1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 *
21 * $FreeBSD: src/sys/cddl/contrib/opensolaris/uts/common/sys/dtrace_impl.h,v 1.3.4.1 2009/08/03 08:13:06 kensmith Exp $
22 */
23
24/*
25 * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
26 * Use is subject to license terms.
27 */
28
29#ifndef _SYS_DTRACE_IMPL_H
30#define	_SYS_DTRACE_IMPL_H
31
32/* #pragma ident	"%Z%%M%	%I%	%E% SMI" */
33
34#ifdef	__cplusplus
35extern "C" {
36#endif
37
38/*
39 * DTrace Dynamic Tracing Software: Kernel Implementation Interfaces
40 *
41 * Note: The contents of this file are private to the implementation of the
42 * Solaris system and DTrace subsystem and are subject to change at any time
43 * without notice.  Applications and drivers using these interfaces will fail
44 * to run on future releases.  These interfaces should not be used for any
45 * purpose except those expressly outlined in dtrace(7D) and libdtrace(3LIB).
46 * Please refer to the "Solaris Dynamic Tracing Guide" for more information.
47 */
48
49#include <sys/dtrace.h>
50#if !defined(sun)
51#ifdef __sparcv9
52typedef uint32_t		pc_t;
53#else
54typedef uintptr_t		pc_t;
55#endif
56typedef	u_long			greg_t;
57#endif
58
59/*
60 * DTrace Implementation Constants and Typedefs
61 */
62#define	DTRACE_MAXPROPLEN		128
63#define	DTRACE_DYNVAR_CHUNKSIZE		256
64
65struct dtrace_probe;
66struct dtrace_ecb;
67struct dtrace_predicate;
68struct dtrace_action;
69struct dtrace_provider;
70struct dtrace_state;
71
72typedef struct dtrace_probe dtrace_probe_t;
73typedef struct dtrace_ecb dtrace_ecb_t;
74typedef struct dtrace_predicate dtrace_predicate_t;
75typedef struct dtrace_action dtrace_action_t;
76typedef struct dtrace_provider dtrace_provider_t;
77typedef struct dtrace_meta dtrace_meta_t;
78typedef struct dtrace_state dtrace_state_t;
79typedef uint32_t dtrace_optid_t;
80typedef uint32_t dtrace_specid_t;
81typedef uint64_t dtrace_genid_t;
82
83/*
84 * DTrace Probes
85 *
86 * The probe is the fundamental unit of the DTrace architecture.  Probes are
87 * created by DTrace providers, and managed by the DTrace framework.  A probe
88 * is identified by a unique <provider, module, function, name> tuple, and has
89 * a unique probe identifier assigned to it.  (Some probes are not associated
90 * with a specific point in text; these are called _unanchored probes_ and have
91 * no module or function associated with them.)  Probes are represented as a
92 * dtrace_probe structure.  To allow quick lookups based on each element of the
93 * probe tuple, probes are hashed by each of provider, module, function and
94 * name.  (If a lookup is performed based on a regular expression, a
95 * dtrace_probekey is prepared, and a linear search is performed.) Each probe
96 * is additionally pointed to by a linear array indexed by its identifier.  The
97 * identifier is the provider's mechanism for indicating to the DTrace
98 * framework that a probe has fired:  the identifier is passed as the first
99 * argument to dtrace_probe(), where it is then mapped into the corresponding
100 * dtrace_probe structure.  From the dtrace_probe structure, dtrace_probe() can
101 * iterate over the probe's list of enabling control blocks; see "DTrace
102 * Enabling Control Blocks", below.)
103 */
104struct dtrace_probe {
105	dtrace_id_t dtpr_id;			/* probe identifier */
106	dtrace_ecb_t *dtpr_ecb;			/* ECB list; see below */
107	dtrace_ecb_t *dtpr_ecb_last;		/* last ECB in list */
108	void *dtpr_arg;				/* provider argument */
109	dtrace_cacheid_t dtpr_predcache;	/* predicate cache ID */
110	int dtpr_aframes;			/* artificial frames */
111	dtrace_provider_t *dtpr_provider;	/* pointer to provider */
112	char *dtpr_mod;				/* probe's module name */
113	char *dtpr_func;			/* probe's function name */
114	char *dtpr_name;			/* probe's name */
115	dtrace_probe_t *dtpr_nextmod;		/* next in module hash */
116	dtrace_probe_t *dtpr_prevmod;		/* previous in module hash */
117	dtrace_probe_t *dtpr_nextfunc;		/* next in function hash */
118	dtrace_probe_t *dtpr_prevfunc;		/* previous in function hash */
119	dtrace_probe_t *dtpr_nextname;		/* next in name hash */
120	dtrace_probe_t *dtpr_prevname;		/* previous in name hash */
121	dtrace_genid_t dtpr_gen;		/* probe generation ID */
122};
123
124typedef int dtrace_probekey_f(const char *, const char *, int);
125
126typedef struct dtrace_probekey {
127	char *dtpk_prov;			/* provider name to match */
128	dtrace_probekey_f *dtpk_pmatch;		/* provider matching function */
129	char *dtpk_mod;				/* module name to match */
130	dtrace_probekey_f *dtpk_mmatch;		/* module matching function */
131	char *dtpk_func;			/* func name to match */
132	dtrace_probekey_f *dtpk_fmatch;		/* func matching function */
133	char *dtpk_name;			/* name to match */
134	dtrace_probekey_f *dtpk_nmatch;		/* name matching function */
135	dtrace_id_t dtpk_id;			/* identifier to match */
136} dtrace_probekey_t;
137
138typedef struct dtrace_hashbucket {
139	struct dtrace_hashbucket *dthb_next;	/* next on hash chain */
140	dtrace_probe_t *dthb_chain;		/* chain of probes */
141	int dthb_len;				/* number of probes here */
142} dtrace_hashbucket_t;
143
144typedef struct dtrace_hash {
145	dtrace_hashbucket_t **dth_tab;		/* hash table */
146	int dth_size;				/* size of hash table */
147	int dth_mask;				/* mask to index into table */
148	int dth_nbuckets;			/* total number of buckets */
149	uintptr_t dth_nextoffs;			/* offset of next in probe */
150	uintptr_t dth_prevoffs;			/* offset of prev in probe */
151	uintptr_t dth_stroffs;			/* offset of str in probe */
152} dtrace_hash_t;
153
154/*
155 * DTrace Enabling Control Blocks
156 *
157 * When a provider wishes to fire a probe, it calls into dtrace_probe(),
158 * passing the probe identifier as the first argument.  As described above,
159 * dtrace_probe() maps the identifier into a pointer to a dtrace_probe_t
160 * structure.  This structure contains information about the probe, and a
161 * pointer to the list of Enabling Control Blocks (ECBs).  Each ECB points to
162 * DTrace consumer state, and contains an optional predicate, and a list of
163 * actions.  (Shown schematically below.)  The ECB abstraction allows a single
164 * probe to be multiplexed across disjoint consumers, or across disjoint
165 * enablings of a single probe within one consumer.
166 *
167 *   Enabling Control Block
168 *        dtrace_ecb_t
169 * +------------------------+
170 * | dtrace_epid_t ---------+--------------> Enabled Probe ID (EPID)
171 * | dtrace_state_t * ------+--------------> State associated with this ECB
172 * | dtrace_predicate_t * --+---------+
173 * | dtrace_action_t * -----+----+    |
174 * | dtrace_ecb_t * ---+    |    |    |       Predicate (if any)
175 * +-------------------+----+    |    |       dtrace_predicate_t
176 *                     |         |    +---> +--------------------+
177 *                     |         |          | dtrace_difo_t * ---+----> DIFO
178 *                     |         |          +--------------------+
179 *                     |         |
180 *            Next ECB |         |           Action
181 *            (if any) |         |       dtrace_action_t
182 *                     :         +--> +-------------------+
183 *                     :              | dtrace_actkind_t -+------> kind
184 *                     v              | dtrace_difo_t * --+------> DIFO (if any)
185 *                                    | dtrace_recdesc_t -+------> record descr.
186 *                                    | dtrace_action_t * +------+
187 *                                    +-------------------+      |
188 *                                                               | Next action
189 *                               +-------------------------------+  (if any)
190 *                               |
191 *                               |           Action
192 *                               |       dtrace_action_t
193 *                               +--> +-------------------+
194 *                                    | dtrace_actkind_t -+------> kind
195 *                                    | dtrace_difo_t * --+------> DIFO (if any)
196 *                                    | dtrace_action_t * +------+
197 *                                    +-------------------+      |
198 *                                                               | Next action
199 *                               +-------------------------------+  (if any)
200 *                               |
201 *                               :
202 *                               v
203 *
204 *
205 * dtrace_probe() iterates over the ECB list.  If the ECB needs less space
206 * than is available in the principal buffer, the ECB is processed:  if the
207 * predicate is non-NULL, the DIF object is executed.  If the result is
208 * non-zero, the action list is processed, with each action being executed
209 * accordingly.  When the action list has been completely executed, processing
210 * advances to the next ECB.  processing advances to the next ECB.  If the
211 * result is non-zero; For each ECB, it first determines the The ECB
212 * abstraction allows disjoint consumers to multiplex on single probes.
213 */
214struct dtrace_ecb {
215	dtrace_epid_t dte_epid;			/* enabled probe ID */
216	uint32_t dte_alignment;			/* required alignment */
217	size_t dte_needed;			/* bytes needed */
218	size_t dte_size;			/* total size of payload */
219	dtrace_predicate_t *dte_predicate;	/* predicate, if any */
220	dtrace_action_t *dte_action;		/* actions, if any */
221	dtrace_ecb_t *dte_next;			/* next ECB on probe */
222	dtrace_state_t *dte_state;		/* pointer to state */
223	uint32_t dte_cond;			/* security condition */
224	dtrace_probe_t *dte_probe;		/* pointer to probe */
225	dtrace_action_t *dte_action_last;	/* last action on ECB */
226	uint64_t dte_uarg;			/* library argument */
227};
228
229struct dtrace_predicate {
230	dtrace_difo_t *dtp_difo;		/* DIF object */
231	dtrace_cacheid_t dtp_cacheid;		/* cache identifier */
232	int dtp_refcnt;				/* reference count */
233};
234
235struct dtrace_action {
236	dtrace_actkind_t dta_kind;		/* kind of action */
237	uint16_t dta_intuple;			/* boolean:  in aggregation */
238	uint32_t dta_refcnt;			/* reference count */
239	dtrace_difo_t *dta_difo;		/* pointer to DIFO */
240	dtrace_recdesc_t dta_rec;		/* record description */
241	dtrace_action_t *dta_prev;		/* previous action */
242	dtrace_action_t *dta_next;		/* next action */
243};
244
245typedef struct dtrace_aggregation {
246	dtrace_action_t dtag_action;		/* action; must be first */
247	dtrace_aggid_t dtag_id;			/* identifier */
248	dtrace_ecb_t *dtag_ecb;			/* corresponding ECB */
249	dtrace_action_t *dtag_first;		/* first action in tuple */
250	uint32_t dtag_base;			/* base of aggregation */
251	uint8_t dtag_hasarg;			/* boolean:  has argument */
252	uint64_t dtag_initial;			/* initial value */
253	void (*dtag_aggregate)(uint64_t *, uint64_t, uint64_t);
254} dtrace_aggregation_t;
255
256/*
257 * DTrace Buffers
258 *
259 * Principal buffers, aggregation buffers, and speculative buffers are all
260 * managed with the dtrace_buffer structure.  By default, this structure
261 * includes twin data buffers -- dtb_tomax and dtb_xamot -- that serve as the
262 * active and passive buffers, respectively.  For speculative buffers,
263 * dtb_xamot will be NULL; for "ring" and "fill" buffers, dtb_xamot will point
264 * to a scratch buffer.  For all buffer types, the dtrace_buffer structure is
265 * always allocated on a per-CPU basis; a single dtrace_buffer structure is
266 * never shared among CPUs.  (That is, there is never true sharing of the
267 * dtrace_buffer structure; to prevent false sharing of the structure, it must
268 * always be aligned to the coherence granularity -- generally 64 bytes.)
269 *
270 * One of the critical design decisions of DTrace is that a given ECB always
271 * stores the same quantity and type of data.  This is done to assure that the
272 * only metadata required for an ECB's traced data is the EPID.  That is, from
273 * the EPID, the consumer can determine the data layout.  (The data buffer
274 * layout is shown schematically below.)  By assuring that one can determine
275 * data layout from the EPID, the metadata stream can be separated from the
276 * data stream -- simplifying the data stream enormously.
277 *
278 *      base of data buffer --->  +------+--------------------+------+
279 *                                | EPID | data               | EPID |
280 *                                +------+--------+------+----+------+
281 *                                | data          | EPID | data      |
282 *                                +---------------+------+-----------+
283 *                                | data, cont.                      |
284 *                                +------+--------------------+------+
285 *                                | EPID | data               |      |
286 *                                +------+--------------------+      |
287 *                                |                ||                |
288 *                                |                ||                |
289 *                                |                \/                |
290 *                                :                                  :
291 *                                .                                  .
292 *                                .                                  .
293 *                                .                                  .
294 *                                :                                  :
295 *                                |                                  |
296 *     limit of data buffer --->  +----------------------------------+
297 *
298 * When evaluating an ECB, dtrace_probe() determines if the ECB's needs of the
299 * principal buffer (both scratch and payload) exceed the available space.  If
300 * the ECB's needs exceed available space (and if the principal buffer policy
301 * is the default "switch" policy), the ECB is dropped, the buffer's drop count
302 * is incremented, and processing advances to the next ECB.  If the ECB's needs
303 * can be met with the available space, the ECB is processed, but the offset in
304 * the principal buffer is only advanced if the ECB completes processing
305 * without error.
306 *
307 * When a buffer is to be switched (either because the buffer is the principal
308 * buffer with a "switch" policy or because it is an aggregation buffer), a
309 * cross call is issued to the CPU associated with the buffer.  In the cross
310 * call context, interrupts are disabled, and the active and the inactive
311 * buffers are atomically switched.  This involves switching the data pointers,
312 * copying the various state fields (offset, drops, errors, etc.) into their
313 * inactive equivalents, and clearing the state fields.  Because interrupts are
314 * disabled during this procedure, the switch is guaranteed to appear atomic to
315 * dtrace_probe().
316 *
317 * DTrace Ring Buffering
318 *
319 * To process a ring buffer correctly, one must know the oldest valid record.
320 * Processing starts at the oldest record in the buffer and continues until
321 * the end of the buffer is reached.  Processing then resumes starting with
322 * the record stored at offset 0 in the buffer, and continues until the
323 * youngest record is processed.  If trace records are of a fixed-length,
324 * determining the oldest record is trivial:
325 *
326 *   - If the ring buffer has not wrapped, the oldest record is the record
327 *     stored at offset 0.
328 *
329 *   - If the ring buffer has wrapped, the oldest record is the record stored
330 *     at the current offset.
331 *
332 * With variable length records, however, just knowing the current offset
333 * doesn't suffice for determining the oldest valid record:  assuming that one
334 * allows for arbitrary data, one has no way of searching forward from the
335 * current offset to find the oldest valid record.  (That is, one has no way
336 * of separating data from metadata.) It would be possible to simply refuse to
337 * process any data in the ring buffer between the current offset and the
338 * limit, but this leaves (potentially) an enormous amount of otherwise valid
339 * data unprocessed.
340 *
341 * To effect ring buffering, we track two offsets in the buffer:  the current
342 * offset and the _wrapped_ offset.  If a request is made to reserve some
343 * amount of data, and the buffer has wrapped, the wrapped offset is
344 * incremented until the wrapped offset minus the current offset is greater
345 * than or equal to the reserve request.  This is done by repeatedly looking
346 * up the ECB corresponding to the EPID at the current wrapped offset, and
347 * incrementing the wrapped offset by the size of the data payload
348 * corresponding to that ECB.  If this offset is greater than or equal to the
349 * limit of the data buffer, the wrapped offset is set to 0.  Thus, the
350 * current offset effectively "chases" the wrapped offset around the buffer.
351 * Schematically:
352 *
353 *      base of data buffer --->  +------+--------------------+------+
354 *                                | EPID | data               | EPID |
355 *                                +------+--------+------+----+------+
356 *                                | data          | EPID | data      |
357 *                                +---------------+------+-----------+
358 *                                | data, cont.                      |
359 *                                +------+---------------------------+
360 *                                | EPID | data                      |
361 *           current offset --->  +------+---------------------------+
362 *                                | invalid data                     |
363 *           wrapped offset --->  +------+--------------------+------+
364 *                                | EPID | data               | EPID |
365 *                                +------+--------+------+----+------+
366 *                                | data          | EPID | data      |
367 *                                +---------------+------+-----------+
368 *                                :                                  :
369 *                                .                                  .
370 *                                .        ... valid data ...        .
371 *                                .                                  .
372 *                                :                                  :
373 *                                +------+-------------+------+------+
374 *                                | EPID | data        | EPID | data |
375 *                                +------+------------++------+------+
376 *                                | data, cont.       | leftover     |
377 *     limit of data buffer --->  +-------------------+--------------+
378 *
379 * If the amount of requested buffer space exceeds the amount of space
380 * available between the current offset and the end of the buffer:
381 *
382 *  (1)  all words in the data buffer between the current offset and the limit
383 *       of the data buffer (marked "leftover", above) are set to
384 *       DTRACE_EPIDNONE
385 *
386 *  (2)  the wrapped offset is set to zero
387 *
388 *  (3)  the iteration process described above occurs until the wrapped offset
389 *       is greater than the amount of desired space.
390 *
391 * The wrapped offset is implemented by (re-)using the inactive offset.
392 * In a "switch" buffer policy, the inactive offset stores the offset in
393 * the inactive buffer; in a "ring" buffer policy, it stores the wrapped
394 * offset.
395 *
396 * DTrace Scratch Buffering
397 *
398 * Some ECBs may wish to allocate dynamically-sized temporary scratch memory.
399 * To accommodate such requests easily, scratch memory may be allocated in
400 * the buffer beyond the current offset plus the needed memory of the current
401 * ECB.  If there isn't sufficient room in the buffer for the requested amount
402 * of scratch space, the allocation fails and an error is generated.  Scratch
403 * memory is tracked in the dtrace_mstate_t and is automatically freed when
404 * the ECB ceases processing.  Note that ring buffers cannot allocate their
405 * scratch from the principal buffer -- lest they needlessly overwrite older,
406 * valid data.  Ring buffers therefore have their own dedicated scratch buffer
407 * from which scratch is allocated.
408 */
409#define	DTRACEBUF_RING		0x0001		/* bufpolicy set to "ring" */
410#define	DTRACEBUF_FILL		0x0002		/* bufpolicy set to "fill" */
411#define	DTRACEBUF_NOSWITCH	0x0004		/* do not switch buffer */
412#define	DTRACEBUF_WRAPPED	0x0008		/* ring buffer has wrapped */
413#define	DTRACEBUF_DROPPED	0x0010		/* drops occurred */
414#define	DTRACEBUF_ERROR		0x0020		/* errors occurred */
415#define	DTRACEBUF_FULL		0x0040		/* "fill" buffer is full */
416#define	DTRACEBUF_CONSUMED	0x0080		/* buffer has been consumed */
417#define	DTRACEBUF_INACTIVE	0x0100		/* buffer is not yet active */
418
419typedef struct dtrace_buffer {
420	uint64_t dtb_offset;			/* current offset in buffer */
421	uint64_t dtb_size;			/* size of buffer */
422	uint32_t dtb_flags;			/* flags */
423	uint32_t dtb_drops;			/* number of drops */
424	caddr_t dtb_tomax;			/* active buffer */
425	caddr_t dtb_xamot;			/* inactive buffer */
426	uint32_t dtb_xamot_flags;		/* inactive flags */
427	uint32_t dtb_xamot_drops;		/* drops in inactive buffer */
428	uint64_t dtb_xamot_offset;		/* offset in inactive buffer */
429	uint32_t dtb_errors;			/* number of errors */
430	uint32_t dtb_xamot_errors;		/* errors in inactive buffer */
431#ifndef _LP64
432	uint64_t dtb_pad1;
433#endif
434} dtrace_buffer_t;
435
436/*
437 * DTrace Aggregation Buffers
438 *
439 * Aggregation buffers use much of the same mechanism as described above
440 * ("DTrace Buffers").  However, because an aggregation is fundamentally a
441 * hash, there exists dynamic metadata associated with an aggregation buffer
442 * that is not associated with other kinds of buffers.  This aggregation
443 * metadata is _only_ relevant for the in-kernel implementation of
444 * aggregations; it is not actually relevant to user-level consumers.  To do
445 * this, we allocate dynamic aggregation data (hash keys and hash buckets)
446 * starting below the _limit_ of the buffer, and we allocate data from the
447 * _base_ of the buffer.  When the aggregation buffer is copied out, _only_ the
448 * data is copied out; the metadata is simply discarded.  Schematically,
449 * aggregation buffers look like:
450 *
451 *      base of data buffer --->  +-------+------+-----------+-------+
452 *                                | aggid | key  | value     | aggid |
453 *                                +-------+------+-----------+-------+
454 *                                | key                              |
455 *                                +-------+-------+-----+------------+
456 *                                | value | aggid | key | value      |
457 *                                +-------+------++-----+------+-----+
458 *                                | aggid | key  | value       |     |
459 *                                +-------+------+-------------+     |
460 *                                |                ||                |
461 *                                |                ||                |
462 *                                |                \/                |
463 *                                :                                  :
464 *                                .                                  .
465 *                                .                                  .
466 *                                .                                  .
467 *                                :                                  :
468 *                                |                /\                |
469 *                                |                ||   +------------+
470 *                                |                ||   |            |
471 *                                +---------------------+            |
472 *                                | hash keys                        |
473 *                                | (dtrace_aggkey structures)       |
474 *                                |                                  |
475 *                                +----------------------------------+
476 *                                | hash buckets                     |
477 *                                | (dtrace_aggbuffer structure)     |
478 *                                |                                  |
479 *     limit of data buffer --->  +----------------------------------+
480 *
481 *
482 * As implied above, just as we assure that ECBs always store a constant
483 * amount of data, we assure that a given aggregation -- identified by its
484 * aggregation ID -- always stores data of a constant quantity and type.
485 * As with EPIDs, this allows the aggregation ID to serve as the metadata for a
486 * given record.
487 *
488 * Note that the size of the dtrace_aggkey structure must be sizeof (uintptr_t)
489 * aligned.  (If this the structure changes such that this becomes false, an
490 * assertion will fail in dtrace_aggregate().)
491 */
492typedef struct dtrace_aggkey {
493	uint32_t dtak_hashval;			/* hash value */
494	uint32_t dtak_action:4;			/* action -- 4 bits */
495	uint32_t dtak_size:28;			/* size -- 28 bits */
496	caddr_t dtak_data;			/* data pointer */
497	struct dtrace_aggkey *dtak_next;	/* next in hash chain */
498} dtrace_aggkey_t;
499
500typedef struct dtrace_aggbuffer {
501	uintptr_t dtagb_hashsize;		/* number of buckets */
502	uintptr_t dtagb_free;			/* free list of keys */
503	dtrace_aggkey_t **dtagb_hash;		/* hash table */
504} dtrace_aggbuffer_t;
505
506/*
507 * DTrace Speculations
508 *
509 * Speculations have a per-CPU buffer and a global state.  Once a speculation
510 * buffer has been comitted or discarded, it cannot be reused until all CPUs
511 * have taken the same action (commit or discard) on their respective
512 * speculative buffer.  However, because DTrace probes may execute in arbitrary
513 * context, other CPUs cannot simply be cross-called at probe firing time to
514 * perform the necessary commit or discard.  The speculation states thus
515 * optimize for the case that a speculative buffer is only active on one CPU at
516 * the time of a commit() or discard() -- for if this is the case, other CPUs
517 * need not take action, and the speculation is immediately available for
518 * reuse.  If the speculation is active on multiple CPUs, it must be
519 * asynchronously cleaned -- potentially leading to a higher rate of dirty
520 * speculative drops.  The speculation states are as follows:
521 *
522 *  DTRACESPEC_INACTIVE       <= Initial state; inactive speculation
523 *  DTRACESPEC_ACTIVE         <= Allocated, but not yet speculatively traced to
524 *  DTRACESPEC_ACTIVEONE      <= Speculatively traced to on one CPU
525 *  DTRACESPEC_ACTIVEMANY     <= Speculatively traced to on more than one CPU
526 *  DTRACESPEC_COMMITTING     <= Currently being commited on one CPU
527 *  DTRACESPEC_COMMITTINGMANY <= Currently being commited on many CPUs
528 *  DTRACESPEC_DISCARDING     <= Currently being discarded on many CPUs
529 *
530 * The state transition diagram is as follows:
531 *
532 *     +----------------------------------------------------------+
533 *     |                                                          |
534 *     |                      +------------+                      |
535 *     |  +-------------------| COMMITTING |<-----------------+   |
536 *     |  |                   +------------+                  |   |
537 *     |  | copied spec.            ^             commit() on |   | discard() on
538 *     |  | into principal          |              active CPU |   | active CPU
539 *     |  |                         | commit()                |   |
540 *     V  V                         |                         |   |
541 * +----------+                 +--------+                +-----------+
542 * | INACTIVE |---------------->| ACTIVE |--------------->| ACTIVEONE |
543 * +----------+  speculation()  +--------+  speculate()   +-----------+
544 *     ^  ^                         |                         |   |
545 *     |  |                         | discard()               |   |
546 *     |  | asynchronously          |            discard() on |   | speculate()
547 *     |  | cleaned                 V            inactive CPU |   | on inactive
548 *     |  |                   +------------+                  |   | CPU
549 *     |  +-------------------| DISCARDING |<-----------------+   |
550 *     |                      +------------+                      |
551 *     | asynchronously             ^                             |
552 *     | copied spec.               |       discard()             |
553 *     | into principal             +------------------------+    |
554 *     |                                                     |    V
555 *  +----------------+             commit()              +------------+
556 *  | COMMITTINGMANY |<----------------------------------| ACTIVEMANY |
557 *  +----------------+                                   +------------+
558 */
559typedef enum dtrace_speculation_state {
560	DTRACESPEC_INACTIVE = 0,
561	DTRACESPEC_ACTIVE,
562	DTRACESPEC_ACTIVEONE,
563	DTRACESPEC_ACTIVEMANY,
564	DTRACESPEC_COMMITTING,
565	DTRACESPEC_COMMITTINGMANY,
566	DTRACESPEC_DISCARDING
567} dtrace_speculation_state_t;
568
569typedef struct dtrace_speculation {
570	dtrace_speculation_state_t dtsp_state;	/* current speculation state */
571	int dtsp_cleaning;			/* non-zero if being cleaned */
572	dtrace_buffer_t *dtsp_buffer;		/* speculative buffer */
573} dtrace_speculation_t;
574
575/*
576 * DTrace Dynamic Variables
577 *
578 * The dynamic variable problem is obviously decomposed into two subproblems:
579 * allocating new dynamic storage, and freeing old dynamic storage.  The
580 * presence of the second problem makes the first much more complicated -- or
581 * rather, the absence of the second renders the first trivial.  This is the
582 * case with aggregations, for which there is effectively no deallocation of
583 * dynamic storage.  (Or more accurately, all dynamic storage is deallocated
584 * when a snapshot is taken of the aggregation.)  As DTrace dynamic variables
585 * allow for both dynamic allocation and dynamic deallocation, the
586 * implementation of dynamic variables is quite a bit more complicated than
587 * that of their aggregation kin.
588 *
589 * We observe that allocating new dynamic storage is tricky only because the
590 * size can vary -- the allocation problem is much easier if allocation sizes
591 * are uniform.  We further observe that in D, the size of dynamic variables is
592 * actually _not_ dynamic -- dynamic variable sizes may be determined by static
593 * analysis of DIF text.  (This is true even of putatively dynamically-sized
594 * objects like strings and stacks, the sizes of which are dictated by the
595 * "stringsize" and "stackframes" variables, respectively.)  We exploit this by
596 * performing this analysis on all DIF before enabling any probes.  For each
597 * dynamic load or store, we calculate the dynamically-allocated size plus the
598 * size of the dtrace_dynvar structure plus the storage required to key the
599 * data.  For all DIF, we take the largest value and dub it the _chunksize_.
600 * We then divide dynamic memory into two parts:  a hash table that is wide
601 * enough to have every chunk in its own bucket, and a larger region of equal
602 * chunksize units.  Whenever we wish to dynamically allocate a variable, we
603 * always allocate a single chunk of memory.  Depending on the uniformity of
604 * allocation, this will waste some amount of memory -- but it eliminates the
605 * non-determinism inherent in traditional heap fragmentation.
606 *
607 * Dynamic objects are allocated by storing a non-zero value to them; they are
608 * deallocated by storing a zero value to them.  Dynamic variables are
609 * complicated enormously by being shared between CPUs.  In particular,
610 * consider the following scenario:
611 *
612 *                 CPU A                                 CPU B
613 *  +---------------------------------+   +---------------------------------+
614 *  |                                 |   |                                 |
615 *  | allocates dynamic object a[123] |   |                                 |
616 *  | by storing the value 345 to it  |   |                                 |
617 *  |                               --------->                              |
618 *  |                                 |   | wishing to load from object     |
619 *  |                                 |   | a[123], performs lookup in      |
620 *  |                                 |   | dynamic variable space          |
621 *  |                               <---------                              |
622 *  | deallocates object a[123] by    |   |                                 |
623 *  | storing 0 to it                 |   |                                 |
624 *  |                                 |   |                                 |
625 *  | allocates dynamic object b[567] |   | performs load from a[123]       |
626 *  | by storing the value 789 to it  |   |                                 |
627 *  :                                 :   :                                 :
628 *  .                                 .   .                                 .
629 *
630 * This is obviously a race in the D program, but there are nonetheless only
631 * two valid values for CPU B's load from a[123]:  345 or 0.  Most importantly,
632 * CPU B may _not_ see the value 789 for a[123].
633 *
634 * There are essentially two ways to deal with this:
635 *
636 *  (1)  Explicitly spin-lock variables.  That is, if CPU B wishes to load
637 *       from a[123], it needs to lock a[123] and hold the lock for the
638 *       duration that it wishes to manipulate it.
639 *
640 *  (2)  Avoid reusing freed chunks until it is known that no CPU is referring
641 *       to them.
642 *
643 * The implementation of (1) is rife with complexity, because it requires the
644 * user of a dynamic variable to explicitly decree when they are done using it.
645 * Were all variables by value, this perhaps wouldn't be debilitating -- but
646 * dynamic variables of non-scalar types are tracked by reference.  That is, if
647 * a dynamic variable is, say, a string, and that variable is to be traced to,
648 * say, the principal buffer, the DIF emulation code returns to the main
649 * dtrace_probe() loop a pointer to the underlying storage, not the contents of
650 * the storage.  Further, code calling on DIF emulation would have to be aware
651 * that the DIF emulation has returned a reference to a dynamic variable that
652 * has been potentially locked.  The variable would have to be unlocked after
653 * the main dtrace_probe() loop is finished with the variable, and the main
654 * dtrace_probe() loop would have to be careful to not call any further DIF
655 * emulation while the variable is locked to avoid deadlock.  More generally,
656 * if one were to implement (1), DIF emulation code dealing with dynamic
657 * variables could only deal with one dynamic variable at a time (lest deadlock
658 * result).  To sum, (1) exports too much subtlety to the users of dynamic
659 * variables -- increasing maintenance burden and imposing serious constraints
660 * on future DTrace development.
661 *
662 * The implementation of (2) is also complex, but the complexity is more
663 * manageable.  We need to be sure that when a variable is deallocated, it is
664 * not placed on a traditional free list, but rather on a _dirty_ list.  Once a
665 * variable is on a dirty list, it cannot be found by CPUs performing a
666 * subsequent lookup of the variable -- but it may still be in use by other
667 * CPUs.  To assure that all CPUs that may be seeing the old variable have
668 * cleared out of probe context, a dtrace_sync() can be issued.  Once the
669 * dtrace_sync() has completed, it can be known that all CPUs are done
670 * manipulating the dynamic variable -- the dirty list can be atomically
671 * appended to the free list.  Unfortunately, there's a slight hiccup in this
672 * mechanism:  dtrace_sync() may not be issued from probe context.  The
673 * dtrace_sync() must be therefore issued asynchronously from non-probe
674 * context.  For this we rely on the DTrace cleaner, a cyclic that runs at the
675 * "cleanrate" frequency.  To ease this implementation, we define several chunk
676 * lists:
677 *
678 *   - Dirty.  Deallocated chunks, not yet cleaned.  Not available.
679 *
680 *   - Rinsing.  Formerly dirty chunks that are currently being asynchronously
681 *     cleaned.  Not available, but will be shortly.  Dynamic variable
682 *     allocation may not spin or block for availability, however.
683 *
684 *   - Clean.  Clean chunks, ready for allocation -- but not on the free list.
685 *
686 *   - Free.  Available for allocation.
687 *
688 * Moreover, to avoid absurd contention, _each_ of these lists is implemented
689 * on a per-CPU basis.  This is only for performance, not correctness; chunks
690 * may be allocated from another CPU's free list.  The algorithm for allocation
691 * then is this:
692 *
693 *   (1)  Attempt to atomically allocate from current CPU's free list.  If list
694 *        is non-empty and allocation is successful, allocation is complete.
695 *
696 *   (2)  If the clean list is non-empty, atomically move it to the free list,
697 *        and reattempt (1).
698 *
699 *   (3)  If the dynamic variable space is in the CLEAN state, look for free
700 *        and clean lists on other CPUs by setting the current CPU to the next
701 *        CPU, and reattempting (1).  If the next CPU is the current CPU (that
702 *        is, if all CPUs have been checked), atomically switch the state of
703 *        the dynamic variable space based on the following:
704 *
705 *        - If no free chunks were found and no dirty chunks were found,
706 *          atomically set the state to EMPTY.
707 *
708 *        - If dirty chunks were found, atomically set the state to DIRTY.
709 *
710 *        - If rinsing chunks were found, atomically set the state to RINSING.
711 *
712 *   (4)  Based on state of dynamic variable space state, increment appropriate
713 *        counter to indicate dynamic drops (if in EMPTY state) vs. dynamic
714 *        dirty drops (if in DIRTY state) vs. dynamic rinsing drops (if in
715 *        RINSING state).  Fail the allocation.
716 *
717 * The cleaning cyclic operates with the following algorithm:  for all CPUs
718 * with a non-empty dirty list, atomically move the dirty list to the rinsing
719 * list.  Perform a dtrace_sync().  For all CPUs with a non-empty rinsing list,
720 * atomically move the rinsing list to the clean list.  Perform another
721 * dtrace_sync().  By this point, all CPUs have seen the new clean list; the
722 * state of the dynamic variable space can be restored to CLEAN.
723 *
724 * There exist two final races that merit explanation.  The first is a simple
725 * allocation race:
726 *
727 *                 CPU A                                 CPU B
728 *  +---------------------------------+   +---------------------------------+
729 *  |                                 |   |                                 |
730 *  | allocates dynamic object a[123] |   | allocates dynamic object a[123] |
731 *  | by storing the value 345 to it  |   | by storing the value 567 to it  |
732 *  |                                 |   |                                 |
733 *  :                                 :   :                                 :
734 *  .                                 .   .                                 .
735 *
736 * Again, this is a race in the D program.  It can be resolved by having a[123]
737 * hold the value 345 or a[123] hold the value 567 -- but it must be true that
738 * a[123] have only _one_ of these values.  (That is, the racing CPUs may not
739 * put the same element twice on the same hash chain.)  This is resolved
740 * simply:  before the allocation is undertaken, the start of the new chunk's
741 * hash chain is noted.  Later, after the allocation is complete, the hash
742 * chain is atomically switched to point to the new element.  If this fails
743 * (because of either concurrent allocations or an allocation concurrent with a
744 * deletion), the newly allocated chunk is deallocated to the dirty list, and
745 * the whole process of looking up (and potentially allocating) the dynamic
746 * variable is reattempted.
747 *
748 * The final race is a simple deallocation race:
749 *
750 *                 CPU A                                 CPU B
751 *  +---------------------------------+   +---------------------------------+
752 *  |                                 |   |                                 |
753 *  | deallocates dynamic object      |   | deallocates dynamic object      |
754 *  | a[123] by storing the value 0   |   | a[123] by storing the value 0   |
755 *  | to it                           |   | to it                           |
756 *  |                                 |   |                                 |
757 *  :                                 :   :                                 :
758 *  .                                 .   .                                 .
759 *
760 * Once again, this is a race in the D program, but it is one that we must
761 * handle without corrupting the underlying data structures.  Because
762 * deallocations require the deletion of a chunk from the middle of a hash
763 * chain, we cannot use a single-word atomic operation to remove it.  For this,
764 * we add a spin lock to the hash buckets that is _only_ used for deallocations
765 * (allocation races are handled as above).  Further, this spin lock is _only_
766 * held for the duration of the delete; before control is returned to the DIF
767 * emulation code, the hash bucket is unlocked.
768 */
769typedef struct dtrace_key {
770	uint64_t dttk_value;			/* data value or data pointer */
771	uint64_t dttk_size;			/* 0 if by-val, >0 if by-ref */
772} dtrace_key_t;
773
774typedef struct dtrace_tuple {
775	uint32_t dtt_nkeys;			/* number of keys in tuple */
776	uint32_t dtt_pad;			/* padding */
777	dtrace_key_t dtt_key[1];		/* array of tuple keys */
778} dtrace_tuple_t;
779
780typedef struct dtrace_dynvar {
781	uint64_t dtdv_hashval;			/* hash value -- 0 if free */
782	struct dtrace_dynvar *dtdv_next;	/* next on list or hash chain */
783	void *dtdv_data;			/* pointer to data */
784	dtrace_tuple_t dtdv_tuple;		/* tuple key */
785} dtrace_dynvar_t;
786
787typedef enum dtrace_dynvar_op {
788	DTRACE_DYNVAR_ALLOC,
789	DTRACE_DYNVAR_NOALLOC,
790	DTRACE_DYNVAR_DEALLOC
791} dtrace_dynvar_op_t;
792
793typedef struct dtrace_dynhash {
794	dtrace_dynvar_t *dtdh_chain;		/* hash chain for this bucket */
795	uintptr_t dtdh_lock;			/* deallocation lock */
796#ifdef _LP64
797	uintptr_t dtdh_pad[6];			/* pad to avoid false sharing */
798#else
799	uintptr_t dtdh_pad[14];			/* pad to avoid false sharing */
800#endif
801} dtrace_dynhash_t;
802
803typedef struct dtrace_dstate_percpu {
804	dtrace_dynvar_t *dtdsc_free;		/* free list for this CPU */
805	dtrace_dynvar_t *dtdsc_dirty;		/* dirty list for this CPU */
806	dtrace_dynvar_t *dtdsc_rinsing;		/* rinsing list for this CPU */
807	dtrace_dynvar_t *dtdsc_clean;		/* clean list for this CPU */
808	uint64_t dtdsc_drops;			/* number of capacity drops */
809	uint64_t dtdsc_dirty_drops;		/* number of dirty drops */
810	uint64_t dtdsc_rinsing_drops;		/* number of rinsing drops */
811#ifdef _LP64
812	uint64_t dtdsc_pad;			/* pad to avoid false sharing */
813#else
814	uint64_t dtdsc_pad[2];			/* pad to avoid false sharing */
815#endif
816} dtrace_dstate_percpu_t;
817
818typedef enum dtrace_dstate_state {
819	DTRACE_DSTATE_CLEAN = 0,
820	DTRACE_DSTATE_EMPTY,
821	DTRACE_DSTATE_DIRTY,
822	DTRACE_DSTATE_RINSING
823} dtrace_dstate_state_t;
824
825typedef struct dtrace_dstate {
826	void *dtds_base;			/* base of dynamic var. space */
827	size_t dtds_size;			/* size of dynamic var. space */
828	size_t dtds_hashsize;			/* number of buckets in hash */
829	size_t dtds_chunksize;			/* size of each chunk */
830	dtrace_dynhash_t *dtds_hash;		/* pointer to hash table */
831	dtrace_dstate_state_t dtds_state;	/* current dynamic var. state */
832	dtrace_dstate_percpu_t *dtds_percpu;	/* per-CPU dyn. var. state */
833} dtrace_dstate_t;
834
835/*
836 * DTrace Variable State
837 *
838 * The DTrace variable state tracks user-defined variables in its dtrace_vstate
839 * structure.  Each DTrace consumer has exactly one dtrace_vstate structure,
840 * but some dtrace_vstate structures may exist without a corresponding DTrace
841 * consumer (see "DTrace Helpers", below).  As described in <sys/dtrace.h>,
842 * user-defined variables can have one of three scopes:
843 *
844 *  DIFV_SCOPE_GLOBAL  =>  global scope
845 *  DIFV_SCOPE_THREAD  =>  thread-local scope (i.e. "self->" variables)
846 *  DIFV_SCOPE_LOCAL   =>  clause-local scope (i.e. "this->" variables)
847 *
848 * The variable state tracks variables by both their scope and their allocation
849 * type:
850 *
851 *  - The dtvs_globals and dtvs_locals members each point to an array of
852 *    dtrace_statvar structures.  These structures contain both the variable
853 *    metadata (dtrace_difv structures) and the underlying storage for all
854 *    statically allocated variables, including statically allocated
855 *    DIFV_SCOPE_GLOBAL variables and all DIFV_SCOPE_LOCAL variables.
856 *
857 *  - The dtvs_tlocals member points to an array of dtrace_difv structures for
858 *    DIFV_SCOPE_THREAD variables.  As such, this array tracks _only_ the
859 *    variable metadata for DIFV_SCOPE_THREAD variables; the underlying storage
860 *    is allocated out of the dynamic variable space.
861 *
862 *  - The dtvs_dynvars member is the dynamic variable state associated with the
863 *    variable state.  The dynamic variable state (described in "DTrace Dynamic
864 *    Variables", above) tracks all DIFV_SCOPE_THREAD variables and all
865 *    dynamically-allocated DIFV_SCOPE_GLOBAL variables.
866 */
867typedef struct dtrace_statvar {
868	uint64_t dtsv_data;			/* data or pointer to it */
869	size_t dtsv_size;			/* size of pointed-to data */
870	int dtsv_refcnt;			/* reference count */
871	dtrace_difv_t dtsv_var;			/* variable metadata */
872} dtrace_statvar_t;
873
874typedef struct dtrace_vstate {
875	dtrace_state_t *dtvs_state;		/* back pointer to state */
876	dtrace_statvar_t **dtvs_globals;	/* statically-allocated glbls */
877	int dtvs_nglobals;			/* number of globals */
878	dtrace_difv_t *dtvs_tlocals;		/* thread-local metadata */
879	int dtvs_ntlocals;			/* number of thread-locals */
880	dtrace_statvar_t **dtvs_locals;		/* clause-local data */
881	int dtvs_nlocals;			/* number of clause-locals */
882	dtrace_dstate_t dtvs_dynvars;		/* dynamic variable state */
883} dtrace_vstate_t;
884
885/*
886 * DTrace Machine State
887 *
888 * In the process of processing a fired probe, DTrace needs to track and/or
889 * cache some per-CPU state associated with that particular firing.  This is
890 * state that is always discarded after the probe firing has completed, and
891 * much of it is not specific to any DTrace consumer, remaining valid across
892 * all ECBs.  This state is tracked in the dtrace_mstate structure.
893 */
894#define	DTRACE_MSTATE_ARGS		0x00000001
895#define	DTRACE_MSTATE_PROBE		0x00000002
896#define	DTRACE_MSTATE_EPID		0x00000004
897#define	DTRACE_MSTATE_TIMESTAMP		0x00000008
898#define	DTRACE_MSTATE_STACKDEPTH	0x00000010
899#define	DTRACE_MSTATE_CALLER		0x00000020
900#define	DTRACE_MSTATE_IPL		0x00000040
901#define	DTRACE_MSTATE_FLTOFFS		0x00000080
902#define	DTRACE_MSTATE_WALLTIMESTAMP	0x00000100
903#define	DTRACE_MSTATE_USTACKDEPTH	0x00000200
904#define	DTRACE_MSTATE_UCALLER		0x00000400
905
906typedef struct dtrace_mstate {
907	uintptr_t dtms_scratch_base;		/* base of scratch space */
908	uintptr_t dtms_scratch_ptr;		/* current scratch pointer */
909	size_t dtms_scratch_size;		/* scratch size */
910	uint32_t dtms_present;			/* variables that are present */
911	uint64_t dtms_arg[5];			/* cached arguments */
912	dtrace_epid_t dtms_epid;		/* current EPID */
913	uint64_t dtms_timestamp;		/* cached timestamp */
914	hrtime_t dtms_walltimestamp;		/* cached wall timestamp */
915	int dtms_stackdepth;			/* cached stackdepth */
916	int dtms_ustackdepth;			/* cached ustackdepth */
917	struct dtrace_probe *dtms_probe;	/* current probe */
918	uintptr_t dtms_caller;			/* cached caller */
919	uint64_t dtms_ucaller;			/* cached user-level caller */
920	int dtms_ipl;				/* cached interrupt pri lev */
921	int dtms_fltoffs;			/* faulting DIFO offset */
922	uintptr_t dtms_strtok;			/* saved strtok() pointer */
923	uint32_t dtms_access;			/* memory access rights */
924	dtrace_difo_t *dtms_difo;		/* current dif object */
925} dtrace_mstate_t;
926
927#define	DTRACE_COND_OWNER	0x1
928#define	DTRACE_COND_USERMODE	0x2
929#define	DTRACE_COND_ZONEOWNER	0x4
930
931#define	DTRACE_PROBEKEY_MAXDEPTH	8	/* max glob recursion depth */
932
933/*
934 * Access flag used by dtrace_mstate.dtms_access.
935 */
936#define	DTRACE_ACCESS_KERNEL	0x1		/* the priv to read kmem */
937
938
939/*
940 * DTrace Activity
941 *
942 * Each DTrace consumer is in one of several states, which (for purposes of
943 * avoiding yet-another overloading of the noun "state") we call the current
944 * _activity_.  The activity transitions on dtrace_go() (from DTRACIOCGO), on
945 * dtrace_stop() (from DTRACIOCSTOP) and on the exit() action.  Activities may
946 * only transition in one direction; the activity transition diagram is a
947 * directed acyclic graph.  The activity transition diagram is as follows:
948 *
949 *
950 * +----------+                   +--------+                   +--------+
951 * | INACTIVE |------------------>| WARMUP |------------------>| ACTIVE |
952 * +----------+   dtrace_go(),    +--------+   dtrace_go(),    +--------+
953 *                before BEGIN        |        after BEGIN       |  |  |
954 *                                    |                          |  |  |
955 *                      exit() action |                          |  |  |
956 *                     from BEGIN ECB |                          |  |  |
957 *                                    |                          |  |  |
958 *                                    v                          |  |  |
959 *                               +----------+     exit() action  |  |  |
960 * +-----------------------------| DRAINING |<-------------------+  |  |
961 * |                             +----------+                       |  |
962 * |                                  |                             |  |
963 * |                   dtrace_stop(), |                             |  |
964 * |                     before END   |                             |  |
965 * |                                  |                             |  |
966 * |                                  v                             |  |
967 * | +---------+                 +----------+                       |  |
968 * | | STOPPED |<----------------| COOLDOWN |<----------------------+  |
969 * | +---------+  dtrace_stop(), +----------+     dtrace_stop(),       |
970 * |                after END                       before END         |
971 * |                                                                   |
972 * |                              +--------+                           |
973 * +----------------------------->| KILLED |<--------------------------+
974 *       deadman timeout or       +--------+     deadman timeout or
975 *        killed consumer                         killed consumer
976 *
977 * Note that once a DTrace consumer has stopped tracing, there is no way to
978 * restart it; if a DTrace consumer wishes to restart tracing, it must reopen
979 * the DTrace pseudodevice.
980 */
981typedef enum dtrace_activity {
982	DTRACE_ACTIVITY_INACTIVE = 0,		/* not yet running */
983	DTRACE_ACTIVITY_WARMUP,			/* while starting */
984	DTRACE_ACTIVITY_ACTIVE,			/* running */
985	DTRACE_ACTIVITY_DRAINING,		/* before stopping */
986	DTRACE_ACTIVITY_COOLDOWN,		/* while stopping */
987	DTRACE_ACTIVITY_STOPPED,		/* after stopping */
988	DTRACE_ACTIVITY_KILLED			/* killed */
989} dtrace_activity_t;
990
991/*
992 * DTrace Helper Implementation
993 *
994 * A description of the helper architecture may be found in <sys/dtrace.h>.
995 * Each process contains a pointer to its helpers in its p_dtrace_helpers
996 * member.  This is a pointer to a dtrace_helpers structure, which contains an
997 * array of pointers to dtrace_helper structures, helper variable state (shared
998 * among a process's helpers) and a generation count.  (The generation count is
999 * used to provide an identifier when a helper is added so that it may be
1000 * subsequently removed.)  The dtrace_helper structure is self-explanatory,
1001 * containing pointers to the objects needed to execute the helper.  Note that
1002 * helpers are _duplicated_ across fork(2), and destroyed on exec(2).  No more
1003 * than dtrace_helpers_max are allowed per-process.
1004 */
1005#define	DTRACE_HELPER_ACTION_USTACK	0
1006#define	DTRACE_NHELPER_ACTIONS		1
1007
1008typedef struct dtrace_helper_action {
1009	int dtha_generation;			/* helper action generation */
1010	int dtha_nactions;			/* number of actions */
1011	dtrace_difo_t *dtha_predicate;		/* helper action predicate */
1012	dtrace_difo_t **dtha_actions;		/* array of actions */
1013	struct dtrace_helper_action *dtha_next;	/* next helper action */
1014} dtrace_helper_action_t;
1015
1016typedef struct dtrace_helper_provider {
1017	int dthp_generation;			/* helper provider generation */
1018	uint32_t dthp_ref;			/* reference count */
1019	dof_helper_t dthp_prov;			/* DOF w/ provider and probes */
1020} dtrace_helper_provider_t;
1021
1022typedef struct dtrace_helpers {
1023	dtrace_helper_action_t **dthps_actions;	/* array of helper actions */
1024	dtrace_vstate_t dthps_vstate;		/* helper action var. state */
1025	dtrace_helper_provider_t **dthps_provs;	/* array of providers */
1026	uint_t dthps_nprovs;			/* count of providers */
1027	uint_t dthps_maxprovs;			/* provider array size */
1028	int dthps_generation;			/* current generation */
1029	pid_t dthps_pid;			/* pid of associated proc */
1030	int dthps_deferred;			/* helper in deferred list */
1031	struct dtrace_helpers *dthps_next;	/* next pointer */
1032	struct dtrace_helpers *dthps_prev;	/* prev pointer */
1033} dtrace_helpers_t;
1034
1035/*
1036 * DTrace Helper Action Tracing
1037 *
1038 * Debugging helper actions can be arduous.  To ease the development and
1039 * debugging of helpers, DTrace contains a tracing-framework-within-a-tracing-
1040 * framework: helper tracing.  If dtrace_helptrace_enabled is non-zero (which
1041 * it is by default on DEBUG kernels), all helper activity will be traced to a
1042 * global, in-kernel ring buffer.  Each entry includes a pointer to the specific
1043 * helper, the location within the helper, and a trace of all local variables.
1044 * The ring buffer may be displayed in a human-readable format with the
1045 * ::dtrace_helptrace mdb(1) dcmd.
1046 */
1047#define	DTRACE_HELPTRACE_NEXT	(-1)
1048#define	DTRACE_HELPTRACE_DONE	(-2)
1049#define	DTRACE_HELPTRACE_ERR	(-3)
1050
1051typedef struct dtrace_helptrace {
1052	dtrace_helper_action_t	*dtht_helper;	/* helper action */
1053	int dtht_where;				/* where in helper action */
1054	int dtht_nlocals;			/* number of locals */
1055	int dtht_fault;				/* type of fault (if any) */
1056	int dtht_fltoffs;			/* DIF offset */
1057	uint64_t dtht_illval;			/* faulting value */
1058	uint64_t dtht_locals[1];		/* local variables */
1059} dtrace_helptrace_t;
1060
1061/*
1062 * DTrace Credentials
1063 *
1064 * In probe context, we have limited flexibility to examine the credentials
1065 * of the DTrace consumer that created a particular enabling.  We use
1066 * the Least Privilege interfaces to cache the consumer's cred pointer and
1067 * some facts about that credential in a dtrace_cred_t structure. These
1068 * can limit the consumer's breadth of visibility and what actions the
1069 * consumer may take.
1070 */
1071#define	DTRACE_CRV_ALLPROC		0x01
1072#define	DTRACE_CRV_KERNEL		0x02
1073#define	DTRACE_CRV_ALLZONE		0x04
1074
1075#define	DTRACE_CRV_ALL		(DTRACE_CRV_ALLPROC | DTRACE_CRV_KERNEL | \
1076	DTRACE_CRV_ALLZONE)
1077
1078#define	DTRACE_CRA_PROC				0x0001
1079#define	DTRACE_CRA_PROC_CONTROL			0x0002
1080#define	DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER	0x0004
1081#define	DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE	0x0008
1082#define	DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG	0x0010
1083#define	DTRACE_CRA_KERNEL			0x0020
1084#define	DTRACE_CRA_KERNEL_DESTRUCTIVE		0x0040
1085
1086#define	DTRACE_CRA_ALL		(DTRACE_CRA_PROC | \
1087	DTRACE_CRA_PROC_CONTROL | \
1088	DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER | \
1089	DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE | \
1090	DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG | \
1091	DTRACE_CRA_KERNEL | \
1092	DTRACE_CRA_KERNEL_DESTRUCTIVE)
1093
1094typedef struct dtrace_cred {
1095	cred_t			*dcr_cred;
1096	uint8_t			dcr_destructive;
1097	uint8_t			dcr_visible;
1098	uint16_t		dcr_action;
1099} dtrace_cred_t;
1100
1101/*
1102 * DTrace Consumer State
1103 *
1104 * Each DTrace consumer has an associated dtrace_state structure that contains
1105 * its in-kernel DTrace state -- including options, credentials, statistics and
1106 * pointers to ECBs, buffers, speculations and formats.  A dtrace_state
1107 * structure is also allocated for anonymous enablings.  When anonymous state
1108 * is grabbed, the grabbing consumers dts_anon pointer is set to the grabbed
1109 * dtrace_state structure.
1110 */
1111struct dtrace_state {
1112	dev_t dts_dev;				/* device */
1113	int dts_necbs;				/* total number of ECBs */
1114	dtrace_ecb_t **dts_ecbs;		/* array of ECBs */
1115	dtrace_epid_t dts_epid;			/* next EPID to allocate */
1116	size_t dts_needed;			/* greatest needed space */
1117	struct dtrace_state *dts_anon;		/* anon. state, if grabbed */
1118	dtrace_activity_t dts_activity;		/* current activity */
1119	dtrace_vstate_t dts_vstate;		/* variable state */
1120	dtrace_buffer_t *dts_buffer;		/* principal buffer */
1121	dtrace_buffer_t *dts_aggbuffer;		/* aggregation buffer */
1122	dtrace_speculation_t *dts_speculations;	/* speculation array */
1123	int dts_nspeculations;			/* number of speculations */
1124	int dts_naggregations;			/* number of aggregations */
1125	dtrace_aggregation_t **dts_aggregations; /* aggregation array */
1126	vmem_t *dts_aggid_arena;		/* arena for aggregation IDs */
1127	uint64_t dts_errors;			/* total number of errors */
1128	uint32_t dts_speculations_busy;		/* number of spec. busy */
1129	uint32_t dts_speculations_unavail;	/* number of spec unavail */
1130	uint32_t dts_stkstroverflows;		/* stack string tab overflows */
1131	uint32_t dts_dblerrors;			/* errors in ERROR probes */
1132	uint32_t dts_reserve;			/* space reserved for END */
1133	hrtime_t dts_laststatus;		/* time of last status */
1134#if defined(sun)
1135	cyclic_id_t dts_cleaner;		/* cleaning cyclic */
1136	cyclic_id_t dts_deadman;		/* deadman cyclic */
1137#else
1138	struct dtrace_state_worker *dts_cleaner;/* cleaning cyclic */
1139	struct dtrace_state_worker *dts_deadman;/* deadman cyclic */
1140#endif
1141	hrtime_t dts_alive;			/* time last alive */
1142	char dts_speculates;			/* boolean: has speculations */
1143	char dts_destructive;			/* boolean: has dest. actions */
1144	int dts_nformats;			/* number of formats */
1145	char **dts_formats;			/* format string array */
1146	dtrace_optval_t dts_options[DTRACEOPT_MAX]; /* options */
1147	dtrace_cred_t dts_cred;			/* credentials */
1148	size_t dts_nretained;			/* number of retained enabs */
1149};
1150
1151struct dtrace_provider {
1152	dtrace_pattr_t dtpv_attr;		/* provider attributes */
1153	dtrace_ppriv_t dtpv_priv;		/* provider privileges */
1154	dtrace_pops_t dtpv_pops;		/* provider operations */
1155	char *dtpv_name;			/* provider name */
1156	void *dtpv_arg;				/* provider argument */
1157	uint_t dtpv_defunct;			/* boolean: defunct provider */
1158	struct dtrace_provider *dtpv_next;	/* next provider */
1159};
1160
1161struct dtrace_meta {
1162	dtrace_mops_t dtm_mops;			/* meta provider operations */
1163	char *dtm_name;				/* meta provider name */
1164	void *dtm_arg;				/* meta provider user arg */
1165	uint64_t dtm_count;			/* no. of associated provs. */
1166};
1167
1168/*
1169 * DTrace Enablings
1170 *
1171 * A dtrace_enabling structure is used to track a collection of ECB
1172 * descriptions -- before they have been turned into actual ECBs.  This is
1173 * created as a result of DOF processing, and is generally used to generate
1174 * ECBs immediately thereafter.  However, enablings are also generally
1175 * retained should the probes they describe be created at a later time; as
1176 * each new module or provider registers with the framework, the retained
1177 * enablings are reevaluated, with any new match resulting in new ECBs.  To
1178 * prevent probes from being matched more than once, the enabling tracks the
1179 * last probe generation matched, and only matches probes from subsequent
1180 * generations.
1181 */
1182typedef struct dtrace_enabling {
1183	dtrace_ecbdesc_t **dten_desc;		/* all ECB descriptions */
1184	int dten_ndesc;				/* number of ECB descriptions */
1185	int dten_maxdesc;			/* size of ECB array */
1186	dtrace_vstate_t *dten_vstate;		/* associated variable state */
1187	dtrace_genid_t dten_probegen;		/* matched probe generation */
1188	dtrace_ecbdesc_t *dten_current;		/* current ECB description */
1189	int dten_error;				/* current error value */
1190	int dten_primed;			/* boolean: set if primed */
1191	struct dtrace_enabling *dten_prev;	/* previous enabling */
1192	struct dtrace_enabling *dten_next;	/* next enabling */
1193} dtrace_enabling_t;
1194
1195/*
1196 * DTrace Anonymous Enablings
1197 *
1198 * Anonymous enablings are DTrace enablings that are not associated with a
1199 * controlling process, but rather derive their enabling from DOF stored as
1200 * properties in the dtrace.conf file.  If there is an anonymous enabling, a
1201 * DTrace consumer state and enabling are created on attach.  The state may be
1202 * subsequently grabbed by the first consumer specifying the "grabanon"
1203 * option.  As long as an anonymous DTrace enabling exists, dtrace(7D) will
1204 * refuse to unload.
1205 */
1206typedef struct dtrace_anon {
1207	dtrace_state_t *dta_state;		/* DTrace consumer state */
1208	dtrace_enabling_t *dta_enabling;	/* pointer to enabling */
1209	processorid_t dta_beganon;		/* which CPU BEGIN ran on */
1210} dtrace_anon_t;
1211
1212/*
1213 * DTrace Error Debugging
1214 */
1215#ifdef DEBUG
1216#define	DTRACE_ERRDEBUG
1217#endif
1218
1219#ifdef DTRACE_ERRDEBUG
1220
1221typedef struct dtrace_errhash {
1222	const char	*dter_msg;	/* error message */
1223	int		dter_count;	/* number of times seen */
1224} dtrace_errhash_t;
1225
1226#define	DTRACE_ERRHASHSZ	256	/* must be > number of err msgs */
1227
1228#endif	/* DTRACE_ERRDEBUG */
1229
1230/*
1231 * DTrace Toxic Ranges
1232 *
1233 * DTrace supports safe loads from probe context; if the address turns out to
1234 * be invalid, a bit will be set by the kernel indicating that DTrace
1235 * encountered a memory error, and DTrace will propagate the error to the user
1236 * accordingly.  However, there may exist some regions of memory in which an
1237 * arbitrary load can change system state, and from which it is impossible to
1238 * recover from such a load after it has been attempted.  Examples of this may
1239 * include memory in which programmable I/O registers are mapped (for which a
1240 * read may have some implications for the device) or (in the specific case of
1241 * UltraSPARC-I and -II) the virtual address hole.  The platform is required
1242 * to make DTrace aware of these toxic ranges; DTrace will then check that
1243 * target addresses are not in a toxic range before attempting to issue a
1244 * safe load.
1245 */
1246typedef struct dtrace_toxrange {
1247	uintptr_t	dtt_base;		/* base of toxic range */
1248	uintptr_t	dtt_limit;		/* limit of toxic range */
1249} dtrace_toxrange_t;
1250
1251extern uint64_t dtrace_getarg(int, int);
1252extern greg_t dtrace_getfp(void);
1253extern int dtrace_getipl(void);
1254extern uintptr_t dtrace_caller(int);
1255extern uint32_t dtrace_cas32(uint32_t *, uint32_t, uint32_t);
1256extern void *dtrace_casptr(volatile void *, volatile void *, volatile void *);
1257extern void dtrace_copyin(uintptr_t, uintptr_t, size_t, volatile uint16_t *);
1258extern void dtrace_copyinstr(uintptr_t, uintptr_t, size_t, volatile uint16_t *);
1259extern void dtrace_copyout(uintptr_t, uintptr_t, size_t, volatile uint16_t *);
1260extern void dtrace_copyoutstr(uintptr_t, uintptr_t, size_t,
1261    volatile uint16_t *);
1262extern void dtrace_getpcstack(pc_t *, int, int, uint32_t *);
1263extern ulong_t dtrace_getreg(struct regs *, uint_t);
1264extern int dtrace_getstackdepth(int);
1265extern void dtrace_getupcstack(uint64_t *, int);
1266extern void dtrace_getufpstack(uint64_t *, uint64_t *, int);
1267extern int dtrace_getustackdepth(void);
1268extern uintptr_t dtrace_fulword(void *);
1269extern uint8_t dtrace_fuword8(void *);
1270extern uint16_t dtrace_fuword16(void *);
1271extern uint32_t dtrace_fuword32(void *);
1272extern uint64_t dtrace_fuword64(void *);
1273extern void dtrace_probe_error(dtrace_state_t *, dtrace_epid_t, int, int,
1274    int, uintptr_t);
1275extern int dtrace_assfail(const char *, const char *, int);
1276extern int dtrace_attached(void);
1277#if defined(sun)
1278extern hrtime_t dtrace_gethrestime(void);
1279#endif
1280
1281#ifdef __sparc
1282extern void dtrace_flush_windows(void);
1283extern void dtrace_flush_user_windows(void);
1284extern uint_t dtrace_getotherwin(void);
1285extern uint_t dtrace_getfprs(void);
1286#else
1287extern void dtrace_copy(uintptr_t, uintptr_t, size_t);
1288extern void dtrace_copystr(uintptr_t, uintptr_t, size_t, volatile uint16_t *);
1289#endif
1290
1291/*
1292 * DTrace Assertions
1293 *
1294 * DTrace calls ASSERT from probe context.  To assure that a failed ASSERT
1295 * does not induce a markedly more catastrophic failure (e.g., one from which
1296 * a dump cannot be gleaned), DTrace must define its own ASSERT to be one that
1297 * may safely be called from probe context.  This header file must thus be
1298 * included by any DTrace component that calls ASSERT from probe context, and
1299 * _only_ by those components.  (The only exception to this is kernel
1300 * debugging infrastructure at user-level that doesn't depend on calling
1301 * ASSERT.)
1302 */
1303#undef ASSERT
1304#ifdef DEBUG
1305#define	ASSERT(EX)	((void)((EX) || \
1306			dtrace_assfail(#EX, __FILE__, __LINE__)))
1307#else
1308#define	ASSERT(X)	((void)0)
1309#endif
1310
1311#ifdef	__cplusplus
1312}
1313#endif
1314
1315#endif /* _SYS_DTRACE_IMPL_H */
1316