1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26/* Portions Copyright 2007 Jeremy Teo */
27
28#ifdef _KERNEL
29#include <sys/types.h>
30#include <sys/param.h>
31#include <sys/time.h>
32#include <sys/systm.h>
33#include <sys/sysmacros.h>
34#include <sys/resource.h>
35#include <sys/mntent.h>
36#include <sys/u8_textprep.h>
37#include <sys/dsl_dataset.h>
38#include <sys/vfs.h>
39#include <sys/vnode.h>
40#include <sys/file.h>
41#include <sys/kmem.h>
42#include <sys/errno.h>
43#include <sys/unistd.h>
44#include <sys/atomic.h>
45#include <sys/zfs_dir.h>
46#include <sys/zfs_acl.h>
47#include <sys/zfs_ioctl.h>
48#include <sys/zfs_rlock.h>
49#include <sys/zfs_fuid.h>
50#include <sys/fs/zfs.h>
51#include <sys/kidmap.h>
52#endif /* _KERNEL */
53
54#include <sys/dmu.h>
55#include <sys/refcount.h>
56#include <sys/stat.h>
57#include <sys/zap.h>
58#include <sys/zfs_znode.h>
59
60#include "zfs_prop.h"
61
62#if defined(_KERNEL) && defined(__NetBSD__)
63#include <miscfs/specfs/specdev.h>
64static const struct genfs_ops zfs_genfsops = {
65	.gop_write = genfs_compat_gop_write,
66};
67
68#endif
69
70extern int (**zfs_vnodeop_p)(void *);
71extern int (**zfs_fifoop_p)(void *);
72extern int (**zfs_specop_p)(void *);
73
74/*
75 * Define ZNODE_STATS to turn on statistic gathering. By default, it is only
76 * turned on when DEBUG is also defined.
77 */
78#ifdef	DEBUG
79#define	ZNODE_STATS
80#endif	/* DEBUG */
81
82#ifdef	ZNODE_STATS
83#define	ZNODE_STAT_ADD(stat)			((stat)++)
84#else
85#define	ZNODE_STAT_ADD(stat)			/* nothing */
86#endif	/* ZNODE_STATS */
87
88#define	POINTER_IS_VALID(p)	(!((uintptr_t)(p) & 0x3))
89#define	POINTER_INVALIDATE(pp)	(*(pp) = (void *)((uintptr_t)(*(pp)) | 0x1))
90
91/*
92 * Functions needed for userland (ie: libzpool) are not put under
93 * #ifdef_KERNEL; the rest of the functions have dependencies
94 * (such as VFS logic) that will not compile easily in userland.
95 */
96#ifdef _KERNEL
97/*
98 * Needed to close a small window in zfs_znode_move() that allows the zfsvfs to
99 * be freed before it can be safely accessed.
100 */
101krwlock_t zfsvfs_lock;
102
103static kmem_cache_t *znode_cache = NULL;
104
105/*ARGSUSED*/
106static void
107znode_evict_error(dmu_buf_t *dbuf, void *user_ptr)
108{
109	/*
110	 * We should never drop all dbuf refs without first clearing
111	 * the eviction callback.
112	 */
113	panic("evicting znode %p\n", user_ptr);
114}
115
116/*ARGSUSED*/
117static int
118zfs_znode_cache_constructor(void *buf, void *arg, int kmflags)
119{
120	znode_t *zp = arg;
121
122	ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs));
123
124	list_link_init(&zp->z_link_node);
125
126	mutex_init(&zp->z_lock, NULL, MUTEX_DEFAULT, NULL);
127	rw_init(&zp->z_parent_lock, NULL, RW_DEFAULT, NULL);
128	rw_init(&zp->z_name_lock, NULL, RW_DEFAULT, NULL);
129	mutex_init(&zp->z_acl_lock, NULL, MUTEX_DEFAULT, NULL);
130
131	mutex_init(&zp->z_range_lock, NULL, MUTEX_DEFAULT, NULL);
132	avl_create(&zp->z_range_avl, zfs_range_compare,
133	    sizeof (rl_t), offsetof(rl_t, r_node));
134
135	zp->z_dbuf = NULL;
136	zp->z_dirlocks = NULL;
137	zp->z_acl_cached = NULL;
138	return (0);
139}
140
141/*ARGSUSED*/
142static void
143zfs_znode_cache_destructor(void *buf, void *arg)
144{
145	znode_t *zp = arg;
146
147	ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs));
148	ASSERT(ZTOV(zp) == NULL);
149
150	ASSERT(!list_link_active(&zp->z_link_node));
151	mutex_destroy(&zp->z_lock);
152	rw_destroy(&zp->z_parent_lock);
153	rw_destroy(&zp->z_name_lock);
154	mutex_destroy(&zp->z_acl_lock);
155	avl_destroy(&zp->z_range_avl);
156	mutex_destroy(&zp->z_range_lock);
157
158	ASSERT(zp->z_dbuf == NULL);
159	ASSERT(zp->z_dirlocks == NULL);
160	ASSERT(zp->z_acl_cached == NULL);
161}
162
163#ifdef	ZNODE_STATS
164static struct {
165	uint64_t zms_zfsvfs_invalid;
166	uint64_t zms_zfsvfs_recheck1;
167	uint64_t zms_zfsvfs_unmounted;
168	uint64_t zms_zfsvfs_recheck2;
169	uint64_t zms_obj_held;
170	uint64_t zms_vnode_locked;
171	uint64_t zms_not_only_dnlc;
172} znode_move_stats;
173#endif	/* ZNODE_STATS */
174
175static void
176zfs_znode_move_impl(znode_t *ozp, znode_t *nzp)
177{
178	vnode_t *vp;
179
180	/* Copy fields. */
181	nzp->z_zfsvfs = ozp->z_zfsvfs;
182
183	/* Swap vnodes. */
184	vp = nzp->z_vnode;
185	nzp->z_vnode = ozp->z_vnode;
186	ozp->z_vnode = vp; /* let destructor free the overwritten vnode */
187	ZTOV(ozp)->v_data = ozp;
188	ZTOV(nzp)->v_data = nzp;
189
190	nzp->z_id = ozp->z_id;
191	ASSERT(ozp->z_dirlocks == NULL); /* znode not in use */
192	ASSERT(avl_numnodes(&ozp->z_range_avl) == 0);
193	nzp->z_unlinked = ozp->z_unlinked;
194	nzp->z_atime_dirty = ozp->z_atime_dirty;
195	nzp->z_zn_prefetch = ozp->z_zn_prefetch;
196	nzp->z_blksz = ozp->z_blksz;
197	nzp->z_seq = ozp->z_seq;
198	nzp->z_mapcnt = ozp->z_mapcnt;
199	nzp->z_last_itx = ozp->z_last_itx;
200	nzp->z_gen = ozp->z_gen;
201	nzp->z_sync_cnt = ozp->z_sync_cnt;
202	nzp->z_phys = ozp->z_phys;
203	nzp->z_dbuf = ozp->z_dbuf;
204
205	/*
206	 * Since this is just an idle znode and kmem is already dealing with
207	 * memory pressure, release any cached ACL.
208	 */
209	if (ozp->z_acl_cached) {
210		zfs_acl_free(ozp->z_acl_cached);
211		ozp->z_acl_cached = NULL;
212	}
213
214	/* Update back pointers. */
215	(void) dmu_buf_update_user(nzp->z_dbuf, ozp, nzp, &nzp->z_phys,
216	    znode_evict_error);
217
218	/*
219	 * Invalidate the original znode by clearing fields that provide a
220	 * pointer back to the znode. Set the low bit of the vfs pointer to
221	 * ensure that zfs_znode_move() recognizes the znode as invalid in any
222	 * subsequent callback.
223	 */
224	ozp->z_dbuf = NULL;
225	POINTER_INVALIDATE(&ozp->z_zfsvfs);
226}
227
228#ifndef __NetBSD__
229/*ARGSUSED*/
230static kmem_cbrc_t
231zfs_znode_move(void *buf, void *newbuf, size_t size, void *arg)
232{
233	znode_t *ozp = buf, *nzp = newbuf;
234	zfsvfs_t *zfsvfs;
235	vnode_t *vp;
236
237	/*
238	 * The znode is on the file system's list of known znodes if the vfs
239	 * pointer is valid. We set the low bit of the vfs pointer when freeing
240	 * the znode to invalidate it, and the memory patterns written by kmem
241	 * (baddcafe and deadbeef) set at least one of the two low bits. A newly
242	 * created znode sets the vfs pointer last of all to indicate that the
243	 * znode is known and in a valid state to be moved by this function.
244	 */
245	zfsvfs = ozp->z_zfsvfs;
246	if (!POINTER_IS_VALID(zfsvfs)) {
247		ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_invalid);
248		return (KMEM_CBRC_DONT_KNOW);
249	}
250
251	/*
252	 * Close a small window in which it's possible that the filesystem could
253	 * be unmounted and freed, and zfsvfs, though valid in the previous
254	 * statement, could point to unrelated memory by the time we try to
255	 * prevent the filesystem from being unmounted.
256	 */
257	rw_enter(&zfsvfs_lock, RW_WRITER);
258	if (zfsvfs != ozp->z_zfsvfs) {
259		rw_exit(&zfsvfs_lock);
260		ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck1);
261		return (KMEM_CBRC_DONT_KNOW);
262	}
263
264	/*
265	 * If the znode is still valid, then so is the file system. We know that
266	 * no valid file system can be freed while we hold zfsvfs_lock, so we
267	 * can safely ensure that the filesystem is not and will not be
268	 * unmounted. The next statement is equivalent to ZFS_ENTER().
269	 */
270	rrw_enter(&zfsvfs->z_teardown_lock, RW_READER, FTAG);
271	if (zfsvfs->z_unmounted) {
272		ZFS_EXIT(zfsvfs);
273		rw_exit(&zfsvfs_lock);
274		ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_unmounted);
275		return (KMEM_CBRC_DONT_KNOW);
276	}
277	rw_exit(&zfsvfs_lock);
278
279	mutex_enter(&zfsvfs->z_znodes_lock);
280	/*
281	 * Recheck the vfs pointer in case the znode was removed just before
282	 * acquiring the lock.
283	 */
284	if (zfsvfs != ozp->z_zfsvfs) {
285		mutex_exit(&zfsvfs->z_znodes_lock);
286		ZFS_EXIT(zfsvfs);
287		ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck2);
288		return (KMEM_CBRC_DONT_KNOW);
289	}
290
291	/*
292	 * At this point we know that as long as we hold z_znodes_lock, the
293	 * znode cannot be freed and fields within the znode can be safely
294	 * accessed. Now, prevent a race with zfs_zget().
295	 */
296	if (ZFS_OBJ_HOLD_TRYENTER(zfsvfs, ozp->z_id) == 0) {
297		mutex_exit(&zfsvfs->z_znodes_lock);
298		ZFS_EXIT(zfsvfs);
299		ZNODE_STAT_ADD(znode_move_stats.zms_obj_held);
300		return (KMEM_CBRC_LATER);
301	}
302
303	vp = ZTOV(ozp);
304	if (mutex_tryenter(&vp->v_lock) == 0) {
305		ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id);
306		mutex_exit(&zfsvfs->z_znodes_lock);
307		ZFS_EXIT(zfsvfs);
308		ZNODE_STAT_ADD(znode_move_stats.zms_vnode_locked);
309		return (KMEM_CBRC_LATER);
310	}
311
312	/* Only move znodes that are referenced _only_ by the DNLC. */
313	if (vp->v_count != 1 || !vn_in_dnlc(vp)) {
314		mutex_exit(&vp->v_lock);
315		ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id);
316		mutex_exit(&zfsvfs->z_znodes_lock);
317		ZFS_EXIT(zfsvfs);
318		ZNODE_STAT_ADD(znode_move_stats.zms_not_only_dnlc);
319		return (KMEM_CBRC_LATER);
320	}
321
322	/*
323	 * The znode is known and in a valid state to move. We're holding the
324	 * locks needed to execute the critical section.
325	 */
326	zfs_znode_move_impl(ozp, nzp);
327	mutex_exit(&vp->v_lock);
328	ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id);
329
330	list_link_replace(&ozp->z_link_node, &nzp->z_link_node);
331	mutex_exit(&zfsvfs->z_znodes_lock);
332	ZFS_EXIT(zfsvfs);
333
334	return (KMEM_CBRC_YES);
335}
336#endif	/* !__NetBSD__ */
337
338void
339zfs_znode_init(void)
340{
341	/*
342	 * Initialize zcache
343	 */
344	rw_init(&zfsvfs_lock, NULL, RW_DEFAULT, NULL);
345	ASSERT(znode_cache == NULL);
346	znode_cache = kmem_cache_create("zfs_znode_cache",
347	    sizeof (znode_t), 0, zfs_znode_cache_constructor,
348	    zfs_znode_cache_destructor, NULL, NULL, NULL, 0);
349}
350
351void
352zfs_znode_fini(void)
353{
354
355	/*
356	 * Cleanup zcache
357	 */
358	if (znode_cache)
359		kmem_cache_destroy(znode_cache);
360	znode_cache = NULL;
361	rw_destroy(&zfsvfs_lock);
362}
363
364#ifndef __NetBSD__
365struct vnodeops *zfs_dvnodeops;
366struct vnodeops *zfs_fvnodeops;
367struct vnodeops *zfs_symvnodeops;
368struct vnodeops *zfs_xdvnodeops;
369struct vnodeops *zfs_evnodeops;
370struct vnodeops *zfs_sharevnodeops;
371#endif
372
373void
374zfs_remove_op_tables()
375{
376#ifndef __NetBSD__
377	/*
378	 * Remove vfs ops
379	 */
380	ASSERT(zfsfstype);
381	(void) vfs_freevfsops_by_type(zfsfstype);
382	zfsfstype = 0;
383
384	/*
385	 * Remove vnode ops
386	 */
387	if (zfs_dvnodeops)
388		vn_freevnodeops(zfs_dvnodeops);
389	if (zfs_fvnodeops)
390		vn_freevnodeops(zfs_fvnodeops);
391	if (zfs_symvnodeops)
392		vn_freevnodeops(zfs_symvnodeops);
393	if (zfs_xdvnodeops)
394		vn_freevnodeops(zfs_xdvnodeops);
395	if (zfs_evnodeops)
396		vn_freevnodeops(zfs_evnodeops);
397	if (zfs_sharevnodeops)
398		vn_freevnodeops(zfs_sharevnodeops);
399
400	zfs_dvnodeops = NULL;
401	zfs_fvnodeops = NULL;
402	zfs_symvnodeops = NULL;
403	zfs_xdvnodeops = NULL;
404	zfs_evnodeops = NULL;
405	zfs_sharevnodeops = NULL;
406#endif
407}
408
409#ifndef __NetBSD__
410extern const fs_operation_def_t zfs_dvnodeops_template[];
411extern const fs_operation_def_t zfs_fvnodeops_template[];
412extern const fs_operation_def_t zfs_xdvnodeops_template[];
413extern const fs_operation_def_t zfs_symvnodeops_template[];
414extern const fs_operation_def_t zfs_evnodeops_template[];
415extern const fs_operation_def_t zfs_sharevnodeops_template[];
416#endif
417
418int
419zfs_create_op_tables()
420{
421#ifndef __NetBSD__
422	int error;
423
424	/*
425	 * zfs_dvnodeops can be set if mod_remove() calls mod_installfs()
426	 * due to a failure to remove the the 2nd modlinkage (zfs_modldrv).
427	 * In this case we just return as the ops vectors are already set up.
428	 */
429	if (zfs_dvnodeops)
430		return (0);
431
432	error = vn_make_ops(MNTTYPE_ZFS, zfs_dvnodeops_template,
433	    &zfs_dvnodeops);
434	if (error)
435		return (error);
436
437	error = vn_make_ops(MNTTYPE_ZFS, zfs_fvnodeops_template,
438	    &zfs_fvnodeops);
439	if (error)
440		return (error);
441
442	error = vn_make_ops(MNTTYPE_ZFS, zfs_symvnodeops_template,
443	    &zfs_symvnodeops);
444	if (error)
445		return (error);
446
447	error = vn_make_ops(MNTTYPE_ZFS, zfs_xdvnodeops_template,
448	    &zfs_xdvnodeops);
449	if (error)
450		return (error);
451
452	error = vn_make_ops(MNTTYPE_ZFS, zfs_evnodeops_template,
453	    &zfs_evnodeops);
454	if (error)
455		return (error);
456
457	error = vn_make_ops(MNTTYPE_ZFS, zfs_sharevnodeops_template,
458	    &zfs_sharevnodeops);
459
460	return (error);
461#endif
462	return 0;
463}
464
465int
466zfs_create_share_dir(zfsvfs_t *zfsvfs, dmu_tx_t *tx)
467{
468	zfs_acl_ids_t acl_ids;
469	vattr_t vattr;
470	znode_t *sharezp;
471	vnode_t *vp;
472	znode_t *zp;
473	int error;
474
475	vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE;
476	vattr.va_type = VDIR;
477	vattr.va_mode = S_IFDIR|0555;
478	vattr.va_uid = crgetuid(kcred);
479	vattr.va_gid = crgetgid(kcred);
480
481	sharezp = kmem_cache_alloc(znode_cache, KM_SLEEP);
482	sharezp->z_unlinked = 0;
483	sharezp->z_atime_dirty = 0;
484	sharezp->z_zfsvfs = zfsvfs;
485
486	vp = ZTOV(sharezp);
487	error = getnewvnode(VT_ZFS, zfsvfs->z_parent->z_vfs,
488	    zfs_vnodeop_p, NULL, &sharezp->z_vnode);
489	if (error) {
490		kmem_cache_free(znode_cache, sharezp);
491		return error;
492	}
493	vp->v_type = VDIR;
494
495	VERIFY(0 == zfs_acl_ids_create(sharezp, IS_ROOT_NODE, &vattr,
496	    kcred, NULL, &acl_ids));
497	zfs_mknode(sharezp, &vattr, tx, kcred, IS_ROOT_NODE,
498	    &zp, 0, &acl_ids);
499	ASSERT3P(zp, ==, sharezp);
500	ASSERT(!vn_in_dnlc(ZTOV(sharezp))); /* not valid to move */
501	POINTER_INVALIDATE(&sharezp->z_zfsvfs);
502	error = zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
503	    ZFS_SHARES_DIR, 8, 1, &sharezp->z_id, tx);
504	zfsvfs->z_shares_dir = sharezp->z_id;
505
506	zfs_acl_ids_free(&acl_ids);
507	ZTOV(sharezp)->v_count = 0;
508	dmu_buf_rele(sharezp->z_dbuf, NULL);
509	sharezp->z_dbuf = NULL;
510	kmem_cache_free(znode_cache, sharezp);
511
512	return (error);
513}
514
515/*
516 * define a couple of values we need available
517 * for both 64 and 32 bit environments.
518 */
519#ifndef NBITSMINOR64
520#define	NBITSMINOR64	32
521#endif
522#ifndef MAXMAJ64
523#define	MAXMAJ64	0xffffffffUL
524#endif
525#ifndef	MAXMIN64
526#define	MAXMIN64	0xffffffffUL
527#endif
528
529/*
530 * Create special expldev for ZFS private use.
531 * Can't use standard expldev since it doesn't do
532 * what we want.  The standard expldev() takes a
533 * dev32_t in LP64 and expands it to a long dev_t.
534 * We need an interface that takes a dev32_t in ILP32
535 * and expands it to a long dev_t.
536 */
537static uint64_t
538zfs_expldev(dev_t dev)
539{
540	return ((uint64_t)major(dev) << NBITSMINOR64) |
541	    (minor_t)minor(dev);
542}
543
544/*
545 * Special cmpldev for ZFS private use.
546 * Can't use standard cmpldev since it takes
547 * a long dev_t and compresses it to dev32_t in
548 * LP64.  We need to do a compaction of a long dev_t
549 * to a dev32_t in ILP32.
550 */
551dev_t
552zfs_cmpldev(uint64_t dev)
553{
554	minor_t minor = (minor_t)dev & MAXMIN64;
555	major_t major = (major_t)(dev >> NBITSMINOR64) & MAXMAJ64;
556
557	return makedev(minor, major);
558}
559
560static void
561zfs_znode_dmu_init(zfsvfs_t *zfsvfs, znode_t *zp, dmu_buf_t *db)
562{
563	znode_t		*nzp;
564
565	ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs) || (zfsvfs == zp->z_zfsvfs));
566	ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zfsvfs, zp->z_id)));
567
568	mutex_enter(&zp->z_lock);
569
570	ASSERT(zp->z_dbuf == NULL);
571	ASSERT(zp->z_acl_cached == NULL);
572	zp->z_dbuf = db;
573	nzp = dmu_buf_set_user_ie(db, zp, &zp->z_phys, znode_evict_error);
574
575	/*
576	 * there should be no
577	 * concurrent zgets on this object.
578	 */
579	if (nzp != NULL)
580		panic("existing znode %p for dbuf %p", (void *)nzp, (void *)db);
581
582	/*
583	 * Slap on VROOT if we are the root znode
584	 */
585	if (zp->z_id == zfsvfs->z_root)
586		ZTOV(zp)->v_flag |= VROOT;
587
588	mutex_exit(&zp->z_lock);
589	vn_exists(ZTOV(zp));
590}
591
592void
593zfs_znode_dmu_fini(znode_t *zp)
594{
595	dmu_buf_t *db = zp->z_dbuf;
596	ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zp->z_zfsvfs, zp->z_id)) ||
597	    zp->z_unlinked ||
598	    RW_WRITE_HELD(&zp->z_zfsvfs->z_teardown_inactive_lock));
599	ASSERT(zp->z_dbuf != NULL);
600	zp->z_dbuf = NULL;
601	VERIFY(zp == dmu_buf_update_user(db, zp, NULL, NULL, NULL));
602	dmu_buf_rele(db, NULL);
603}
604
605/*
606 * Construct a new znode/vnode and intialize.
607 *
608 * This does not do a call to dmu_set_user() that is
609 * up to the caller to do, in case you don't want to
610 * return the znode
611 */
612
613static znode_t *
614zfs_znode_alloc(zfsvfs_t *zfsvfs, dmu_buf_t *db, int blksz)
615{
616	znode_t	*zp;
617	vnode_t *vp;
618	int error;
619
620	zp = kmem_cache_alloc(znode_cache, KM_SLEEP);
621	for (;;) {
622
623		error = getnewvnode(VT_ZFS, zfsvfs->z_parent->z_vfs,
624		    zfs_vnodeop_p, NULL, &zp->z_vnode);
625		if (__predict_true(error == 0))
626			break;
627		printf("WARNING: zfs_znode_alloc: unable to get vnode, "
628		    "error=%d\n", error);
629		(void)kpause("zfsnewvn", false, hz, NULL);
630	}
631
632	ASSERT(zp->z_dirlocks == NULL);
633	ASSERT(zp->z_dbuf == NULL);
634	ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs));
635
636	/*
637	 * Defer setting z_zfsvfs until the znode is ready to be a candidate for
638	 * the zfs_znode_move() callback.
639	 */
640	zp->z_phys = NULL;
641	zp->z_unlinked = 0;
642	zp->z_atime_dirty = 0;
643	zp->z_mapcnt = 0;
644	zp->z_last_itx = 0;
645	zp->z_id = db->db_object;
646	zp->z_blksz = blksz;
647	zp->z_seq = 0x7A4653;
648	zp->z_sync_cnt = 0;
649
650	vp = ZTOV(zp);
651
652	zfs_znode_dmu_init(zfsvfs, zp, db);
653
654	zp->z_gen = zp->z_phys->zp_gen;
655
656	vp->v_vfsp = zfsvfs->z_parent->z_vfs;
657	vp->v_type = IFTOVT((mode_t)zp->z_phys->zp_mode);
658	vp->v_data = zp;
659	switch (vp->v_type) {
660	case VDIR:
661		zp->z_zn_prefetch = B_TRUE; /* z_prefetch default is enabled */
662		break;
663	case VBLK:
664	case VCHR:
665	/* XXX NetBSD	vp->v_op = zfs_specop_p; */
666		spec_node_init(vp, zfs_cmpldev(zp->z_phys->zp_rdev));
667		break;
668	case VFIFO:
669		/* XXX NetBSD vp->v_op = zfs_fifoop_p; */
670		break;
671	}
672
673	dprintf("zfs_znode_alloc znode %p -- vnode %p\n", zp, vp);
674	dprintf("zfs_znode_alloc z_id %ld\n", zp->z_id);
675	//cpu_Debugger();
676
677	uvm_vnp_setsize(vp, zp->z_phys->zp_size);
678
679	mutex_enter(&zfsvfs->z_znodes_lock);
680	list_insert_tail(&zfsvfs->z_all_znodes, zp);
681	membar_producer();
682	/*
683	 * Everything else must be valid before assigning z_zfsvfs makes the
684	 * znode eligible for zfs_znode_move().
685	 */
686	zp->z_zfsvfs = zfsvfs;
687	mutex_exit(&zfsvfs->z_znodes_lock);
688
689	return (zp);
690}
691
692/*
693 * Create a new DMU object to hold a zfs znode.
694 *
695 *	IN:	dzp	- parent directory for new znode
696 *		vap	- file attributes for new znode
697 *		tx	- dmu transaction id for zap operations
698 *		cr	- credentials of caller
699 *		flag	- flags:
700 *			  IS_ROOT_NODE	- new object will be root
701 *			  IS_XATTR	- new object is an attribute
702 *		bonuslen - length of bonus buffer
703 *		setaclp  - File/Dir initial ACL
704 *		fuidp	 - Tracks fuid allocation.
705 *
706 *	OUT:	zpp	- allocated znode
707 *
708 */
709void
710zfs_mknode(znode_t *dzp, vattr_t *vap, dmu_tx_t *tx, cred_t *cr,
711    uint_t flag, znode_t **zpp, int bonuslen, zfs_acl_ids_t *acl_ids)
712{
713	dmu_buf_t	*db;
714	znode_phys_t	*pzp;
715	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
716	timestruc_t	now;
717	uint64_t	gen, obj;
718	int		err;
719
720	ASSERT(vap && (vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE));
721
722	if (zfsvfs->z_replay) {
723		obj = vap->va_nodeid;
724		now = vap->va_ctime;		/* see zfs_replay_create() */
725		gen = vap->va_nblocks;		/* ditto */
726	} else {
727		obj = 0;
728		gethrestime(&now);
729		gen = dmu_tx_get_txg(tx);
730	}
731
732	/*
733	 * Create a new DMU object.
734	 */
735	/*
736	 * There's currently no mechanism for pre-reading the blocks that will
737	 * be to needed allocate a new object, so we accept the small chance
738	 * that there will be an i/o error and we will fail one of the
739	 * assertions below.
740	 */
741	if (vap->va_type == VDIR) {
742		if (zfsvfs->z_replay) {
743			err = zap_create_claim_norm(zfsvfs->z_os, obj,
744			    zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS,
745			    DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx);
746			ASSERT3U(err, ==, 0);
747		} else {
748			obj = zap_create_norm(zfsvfs->z_os,
749			    zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS,
750			    DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx);
751		}
752	} else {
753		if (zfsvfs->z_replay) {
754			err = dmu_object_claim(zfsvfs->z_os, obj,
755			    DMU_OT_PLAIN_FILE_CONTENTS, 0,
756			    DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx);
757			ASSERT3U(err, ==, 0);
758		} else {
759			obj = dmu_object_alloc(zfsvfs->z_os,
760			    DMU_OT_PLAIN_FILE_CONTENTS, 0,
761			    DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx);
762		}
763	}
764
765	ZFS_OBJ_HOLD_ENTER(zfsvfs, obj);
766	VERIFY(0 == dmu_bonus_hold(zfsvfs->z_os, obj, NULL, &db));
767	dmu_buf_will_dirty(db, tx);
768
769	/*
770	 * Initialize the znode physical data to zero.
771	 */
772	ASSERT(db->db_size >= sizeof (znode_phys_t));
773	bzero(db->db_data, db->db_size);
774	pzp = db->db_data;
775
776	/*
777	 * If this is the root, fix up the half-initialized parent pointer
778	 * to reference the just-allocated physical data area.
779	 */
780	if (flag & IS_ROOT_NODE) {
781		dzp->z_dbuf = db;
782		dzp->z_phys = pzp;
783		dzp->z_id = obj;
784	}
785
786	/*
787	 * If parent is an xattr, so am I.
788	 */
789	if (dzp->z_phys->zp_flags & ZFS_XATTR)
790		flag |= IS_XATTR;
791
792	if (vap->va_type == VBLK || vap->va_type == VCHR) {
793		pzp->zp_rdev = zfs_expldev(vap->va_rdev);
794	}
795
796	if (zfsvfs->z_use_fuids)
797		pzp->zp_flags = ZFS_ARCHIVE | ZFS_AV_MODIFIED;
798
799	if (vap->va_type == VDIR) {
800		pzp->zp_size = 2;		/* contents ("." and "..") */
801		pzp->zp_links = (flag & (IS_ROOT_NODE | IS_XATTR)) ? 2 : 1;
802	}
803
804	pzp->zp_parent = dzp->z_id;
805	if (flag & IS_XATTR)
806		pzp->zp_flags |= ZFS_XATTR;
807
808	pzp->zp_gen = gen;
809
810	ZFS_TIME_ENCODE(&now, pzp->zp_crtime);
811	ZFS_TIME_ENCODE(&now, pzp->zp_ctime);
812
813	if (vap->va_mask & AT_ATIME) {
814		ZFS_TIME_ENCODE(&vap->va_atime, pzp->zp_atime);
815	} else {
816		ZFS_TIME_ENCODE(&now, pzp->zp_atime);
817	}
818
819	if (vap->va_mask & AT_MTIME) {
820		ZFS_TIME_ENCODE(&vap->va_mtime, pzp->zp_mtime);
821	} else {
822		ZFS_TIME_ENCODE(&now, pzp->zp_mtime);
823	}
824	pzp->zp_uid = acl_ids->z_fuid;
825	pzp->zp_gid = acl_ids->z_fgid;
826	pzp->zp_mode = acl_ids->z_mode;
827	if (!(flag & IS_ROOT_NODE)) {
828		*zpp = zfs_znode_alloc(zfsvfs, db, 0);
829	} else {
830		/*
831		 * If we are creating the root node, the "parent" we
832		 * passed in is the znode for the root.
833		 */
834		*zpp = dzp;
835	}
836	VERIFY(0 == zfs_aclset_common(*zpp, acl_ids->z_aclp, cr, tx));
837	if (vap->va_mask & AT_XVATTR)
838		zfs_xvattr_set(*zpp, (xvattr_t *)vap);
839
840	ZFS_OBJ_HOLD_EXIT(zfsvfs, obj);
841}
842
843void
844zfs_xvattr_set(znode_t *zp, xvattr_t *xvap)
845{
846	xoptattr_t *xoap;
847
848	xoap = xva_getxoptattr(xvap);
849	ASSERT(xoap);
850
851	if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
852		ZFS_TIME_ENCODE(&xoap->xoa_createtime, zp->z_phys->zp_crtime);
853		XVA_SET_RTN(xvap, XAT_CREATETIME);
854	}
855	if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
856		ZFS_ATTR_SET(zp, ZFS_READONLY, xoap->xoa_readonly);
857		XVA_SET_RTN(xvap, XAT_READONLY);
858	}
859	if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
860		ZFS_ATTR_SET(zp, ZFS_HIDDEN, xoap->xoa_hidden);
861		XVA_SET_RTN(xvap, XAT_HIDDEN);
862	}
863	if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
864		ZFS_ATTR_SET(zp, ZFS_SYSTEM, xoap->xoa_system);
865		XVA_SET_RTN(xvap, XAT_SYSTEM);
866	}
867	if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
868		ZFS_ATTR_SET(zp, ZFS_ARCHIVE, xoap->xoa_archive);
869		XVA_SET_RTN(xvap, XAT_ARCHIVE);
870	}
871	if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
872		ZFS_ATTR_SET(zp, ZFS_IMMUTABLE, xoap->xoa_immutable);
873		XVA_SET_RTN(xvap, XAT_IMMUTABLE);
874	}
875	if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
876		ZFS_ATTR_SET(zp, ZFS_NOUNLINK, xoap->xoa_nounlink);
877		XVA_SET_RTN(xvap, XAT_NOUNLINK);
878	}
879	if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
880		ZFS_ATTR_SET(zp, ZFS_APPENDONLY, xoap->xoa_appendonly);
881		XVA_SET_RTN(xvap, XAT_APPENDONLY);
882	}
883	if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
884		ZFS_ATTR_SET(zp, ZFS_NODUMP, xoap->xoa_nodump);
885		XVA_SET_RTN(xvap, XAT_NODUMP);
886	}
887	if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
888		ZFS_ATTR_SET(zp, ZFS_OPAQUE, xoap->xoa_opaque);
889		XVA_SET_RTN(xvap, XAT_OPAQUE);
890	}
891	if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
892		ZFS_ATTR_SET(zp, ZFS_AV_QUARANTINED,
893		    xoap->xoa_av_quarantined);
894		XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
895	}
896	if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
897		ZFS_ATTR_SET(zp, ZFS_AV_MODIFIED, xoap->xoa_av_modified);
898		XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
899	}
900	if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) {
901		(void) memcpy(zp->z_phys + 1, xoap->xoa_av_scanstamp,
902		    sizeof (xoap->xoa_av_scanstamp));
903		zp->z_phys->zp_flags |= ZFS_BONUS_SCANSTAMP;
904		XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP);
905	}
906	if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
907		ZFS_ATTR_SET(zp, ZFS_REPARSE, xoap->xoa_reparse);
908		XVA_SET_RTN(xvap, XAT_REPARSE);
909	}
910}
911
912int
913zfs_zget(zfsvfs_t *zfsvfs, uint64_t obj_num, znode_t **zpp)
914{
915	dmu_object_info_t doi;
916	dmu_buf_t   *db;
917	znode_t     *zp;
918	vnode_t     *vp;
919	int err, first = 1;
920
921	*zpp = NULL;
922again:
923	ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num);
924
925	err = dmu_bonus_hold(zfsvfs->z_os, obj_num, NULL, &db);
926	if (err) {
927		ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
928		return (err);
929	}
930
931	dmu_object_info_from_db(db, &doi);
932	if (doi.doi_bonus_type != DMU_OT_ZNODE ||
933	    doi.doi_bonus_size < sizeof (znode_phys_t)) {
934		dmu_buf_rele(db, NULL);
935		ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
936		return (EINVAL);
937	}
938
939	zp = dmu_buf_get_user(db);
940	if (zp != NULL) {
941		mutex_enter(&zp->z_lock);
942
943		/*
944		 * Since we do immediate eviction of the z_dbuf, we
945		 * should never find a dbuf with a znode that doesn't
946		 * know about the dbuf.
947		 */
948		ASSERT3P(zp->z_dbuf, ==, db);
949		ASSERT3U(zp->z_id, ==, obj_num);
950		if (zp->z_unlinked) {
951			err = ENOENT;
952		} else {
953			if ((vp = ZTOV(zp)) != NULL) {
954				mutex_enter(vp->v_interlock);
955				mutex_exit(&zp->z_lock);
956				if (vget(vp, 0) != 0) {
957					dmu_buf_rele(db, NULL);
958					mutex_exit(vp->v_interlock);
959					goto again;
960				}
961				mutex_enter(&zp->z_lock);
962			} else {
963				if (first) {
964					ZFS_LOG(1, "dying znode detected (zp=%p)", zp);
965					first = 0;
966				}
967				/*
968				 * znode is dying so we can't reuse it, we must
969				 * wait until destruction is completed.
970				 */
971				dmu_buf_rele(db, NULL);
972				mutex_exit(&zp->z_lock);
973				ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
974				kpause("zcollide", 0, 1, NULL);
975				goto again;
976			}
977			*zpp = zp;
978			err = 0;
979		}
980
981		dmu_buf_rele(db, NULL);
982		mutex_exit(&zp->z_lock);
983		ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
984		return (err);
985	}
986
987	/*
988	 * Not found create new znode/vnode
989	 * but only if file exists.
990	 *
991	 * There is a small window where zfs_vget() could
992	 * find this object while a file create is still in
993	 * progress.  Since a gen number can never be zero
994	 * we will check that to determine if its an allocated
995	 * file.
996	 */
997
998	if (((znode_phys_t *)db->db_data)->zp_gen != 0) {
999		zp = zfs_znode_alloc(zfsvfs, db, doi.doi_data_block_size);
1000		*zpp = zp;
1001
1002		vp = ZTOV(zp);
1003		genfs_node_init(vp, &zfs_genfsops);
1004		VOP_UNLOCK(vp);
1005
1006		err = 0;
1007	} else {
1008		dmu_buf_rele(db, NULL);
1009		err = ENOENT;
1010	}
1011	ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1012	return (err);
1013}
1014
1015int
1016zfs_rezget(znode_t *zp)
1017{
1018	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1019	dmu_object_info_t doi;
1020	dmu_buf_t *db;
1021	uint64_t obj_num = zp->z_id;
1022	int err;
1023
1024	ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num);
1025
1026	err = dmu_bonus_hold(zfsvfs->z_os, obj_num, NULL, &db);
1027	if (err) {
1028		ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1029		return (err);
1030	}
1031
1032	dmu_object_info_from_db(db, &doi);
1033	if (doi.doi_bonus_type != DMU_OT_ZNODE ||
1034	    doi.doi_bonus_size < sizeof (znode_phys_t)) {
1035		dmu_buf_rele(db, NULL);
1036		ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1037		return (EINVAL);
1038	}
1039
1040	if (((znode_phys_t *)db->db_data)->zp_gen != zp->z_gen) {
1041		dmu_buf_rele(db, NULL);
1042		ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1043		return (EIO);
1044	}
1045
1046	mutex_enter(&zp->z_acl_lock);
1047	if (zp->z_acl_cached) {
1048		zfs_acl_free(zp->z_acl_cached);
1049		zp->z_acl_cached = NULL;
1050	}
1051	mutex_exit(&zp->z_acl_lock);
1052
1053	zfs_znode_dmu_init(zfsvfs, zp, db);
1054	zp->z_unlinked = (zp->z_phys->zp_links == 0);
1055	zp->z_blksz = doi.doi_data_block_size;
1056
1057	ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1058
1059	return (0);
1060}
1061
1062void
1063zfs_znode_delete(znode_t *zp, dmu_tx_t *tx)
1064{
1065	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1066	objset_t *os = zfsvfs->z_os;
1067	uint64_t obj = zp->z_id;
1068	uint64_t acl_obj = zp->z_phys->zp_acl.z_acl_extern_obj;
1069
1070	ZFS_OBJ_HOLD_ENTER(zfsvfs, obj);
1071	if (acl_obj)
1072		VERIFY(0 == dmu_object_free(os, acl_obj, tx));
1073	VERIFY(0 == dmu_object_free(os, obj, tx));
1074	zfs_znode_dmu_fini(zp);
1075	ZFS_OBJ_HOLD_EXIT(zfsvfs, obj);
1076	zfs_znode_free(zp);
1077}
1078
1079/*
1080 * zfs_zinactive must be called with ZFS_OBJ_HOLD_ENTER held. And this lock
1081 * will be released in zfs_zinactive.
1082 */
1083void
1084zfs_zinactive(znode_t *zp)
1085{
1086	vnode_t	*vp = ZTOV(zp);
1087	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1088	uint64_t z_id = zp->z_id;
1089
1090	ASSERT(zp->z_dbuf && zp->z_phys);
1091
1092	/*
1093	 * Don't allow a zfs_zget() while were trying to release this znode
1094	 */
1095	ZFS_OBJ_HOLD_ENTER(zfsvfs, z_id);
1096
1097	mutex_enter(&zp->z_lock);
1098	/*
1099	 * If this was the last reference to a file with no links,
1100	 * remove the file from the file system.
1101	 */
1102	if (zp->z_unlinked) {
1103		mutex_exit(&zp->z_lock);
1104		ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id);
1105		zfs_rmnode(zp);
1106		return;
1107	}
1108
1109	mutex_exit(&zp->z_lock);
1110	/* XXX why disabled zfs_znode_dmu_fini(zp); */
1111	ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id);
1112	zfs_znode_free(zp);
1113}
1114
1115void
1116zfs_znode_free(znode_t *zp)
1117{
1118	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1119	ASSERT(ZTOV(zp) == NULL);
1120
1121	dprintf("destroying znode %p\n", zp);
1122	//cpu_Debugger();
1123	mutex_enter(&zfsvfs->z_znodes_lock);
1124	POINTER_INVALIDATE(&zp->z_zfsvfs);
1125	list_remove(&zfsvfs->z_all_znodes, zp);
1126	mutex_exit(&zfsvfs->z_znodes_lock);
1127
1128	if (zp->z_acl_cached) {
1129		zfs_acl_free(zp->z_acl_cached);
1130		zp->z_acl_cached = NULL;
1131	}
1132
1133	kmem_cache_free(znode_cache, zp);
1134
1135	VFS_RELE(zfsvfs->z_vfs);
1136}
1137
1138void
1139zfs_time_stamper_locked(znode_t *zp, uint_t flag, dmu_tx_t *tx)
1140{
1141	timestruc_t	now;
1142
1143	ASSERT(MUTEX_HELD(&zp->z_lock));
1144
1145	gethrestime(&now);
1146
1147	if (tx) {
1148		dmu_buf_will_dirty(zp->z_dbuf, tx);
1149		zp->z_atime_dirty = 0;
1150		zp->z_seq++;
1151	} else {
1152		zp->z_atime_dirty = 1;
1153	}
1154
1155	if (flag & AT_ATIME)
1156		ZFS_TIME_ENCODE(&now, zp->z_phys->zp_atime);
1157
1158	if (flag & AT_MTIME) {
1159		ZFS_TIME_ENCODE(&now, zp->z_phys->zp_mtime);
1160		if (zp->z_zfsvfs->z_use_fuids)
1161			zp->z_phys->zp_flags |= (ZFS_ARCHIVE | ZFS_AV_MODIFIED);
1162	}
1163
1164	if (flag & AT_CTIME) {
1165		ZFS_TIME_ENCODE(&now, zp->z_phys->zp_ctime);
1166		if (zp->z_zfsvfs->z_use_fuids)
1167			zp->z_phys->zp_flags |= ZFS_ARCHIVE;
1168	}
1169}
1170
1171/*
1172 * Update the requested znode timestamps with the current time.
1173 * If we are in a transaction, then go ahead and mark the znode
1174 * dirty in the transaction so the timestamps will go to disk.
1175 * Otherwise, we will get pushed next time the znode is updated
1176 * in a transaction, or when this znode eventually goes inactive.
1177 *
1178 * Why is this OK?
1179 *  1 - Only the ACCESS time is ever updated outside of a transaction.
1180 *  2 - Multiple consecutive updates will be collapsed into a single
1181 *	znode update by the transaction grouping semantics of the DMU.
1182 */
1183void
1184zfs_time_stamper(znode_t *zp, uint_t flag, dmu_tx_t *tx)
1185{
1186	mutex_enter(&zp->z_lock);
1187	zfs_time_stamper_locked(zp, flag, tx);
1188	mutex_exit(&zp->z_lock);
1189}
1190
1191/*
1192 * Grow the block size for a file.
1193 *
1194 *	IN:	zp	- znode of file to free data in.
1195 *		size	- requested block size
1196 *		tx	- open transaction.
1197 *
1198 * NOTE: this function assumes that the znode is write locked.
1199 */
1200void
1201zfs_grow_blocksize(znode_t *zp, uint64_t size, dmu_tx_t *tx)
1202{
1203	int		error;
1204	u_longlong_t	dummy;
1205
1206	if (size <= zp->z_blksz)
1207		return;
1208	/*
1209	 * If the file size is already greater than the current blocksize,
1210	 * we will not grow.  If there is more than one block in a file,
1211	 * the blocksize cannot change.
1212	 */
1213	if (zp->z_blksz && zp->z_phys->zp_size > zp->z_blksz)
1214		return;
1215
1216	error = dmu_object_set_blocksize(zp->z_zfsvfs->z_os, zp->z_id,
1217	    size, 0, tx);
1218	if (error == ENOTSUP)
1219		return;
1220	ASSERT3U(error, ==, 0);
1221
1222	/* What blocksize did we actually get? */
1223	dmu_object_size_from_db(zp->z_dbuf, &zp->z_blksz, &dummy);
1224}
1225
1226/*
1227 * Increase the file length
1228 *
1229 *	IN:	zp	- znode of file to free data in.
1230 *		end	- new end-of-file
1231 *
1232 * 	RETURN:	0 if success
1233 *		error code if failure
1234 */
1235static int
1236zfs_extend(znode_t *zp, uint64_t end)
1237{
1238	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1239	dmu_tx_t *tx;
1240	rl_t *rl;
1241	uint64_t newblksz;
1242	int error;
1243
1244	/*
1245	 * We will change zp_size, lock the whole file.
1246	 */
1247	rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER);
1248
1249	/*
1250	 * Nothing to do if file already at desired length.
1251	 */
1252	if (end <= zp->z_phys->zp_size) {
1253		zfs_range_unlock(rl);
1254		return (0);
1255	}
1256top:
1257	tx = dmu_tx_create(zfsvfs->z_os);
1258	dmu_tx_hold_bonus(tx, zp->z_id);
1259	if (end > zp->z_blksz &&
1260	    (!ISP2(zp->z_blksz) || zp->z_blksz < zfsvfs->z_max_blksz)) {
1261		/*
1262		 * We are growing the file past the current block size.
1263		 */
1264		if (zp->z_blksz > zp->z_zfsvfs->z_max_blksz) {
1265			ASSERT(!ISP2(zp->z_blksz));
1266			newblksz = MIN(end, SPA_MAXBLOCKSIZE);
1267		} else {
1268			newblksz = MIN(end, zp->z_zfsvfs->z_max_blksz);
1269		}
1270		dmu_tx_hold_write(tx, zp->z_id, 0, newblksz);
1271	} else {
1272		newblksz = 0;
1273	}
1274
1275	error = dmu_tx_assign(tx, TXG_NOWAIT);
1276	if (error) {
1277		if (error == ERESTART) {
1278			dmu_tx_wait(tx);
1279			dmu_tx_abort(tx);
1280			goto top;
1281		}
1282		dmu_tx_abort(tx);
1283		zfs_range_unlock(rl);
1284		return (error);
1285	}
1286	dmu_buf_will_dirty(zp->z_dbuf, tx);
1287
1288	if (newblksz)
1289		zfs_grow_blocksize(zp, newblksz, tx);
1290
1291	zp->z_phys->zp_size = end;
1292
1293	zfs_range_unlock(rl);
1294
1295	dmu_tx_commit(tx);
1296
1297	uvm_vnp_setsize(ZTOV(zp), end);
1298
1299	return (0);
1300}
1301
1302/*
1303 * Free space in a file.
1304 *
1305 *	IN:	zp	- znode of file to free data in.
1306 *		off	- start of section to free.
1307 *		len	- length of section to free.
1308 *
1309 * 	RETURN:	0 if success
1310 *		error code if failure
1311 */
1312static int
1313zfs_free_range(znode_t *zp, uint64_t off, uint64_t len)
1314{
1315	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1316	rl_t *rl;
1317	int error;
1318
1319	/*
1320	 * Lock the range being freed.
1321	 */
1322	rl = zfs_range_lock(zp, off, len, RL_WRITER);
1323
1324	/*
1325	 * Nothing to do if file already at desired length.
1326	 */
1327	if (off >= zp->z_phys->zp_size) {
1328		zfs_range_unlock(rl);
1329		return (0);
1330	}
1331
1332	if (off + len > zp->z_phys->zp_size)
1333		len = zp->z_phys->zp_size - off;
1334
1335	error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, off, len);
1336
1337	if (error == 0) {
1338		/*
1339		 * In NetBSD we cannot free block in the middle of a file,
1340		 * but only at the end of a file.
1341		 */
1342		uvm_vnp_setsize(ZTOV(zp), off);
1343	}
1344
1345	zfs_range_unlock(rl);
1346
1347	return (error);
1348}
1349
1350/*
1351 * Truncate a file
1352 *
1353 *	IN:	zp	- znode of file to free data in.
1354 *		end	- new end-of-file.
1355 *
1356 * 	RETURN:	0 if success
1357 *		error code if failure
1358 */
1359static int
1360zfs_trunc(znode_t *zp, uint64_t end)
1361{
1362	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1363	vnode_t *vp = ZTOV(zp);
1364	dmu_tx_t *tx;
1365	rl_t *rl;
1366	int error;
1367
1368	/*
1369	 * We will change zp_size, lock the whole file.
1370	 */
1371	rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER);
1372
1373	/*
1374	 * Nothing to do if file already at desired length.
1375	 */
1376	if (end >= zp->z_phys->zp_size) {
1377		zfs_range_unlock(rl);
1378		return (0);
1379	}
1380
1381	error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, end,  -1);
1382	if (error) {
1383		zfs_range_unlock(rl);
1384		return (error);
1385	}
1386top:
1387	tx = dmu_tx_create(zfsvfs->z_os);
1388	dmu_tx_hold_bonus(tx, zp->z_id);
1389	error = dmu_tx_assign(tx, TXG_NOWAIT);
1390	if (error) {
1391		if (error == ERESTART) {
1392			dmu_tx_wait(tx);
1393			dmu_tx_abort(tx);
1394			goto top;
1395		}
1396		dmu_tx_abort(tx);
1397		zfs_range_unlock(rl);
1398		return (error);
1399	}
1400	dmu_buf_will_dirty(zp->z_dbuf, tx);
1401
1402	zp->z_phys->zp_size = end;
1403
1404	dmu_tx_commit(tx);
1405
1406	/*
1407	 * Clear any mapped pages in the truncated region.  This has to
1408	 * happen outside of the transaction to avoid the possibility of
1409	 * a deadlock with someone trying to push a page that we are
1410	 * about to invalidate.
1411	 */
1412
1413	uvm_vnp_setsize(vp, end);
1414
1415	return (0);
1416}
1417
1418/*
1419 * Free space in a file
1420 *
1421 *	IN:	zp	- znode of file to free data in.
1422 *		off	- start of range
1423 *		len	- end of range (0 => EOF)
1424 *		flag	- current file open mode flags.
1425 *		log	- TRUE if this action should be logged
1426 *
1427 * 	RETURN:	0 if success
1428 *		error code if failure
1429 */
1430int
1431zfs_freesp(znode_t *zp, uint64_t off, uint64_t len, int flag, boolean_t log)
1432{
1433	vnode_t *vp = ZTOV(zp);
1434	dmu_tx_t *tx;
1435	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1436	zilog_t *zilog = zfsvfs->z_log;
1437	int error;
1438
1439	if (off > zp->z_phys->zp_size) {
1440		error =  zfs_extend(zp, off+len);
1441		if (error == 0 && log)
1442			goto log;
1443		else
1444			return (error);
1445	}
1446
1447	if (len == 0) {
1448		error = zfs_trunc(zp, off);
1449	} else {
1450		if ((error = zfs_free_range(zp, off, len)) == 0 &&
1451		    off + len > zp->z_phys->zp_size)
1452			error = zfs_extend(zp, off+len);
1453	}
1454	if (error || !log)
1455		return (error);
1456log:
1457	tx = dmu_tx_create(zfsvfs->z_os);
1458	dmu_tx_hold_bonus(tx, zp->z_id);
1459	error = dmu_tx_assign(tx, TXG_NOWAIT);
1460	if (error) {
1461		if (error == ERESTART) {
1462			dmu_tx_wait(tx);
1463			dmu_tx_abort(tx);
1464			goto log;
1465		}
1466		dmu_tx_abort(tx);
1467		return (error);
1468	}
1469
1470	zfs_time_stamper(zp, CONTENT_MODIFIED, tx);
1471	zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len);
1472
1473	dmu_tx_commit(tx);
1474	return (0);
1475}
1476
1477void
1478zfs_create_fs(objset_t *os, cred_t *cr, nvlist_t *zplprops, dmu_tx_t *tx)
1479{
1480	zfsvfs_t	zfsvfs;
1481	uint64_t	moid, obj, version;
1482	uint64_t	sense = ZFS_CASE_SENSITIVE;
1483	uint64_t	norm = 0;
1484	nvpair_t	*elem;
1485	int		error;
1486	int		i;
1487	znode_t		*rootzp = NULL;
1488	vnode_t		*vp;
1489	vattr_t		vattr;
1490	znode_t		*zp;
1491	zfs_acl_ids_t	acl_ids;
1492
1493	/*
1494	 * First attempt to create master node.
1495	 */
1496	/*
1497	 * In an empty objset, there are no blocks to read and thus
1498	 * there can be no i/o errors (which we assert below).
1499	 */
1500	moid = MASTER_NODE_OBJ;
1501	error = zap_create_claim(os, moid, DMU_OT_MASTER_NODE,
1502	    DMU_OT_NONE, 0, tx);
1503	ASSERT(error == 0);
1504
1505	/*
1506	 * Set starting attributes.
1507	 */
1508	if (spa_version(dmu_objset_spa(os)) >= SPA_VERSION_USERSPACE)
1509		version = ZPL_VERSION;
1510	else if (spa_version(dmu_objset_spa(os)) >= SPA_VERSION_FUID)
1511		version = ZPL_VERSION_USERSPACE - 1;
1512	else
1513		version = ZPL_VERSION_FUID - 1;
1514	elem = NULL;
1515	while ((elem = nvlist_next_nvpair(zplprops, elem)) != NULL) {
1516		/* For the moment we expect all zpl props to be uint64_ts */
1517		uint64_t val;
1518		char *name;
1519
1520		ASSERT(nvpair_type(elem) == DATA_TYPE_UINT64);
1521		VERIFY(nvpair_value_uint64(elem, &val) == 0);
1522		name = nvpair_name(elem);
1523		if (strcmp(name, zfs_prop_to_name(ZFS_PROP_VERSION)) == 0) {
1524			if (val < version)
1525				version = val;
1526		} else {
1527			error = zap_update(os, moid, name, 8, 1, &val, tx);
1528		}
1529		ASSERT(error == 0);
1530		if (strcmp(name, zfs_prop_to_name(ZFS_PROP_NORMALIZE)) == 0)
1531			norm = val;
1532		else if (strcmp(name, zfs_prop_to_name(ZFS_PROP_CASE)) == 0)
1533			sense = val;
1534	}
1535	ASSERT(version != 0);
1536	error = zap_update(os, moid, ZPL_VERSION_STR, 8, 1, &version, tx);
1537
1538	/*
1539	 * Create a delete queue.
1540	 */
1541	obj = zap_create(os, DMU_OT_UNLINKED_SET, DMU_OT_NONE, 0, tx);
1542
1543	error = zap_add(os, moid, ZFS_UNLINKED_SET, 8, 1, &obj, tx);
1544	ASSERT(error == 0);
1545
1546	/*
1547	 * Create root znode.  Create minimal znode/vnode/zfsvfs
1548	 * to allow zfs_mknode to work.
1549	 */
1550	vattr_null(&vattr);
1551	vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE;
1552	vattr.va_type = VDIR;
1553	vattr.va_mode = S_IFDIR|0755;
1554	vattr.va_uid = crgetuid(cr);
1555	vattr.va_gid = crgetgid(cr);
1556
1557	rootzp = kmem_cache_alloc(znode_cache, KM_SLEEP);
1558	rootzp->z_unlinked = 0;
1559	rootzp->z_atime_dirty = 0;
1560
1561	for (;;) {
1562		error = getnewvnode(VT_ZFS, NULL, zfs_vnodeop_p,
1563		    NULL, &rootzp->z_vnode);
1564		if (error == 0)
1565			break;
1566		printf("WARNING: zfs_create_fs: unable to get vnode, "
1567		    "error=%d\n", error);
1568		kpause("zfsvn", false, hz, NULL);
1569	}
1570
1571	vp = ZTOV(rootzp);
1572	vp->v_type = VDIR;
1573
1574	bzero(&zfsvfs, sizeof (zfsvfs_t));
1575
1576	zfsvfs.z_os = os;
1577	zfsvfs.z_parent = &zfsvfs;
1578	zfsvfs.z_version = version;
1579	zfsvfs.z_use_fuids = USE_FUIDS(version, os);
1580	zfsvfs.z_norm = norm;
1581	/*
1582	 * Fold case on file systems that are always or sometimes case
1583	 * insensitive.
1584	 */
1585	if (sense == ZFS_CASE_INSENSITIVE || sense == ZFS_CASE_MIXED)
1586		zfsvfs.z_norm |= U8_TEXTPREP_TOUPPER;
1587
1588	mutex_init(&zfsvfs.z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
1589	list_create(&zfsvfs.z_all_znodes, sizeof (znode_t),
1590	    offsetof(znode_t, z_link_node));
1591
1592	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1593		mutex_init(&zfsvfs.z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
1594
1595	ASSERT(!POINTER_IS_VALID(rootzp->z_zfsvfs));
1596	rootzp->z_zfsvfs = &zfsvfs;
1597	VERIFY(0 == zfs_acl_ids_create(rootzp, IS_ROOT_NODE, &vattr,
1598	    cr, NULL, &acl_ids));
1599	zfs_mknode(rootzp, &vattr, tx, cr, IS_ROOT_NODE, &zp, 0, &acl_ids);
1600	ASSERT3P(zp, ==, rootzp);
1601	error = zap_add(os, moid, ZFS_ROOT_OBJ, 8, 1, &rootzp->z_id, tx);
1602	ASSERT(error == 0);
1603	zfs_acl_ids_free(&acl_ids);
1604	POINTER_INVALIDATE(&rootzp->z_zfsvfs);
1605
1606	dmu_buf_rele(rootzp->z_dbuf, NULL);
1607	rootzp->z_dbuf = NULL;
1608	ungetnewvnode(vp);
1609	kmem_cache_free(znode_cache, rootzp);
1610
1611	/*
1612	 * Create shares directory
1613	 */
1614
1615	error = zfs_create_share_dir(&zfsvfs, tx);
1616
1617	ASSERT(error == 0);
1618
1619	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1620		mutex_destroy(&zfsvfs.z_hold_mtx[i]);
1621}
1622
1623#endif /* _KERNEL */
1624/*
1625 * Given an object number, return its parent object number and whether
1626 * or not the object is an extended attribute directory.
1627 */
1628static int
1629zfs_obj_to_pobj(objset_t *osp, uint64_t obj, uint64_t *pobjp, int *is_xattrdir)
1630{
1631	dmu_buf_t *db;
1632	dmu_object_info_t doi;
1633	znode_phys_t *zp;
1634	int error;
1635
1636	if ((error = dmu_bonus_hold(osp, obj, FTAG, &db)) != 0)
1637		return (error);
1638
1639	dmu_object_info_from_db(db, &doi);
1640	if (doi.doi_bonus_type != DMU_OT_ZNODE ||
1641	    doi.doi_bonus_size < sizeof (znode_phys_t)) {
1642		dmu_buf_rele(db, FTAG);
1643		return (EINVAL);
1644	}
1645
1646	zp = db->db_data;
1647	*pobjp = zp->zp_parent;
1648	*is_xattrdir = ((zp->zp_flags & ZFS_XATTR) != 0) &&
1649	    S_ISDIR(zp->zp_mode);
1650	dmu_buf_rele(db, FTAG);
1651
1652	return (0);
1653}
1654
1655int
1656zfs_obj_to_path(objset_t *osp, uint64_t obj, char *buf, int len)
1657{
1658	char *path = buf + len - 1;
1659	int error;
1660
1661	*path = '\0';
1662
1663	for (;;) {
1664		uint64_t pobj;
1665		char component[MAXNAMELEN + 2];
1666		size_t complen;
1667		int is_xattrdir;
1668
1669		if ((error = zfs_obj_to_pobj(osp, obj, &pobj,
1670		    &is_xattrdir)) != 0)
1671			break;
1672
1673		if (pobj == obj) {
1674			if (path[0] != '/')
1675				*--path = '/';
1676			break;
1677		}
1678
1679		component[0] = '/';
1680		if (is_xattrdir) {
1681			(void) sprintf(component + 1, "<xattrdir>");
1682		} else {
1683			error = zap_value_search(osp, pobj, obj,
1684			    ZFS_DIRENT_OBJ(-1ULL), component + 1);
1685			if (error != 0)
1686				break;
1687		}
1688
1689		complen = strlen(component);
1690		path -= complen;
1691		ASSERT(path >= buf);
1692		bcopy(component, path, complen);
1693		obj = pobj;
1694	}
1695
1696	if (error == 0)
1697		(void) memmove(buf, path, buf + len - path);
1698	return (error);
1699}
1700