1// ehframe.cc -- handle exception frame sections for gold
2
3// Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4// Written by Ian Lance Taylor <iant@google.com>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
23#include "gold.h"
24
25#include <cstring>
26#include <algorithm>
27
28#include "elfcpp.h"
29#include "dwarf.h"
30#include "symtab.h"
31#include "reloc.h"
32#include "ehframe.h"
33
34namespace gold
35{
36
37// This file handles generation of the exception frame header that
38// gcc's runtime support libraries use to find unwind information at
39// runtime.  This file also handles discarding duplicate exception
40// frame information.
41
42// The exception frame header starts with four bytes:
43
44// 0: The version number, currently 1.
45
46// 1: The encoding of the pointer to the exception frames.  This can
47//    be any DWARF unwind encoding (DW_EH_PE_*).  It is normally a 4
48//    byte PC relative offset (DW_EH_PE_pcrel | DW_EH_PE_sdata4).
49
50// 2: The encoding of the count of the number of FDE pointers in the
51//    lookup table.  This can be any DWARF unwind encoding, and in
52//    particular can be DW_EH_PE_omit if the count is omitted.  It is
53//    normally a 4 byte unsigned count (DW_EH_PE_udata4).
54
55// 3: The encoding of the lookup table entries.  Currently gcc's
56//    libraries will only support DW_EH_PE_datarel | DW_EH_PE_sdata4,
57//    which means that the values are 4 byte offsets from the start of
58//    the table.
59
60// The exception frame header is followed by a pointer to the contents
61// of the exception frame section (.eh_frame).  This pointer is
62// encoded as specified in the byte at offset 1 of the header (i.e.,
63// it is normally a 4 byte PC relative offset).
64
65// If there is a lookup table, this is followed by the count of the
66// number of FDE pointers, encoded as specified in the byte at offset
67// 2 of the header (i.e., normally a 4 byte unsigned integer).
68
69// This is followed by the table, which should start at an 4-byte
70// aligned address in memory.  Each entry in the table is 8 bytes.
71// Each entry represents an FDE.  The first four bytes of each entry
72// are an offset to the starting PC for the FDE.  The last four bytes
73// of each entry are an offset to the FDE data.  The offsets are from
74// the start of the exception frame header information.  The entries
75// are in sorted order by starting PC.
76
77const int eh_frame_hdr_size = 4;
78
79// Construct the exception frame header.
80
81Eh_frame_hdr::Eh_frame_hdr(Output_section* eh_frame_section,
82			   const Eh_frame* eh_frame_data)
83  : Output_section_data(4),
84    eh_frame_section_(eh_frame_section),
85    eh_frame_data_(eh_frame_data),
86    fde_offsets_(),
87    any_unrecognized_eh_frame_sections_(false)
88{
89}
90
91// Set the size of the exception frame header.
92
93void
94Eh_frame_hdr::set_final_data_size()
95{
96  unsigned int data_size = eh_frame_hdr_size + 4;
97  if (!this->any_unrecognized_eh_frame_sections_)
98    {
99      unsigned int fde_count = this->eh_frame_data_->fde_count();
100      if (fde_count != 0)
101	data_size += 4 + 8 * fde_count;
102      this->fde_offsets_.reserve(fde_count);
103    }
104  this->set_data_size(data_size);
105}
106
107// Write the data to the flie.
108
109void
110Eh_frame_hdr::do_write(Output_file* of)
111{
112  switch (parameters->size_and_endianness())
113    {
114#ifdef HAVE_TARGET_32_LITTLE
115    case Parameters::TARGET_32_LITTLE:
116      this->do_sized_write<32, false>(of);
117      break;
118#endif
119#ifdef HAVE_TARGET_32_BIG
120    case Parameters::TARGET_32_BIG:
121      this->do_sized_write<32, true>(of);
122      break;
123#endif
124#ifdef HAVE_TARGET_64_LITTLE
125    case Parameters::TARGET_64_LITTLE:
126      this->do_sized_write<64, false>(of);
127      break;
128#endif
129#ifdef HAVE_TARGET_64_BIG
130    case Parameters::TARGET_64_BIG:
131      this->do_sized_write<64, true>(of);
132      break;
133#endif
134    default:
135      gold_unreachable();
136    }
137}
138
139// Write the data to the file with the right endianness.
140
141template<int size, bool big_endian>
142void
143Eh_frame_hdr::do_sized_write(Output_file* of)
144{
145  const off_t off = this->offset();
146  const off_t oview_size = this->data_size();
147  unsigned char* const oview = of->get_output_view(off, oview_size);
148
149  // Version number.
150  oview[0] = 1;
151
152  // Write out a 4 byte PC relative offset to the address of the
153  // .eh_frame section.
154  oview[1] = elfcpp::DW_EH_PE_pcrel | elfcpp::DW_EH_PE_sdata4;
155  uint64_t eh_frame_address = this->eh_frame_section_->address();
156  uint64_t eh_frame_hdr_address = this->address();
157  uint64_t eh_frame_offset = (eh_frame_address -
158			      (eh_frame_hdr_address + 4));
159  elfcpp::Swap<32, big_endian>::writeval(oview + 4, eh_frame_offset);
160
161  if (this->any_unrecognized_eh_frame_sections_
162      || this->fde_offsets_.empty())
163    {
164      // There are no FDEs, or we didn't recognize the format of the
165      // some of the .eh_frame sections, so we can't write out the
166      // sorted table.
167      oview[2] = elfcpp::DW_EH_PE_omit;
168      oview[3] = elfcpp::DW_EH_PE_omit;
169
170      gold_assert(oview_size == 8);
171    }
172  else
173    {
174      oview[2] = elfcpp::DW_EH_PE_udata4;
175      oview[3] = elfcpp::DW_EH_PE_datarel | elfcpp::DW_EH_PE_sdata4;
176
177      elfcpp::Swap<32, big_endian>::writeval(oview + 8,
178					     this->fde_offsets_.size());
179
180      // We have the offsets of the FDEs in the .eh_frame section.  We
181      // couldn't easily get the PC values before, as they depend on
182      // relocations which are, of course, target specific.  This code
183      // is run after all those relocations have been applied to the
184      // output file.  Here we read the output file again to find the
185      // PC values.  Then we sort the list and write it out.
186
187      Fde_addresses<size> fde_addresses(this->fde_offsets_.size());
188      this->get_fde_addresses<size, big_endian>(of, &this->fde_offsets_,
189						&fde_addresses);
190
191      std::sort(fde_addresses.begin(), fde_addresses.end(),
192		Fde_address_compare<size>());
193
194      typename elfcpp::Elf_types<size>::Elf_Addr output_address;
195      output_address = this->address();
196
197      unsigned char* pfde = oview + 12;
198      for (typename Fde_addresses<size>::iterator p = fde_addresses.begin();
199	   p != fde_addresses.end();
200	   ++p)
201	{
202	  elfcpp::Swap<32, big_endian>::writeval(pfde,
203						 p->first - output_address);
204	  elfcpp::Swap<32, big_endian>::writeval(pfde + 4,
205						 p->second - output_address);
206	  pfde += 8;
207	}
208
209      gold_assert(pfde - oview == oview_size);
210    }
211
212  of->write_output_view(off, oview_size, oview);
213}
214
215// Given the offset FDE_OFFSET of an FDE in the .eh_frame section, and
216// the contents of the .eh_frame section EH_FRAME_CONTENTS, where the
217// FDE's encoding is FDE_ENCODING, return the output address of the
218// FDE's PC.
219
220template<int size, bool big_endian>
221typename elfcpp::Elf_types<size>::Elf_Addr
222Eh_frame_hdr::get_fde_pc(
223    typename elfcpp::Elf_types<size>::Elf_Addr eh_frame_address,
224    const unsigned char* eh_frame_contents,
225    section_offset_type fde_offset,
226    unsigned char fde_encoding)
227{
228  // The FDE starts with a 4 byte length and a 4 byte offset to the
229  // CIE.  The PC follows.
230  const unsigned char* p = eh_frame_contents + fde_offset + 8;
231
232  typename elfcpp::Elf_types<size>::Elf_Addr pc;
233  bool is_signed = (fde_encoding & elfcpp::DW_EH_PE_signed) != 0;
234  int pc_size = fde_encoding & 7;
235  if (pc_size == elfcpp::DW_EH_PE_absptr)
236    {
237      if (size == 32)
238	pc_size = elfcpp::DW_EH_PE_udata4;
239      else if (size == 64)
240	pc_size = elfcpp::DW_EH_PE_udata8;
241      else
242	gold_unreachable();
243    }
244
245  switch (pc_size)
246    {
247    case elfcpp::DW_EH_PE_udata2:
248      pc = elfcpp::Swap<16, big_endian>::readval(p);
249      if (is_signed)
250	pc = (pc ^ 0x8000) - 0x8000;
251      break;
252
253    case elfcpp::DW_EH_PE_udata4:
254      pc = elfcpp::Swap<32, big_endian>::readval(p);
255      if (size > 32 && is_signed)
256	pc = (pc ^ 0x80000000) - 0x80000000;
257      break;
258
259    case elfcpp::DW_EH_PE_udata8:
260      gold_assert(size == 64);
261      pc = elfcpp::Swap_unaligned<64, big_endian>::readval(p);
262      break;
263
264    default:
265      // All other cases were rejected in Eh_frame::read_cie.
266      gold_unreachable();
267    }
268
269  switch (fde_encoding & 0xf0)
270    {
271    case 0:
272      break;
273
274    case elfcpp::DW_EH_PE_pcrel:
275      pc += eh_frame_address + fde_offset + 8;
276      break;
277
278    default:
279      // If other cases arise, then we have to handle them, or we have
280      // to reject them by returning false in Eh_frame::read_cie.
281      gold_unreachable();
282    }
283
284  return pc;
285}
286
287// Given an array of FDE offsets in the .eh_frame section, return an
288// array of offsets from the exception frame header to the FDE's
289// output PC and to the output address of the FDE itself.  We get the
290// FDE's PC by actually looking in the .eh_frame section we just wrote
291// to the output file.
292
293template<int size, bool big_endian>
294void
295Eh_frame_hdr::get_fde_addresses(Output_file* of,
296				const Fde_offsets* fde_offsets,
297				Fde_addresses<size>* fde_addresses)
298{
299  typename elfcpp::Elf_types<size>::Elf_Addr eh_frame_address;
300  eh_frame_address = this->eh_frame_section_->address();
301  off_t eh_frame_offset = this->eh_frame_section_->offset();
302  off_t eh_frame_size = this->eh_frame_section_->data_size();
303  const unsigned char* eh_frame_contents = of->get_input_view(eh_frame_offset,
304							      eh_frame_size);
305
306  for (Fde_offsets::const_iterator p = fde_offsets->begin();
307       p != fde_offsets->end();
308       ++p)
309    {
310      typename elfcpp::Elf_types<size>::Elf_Addr fde_pc;
311      fde_pc = this->get_fde_pc<size, big_endian>(eh_frame_address,
312						  eh_frame_contents,
313						  p->first, p->second);
314      fde_addresses->push_back(fde_pc, eh_frame_address + p->first);
315    }
316
317  of->free_input_view(eh_frame_offset, eh_frame_size, eh_frame_contents);
318}
319
320// Class Fde.
321
322// Write the FDE to OVIEW starting at OFFSET.  CIE_OFFSET is the
323// offset of the CIE in OVIEW.  FDE_ENCODING is the encoding, from the
324// CIE.  ADDRALIGN is the required alignment.  Record the FDE pc for
325// EH_FRAME_HDR.  Return the new offset.
326
327template<int size, bool big_endian>
328section_offset_type
329Fde::write(unsigned char* oview, section_offset_type offset,
330	   unsigned int addralign, section_offset_type cie_offset,
331           unsigned char fde_encoding, Eh_frame_hdr* eh_frame_hdr)
332{
333  gold_assert((offset & (addralign - 1)) == 0);
334
335  size_t length = this->contents_.length();
336
337  // We add 8 when getting the aligned length to account for the
338  // length word and the CIE offset.
339  size_t aligned_full_length = align_address(length + 8, addralign);
340
341  // Write the length of the FDE as a 32-bit word.  The length word
342  // does not include the four bytes of the length word itself, but it
343  // does include the offset to the CIE.
344  elfcpp::Swap<32, big_endian>::writeval(oview + offset,
345                                         aligned_full_length - 4);
346
347  // Write the offset to the CIE as a 32-bit word.  This is the
348  // difference between the address of the offset word itself and the
349  // CIE address.
350  elfcpp::Swap<32, big_endian>::writeval(oview + offset + 4,
351					 offset + 4 - cie_offset);
352
353  // Copy the rest of the FDE.  Note that this is run before
354  // relocation processing is done on this section, so the relocations
355  // will later be applied to the FDE data.
356  memcpy(oview + offset + 8, this->contents_.data(), length);
357
358  if (aligned_full_length > length + 8)
359    memset(oview + offset + length + 8, 0, aligned_full_length - (length + 8));
360
361  // Tell the exception frame header about this FDE.
362  if (eh_frame_hdr != NULL)
363    eh_frame_hdr->record_fde(offset, fde_encoding);
364
365  return offset + aligned_full_length;
366}
367
368// Class Cie.
369
370// Destructor.
371
372Cie::~Cie()
373{
374  for (std::vector<Fde*>::iterator p = this->fdes_.begin();
375       p != this->fdes_.end();
376       ++p)
377    delete *p;
378}
379
380// Set the output offset of a CIE.  Return the new output offset.
381
382section_offset_type
383Cie::set_output_offset(section_offset_type output_offset,
384		       unsigned int addralign,
385		       Merge_map* merge_map)
386{
387  size_t length = this->contents_.length();
388
389  // Add 4 for length and 4 for zero CIE identifier tag.
390  length += 8;
391
392  merge_map->add_mapping(this->object_, this->shndx_, this->input_offset_,
393			 length, output_offset);
394
395  length = align_address(length, addralign);
396
397  for (std::vector<Fde*>::const_iterator p = this->fdes_.begin();
398       p != this->fdes_.end();
399       ++p)
400    {
401      (*p)->add_mapping(output_offset + length, merge_map);
402
403      size_t fde_length = (*p)->length();
404      fde_length = align_address(fde_length, addralign);
405      length += fde_length;
406    }
407
408  return output_offset + length;
409}
410
411// Write the CIE to OVIEW starting at OFFSET.  EH_FRAME_HDR is for FDE
412// recording.  Round up the bytes to ADDRALIGN.  Return the new
413// offset.
414
415template<int size, bool big_endian>
416section_offset_type
417Cie::write(unsigned char* oview, section_offset_type offset,
418	   unsigned int addralign, Eh_frame_hdr* eh_frame_hdr)
419{
420  gold_assert((offset & (addralign - 1)) == 0);
421
422  section_offset_type cie_offset = offset;
423
424  size_t length = this->contents_.length();
425
426  // We add 8 when getting the aligned length to account for the
427  // length word and the CIE tag.
428  size_t aligned_full_length = align_address(length + 8, addralign);
429
430  // Write the length of the CIE as a 32-bit word.  The length word
431  // does not include the four bytes of the length word itself.
432  elfcpp::Swap<32, big_endian>::writeval(oview + offset,
433                                         aligned_full_length - 4);
434
435  // Write the tag which marks this as a CIE: a 32-bit zero.
436  elfcpp::Swap<32, big_endian>::writeval(oview + offset + 4, 0);
437
438  // Write out the CIE data.
439  memcpy(oview + offset + 8, this->contents_.data(), length);
440
441  if (aligned_full_length > length + 8)
442    memset(oview + offset + length + 8, 0, aligned_full_length - (length + 8));
443
444  offset += aligned_full_length;
445
446  // Write out the associated FDEs.
447  unsigned char fde_encoding = this->fde_encoding_;
448  for (std::vector<Fde*>::const_iterator p = this->fdes_.begin();
449       p != this->fdes_.end();
450       ++p)
451    offset = (*p)->write<size, big_endian>(oview, offset, addralign,
452                                           cie_offset, fde_encoding,
453                                           eh_frame_hdr);
454
455  return offset;
456}
457
458// We track all the CIEs we see, and merge them when possible.  This
459// works because each FDE holds an offset to the relevant CIE: we
460// rewrite the FDEs to point to the merged CIE.  This is worthwhile
461// because in a typical C++ program many FDEs in many different object
462// files will use the same CIE.
463
464// An equality operator for Cie.
465
466bool
467operator==(const Cie& cie1, const Cie& cie2)
468{
469  return (cie1.personality_name_ == cie2.personality_name_
470	  && cie1.contents_ == cie2.contents_);
471}
472
473// A less-than operator for Cie.
474
475bool
476operator<(const Cie& cie1, const Cie& cie2)
477{
478  if (cie1.personality_name_ != cie2.personality_name_)
479    return cie1.personality_name_ < cie2.personality_name_;
480  return cie1.contents_ < cie2.contents_;
481}
482
483// Class Eh_frame.
484
485Eh_frame::Eh_frame()
486  : Output_section_data(Output_data::default_alignment()),
487    eh_frame_hdr_(NULL),
488    cie_offsets_(),
489    unmergeable_cie_offsets_(),
490    merge_map_(),
491    mappings_are_done_(false),
492    final_data_size_(0)
493{
494}
495
496// Skip an LEB128, updating *PP to point to the next character.
497// Return false if we ran off the end of the string.
498
499bool
500Eh_frame::skip_leb128(const unsigned char** pp, const unsigned char* pend)
501{
502  const unsigned char* p;
503  for (p = *pp; p < pend; ++p)
504    {
505      if ((*p & 0x80) == 0)
506	{
507	  *pp = p + 1;
508	  return true;
509	}
510    }
511  return false;
512}
513
514// Add input section SHNDX in OBJECT to an exception frame section.
515// SYMBOLS is the contents of the symbol table section (size
516// SYMBOLS_SIZE), SYMBOL_NAMES is the symbol names section (size
517// SYMBOL_NAMES_SIZE).  RELOC_SHNDX is the index of a relocation
518// section applying to SHNDX, or 0 if none, or -1U if more than one.
519// RELOC_TYPE is the type of the reloc section if there is one, either
520// SHT_REL or SHT_RELA.  We try to parse the input exception frame
521// data into our data structures.  If we can't do it, we return false
522// to mean that the section should be handled as a normal input
523// section.
524
525template<int size, bool big_endian>
526bool
527Eh_frame::add_ehframe_input_section(
528    Sized_relobj<size, big_endian>* object,
529    const unsigned char* symbols,
530    section_size_type symbols_size,
531    const unsigned char* symbol_names,
532    section_size_type symbol_names_size,
533    unsigned int shndx,
534    unsigned int reloc_shndx,
535    unsigned int reloc_type)
536{
537  // Get the section contents.
538  section_size_type contents_len;
539  const unsigned char* pcontents = object->section_contents(shndx,
540							    &contents_len,
541							    false);
542  if (contents_len == 0)
543    return false;
544
545  // If this is the marker section for the end of the data, then
546  // return false to force it to be handled as an ordinary input
547  // section.  If we don't do this, we won't correctly handle the case
548  // of unrecognized .eh_frame sections.
549  if (contents_len == 4
550      && elfcpp::Swap<32, big_endian>::readval(pcontents) == 0)
551    return false;
552
553  New_cies new_cies;
554  if (!this->do_add_ehframe_input_section(object, symbols, symbols_size,
555					  symbol_names, symbol_names_size,
556					  shndx, reloc_shndx,
557					  reloc_type, pcontents,
558					  contents_len, &new_cies))
559    {
560      if (this->eh_frame_hdr_ != NULL)
561	this->eh_frame_hdr_->found_unrecognized_eh_frame_section();
562
563      for (New_cies::iterator p = new_cies.begin();
564	   p != new_cies.end();
565	   ++p)
566	delete p->first;
567
568      return false;
569    }
570
571  // Now that we know we are using this section, record any new CIEs
572  // that we found.
573  for (New_cies::const_iterator p = new_cies.begin();
574       p != new_cies.end();
575       ++p)
576    {
577      if (p->second)
578	this->cie_offsets_.insert(p->first);
579      else
580	this->unmergeable_cie_offsets_.push_back(p->first);
581    }
582
583  return true;
584}
585
586// The bulk of the implementation of add_ehframe_input_section.
587
588template<int size, bool big_endian>
589bool
590Eh_frame::do_add_ehframe_input_section(
591    Sized_relobj<size, big_endian>* object,
592    const unsigned char* symbols,
593    section_size_type symbols_size,
594    const unsigned char* symbol_names,
595    section_size_type symbol_names_size,
596    unsigned int shndx,
597    unsigned int reloc_shndx,
598    unsigned int reloc_type,
599    const unsigned char* pcontents,
600    section_size_type contents_len,
601    New_cies* new_cies)
602{
603  typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
604  Track_relocs<size, big_endian> relocs;
605
606  const unsigned char* p = pcontents;
607  const unsigned char* pend = p + contents_len;
608
609  // Get the contents of the reloc section if any.
610  if (!relocs.initialize(object, reloc_shndx, reloc_type))
611    return false;
612
613  // Keep track of which CIEs are at which offsets.
614  Offsets_to_cie cies;
615
616  while (p < pend)
617    {
618      if (pend - p < 4)
619	return false;
620
621      // There shouldn't be any relocations here.
622      if (relocs.advance(p + 4 - pcontents) > 0)
623	return false;
624
625      unsigned int len = elfcpp::Swap<32, big_endian>::readval(p);
626      p += 4;
627      if (len == 0)
628	{
629	  // We should only find a zero-length entry at the end of the
630	  // section.
631	  if (p < pend)
632	    return false;
633	  break;
634	}
635      // We don't support a 64-bit .eh_frame.
636      if (len == 0xffffffff)
637	return false;
638      if (static_cast<unsigned int>(pend - p) < len)
639	return false;
640
641      const unsigned char* const pentend = p + len;
642
643      if (pend - p < 4)
644	return false;
645      if (relocs.advance(p + 4 - pcontents) > 0)
646	return false;
647
648      unsigned int id = elfcpp::Swap<32, big_endian>::readval(p);
649      p += 4;
650
651      if (id == 0)
652	{
653	  // CIE.
654	  if (!this->read_cie(object, shndx, symbols, symbols_size,
655			      symbol_names, symbol_names_size,
656			      pcontents, p, pentend, &relocs, &cies,
657			      new_cies))
658	    return false;
659	}
660      else
661	{
662	  // FDE.
663	  if (!this->read_fde(object, shndx, symbols, symbols_size,
664			      pcontents, id, p, pentend, &relocs, &cies))
665	    return false;
666	}
667
668      p = pentend;
669    }
670
671  return true;
672}
673
674// Read a CIE.  Return false if we can't parse the information.
675
676template<int size, bool big_endian>
677bool
678Eh_frame::read_cie(Sized_relobj<size, big_endian>* object,
679		   unsigned int shndx,
680		   const unsigned char* symbols,
681		   section_size_type symbols_size,
682		   const unsigned char* symbol_names,
683		   section_size_type symbol_names_size,
684		   const unsigned char* pcontents,
685		   const unsigned char* pcie,
686		   const unsigned char* pcieend,
687		   Track_relocs<size, big_endian>* relocs,
688		   Offsets_to_cie* cies,
689		   New_cies* new_cies)
690{
691  bool mergeable = true;
692
693  // We need to find the personality routine if there is one, since we
694  // can only merge CIEs which use the same routine.  We also need to
695  // find the FDE encoding if there is one, so that we can read the PC
696  // from the FDE.
697
698  const unsigned char* p = pcie;
699
700  if (pcieend - p < 1)
701    return false;
702  unsigned char version = *p++;
703  if (version != 1 && version != 3)
704    return false;
705
706  const unsigned char* paug = p;
707  const void* paugendv = memchr(p, '\0', pcieend - p);
708  const unsigned char* paugend = static_cast<const unsigned char*>(paugendv);
709  if (paugend == NULL)
710    return false;
711  p = paugend + 1;
712
713  if (paug[0] == 'e' && paug[1] == 'h')
714    {
715      // This is a CIE from gcc before version 3.0.  We can't merge
716      // these.  We can still read the FDEs.
717      mergeable = false;
718      paug += 2;
719      if (*paug != '\0')
720	return false;
721      if (pcieend - p < size / 8)
722	return false;
723      p += size / 8;
724    }
725
726  // Skip the code alignment.
727  if (!skip_leb128(&p, pcieend))
728    return false;
729
730  // Skip the data alignment.
731  if (!skip_leb128(&p, pcieend))
732    return false;
733
734  // Skip the return column.
735  if (version == 1)
736    {
737      if (pcieend - p < 1)
738	return false;
739      ++p;
740    }
741  else
742    {
743      if (!skip_leb128(&p, pcieend))
744	return false;
745    }
746
747  if (*paug == 'z')
748    {
749      ++paug;
750      // Skip the augmentation size.
751      if (!skip_leb128(&p, pcieend))
752	return false;
753    }
754
755  unsigned char fde_encoding = elfcpp::DW_EH_PE_absptr;
756  int per_offset = -1;
757  while (*paug != '\0')
758    {
759      switch (*paug)
760	{
761	case 'L': // LSDA encoding.
762	  if (pcieend - p < 1)
763	    return false;
764	  ++p;
765	  break;
766
767	case 'R': // FDE encoding.
768	  if (pcieend - p < 1)
769	    return false;
770	  fde_encoding = *p;
771	  switch (fde_encoding & 7)
772	    {
773	    case elfcpp::DW_EH_PE_absptr:
774	    case elfcpp::DW_EH_PE_udata2:
775	    case elfcpp::DW_EH_PE_udata4:
776	    case elfcpp::DW_EH_PE_udata8:
777	      break;
778	    default:
779	      // We don't expect to see any other cases here, and
780	      // we're not prepared to handle them.
781	      return false;
782	    }
783	  ++p;
784	  break;
785
786	case 'S':
787	  break;
788
789	case 'P':
790	  // Personality encoding.
791	  {
792	    if (pcieend - p < 1)
793	      return false;
794	    unsigned char per_encoding = *p;
795	    ++p;
796
797	    if ((per_encoding & 0x60) == 0x60)
798	      return false;
799	    unsigned int per_width;
800	    switch (per_encoding & 7)
801	      {
802	      case elfcpp::DW_EH_PE_udata2:
803		per_width = 2;
804		break;
805	      case elfcpp::DW_EH_PE_udata4:
806		per_width = 4;
807		break;
808	      case elfcpp::DW_EH_PE_udata8:
809		per_width = 8;
810		break;
811	      case elfcpp::DW_EH_PE_absptr:
812		per_width = size / 8;
813		break;
814	      default:
815		return false;
816	      }
817
818	    if ((per_encoding & 0xf0) == elfcpp::DW_EH_PE_aligned)
819	      {
820		unsigned int len = p - pcie;
821		len += per_width - 1;
822		len &= ~ (per_width - 1);
823		if (static_cast<unsigned int>(pcieend - p) < len)
824		  return false;
825		p += len;
826	      }
827
828	    per_offset = p - pcontents;
829
830	    if (static_cast<unsigned int>(pcieend - p) < per_width)
831	      return false;
832	    p += per_width;
833	  }
834	  break;
835
836	default:
837	  return false;
838	}
839
840      ++paug;
841    }
842
843  const char* personality_name = "";
844  if (per_offset != -1)
845    {
846      if (relocs->advance(per_offset) > 0)
847	return false;
848      if (relocs->next_offset() != per_offset)
849	return false;
850
851      unsigned int personality_symndx = relocs->next_symndx();
852      if (personality_symndx == -1U)
853	return false;
854
855      if (personality_symndx < object->local_symbol_count())
856	{
857	  // We can only merge this CIE if the personality routine is
858	  // a global symbol.  We can still read the FDEs.
859	  mergeable = false;
860	}
861      else
862	{
863	  const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
864	  if (personality_symndx >= symbols_size / sym_size)
865	    return false;
866	  elfcpp::Sym<size, big_endian> sym(symbols
867					    + (personality_symndx * sym_size));
868	  unsigned int name_offset = sym.get_st_name();
869	  if (name_offset >= symbol_names_size)
870	    return false;
871	  personality_name = (reinterpret_cast<const char*>(symbol_names)
872			      + name_offset);
873	}
874
875      int r = relocs->advance(per_offset + 1);
876      gold_assert(r == 1);
877    }
878
879  if (relocs->advance(pcieend - pcontents) > 0)
880    return false;
881
882  Cie cie(object, shndx, (pcie - 8) - pcontents, fde_encoding,
883	  personality_name, pcie, pcieend - pcie);
884  Cie* cie_pointer = NULL;
885  if (mergeable)
886    {
887      Cie_offsets::iterator find_cie = this->cie_offsets_.find(&cie);
888      if (find_cie != this->cie_offsets_.end())
889	cie_pointer = *find_cie;
890      else
891	{
892	  // See if we already saw this CIE in this object file.
893	  for (New_cies::const_iterator pc = new_cies->begin();
894	       pc != new_cies->end();
895	       ++pc)
896	    {
897	      if (*(pc->first) == cie)
898		{
899		  cie_pointer = pc->first;
900		  break;
901		}
902	    }
903	}
904    }
905
906  if (cie_pointer == NULL)
907    {
908      cie_pointer = new Cie(cie);
909      new_cies->push_back(std::make_pair(cie_pointer, mergeable));
910    }
911  else
912    {
913      // We are deleting this CIE.  Record that in our mapping from
914      // input sections to the output section.  At this point we don't
915      // know for sure that we are doing a special mapping for this
916      // input section, but that's OK--if we don't do a special
917      // mapping, nobody will ever ask for the mapping we add here.
918      this->merge_map_.add_mapping(object, shndx, (pcie - 8) - pcontents,
919				   pcieend - (pcie - 8), -1);
920    }
921
922  // Record this CIE plus the offset in the input section.
923  cies->insert(std::make_pair(pcie - pcontents, cie_pointer));
924
925  return true;
926}
927
928// Read an FDE.  Return false if we can't parse the information.
929
930template<int size, bool big_endian>
931bool
932Eh_frame::read_fde(Sized_relobj<size, big_endian>* object,
933		   unsigned int shndx,
934		   const unsigned char* symbols,
935		   section_size_type symbols_size,
936		   const unsigned char* pcontents,
937		   unsigned int offset,
938		   const unsigned char* pfde,
939		   const unsigned char* pfdeend,
940		   Track_relocs<size, big_endian>* relocs,
941		   Offsets_to_cie* cies)
942{
943  // OFFSET is the distance between the 4 bytes before PFDE to the
944  // start of the CIE.  The offset we recorded for the CIE is 8 bytes
945  // after the start of the CIE--after the length and the zero tag.
946  unsigned int cie_offset = (pfde - 4 - pcontents) - offset + 8;
947  Offsets_to_cie::const_iterator pcie = cies->find(cie_offset);
948  if (pcie == cies->end())
949    return false;
950  Cie* cie = pcie->second;
951
952  // The FDE should start with a reloc to the start of the code which
953  // it describes.
954  if (relocs->advance(pfde - pcontents) > 0)
955    return false;
956
957  if (relocs->next_offset() != pfde - pcontents)
958    return false;
959
960  unsigned int symndx = relocs->next_symndx();
961  if (symndx == -1U)
962    return false;
963
964  // There can be another reloc in the FDE, if the CIE specifies an
965  // LSDA (language specific data area).  We currently don't care.  We
966  // will care later if we want to optimize the LSDA from an absolute
967  // pointer to a PC relative offset when generating a shared library.
968  relocs->advance(pfdeend - pcontents);
969
970  unsigned int fde_shndx;
971  const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
972  if (symndx >= symbols_size / sym_size)
973    return false;
974  elfcpp::Sym<size, big_endian> sym(symbols + symndx * sym_size);
975  bool is_ordinary;
976  fde_shndx = object->adjust_sym_shndx(symndx, sym.get_st_shndx(),
977				       &is_ordinary);
978
979  if (is_ordinary
980      && fde_shndx != elfcpp::SHN_UNDEF
981      && fde_shndx < object->shnum()
982      && !object->is_section_included(fde_shndx))
983    {
984      // This FDE applies to a section which we are discarding.  We
985      // can discard this FDE.
986      this->merge_map_.add_mapping(object, shndx, (pfde - 8) - pcontents,
987				   pfdeend - (pfde - 8), -1);
988      return true;
989    }
990
991  cie->add_fde(new Fde(object, shndx, (pfde - 8) - pcontents,
992		       pfde, pfdeend - pfde));
993
994  return true;
995}
996
997// Return the number of FDEs.
998
999unsigned int
1000Eh_frame::fde_count() const
1001{
1002  unsigned int ret = 0;
1003  for (Unmergeable_cie_offsets::const_iterator p =
1004	 this->unmergeable_cie_offsets_.begin();
1005       p != this->unmergeable_cie_offsets_.end();
1006       ++p)
1007    ret += (*p)->fde_count();
1008  for (Cie_offsets::const_iterator p = this->cie_offsets_.begin();
1009       p != this->cie_offsets_.end();
1010       ++p)
1011    ret += (*p)->fde_count();
1012  return ret;
1013}
1014
1015// Set the final data size.
1016
1017void
1018Eh_frame::set_final_data_size()
1019{
1020  // We can be called more than once if Layout::set_segment_offsets
1021  // finds a better mapping.  We don't want to add all the mappings
1022  // again.
1023  if (this->mappings_are_done_)
1024    {
1025      this->set_data_size(this->final_data_size_);
1026      return;
1027    }
1028
1029  section_offset_type output_offset = 0;
1030
1031  for (Unmergeable_cie_offsets::iterator p =
1032	 this->unmergeable_cie_offsets_.begin();
1033       p != this->unmergeable_cie_offsets_.end();
1034       ++p)
1035    output_offset = (*p)->set_output_offset(output_offset,
1036					    this->addralign(),
1037					    &this->merge_map_);
1038
1039  for (Cie_offsets::iterator p = this->cie_offsets_.begin();
1040       p != this->cie_offsets_.end();
1041       ++p)
1042    output_offset = (*p)->set_output_offset(output_offset,
1043					    this->addralign(),
1044					    &this->merge_map_);
1045
1046  this->mappings_are_done_ = true;
1047  this->final_data_size_ = output_offset;
1048
1049  gold_assert((output_offset & (this->addralign() - 1)) == 0);
1050  this->set_data_size(output_offset);
1051}
1052
1053// Return an output offset for an input offset.
1054
1055bool
1056Eh_frame::do_output_offset(const Relobj* object, unsigned int shndx,
1057			   section_offset_type offset,
1058			   section_offset_type* poutput) const
1059{
1060  return this->merge_map_.get_output_offset(object, shndx, offset, poutput);
1061}
1062
1063// Return whether this is the merge section for an input section.
1064
1065bool
1066Eh_frame::do_is_merge_section_for(const Relobj* object,
1067				  unsigned int shndx) const
1068{
1069  return this->merge_map_.is_merge_section_for(object, shndx);
1070}
1071
1072// Write the data to the output file.
1073
1074void
1075Eh_frame::do_write(Output_file* of)
1076{
1077  const off_t offset = this->offset();
1078  const off_t oview_size = this->data_size();
1079  unsigned char* const oview = of->get_output_view(offset, oview_size);
1080
1081  switch (parameters->size_and_endianness())
1082    {
1083#ifdef HAVE_TARGET_32_LITTLE
1084    case Parameters::TARGET_32_LITTLE:
1085      this->do_sized_write<32, false>(oview);
1086      break;
1087#endif
1088#ifdef HAVE_TARGET_32_BIG
1089    case Parameters::TARGET_32_BIG:
1090      this->do_sized_write<32, true>(oview);
1091      break;
1092#endif
1093#ifdef HAVE_TARGET_64_LITTLE
1094    case Parameters::TARGET_64_LITTLE:
1095      this->do_sized_write<64, false>(oview);
1096      break;
1097#endif
1098#ifdef HAVE_TARGET_64_BIG
1099    case Parameters::TARGET_64_BIG:
1100      this->do_sized_write<64, true>(oview);
1101      break;
1102#endif
1103    default:
1104      gold_unreachable();
1105    }
1106
1107  of->write_output_view(offset, oview_size, oview);
1108}
1109
1110// Write the data to the output file--template version.
1111
1112template<int size, bool big_endian>
1113void
1114Eh_frame::do_sized_write(unsigned char* oview)
1115{
1116  unsigned int addralign = this->addralign();
1117  section_offset_type o = 0;
1118  for (Unmergeable_cie_offsets::iterator p =
1119	 this->unmergeable_cie_offsets_.begin();
1120       p != this->unmergeable_cie_offsets_.end();
1121       ++p)
1122    o = (*p)->write<size, big_endian>(oview, o, addralign,
1123                                      this->eh_frame_hdr_);
1124  for (Cie_offsets::iterator p = this->cie_offsets_.begin();
1125       p != this->cie_offsets_.end();
1126       ++p)
1127    o = (*p)->write<size, big_endian>(oview, o, addralign,
1128                                      this->eh_frame_hdr_);
1129}
1130
1131#ifdef HAVE_TARGET_32_LITTLE
1132template
1133bool
1134Eh_frame::add_ehframe_input_section<32, false>(
1135    Sized_relobj<32, false>* object,
1136    const unsigned char* symbols,
1137    section_size_type symbols_size,
1138    const unsigned char* symbol_names,
1139    section_size_type symbol_names_size,
1140    unsigned int shndx,
1141    unsigned int reloc_shndx,
1142    unsigned int reloc_type);
1143#endif
1144
1145#ifdef HAVE_TARGET_32_BIG
1146template
1147bool
1148Eh_frame::add_ehframe_input_section<32, true>(
1149    Sized_relobj<32, true>* object,
1150    const unsigned char* symbols,
1151    section_size_type symbols_size,
1152    const unsigned char* symbol_names,
1153    section_size_type symbol_names_size,
1154    unsigned int shndx,
1155    unsigned int reloc_shndx,
1156    unsigned int reloc_type);
1157#endif
1158
1159#ifdef HAVE_TARGET_64_LITTLE
1160template
1161bool
1162Eh_frame::add_ehframe_input_section<64, false>(
1163    Sized_relobj<64, false>* object,
1164    const unsigned char* symbols,
1165    section_size_type symbols_size,
1166    const unsigned char* symbol_names,
1167    section_size_type symbol_names_size,
1168    unsigned int shndx,
1169    unsigned int reloc_shndx,
1170    unsigned int reloc_type);
1171#endif
1172
1173#ifdef HAVE_TARGET_64_BIG
1174template
1175bool
1176Eh_frame::add_ehframe_input_section<64, true>(
1177    Sized_relobj<64, true>* object,
1178    const unsigned char* symbols,
1179    section_size_type symbols_size,
1180    const unsigned char* symbol_names,
1181    section_size_type symbol_names_size,
1182    unsigned int shndx,
1183    unsigned int reloc_shndx,
1184    unsigned int reloc_type);
1185#endif
1186
1187} // End namespace gold.
1188