.
2222      DYNAMIC_SECTION_SIZE = -2U,
2223      // Symbol adress.
2224      DYNAMIC_SYMBOL = -3U,
2225      // String.
2226      DYNAMIC_STRING = -4U
2227      // Any other value indicates a section address plus OFFSET.
2228    };
2229
2230    union
2231    {
2232      // For DYNAMIC_NUMBER.
2233      unsigned int val;
2234      // For DYNAMIC_SECTION_SIZE and section address plus OFFSET.
2235      const Output_data* od;
2236      // For DYNAMIC_SYMBOL.
2237      const Symbol* sym;
2238      // For DYNAMIC_STRING.
2239      const char* str;
2240    } u_;
2241    // For DYNAMIC_SYMBOL with two sections.
2242    const Output_data* od2;
2243    // The dynamic tag.
2244    elfcpp::DT tag_;
2245    // The type of entry (Classification) or offset within a section.
2246    unsigned int offset_;
2247  };
2248
2249  // Add an entry to the list.
2250  void
2251  add_entry(const Dynamic_entry& entry)
2252  { this->entries_.push_back(entry); }
2253
2254  // Sized version of write function.
2255  template<int size, bool big_endian>
2256  void
2257  sized_write(Output_file* of);
2258
2259  // The type of the list of entries.
2260  typedef std::vector<Dynamic_entry> Dynamic_entries;
2261
2262  // The entries.
2263  Dynamic_entries entries_;
2264  // The pool used for strings.
2265  Stringpool* pool_;
2266};
2267
2268// Output_symtab_xindex is used to handle SHT_SYMTAB_SHNDX sections,
2269// which may be required if the object file has more than
2270// SHN_LORESERVE sections.
2271
2272class Output_symtab_xindex : public Output_section_data
2273{
2274 public:
2275  Output_symtab_xindex(size_t symcount)
2276    : Output_section_data(symcount * 4, 4, true),
2277      entries_()
2278  { }
2279
2280  // Add an entry: symbol number SYMNDX has section SHNDX.
2281  void
2282  add(unsigned int symndx, unsigned int shndx)
2283  { this->entries_.push_back(std::make_pair(symndx, shndx)); }
2284
2285 protected:
2286  void
2287  do_write(Output_file*);
2288
2289  // Write to a map file.
2290  void
2291  do_print_to_mapfile(Mapfile* mapfile) const
2292  { mapfile->print_output_data(this, _("** symtab xindex")); }
2293
2294 private:
2295  template<bool big_endian>
2296  void
2297  endian_do_write(unsigned char*);
2298
2299  // It is likely that most symbols will not require entries.  Rather
2300  // than keep a vector for all symbols, we keep pairs of symbol index
2301  // and section index.
2302  typedef std::vector<std::pair<unsigned int, unsigned int> > Xindex_entries;
2303
2304  // The entries we need.
2305  Xindex_entries entries_;
2306};
2307
2308// A relaxed input section.
2309class Output_relaxed_input_section : public Output_section_data_build
2310{
2311 public:
2312  // We would like to call relobj->section_addralign(shndx) to get the
2313  // alignment but we do not want the constructor to fail.  So callers
2314  // are repsonsible for ensuring that.
2315  Output_relaxed_input_section(Relobj* relobj, unsigned int shndx,
2316			       uint64_t addralign)
2317    : Output_section_data_build(addralign), relobj_(relobj), shndx_(shndx)
2318  { }
2319
2320  // Return the Relobj of this relaxed input section.
2321  Relobj*
2322  relobj() const
2323  { return this->relobj_; }
2324
2325  // Return the section index of this relaxed input section.
2326  unsigned int
2327  shndx() const
2328  { return this->shndx_; }
2329
2330 private:
2331  Relobj* relobj_;
2332  unsigned int shndx_;
2333};
2334
2335// This class describes properties of merge data sections.  It is used
2336// as a key type for maps.
2337class Merge_section_properties
2338{
2339 public:
2340  Merge_section_properties(bool is_string, uint64_t entsize,
2341			     uint64_t addralign)
2342    : is_string_(is_string), entsize_(entsize), addralign_(addralign)
2343  { }
2344
2345  // Whether this equals to another Merge_section_properties MSP.
2346  bool
2347  eq(const Merge_section_properties& msp) const
2348  {
2349    return ((this->is_string_ == msp.is_string_)
2350	    && (this->entsize_ == msp.entsize_)
2351	    && (this->addralign_ == msp.addralign_));
2352  }
2353
2354  // Compute a hash value for this using 64-bit FNV-1a hash.
2355  size_t
2356  hash_value() const
2357  {
2358    uint64_t h = 14695981039346656037ULL;	// FNV offset basis.
2359    uint64_t prime = 1099511628211ULL;
2360    h = (h ^ static_cast<uint64_t>(this->is_string_)) * prime;
2361    h = (h ^ static_cast<uint64_t>(this->entsize_)) * prime;
2362    h = (h ^ static_cast<uint64_t>(this->addralign_)) * prime;
2363    return h;
2364  }
2365
2366  // Functors for associative containers.
2367  struct equal_to
2368  {
2369    bool
2370    operator()(const Merge_section_properties& msp1,
2371	       const Merge_section_properties& msp2) const
2372    { return msp1.eq(msp2); }
2373  };
2374
2375  struct hash
2376  {
2377    size_t
2378    operator()(const Merge_section_properties& msp) const
2379    { return msp.hash_value(); }
2380  };
2381
2382 private:
2383  // Whether this merge data section is for strings.
2384  bool is_string_;
2385  // Entsize of this merge data section.
2386  uint64_t entsize_;
2387  // Address alignment.
2388  uint64_t addralign_;
2389};
2390
2391// This class is used to speed up look up of special input sections in an
2392// Output_section.
2393
2394class Output_section_lookup_maps
2395{
2396 public:
2397  Output_section_lookup_maps()
2398    : is_valid_(true), merge_sections_by_properties_(),
2399      merge_sections_by_id_(), relaxed_input_sections_by_id_()
2400  { }
2401
2402  // Whether the maps are valid.
2403  bool
2404  is_valid() const
2405  { return this->is_valid_; }
2406
2407  // Invalidate the maps.
2408  void
2409  invalidate()
2410  { this->is_valid_ = false; }
2411
2412  // Clear the maps.
2413  void
2414  clear()
2415  {
2416    this->merge_sections_by_properties_.clear();
2417    this->merge_sections_by_id_.clear();
2418    this->relaxed_input_sections_by_id_.clear();
2419    // A cleared map is valid.
2420    this->is_valid_ = true;
2421  }
2422
2423  // Find a merge section by merge section properties.  Return NULL if none
2424  // is found.
2425  Output_merge_base*
2426  find_merge_section(const Merge_section_properties& msp) const
2427  {
2428    gold_assert(this->is_valid_);
2429    Merge_sections_by_properties::const_iterator p =
2430      this->merge_sections_by_properties_.find(msp);
2431    return p != this->merge_sections_by_properties_.end() ? p->second : NULL;
2432  }
2433
2434  // Find a merge section by section ID of a merge input section.  Return NULL
2435  // if none is found.
2436  Output_merge_base*
2437  find_merge_section(const Object* object, unsigned int shndx) const
2438  {
2439    gold_assert(this->is_valid_);
2440    Merge_sections_by_id::const_iterator p =
2441      this->merge_sections_by_id_.find(Const_section_id(object, shndx));
2442    return p != this->merge_sections_by_id_.end() ? p->second : NULL;
2443  }
2444
2445  // Add a merge section pointed by POMB with properties MSP.
2446  void
2447  add_merge_section(const Merge_section_properties& msp,
2448		    Output_merge_base* pomb)
2449  {
2450    std::pair<Merge_section_properties, Output_merge_base*> value(msp, pomb);
2451    std::pair<Merge_sections_by_properties::iterator, bool> result =
2452      this->merge_sections_by_properties_.insert(value);
2453    gold_assert(result.second);
2454  }
2455
2456  // Add a mapping from a merged input section in OBJECT with index SHNDX
2457  // to a merge output section pointed by POMB.
2458  void
2459  add_merge_input_section(const Object* object, unsigned int shndx,
2460			  Output_merge_base* pomb)
2461  {
2462    Const_section_id csid(object, shndx);
2463    std::pair<Const_section_id, Output_merge_base*> value(csid, pomb);
2464    std::pair<Merge_sections_by_id::iterator, bool> result =
2465      this->merge_sections_by_id_.insert(value);
2466    gold_assert(result.second);
2467  }
2468
2469  // Find a relaxed input section of OBJECT with index SHNDX.
2470  Output_relaxed_input_section*
2471  find_relaxed_input_section(const Object* object, unsigned int shndx) const
2472  {
2473    gold_assert(this->is_valid_);
2474    Relaxed_input_sections_by_id::const_iterator p =
2475      this->relaxed_input_sections_by_id_.find(Const_section_id(object, shndx));
2476    return p != this->relaxed_input_sections_by_id_.end() ? p->second : NULL;
2477  }
2478
2479  // Add a relaxed input section pointed by POMB and whose original input
2480  // section is in OBJECT with index SHNDX.
2481  void
2482  add_relaxed_input_section(const Relobj* relobj, unsigned int shndx,
2483			    Output_relaxed_input_section* poris)
2484  {
2485    Const_section_id csid(relobj, shndx);
2486    std::pair<Const_section_id, Output_relaxed_input_section*>
2487      value(csid, poris);
2488    std::pair<Relaxed_input_sections_by_id::iterator, bool> result =
2489      this->relaxed_input_sections_by_id_.insert(value);
2490    gold_assert(result.second);
2491  }
2492
2493 private:
2494  typedef Unordered_map<Const_section_id, Output_merge_base*,
2495			Const_section_id_hash>
2496    Merge_sections_by_id;
2497
2498  typedef Unordered_map<Merge_section_properties, Output_merge_base*,
2499			Merge_section_properties::hash,
2500			Merge_section_properties::equal_to>
2501    Merge_sections_by_properties;
2502
2503  typedef Unordered_map<Const_section_id, Output_relaxed_input_section*,
2504			Const_section_id_hash>
2505    Relaxed_input_sections_by_id;
2506
2507  // Whether this is valid
2508  bool is_valid_;
2509  // Merge sections by merge section properties.
2510  Merge_sections_by_properties merge_sections_by_properties_;
2511  // Merge sections by section IDs.
2512  Merge_sections_by_id merge_sections_by_id_;
2513  // Relaxed sections by section IDs.
2514  Relaxed_input_sections_by_id relaxed_input_sections_by_id_;
2515};
2516
2517// An output section.  We don't expect to have too many output
2518// sections, so we don't bother to do a template on the size.
2519
2520class Output_section : public Output_data
2521{
2522 public:
2523  // Create an output section, giving the name, type, and flags.
2524  Output_section(const char* name, elfcpp::Elf_Word, elfcpp::Elf_Xword);
2525  virtual ~Output_section();
2526
2527  // Add a new input section SHNDX, named NAME, with header SHDR, from
2528  // object OBJECT.  RELOC_SHNDX is the index of a relocation section
2529  // which applies to this section, or 0 if none, or -1 if more than
2530  // one.  HAVE_SECTIONS_SCRIPT is true if we have a SECTIONS clause
2531  // in a linker script; in that case we need to keep track of input
2532  // sections associated with an output section.  Return the offset
2533  // within the output section.
2534  template<int size, bool big_endian>
2535  off_t
2536  add_input_section(Layout* layout, Sized_relobj<size, big_endian>* object,
2537                    unsigned int shndx, const char* name,
2538		    const elfcpp::Shdr<size, big_endian>& shdr,
2539		    unsigned int reloc_shndx, bool have_sections_script);
2540
2541  // Add generated data POSD to this output section.
2542  void
2543  add_output_section_data(Output_section_data* posd);
2544
2545  // Add a relaxed input section PORIS called NAME to this output section
2546  // with LAYOUT.
2547  void
2548  add_relaxed_input_section(Layout* layout,
2549			    Output_relaxed_input_section* poris,
2550			    const std::string& name);
2551
2552  // Return the section name.
2553  const char*
2554  name() const
2555  { return this->name_; }
2556
2557  // Return the section type.
2558  elfcpp::Elf_Word
2559  type() const
2560  { return this->type_; }
2561
2562  // Return the section flags.
2563  elfcpp::Elf_Xword
2564  flags() const
2565  { return this->flags_; }
2566
2567  // Update the output section flags based on input section flags.
2568  void
2569  update_flags_for_input_section(elfcpp::Elf_Xword flags);
2570
2571  // Return the entsize field.
2572  uint64_t
2573  entsize() const
2574  { return this->entsize_; }
2575
2576  // Set the entsize field.
2577  void
2578  set_entsize(uint64_t v);
2579
2580  // Set the load address.
2581  void
2582  set_load_address(uint64_t load_address)
2583  {
2584    this->load_address_ = load_address;
2585    this->has_load_address_ = true;
2586  }
2587
2588  // Set the link field to the output section index of a section.
2589  void
2590  set_link_section(const Output_data* od)
2591  {
2592    gold_assert(this->link_ == 0
2593		&& !this->should_link_to_symtab_
2594		&& !this->should_link_to_dynsym_);
2595    this->link_section_ = od;
2596  }
2597
2598  // Set the link field to a constant.
2599  void
2600  set_link(unsigned int v)
2601  {
2602    gold_assert(this->link_section_ == NULL
2603		&& !this->should_link_to_symtab_
2604		&& !this->should_link_to_dynsym_);
2605    this->link_ = v;
2606  }
2607
2608  // Record that this section should link to the normal symbol table.
2609  void
2610  set_should_link_to_symtab()
2611  {
2612    gold_assert(this->link_section_ == NULL
2613		&& this->link_ == 0
2614		&& !this->should_link_to_dynsym_);
2615    this->should_link_to_symtab_ = true;
2616  }
2617
2618  // Record that this section should link to the dynamic symbol table.
2619  void
2620  set_should_link_to_dynsym()
2621  {
2622    gold_assert(this->link_section_ == NULL
2623		&& this->link_ == 0
2624		&& !this->should_link_to_symtab_);
2625    this->should_link_to_dynsym_ = true;
2626  }
2627
2628  // Return the info field.
2629  unsigned int
2630  info() const
2631  {
2632    gold_assert(this->info_section_ == NULL
2633		&& this->info_symndx_ == NULL);
2634    return this->info_;
2635  }
2636
2637  // Set the info field to the output section index of a section.
2638  void
2639  set_info_section(const Output_section* os)
2640  {
2641    gold_assert((this->info_section_ == NULL
2642		 || (this->info_section_ == os
2643		     && this->info_uses_section_index_))
2644		&& this->info_symndx_ == NULL
2645		&& this->info_ == 0);
2646    this->info_section_ = os;
2647    this->info_uses_section_index_= true;
2648  }
2649
2650  // Set the info field to the symbol table index of a symbol.
2651  void
2652  set_info_symndx(const Symbol* sym)
2653  {
2654    gold_assert(this->info_section_ == NULL
2655		&& (this->info_symndx_ == NULL
2656		    || this->info_symndx_ == sym)
2657		&& this->info_ == 0);
2658    this->info_symndx_ = sym;
2659  }
2660
2661  // Set the info field to the symbol table index of a section symbol.
2662  void
2663  set_info_section_symndx(const Output_section* os)
2664  {
2665    gold_assert((this->info_section_ == NULL
2666		 || (this->info_section_ == os
2667		     && !this->info_uses_section_index_))
2668		&& this->info_symndx_ == NULL
2669		&& this->info_ == 0);
2670    this->info_section_ = os;
2671    this->info_uses_section_index_ = false;
2672  }
2673
2674  // Set the info field to a constant.
2675  void
2676  set_info(unsigned int v)
2677  {
2678    gold_assert(this->info_section_ == NULL
2679		&& this->info_symndx_ == NULL
2680		&& (this->info_ == 0
2681		    || this->info_ == v));
2682    this->info_ = v;
2683  }
2684
2685  // Set the addralign field.
2686  void
2687  set_addralign(uint64_t v)
2688  { this->addralign_ = v; }
2689
2690  // Whether the output section index has been set.
2691  bool
2692  has_out_shndx() const
2693  { return this->out_shndx_ != -1U; }
2694
2695  // Indicate that we need a symtab index.
2696  void
2697  set_needs_symtab_index()
2698  { this->needs_symtab_index_ = true; }
2699
2700  // Return whether we need a symtab index.
2701  bool
2702  needs_symtab_index() const
2703  { return this->needs_symtab_index_; }
2704
2705  // Get the symtab index.
2706  unsigned int
2707  symtab_index() const
2708  {
2709    gold_assert(this->symtab_index_ != 0);
2710    return this->symtab_index_;
2711  }
2712
2713  // Set the symtab index.
2714  void
2715  set_symtab_index(unsigned int index)
2716  {
2717    gold_assert(index != 0);
2718    this->symtab_index_ = index;
2719  }
2720
2721  // Indicate that we need a dynsym index.
2722  void
2723  set_needs_dynsym_index()
2724  { this->needs_dynsym_index_ = true; }
2725
2726  // Return whether we need a dynsym index.
2727  bool
2728  needs_dynsym_index() const
2729  { return this->needs_dynsym_index_; }
2730
2731  // Get the dynsym index.
2732  unsigned int
2733  dynsym_index() const
2734  {
2735    gold_assert(this->dynsym_index_ != 0);
2736    return this->dynsym_index_;
2737  }
2738
2739  // Set the dynsym index.
2740  void
2741  set_dynsym_index(unsigned int index)
2742  {
2743    gold_assert(index != 0);
2744    this->dynsym_index_ = index;
2745  }
2746
2747  // Return whether the input sections sections attachd to this output
2748  // section may require sorting.  This is used to handle constructor
2749  // priorities compatibly with GNU ld.
2750  bool
2751  may_sort_attached_input_sections() const
2752  { return this->may_sort_attached_input_sections_; }
2753
2754  // Record that the input sections attached to this output section
2755  // may require sorting.
2756  void
2757  set_may_sort_attached_input_sections()
2758  { this->may_sort_attached_input_sections_ = true; }
2759
2760   // Returns true if input sections must be sorted according to the
2761  // order in which their name appear in the --section-ordering-file.
2762  bool
2763  input_section_order_specified()
2764  { return this->input_section_order_specified_; }
2765
2766  // Record that input sections must be sorted as some of their names
2767  // match the patterns specified through --section-ordering-file.
2768  void
2769  set_input_section_order_specified()
2770  { this->input_section_order_specified_ = true; }
2771
2772  // Return whether the input sections attached to this output section
2773  // require sorting.  This is used to handle constructor priorities
2774  // compatibly with GNU ld.
2775  bool
2776  must_sort_attached_input_sections() const
2777  { return this->must_sort_attached_input_sections_; }
2778
2779  // Record that the input sections attached to this output section
2780  // require sorting.
2781  void
2782  set_must_sort_attached_input_sections()
2783  { this->must_sort_attached_input_sections_ = true; }
2784
2785  // Get the order in which this section appears in the PT_LOAD output
2786  // segment.
2787  Output_section_order
2788  order() const
2789  { return this->order_; }
2790
2791  // Set the order for this section.
2792  void
2793  set_order(Output_section_order order)
2794  { this->order_ = order; }
2795
2796  // Return whether this section holds relro data--data which has
2797  // dynamic relocations but which may be marked read-only after the
2798  // dynamic relocations have been completed.
2799  bool
2800  is_relro() const
2801  { return this->is_relro_; }
2802
2803  // Record that this section holds relro data.
2804  void
2805  set_is_relro()
2806  { this->is_relro_ = true; }
2807
2808  // Record that this section does not hold relro data.
2809  void
2810  clear_is_relro()
2811  { this->is_relro_ = false; }
2812
2813  // True if this is a small section: a section which holds small
2814  // variables.
2815  bool
2816  is_small_section() const
2817  { return this->is_small_section_; }
2818
2819  // Record that this is a small section.
2820  void
2821  set_is_small_section()
2822  { this->is_small_section_ = true; }
2823
2824  // True if this is a large section: a section which holds large
2825  // variables.
2826  bool
2827  is_large_section() const
2828  { return this->is_large_section_; }
2829
2830  // Record that this is a large section.
2831  void
2832  set_is_large_section()
2833  { this->is_large_section_ = true; }
2834
2835  // True if this is a large data (not BSS) section.
2836  bool
2837  is_large_data_section()
2838  { return this->is_large_section_ && this->type_ != elfcpp::SHT_NOBITS; }
2839
2840  // Return whether this section should be written after all the input
2841  // sections are complete.
2842  bool
2843  after_input_sections() const
2844  { return this->after_input_sections_; }
2845
2846  // Record that this section should be written after all the input
2847  // sections are complete.
2848  void
2849  set_after_input_sections()
2850  { this->after_input_sections_ = true; }
2851
2852  // Return whether this section requires postprocessing after all
2853  // relocations have been applied.
2854  bool
2855  requires_postprocessing() const
2856  { return this->requires_postprocessing_; }
2857
2858  // If a section requires postprocessing, return the buffer to use.
2859  unsigned char*
2860  postprocessing_buffer() const
2861  {
2862    gold_assert(this->postprocessing_buffer_ != NULL);
2863    return this->postprocessing_buffer_;
2864  }
2865
2866  // If a section requires postprocessing, create the buffer to use.
2867  void
2868  create_postprocessing_buffer();
2869
2870  // If a section requires postprocessing, this is the size of the
2871  // buffer to which relocations should be applied.
2872  off_t
2873  postprocessing_buffer_size() const
2874  { return this->current_data_size_for_child(); }
2875
2876  // Modify the section name.  This is only permitted for an
2877  // unallocated section, and only before the size has been finalized.
2878  // Otherwise the name will not get into Layout::namepool_.
2879  void
2880  set_name(const char* newname)
2881  {
2882    gold_assert((this->flags_ & elfcpp::SHF_ALLOC) == 0);
2883    gold_assert(!this->is_data_size_valid());
2884    this->name_ = newname;
2885  }
2886
2887  // Return whether the offset OFFSET in the input section SHNDX in
2888  // object OBJECT is being included in the link.
2889  bool
2890  is_input_address_mapped(const Relobj* object, unsigned int shndx,
2891			  off_t offset) const;
2892
2893  // Return the offset within the output section of OFFSET relative to
2894  // the start of input section SHNDX in object OBJECT.
2895  section_offset_type
2896  output_offset(const Relobj* object, unsigned int shndx,
2897		section_offset_type offset) const;
2898
2899  // Return the output virtual address of OFFSET relative to the start
2900  // of input section SHNDX in object OBJECT.
2901  uint64_t
2902  output_address(const Relobj* object, unsigned int shndx,
2903		 off_t offset) const;
2904
2905  // Look for the merged section for input section SHNDX in object
2906  // OBJECT.  If found, return true, and set *ADDR to the address of
2907  // the start of the merged section.  This is not necessary the
2908  // output offset corresponding to input offset 0 in the section,
2909  // since the section may be mapped arbitrarily.
2910  bool
2911  find_starting_output_address(const Relobj* object, unsigned int shndx,
2912			       uint64_t* addr) const;
2913
2914  // Record that this output section was found in the SECTIONS clause
2915  // of a linker script.
2916  void
2917  set_found_in_sections_clause()
2918  { this->found_in_sections_clause_ = true; }
2919
2920  // Return whether this output section was found in the SECTIONS
2921  // clause of a linker script.
2922  bool
2923  found_in_sections_clause() const
2924  { return this->found_in_sections_clause_; }
2925
2926  // Write the section header into *OPHDR.
2927  template<int size, bool big_endian>
2928  void
2929  write_header(const Layout*, const Stringpool*,
2930	       elfcpp::Shdr_write<size, big_endian>*) const;
2931
2932  // The next few calls are for linker script support.
2933
2934  // In some cases we need to keep a list of the input sections
2935  // associated with this output section.  We only need the list if we
2936  // might have to change the offsets of the input section within the
2937  // output section after we add the input section.  The ordinary
2938  // input sections will be written out when we process the object
2939  // file, and as such we don't need to track them here.  We do need
2940  // to track Output_section_data objects here.  We store instances of
2941  // this structure in a std::vector, so it must be a POD.  There can
2942  // be many instances of this structure, so we use a union to save
2943  // some space.
2944  class Input_section
2945  {
2946   public:
2947    Input_section()
2948      : shndx_(0), p2align_(0)
2949    {
2950      this->u1_.data_size = 0;
2951      this->u2_.object = NULL;
2952    }
2953
2954    // For an ordinary input section.
2955    Input_section(Relobj* object, unsigned int shndx, off_t data_size,
2956		  uint64_t addralign)
2957      : shndx_(shndx),
2958	p2align_(ffsll(static_cast<long long>(addralign))),
2959	section_order_index_(0)
2960    {
2961      gold_assert(shndx != OUTPUT_SECTION_CODE
2962		  && shndx != MERGE_DATA_SECTION_CODE
2963		  && shndx != MERGE_STRING_SECTION_CODE
2964		  && shndx != RELAXED_INPUT_SECTION_CODE);
2965      this->u1_.data_size = data_size;
2966      this->u2_.object = object;
2967    }
2968
2969    // For a non-merge output section.
2970    Input_section(Output_section_data* posd)
2971      : shndx_(OUTPUT_SECTION_CODE), p2align_(0),
2972	section_order_index_(0)
2973    {
2974      this->u1_.data_size = 0;
2975      this->u2_.posd = posd;
2976    }
2977
2978    // For a merge section.
2979    Input_section(Output_section_data* posd, bool is_string, uint64_t entsize)
2980      : shndx_(is_string
2981	       ? MERGE_STRING_SECTION_CODE
2982	       : MERGE_DATA_SECTION_CODE),
2983	p2align_(0),
2984	section_order_index_(0)
2985    {
2986      this->u1_.entsize = entsize;
2987      this->u2_.posd = posd;
2988    }
2989
2990    // For a relaxed input section.
2991    Input_section(Output_relaxed_input_section* psection)
2992      : shndx_(RELAXED_INPUT_SECTION_CODE), p2align_(0),
2993	section_order_index_(0)
2994    {
2995      this->u1_.data_size = 0;
2996      this->u2_.poris = psection;
2997    }
2998
2999    unsigned int
3000    section_order_index() const
3001    {
3002      return this->section_order_index_;
3003    }
3004
3005    void
3006    set_section_order_index(unsigned int number)
3007    {
3008      this->section_order_index_ = number;
3009    }
3010
3011    // The required alignment.
3012    uint64_t
3013    addralign() const
3014    {
3015      if (this->p2align_ != 0)
3016	return static_cast<uint64_t>(1) << (this->p2align_ - 1);
3017      else if (!this->is_input_section())
3018	return this->u2_.posd->addralign();
3019      else
3020	return 0;
3021    }
3022
3023    // Set the required alignment, which must be either 0 or a power of 2.
3024    // For input sections that are sub-classes of Output_section_data, a
3025    // alignment of zero means asking the underlying object for alignment.
3026    void
3027    set_addralign(uint64_t addralign)
3028    {
3029      if (addralign == 0)
3030	this->p2align_ = 0;
3031      else
3032	{
3033	  gold_assert((addralign & (addralign - 1)) == 0);
3034	  this->p2align_ = ffsll(static_cast<long long>(addralign));
3035	}
3036    }
3037
3038    // Return the required size.
3039    off_t
3040    data_size() const;
3041
3042    // Whether this is an input section.
3043    bool
3044    is_input_section() const
3045    {
3046      return (this->shndx_ != OUTPUT_SECTION_CODE
3047	      && this->shndx_ != MERGE_DATA_SECTION_CODE
3048	      && this->shndx_ != MERGE_STRING_SECTION_CODE
3049	      && this->shndx_ != RELAXED_INPUT_SECTION_CODE);
3050    }
3051
3052    // Return whether this is a merge section which matches the
3053    // parameters.
3054    bool
3055    is_merge_section(bool is_string, uint64_t entsize,
3056                     uint64_t addralign) const
3057    {
3058      return (this->shndx_ == (is_string
3059			       ? MERGE_STRING_SECTION_CODE
3060			       : MERGE_DATA_SECTION_CODE)
3061	      && this->u1_.entsize == entsize
3062              && this->addralign() == addralign);
3063    }
3064
3065    // Return whether this is a merge section for some input section.
3066    bool
3067    is_merge_section() const
3068    {
3069      return (this->shndx_ == MERGE_DATA_SECTION_CODE
3070	      || this->shndx_ == MERGE_STRING_SECTION_CODE);
3071    }
3072
3073    // Return whether this is a relaxed input section.
3074    bool
3075    is_relaxed_input_section() const
3076    { return this->shndx_ == RELAXED_INPUT_SECTION_CODE; }
3077
3078    // Return whether this is a generic Output_section_data.
3079    bool
3080    is_output_section_data() const
3081    {
3082      return this->shndx_ == OUTPUT_SECTION_CODE;
3083    }
3084
3085    // Return the object for an input section.
3086    Relobj*
3087    relobj() const;
3088
3089    // Return the input section index for an input section.
3090    unsigned int
3091    shndx() const;
3092
3093    // For non-input-sections, return the associated Output_section_data
3094    // object.
3095    Output_section_data*
3096    output_section_data() const
3097    {
3098      gold_assert(!this->is_input_section());
3099      return this->u2_.posd;
3100    }
3101
3102    // For a merge section, return the Output_merge_base pointer.
3103    Output_merge_base*
3104    output_merge_base() const
3105    {
3106      gold_assert(this->is_merge_section());
3107      return this->u2_.pomb;
3108    }
3109
3110    // Return the Output_relaxed_input_section object.
3111    Output_relaxed_input_section*
3112    relaxed_input_section() const
3113    {
3114      gold_assert(this->is_relaxed_input_section());
3115      return this->u2_.poris;
3116    }
3117
3118    // Set the output section.
3119    void
3120    set_output_section(Output_section* os)
3121    {
3122      gold_assert(!this->is_input_section());
3123      Output_section_data* posd =
3124        this->is_relaxed_input_section() ? this->u2_.poris : this->u2_.posd;
3125      posd->set_output_section(os);
3126    }
3127
3128    // Set the address and file offset.  This is called during
3129    // Layout::finalize.  SECTION_FILE_OFFSET is the file offset of
3130    // the enclosing section.
3131    void
3132    set_address_and_file_offset(uint64_t address, off_t file_offset,
3133				off_t section_file_offset);
3134
3135    // Reset the address and file offset.
3136    void
3137    reset_address_and_file_offset();
3138
3139    // Finalize the data size.
3140    void
3141    finalize_data_size();
3142
3143    // Add an input section, for SHF_MERGE sections.
3144    bool
3145    add_input_section(Relobj* object, unsigned int shndx)
3146    {
3147      gold_assert(this->shndx_ == MERGE_DATA_SECTION_CODE
3148		  || this->shndx_ == MERGE_STRING_SECTION_CODE);
3149      return this->u2_.posd->add_input_section(object, shndx);
3150    }
3151
3152    // Given an input OBJECT, an input section index SHNDX within that
3153    // object, and an OFFSET relative to the start of that input
3154    // section, return whether or not the output offset is known.  If
3155    // this function returns true, it sets *POUTPUT to the offset in
3156    // the output section, relative to the start of the input section
3157    // in the output section.  *POUTPUT may be different from OFFSET
3158    // for a merged section.
3159    bool
3160    output_offset(const Relobj* object, unsigned int shndx,
3161		  section_offset_type offset,
3162		  section_offset_type* poutput) const;
3163
3164    // Return whether this is the merge section for the input section
3165    // SHNDX in OBJECT.
3166    bool
3167    is_merge_section_for(const Relobj* object, unsigned int shndx) const;
3168
3169    // Write out the data.  This does nothing for an input section.
3170    void
3171    write(Output_file*);
3172
3173    // Write the data to a buffer.  This does nothing for an input
3174    // section.
3175    void
3176    write_to_buffer(unsigned char*);
3177
3178    // Print to a map file.
3179    void
3180    print_to_mapfile(Mapfile*) const;
3181
3182    // Print statistics about merge sections to stderr.
3183    void
3184    print_merge_stats(const char* section_name)
3185    {
3186      if (this->shndx_ == MERGE_DATA_SECTION_CODE
3187	  || this->shndx_ == MERGE_STRING_SECTION_CODE)
3188	this->u2_.posd->print_merge_stats(section_name);
3189    }
3190
3191   private:
3192    // Code values which appear in shndx_.  If the value is not one of
3193    // these codes, it is the input section index in the object file.
3194    enum
3195    {
3196      // An Output_section_data.
3197      OUTPUT_SECTION_CODE = -1U,
3198      // An Output_section_data for an SHF_MERGE section with
3199      // SHF_STRINGS not set.
3200      MERGE_DATA_SECTION_CODE = -2U,
3201      // An Output_section_data for an SHF_MERGE section with
3202      // SHF_STRINGS set.
3203      MERGE_STRING_SECTION_CODE = -3U,
3204      // An Output_section_data for a relaxed input section.
3205      RELAXED_INPUT_SECTION_CODE = -4U
3206    };
3207
3208    // For an ordinary input section, this is the section index in the
3209    // input file.  For an Output_section_data, this is
3210    // OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
3211    // MERGE_STRING_SECTION_CODE.
3212    unsigned int shndx_;
3213    // The required alignment, stored as a power of 2.
3214    unsigned int p2align_;
3215    union
3216    {
3217      // For an ordinary input section, the section size.
3218      off_t data_size;
3219      // For OUTPUT_SECTION_CODE or RELAXED_INPUT_SECTION_CODE, this is not
3220      // used.  For MERGE_DATA_SECTION_CODE or MERGE_STRING_SECTION_CODE, the
3221      // entity size.
3222      uint64_t entsize;
3223    } u1_;
3224    union
3225    {
3226      // For an ordinary input section, the object which holds the
3227      // input section.
3228      Relobj* object;
3229      // For OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
3230      // MERGE_STRING_SECTION_CODE, the data.
3231      Output_section_data* posd;
3232      Output_merge_base* pomb;
3233      // For RELAXED_INPUT_SECTION_CODE, the data.
3234      Output_relaxed_input_section* poris;
3235    } u2_;
3236    // The line number of the pattern it matches in the --section-ordering-file
3237    // file.  It is 0 if does not match any pattern.
3238    unsigned int section_order_index_;
3239  };
3240
3241  // Store the list of input sections for this Output_section into the
3242  // list passed in.  This removes the input sections, leaving only
3243  // any Output_section_data elements.  This returns the size of those
3244  // Output_section_data elements.  ADDRESS is the address of this
3245  // output section.  FILL is the fill value to use, in case there are
3246  // any spaces between the remaining Output_section_data elements.
3247  uint64_t
3248  get_input_sections(uint64_t address, const std::string& fill,
3249		     std::list<Input_section>*);
3250
3251  // Add a script input section.  A script input section can either be
3252  // a plain input section or a sub-class of Output_section_data.
3253  void
3254  add_script_input_section(const Input_section& input_section);
3255
3256  // Set the current size of the output section.
3257  void
3258  set_current_data_size(off_t size)
3259  { this->set_current_data_size_for_child(size); }
3260
3261  // Get the current size of the output section.
3262  off_t
3263  current_data_size() const
3264  { return this->current_data_size_for_child(); }
3265
3266  // End of linker script support.
3267
3268  // Save states before doing section layout.
3269  // This is used for relaxation.
3270  void
3271  save_states();
3272
3273  // Restore states prior to section layout.
3274  void
3275  restore_states();
3276
3277  // Discard states.
3278  void
3279  discard_states();
3280
3281  // Convert existing input sections to relaxed input sections.
3282  void
3283  convert_input_sections_to_relaxed_sections(
3284      const std::vector<Output_relaxed_input_section*>& sections);
3285
3286  // Find a relaxed input section to an input section in OBJECT
3287  // with index SHNDX.  Return NULL if none is found.
3288  const Output_relaxed_input_section*
3289  find_relaxed_input_section(const Relobj* object, unsigned int shndx) const;
3290
3291  // Whether section offsets need adjustment due to relaxation.
3292  bool
3293  section_offsets_need_adjustment() const
3294  { return this->section_offsets_need_adjustment_; }
3295
3296  // Set section_offsets_need_adjustment to be true.
3297  void
3298  set_section_offsets_need_adjustment()
3299  { this->section_offsets_need_adjustment_ = true; }
3300
3301  // Adjust section offsets of input sections in this.  This is
3302  // requires if relaxation caused some input sections to change sizes.
3303  void
3304  adjust_section_offsets();
3305
3306  // Whether this is a NOLOAD section.
3307  bool
3308  is_noload() const
3309  { return this->is_noload_; }
3310
3311  // Set NOLOAD flag.
3312  void
3313  set_is_noload()
3314  { this->is_noload_ = true; }
3315
3316  // Print merge statistics to stderr.
3317  void
3318  print_merge_stats();
3319
3320 protected:
3321  // Return the output section--i.e., the object itself.
3322  Output_section*
3323  do_output_section()
3324  { return this; }
3325
3326  const Output_section*
3327  do_output_section() const
3328  { return this; }
3329
3330  // Return the section index in the output file.
3331  unsigned int
3332  do_out_shndx() const
3333  {
3334    gold_assert(this->out_shndx_ != -1U);
3335    return this->out_shndx_;
3336  }
3337
3338  // Set the output section index.
3339  void
3340  do_set_out_shndx(unsigned int shndx)
3341  {
3342    gold_assert(this->out_shndx_ == -1U || this->out_shndx_ == shndx);
3343    this->out_shndx_ = shndx;
3344  }
3345
3346  // Set the final data size of the Output_section.  For a typical
3347  // Output_section, there is nothing to do, but if there are any
3348  // Output_section_data objects we need to set their final addresses
3349  // here.
3350  virtual void
3351  set_final_data_size();
3352
3353  // Reset the address and file offset.
3354  void
3355  do_reset_address_and_file_offset();
3356
3357  // Return true if address and file offset already have reset values. In
3358  // other words, calling reset_address_and_file_offset will not change them.
3359  bool
3360  do_address_and_file_offset_have_reset_values() const;
3361
3362  // Write the data to the file.  For a typical Output_section, this
3363  // does nothing: the data is written out by calling Object::Relocate
3364  // on each input object.  But if there are any Output_section_data
3365  // objects we do need to write them out here.
3366  virtual void
3367  do_write(Output_file*);
3368
3369  // Return the address alignment--function required by parent class.
3370  uint64_t
3371  do_addralign() const
3372  { return this->addralign_; }
3373
3374  // Return whether there is a load address.
3375  bool
3376  do_has_load_address() const
3377  { return this->has_load_address_; }
3378
3379  // Return the load address.
3380  uint64_t
3381  do_load_address() const
3382  {
3383    gold_assert(this->has_load_address_);
3384    return this->load_address_;
3385  }
3386
3387  // Return whether this is an Output_section.
3388  bool
3389  do_is_section() const
3390  { return true; }
3391
3392  // Return whether this is a section of the specified type.
3393  bool
3394  do_is_section_type(elfcpp::Elf_Word type) const
3395  { return this->type_ == type; }
3396
3397  // Return whether the specified section flag is set.
3398  bool
3399  do_is_section_flag_set(elfcpp::Elf_Xword flag) const
3400  { return (this->flags_ & flag) != 0; }
3401
3402  // Set the TLS offset.  Called only for SHT_TLS sections.
3403  void
3404  do_set_tls_offset(uint64_t tls_base);
3405
3406  // Return the TLS offset, relative to the base of the TLS segment.
3407  // Valid only for SHT_TLS sections.
3408  uint64_t
3409  do_tls_offset() const
3410  { return this->tls_offset_; }
3411
3412  // This may be implemented by a child class.
3413  virtual void
3414  do_finalize_name(Layout*)
3415  { }
3416
3417  // Print to the map file.
3418  virtual void
3419  do_print_to_mapfile(Mapfile*) const;
3420
3421  // Record that this section requires postprocessing after all
3422  // relocations have been applied.  This is called by a child class.
3423  void
3424  set_requires_postprocessing()
3425  {
3426    this->requires_postprocessing_ = true;
3427    this->after_input_sections_ = true;
3428  }
3429
3430  // Write all the data of an Output_section into the postprocessing
3431  // buffer.
3432  void
3433  write_to_postprocessing_buffer();
3434
3435  typedef std::vector<Input_section> Input_section_list;
3436
3437  // Allow a child class to access the input sections.
3438  const Input_section_list&
3439  input_sections() const
3440  { return this->input_sections_; }
3441
3442  // Whether this always keeps an input section list
3443  bool
3444  always_keeps_input_sections() const
3445  { return this->always_keeps_input_sections_; }
3446
3447  // Always keep an input section list.
3448  void
3449  set_always_keeps_input_sections()
3450  {
3451    gold_assert(this->current_data_size_for_child() == 0);
3452    this->always_keeps_input_sections_ = true;
3453  }
3454
3455 private:
3456  // We only save enough information to undo the effects of section layout.
3457  class Checkpoint_output_section
3458  {
3459   public:
3460    Checkpoint_output_section(uint64_t addralign, elfcpp::Elf_Xword flags,
3461			      const Input_section_list& input_sections,
3462			      off_t first_input_offset,
3463			      bool attached_input_sections_are_sorted)
3464      : addralign_(addralign), flags_(flags),
3465	input_sections_(input_sections),
3466	input_sections_size_(input_sections_.size()),
3467	input_sections_copy_(), first_input_offset_(first_input_offset),
3468	attached_input_sections_are_sorted_(attached_input_sections_are_sorted)
3469    { }
3470
3471    virtual
3472    ~Checkpoint_output_section()
3473    { }
3474
3475    // Return the address alignment.
3476    uint64_t
3477    addralign() const
3478    { return this->addralign_; }
3479
3480    // Return the section flags.
3481    elfcpp::Elf_Xword
3482    flags() const
3483    { return this->flags_; }
3484
3485    // Return a reference to the input section list copy.
3486    Input_section_list*
3487    input_sections()
3488    { return &this->input_sections_copy_; }
3489
3490    // Return the size of input_sections at the time when checkpoint is
3491    // taken.
3492    size_t
3493    input_sections_size() const
3494    { return this->input_sections_size_; }
3495
3496    // Whether input sections are copied.
3497    bool
3498    input_sections_saved() const
3499    { return this->input_sections_copy_.size() == this->input_sections_size_; }
3500
3501    off_t
3502    first_input_offset() const
3503    { return this->first_input_offset_; }
3504
3505    bool
3506    attached_input_sections_are_sorted() const
3507    { return this->attached_input_sections_are_sorted_; }
3508
3509    // Save input sections.
3510    void
3511    save_input_sections()
3512    {
3513      this->input_sections_copy_.reserve(this->input_sections_size_);
3514      this->input_sections_copy_.clear();
3515      Input_section_list::const_iterator p = this->input_sections_.begin();
3516      gold_assert(this->input_sections_size_ >= this->input_sections_.size());
3517      for(size_t i = 0; i < this->input_sections_size_ ; i++, ++p)
3518	this->input_sections_copy_.push_back(*p);
3519    }
3520
3521   private:
3522    // The section alignment.
3523    uint64_t addralign_;
3524    // The section flags.
3525    elfcpp::Elf_Xword flags_;
3526    // Reference to the input sections to be checkpointed.
3527    const Input_section_list& input_sections_;
3528    // Size of the checkpointed portion of input_sections_;
3529    size_t input_sections_size_;
3530    // Copy of input sections.
3531    Input_section_list input_sections_copy_;
3532    // The offset of the first entry in input_sections_.
3533    off_t first_input_offset_;
3534    // True if the input sections attached to this output section have
3535    // already been sorted.
3536    bool attached_input_sections_are_sorted_;
3537  };
3538
3539  // This class is used to sort the input sections.
3540  class Input_section_sort_entry;
3541
3542  // This is the sort comparison function for ctors and dtors.
3543  struct Input_section_sort_compare
3544  {
3545    bool
3546    operator()(const Input_section_sort_entry&,
3547	       const Input_section_sort_entry&) const;
3548  };
3549
3550  // This is the sort comparison function for .init_array and .fini_array.
3551  struct Input_section_sort_init_fini_compare
3552  {
3553    bool
3554    operator()(const Input_section_sort_entry&,
3555	       const Input_section_sort_entry&) const;
3556  };
3557
3558  // This is the sort comparison function when a section order is specified
3559  // from an input file.
3560  struct Input_section_sort_section_order_index_compare
3561  {
3562    bool
3563    operator()(const Input_section_sort_entry&,
3564	       const Input_section_sort_entry&) const;
3565  };
3566
3567  // Fill data.  This is used to fill in data between input sections.
3568  // It is also used for data statements (BYTE, WORD, etc.) in linker
3569  // scripts.  When we have to keep track of the input sections, we
3570  // can use an Output_data_const, but we don't want to have to keep
3571  // track of input sections just to implement fills.
3572  class Fill
3573  {
3574   public:
3575    Fill(off_t section_offset, off_t length)
3576      : section_offset_(section_offset),
3577	length_(convert_to_section_size_type(length))
3578    { }
3579
3580    // Return section offset.
3581    off_t
3582    section_offset() const
3583    { return this->section_offset_; }
3584
3585    // Return fill length.
3586    section_size_type
3587    length() const
3588    { return this->length_; }
3589
3590   private:
3591    // The offset within the output section.
3592    off_t section_offset_;
3593    // The length of the space to fill.
3594    section_size_type length_;
3595  };
3596
3597  typedef std::vector<Fill> Fill_list;
3598
3599  // Map used during relaxation of existing sections.  This map
3600  // a section id an input section list index.  We assume that
3601  // Input_section_list is a vector.
3602  typedef Unordered_map<Section_id, size_t, Section_id_hash> Relaxation_map;
3603
3604  // Add a new output section by Input_section.
3605  void
3606  add_output_section_data(Input_section*);
3607
3608  // Add an SHF_MERGE input section.  Returns true if the section was
3609  // handled.  If KEEPS_INPUT_SECTIONS is true, the output merge section
3610  // stores information about the merged input sections.
3611  bool
3612  add_merge_input_section(Relobj* object, unsigned int shndx, uint64_t flags,
3613			  uint64_t entsize, uint64_t addralign,
3614			  bool keeps_input_sections);
3615
3616  // Add an output SHF_MERGE section POSD to this output section.
3617  // IS_STRING indicates whether it is a SHF_STRINGS section, and
3618  // ENTSIZE is the entity size.  This returns the entry added to
3619  // input_sections_.
3620  void
3621  add_output_merge_section(Output_section_data* posd, bool is_string,
3622			   uint64_t entsize);
3623
3624  // Sort the attached input sections.
3625  void
3626  sort_attached_input_sections();
3627
3628  // Find the merge section into which an input section with index SHNDX in
3629  // OBJECT has been added.  Return NULL if none found.
3630  Output_section_data*
3631  find_merge_section(const Relobj* object, unsigned int shndx) const;
3632
3633  // Build a relaxation map.
3634  void
3635  build_relaxation_map(
3636      const Input_section_list& input_sections,
3637      size_t limit,
3638      Relaxation_map* map) const;
3639
3640  // Convert input sections in an input section list into relaxed sections.
3641  void
3642  convert_input_sections_in_list_to_relaxed_sections(
3643      const std::vector<Output_relaxed_input_section*>& relaxed_sections,
3644      const Relaxation_map& map,
3645      Input_section_list* input_sections);
3646
3647  // Build the lookup maps for merge and relaxed input sections.
3648  void
3649  build_lookup_maps() const;
3650
3651  // Most of these fields are only valid after layout.
3652
3653  // The name of the section.  This will point into a Stringpool.
3654  const char* name_;
3655  // The section address is in the parent class.
3656  // The section alignment.
3657  uint64_t addralign_;
3658  // The section entry size.
3659  uint64_t entsize_;
3660  // The load address.  This is only used when using a linker script
3661  // with a SECTIONS clause.  The has_load_address_ field indicates
3662  // whether this field is valid.
3663  uint64_t load_address_;
3664  // The file offset is in the parent class.
3665  // Set the section link field to the index of this section.
3666  const Output_data* link_section_;
3667  // If link_section_ is NULL, this is the link field.
3668  unsigned int link_;
3669  // Set the section info field to the index of this section.
3670  const Output_section* info_section_;
3671  // If info_section_ is NULL, set the info field to the symbol table
3672  // index of this symbol.
3673  const Symbol* info_symndx_;
3674  // If info_section_ and info_symndx_ are NULL, this is the section
3675  // info field.
3676  unsigned int info_;
3677  // The section type.
3678  const elfcpp::Elf_Word type_;
3679  // The section flags.
3680  elfcpp::Elf_Xword flags_;
3681  // The order of this section in the output segment.
3682  Output_section_order order_;
3683  // The section index.
3684  unsigned int out_shndx_;
3685  // If there is a STT_SECTION for this output section in the normal
3686  // symbol table, this is the symbol index.  This starts out as zero.
3687  // It is initialized in Layout::finalize() to be the index, or -1U
3688  // if there isn't one.
3689  unsigned int symtab_index_;
3690  // If there is a STT_SECTION for this output section in the dynamic
3691  // symbol table, this is the symbol index.  This starts out as zero.
3692  // It is initialized in Layout::finalize() to be the index, or -1U
3693  // if there isn't one.
3694  unsigned int dynsym_index_;
3695  // The input sections.  This will be empty in cases where we don't
3696  // need to keep track of them.
3697  Input_section_list input_sections_;
3698  // The offset of the first entry in input_sections_.
3699  off_t first_input_offset_;
3700  // The fill data.  This is separate from input_sections_ because we
3701  // often will need fill sections without needing to keep track of
3702  // input sections.
3703  Fill_list fills_;
3704  // If the section requires postprocessing, this buffer holds the
3705  // section contents during relocation.
3706  unsigned char* postprocessing_buffer_;
3707  // Whether this output section needs a STT_SECTION symbol in the
3708  // normal symbol table.  This will be true if there is a relocation
3709  // which needs it.
3710  bool needs_symtab_index_ : 1;
3711  // Whether this output section needs a STT_SECTION symbol in the
3712  // dynamic symbol table.  This will be true if there is a dynamic
3713  // relocation which needs it.
3714  bool needs_dynsym_index_ : 1;
3715  // Whether the link field of this output section should point to the
3716  // normal symbol table.
3717  bool should_link_to_symtab_ : 1;
3718  // Whether the link field of this output section should point to the
3719  // dynamic symbol table.
3720  bool should_link_to_dynsym_ : 1;
3721  // Whether this section should be written after all the input
3722  // sections are complete.
3723  bool after_input_sections_ : 1;
3724  // Whether this section requires post processing after all
3725  // relocations have been applied.
3726  bool requires_postprocessing_ : 1;
3727  // Whether an input section was mapped to this output section
3728  // because of a SECTIONS clause in a linker script.
3729  bool found_in_sections_clause_ : 1;
3730  // Whether this section has an explicitly specified load address.
3731  bool has_load_address_ : 1;
3732  // True if the info_section_ field means the section index of the
3733  // section, false if it means the symbol index of the corresponding
3734  // section symbol.
3735  bool info_uses_section_index_ : 1;
3736  // True if input sections attached to this output section have to be
3737  // sorted according to a specified order.
3738  bool input_section_order_specified_ : 1;
3739  // True if the input sections attached to this output section may
3740  // need sorting.
3741  bool may_sort_attached_input_sections_ : 1;
3742  // True if the input sections attached to this output section must
3743  // be sorted.
3744  bool must_sort_attached_input_sections_ : 1;
3745  // True if the input sections attached to this output section have
3746  // already been sorted.
3747  bool attached_input_sections_are_sorted_ : 1;
3748  // True if this section holds relro data.
3749  bool is_relro_ : 1;
3750  // True if this is a small section.
3751  bool is_small_section_ : 1;
3752  // True if this is a large section.
3753  bool is_large_section_ : 1;
3754  // Whether code-fills are generated at write.
3755  bool generate_code_fills_at_write_ : 1;
3756  // Whether the entry size field should be zero.
3757  bool is_entsize_zero_ : 1;
3758  // Whether section offsets need adjustment due to relaxation.
3759  bool section_offsets_need_adjustment_ : 1;
3760  // Whether this is a NOLOAD section.
3761  bool is_noload_ : 1;
3762  // Whether this always keeps input section.
3763  bool always_keeps_input_sections_ : 1;
3764  // For SHT_TLS sections, the offset of this section relative to the base
3765  // of the TLS segment.
3766  uint64_t tls_offset_;
3767  // Saved checkpoint.
3768  Checkpoint_output_section* checkpoint_;
3769  // Fast lookup maps for merged and relaxed input sections.
3770  Output_section_lookup_maps* lookup_maps_;
3771};
3772
3773// An output segment.  PT_LOAD segments are built from collections of
3774// output sections.  Other segments typically point within PT_LOAD
3775// segments, and are built directly as needed.
3776//
3777// NOTE: We want to use the copy constructor for this class.  During
3778// relaxation, we may try built the segments multiple times.  We do
3779// that by copying the original segment list before lay-out, doing
3780// a trial lay-out and roll-back to the saved copied if we need to
3781// to the lay-out again.
3782
3783class Output_segment
3784{
3785 public:
3786  // Create an output segment, specifying the type and flags.
3787  Output_segment(elfcpp::Elf_Word, elfcpp::Elf_Word);
3788
3789  // Return the virtual address.
3790  uint64_t
3791  vaddr() const
3792  { return this->vaddr_; }
3793
3794  // Return the physical address.
3795  uint64_t
3796  paddr() const
3797  { return this->paddr_; }
3798
3799  // Return the segment type.
3800  elfcpp::Elf_Word
3801  type() const
3802  { return this->type_; }
3803
3804  // Return the segment flags.
3805  elfcpp::Elf_Word
3806  flags() const
3807  { return this->flags_; }
3808
3809  // Return the memory size.
3810  uint64_t
3811  memsz() const
3812  { return this->memsz_; }
3813
3814  // Return the file size.
3815  off_t
3816  filesz() const
3817  { return this->filesz_; }
3818
3819  // Return the file offset.
3820  off_t
3821  offset() const
3822  { return this->offset_; }
3823
3824  // Whether this is a segment created to hold large data sections.
3825  bool
3826  is_large_data_segment() const
3827  { return this->is_large_data_segment_; }
3828
3829  // Record that this is a segment created to hold large data
3830  // sections.
3831  void
3832  set_is_large_data_segment()
3833  { this->is_large_data_segment_ = true; }
3834
3835  // Return the maximum alignment of the Output_data.
3836  uint64_t
3837  maximum_alignment();
3838
3839  // Add the Output_section OS to this PT_LOAD segment.  SEG_FLAGS is
3840  // the segment flags to use.
3841  void
3842  add_output_section_to_load(Layout* layout, Output_section* os,
3843			     elfcpp::Elf_Word seg_flags);
3844
3845  // Add the Output_section OS to this non-PT_LOAD segment.  SEG_FLAGS
3846  // is the segment flags to use.
3847  void
3848  add_output_section_to_nonload(Output_section* os,
3849				elfcpp::Elf_Word seg_flags);
3850
3851  // Remove an Output_section from this segment.  It is an error if it
3852  // is not present.
3853  void
3854  remove_output_section(Output_section* os);
3855
3856  // Add an Output_data (which need not be an Output_section) to the
3857  // start of this segment.
3858  void
3859  add_initial_output_data(Output_data*);
3860
3861  // Return true if this segment has any sections which hold actual
3862  // data, rather than being a BSS section.
3863  bool
3864  has_any_data_sections() const;
3865
3866  // Whether this segment has a dynamic relocs.
3867  bool
3868  has_dynamic_reloc() const;
3869
3870  // Return the address of the first section.
3871  uint64_t
3872  first_section_load_address() const;
3873
3874  // Return whether the addresses have been set already.
3875  bool
3876  are_addresses_set() const
3877  { return this->are_addresses_set_; }
3878
3879  // Set the addresses.
3880  void
3881  set_addresses(uint64_t vaddr, uint64_t paddr)
3882  {
3883    this->vaddr_ = vaddr;
3884    this->paddr_ = paddr;
3885    this->are_addresses_set_ = true;
3886  }
3887
3888  // Update the flags for the flags of an output section added to this
3889  // segment.
3890  void
3891  update_flags_for_output_section(elfcpp::Elf_Xword flags)
3892  {
3893    // The ELF ABI specifies that a PT_TLS segment should always have
3894    // PF_R as the flags.
3895    if (this->type() != elfcpp::PT_TLS)
3896      this->flags_ |= flags;
3897  }
3898
3899  // Set the segment flags.  This is only used if we have a PHDRS
3900  // clause which explicitly specifies the flags.
3901  void
3902  set_flags(elfcpp::Elf_Word flags)
3903  { this->flags_ = flags; }
3904
3905  // Set the address of the segment to ADDR and the offset to *POFF
3906  // and set the addresses and offsets of all contained output
3907  // sections accordingly.  Set the section indexes of all contained
3908  // output sections starting with *PSHNDX.  If RESET is true, first
3909  // reset the addresses of the contained sections.  Return the
3910  // address of the immediately following segment.  Update *POFF and
3911  // *PSHNDX.  This should only be called for a PT_LOAD segment.
3912  uint64_t
3913  set_section_addresses(const Layout*, bool reset, uint64_t addr,
3914			unsigned int* increase_relro, bool* has_relro,
3915			off_t* poff, unsigned int* pshndx);
3916
3917  // Set the minimum alignment of this segment.  This may be adjusted
3918  // upward based on the section alignments.
3919  void
3920  set_minimum_p_align(uint64_t align)
3921  {
3922    if (align > this->min_p_align_)
3923      this->min_p_align_ = align;
3924  }
3925
3926  // Set the offset of this segment based on the section.  This should
3927  // only be called for a non-PT_LOAD segment.
3928  void
3929  set_offset(unsigned int increase);
3930
3931  // Set the TLS offsets of the sections contained in the PT_TLS segment.
3932  void
3933  set_tls_offsets();
3934
3935  // Return the number of output sections.
3936  unsigned int
3937  output_section_count() const;
3938
3939  // Return the section attached to the list segment with the lowest
3940  // load address.  This is used when handling a PHDRS clause in a
3941  // linker script.
3942  Output_section*
3943  section_with_lowest_load_address() const;
3944
3945  // Write the segment header into *OPHDR.
3946  template<int size, bool big_endian>
3947  void
3948  write_header(elfcpp::Phdr_write<size, big_endian>*);
3949
3950  // Write the section headers of associated sections into V.
3951  template<int size, bool big_endian>
3952  unsigned char*
3953  write_section_headers(const Layout*, const Stringpool*, unsigned char* v,
3954			unsigned int* pshndx) const;
3955
3956  // Print the output sections in the map file.
3957  void
3958  print_sections_to_mapfile(Mapfile*) const;
3959
3960 private:
3961  typedef std::vector<Output_data*> Output_data_list;
3962
3963  // Find the maximum alignment in an Output_data_list.
3964  static uint64_t
3965  maximum_alignment_list(const Output_data_list*);
3966
3967  // Return whether the first data section is a relro section.
3968  bool
3969  is_first_section_relro() const;
3970
3971  // Set the section addresses in an Output_data_list.
3972  uint64_t
3973  set_section_list_addresses(const Layout*, bool reset, Output_data_list*,
3974                             uint64_t addr, off_t* poff, unsigned int* pshndx,
3975                             bool* in_tls);
3976
3977  // Return the number of Output_sections in an Output_data_list.
3978  unsigned int
3979  output_section_count_list(const Output_data_list*) const;
3980
3981  // Return whether an Output_data_list has a dynamic reloc.
3982  bool
3983  has_dynamic_reloc_list(const Output_data_list*) const;
3984
3985  // Find the section with the lowest load address in an
3986  // Output_data_list.
3987  void
3988  lowest_load_address_in_list(const Output_data_list* pdl,
3989			      Output_section** found,
3990			      uint64_t* found_lma) const;
3991
3992  // Find the first and last entries by address.
3993  void
3994  find_first_and_last_list(const Output_data_list* pdl,
3995			   const Output_data** pfirst,
3996			   const Output_data** plast) const;
3997
3998  // Write the section headers in the list into V.
3999  template<int size, bool big_endian>
4000  unsigned char*
4001  write_section_headers_list(const Layout*, const Stringpool*,
4002			     const Output_data_list*, unsigned char* v,
4003			     unsigned int* pshdx) const;
4004
4005  // Print a section list to the mapfile.
4006  void
4007  print_section_list_to_mapfile(Mapfile*, const Output_data_list*) const;
4008
4009  // NOTE: We want to use the copy constructor.  Currently, shallow copy
4010  // works for us so we do not need to write our own copy constructor.
4011
4012  // The list of output data attached to this segment.
4013  Output_data_list output_lists_[ORDER_MAX];
4014  // The segment virtual address.
4015  uint64_t vaddr_;
4016  // The segment physical address.
4017  uint64_t paddr_;
4018  // The size of the segment in memory.
4019  uint64_t memsz_;
4020  // The maximum section alignment.  The is_max_align_known_ field
4021  // indicates whether this has been finalized.
4022  uint64_t max_align_;
4023  // The required minimum value for the p_align field.  This is used
4024  // for PT_LOAD segments.  Note that this does not mean that
4025  // addresses should be aligned to this value; it means the p_paddr
4026  // and p_vaddr fields must be congruent modulo this value.  For
4027  // non-PT_LOAD segments, the dynamic linker works more efficiently
4028  // if the p_align field has the more conventional value, although it
4029  // can align as needed.
4030  uint64_t min_p_align_;
4031  // The offset of the segment data within the file.
4032  off_t offset_;
4033  // The size of the segment data in the file.
4034  off_t filesz_;
4035  // The segment type;
4036  elfcpp::Elf_Word type_;
4037  // The segment flags.
4038  elfcpp::Elf_Word flags_;
4039  // Whether we have finalized max_align_.
4040  bool is_max_align_known_ : 1;
4041  // Whether vaddr and paddr were set by a linker script.
4042  bool are_addresses_set_ : 1;
4043  // Whether this segment holds large data sections.
4044  bool is_large_data_segment_ : 1;
4045};
4046
4047// This class represents the output file.
4048
4049class Output_file
4050{
4051 public:
4052  Output_file(const char* name);
4053
4054  // Indicate that this is a temporary file which should not be
4055  // output.
4056  void
4057  set_is_temporary()
4058  { this->is_temporary_ = true; }
4059
4060  // Try to open an existing file. Returns false if the file doesn't
4061  // exist, has a size of 0 or can't be mmaped.  This method is
4062  // thread-unsafe.
4063  bool
4064  open_for_modification();
4065
4066  // Open the output file.  FILE_SIZE is the final size of the file.
4067  // If the file already exists, it is deleted/truncated.  This method
4068  // is thread-unsafe.
4069  void
4070  open(off_t file_size);
4071
4072  // Resize the output file.  This method is thread-unsafe.
4073  void
4074  resize(off_t file_size);
4075
4076  // Close the output file (flushing all buffered data) and make sure
4077  // there are no errors.  This method is thread-unsafe.
4078  void
4079  close();
4080
4081  // Return the size of this file.
4082  off_t
4083  filesize()
4084  { return this->file_size_; }
4085
4086  // Return the name of this file.
4087  const char*
4088  filename()
4089  { return this->name_; }
4090
4091  // We currently always use mmap which makes the view handling quite
4092  // simple.  In the future we may support other approaches.
4093
4094  // Write data to the output file.
4095  void
4096  write(off_t offset, const void* data, size_t len)
4097  { memcpy(this->base_ + offset, data, len); }
4098
4099  // Get a buffer to use to write to the file, given the offset into
4100  // the file and the size.
4101  unsigned char*
4102  get_output_view(off_t start, size_t size)
4103  {
4104    gold_assert(start >= 0
4105                && start + static_cast<off_t>(size) <= this->file_size_);
4106    return this->base_ + start;
4107  }
4108
4109  // VIEW must have been returned by get_output_view.  Write the
4110  // buffer to the file, passing in the offset and the size.
4111  void
4112  write_output_view(off_t, size_t, unsigned char*)
4113  { }
4114
4115  // Get a read/write buffer.  This is used when we want to write part
4116  // of the file, read it in, and write it again.
4117  unsigned char*
4118  get_input_output_view(off_t start, size_t size)
4119  { return this->get_output_view(start, size); }
4120
4121  // Write a read/write buffer back to the file.
4122  void
4123  write_input_output_view(off_t, size_t, unsigned char*)
4124  { }
4125
4126  // Get a read buffer.  This is used when we just want to read part
4127  // of the file back it in.
4128  const unsigned char*
4129  get_input_view(off_t start, size_t size)
4130  { return this->get_output_view(start, size); }
4131
4132  // Release a read bfufer.
4133  void
4134  free_input_view(off_t, size_t, const unsigned char*)
4135  { }
4136
4137 private:
4138  // Map the file into memory or, if that fails, allocate anonymous
4139  // memory.
4140  void
4141  map();
4142
4143  // Allocate anonymous memory for the file.
4144  bool
4145  map_anonymous();
4146
4147  // Map the file into memory.
4148  bool
4149  map_no_anonymous();
4150
4151  // Unmap the file from memory (and flush to disk buffers).
4152  void
4153  unmap();
4154
4155  // File name.
4156  const char* name_;
4157  // File descriptor.
4158  int o_;
4159  // File size.
4160  off_t file_size_;
4161  // Base of file mapped into memory.
4162  unsigned char* base_;
4163  // True iff base_ points to a memory buffer rather than an output file.
4164  bool map_is_anonymous_;
4165  // True if this is a temporary file which should not be output.
4166  bool is_temporary_;
4167};
4168
4169} // End namespace gold.
4170
4171#endif // !defined(GOLD_OUTPUT_H)
4172