1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26/* Portions Copyright 2007 Jeremy Teo */
27
28#include <sys/types.h>
29#include <sys/param.h>
30#include <sys/time.h>
31#include <sys/systm.h>
32#include <sys/sysmacros.h>
33#include <sys/resource.h>
34#include <sys/vfs.h>
35#include <sys/vnode.h>
36#include <sys/file.h>
37#include <sys/stat.h>
38#include <sys/kmem.h>
39#include <sys/taskq.h>
40#include <sys/uio.h>
41#include <sys/atomic.h>
42#include <sys/namei.h>
43#include <sys/mman.h>
44#include <sys/cmn_err.h>
45#include <sys/errno.h>
46#include <sys/unistd.h>
47#include <sys/zfs_dir.h>
48#include <sys/zfs_ioctl.h>
49#include <sys/fs/zfs.h>
50#include <sys/dmu.h>
51#include <sys/spa.h>
52#include <sys/txg.h>
53#include <sys/dbuf.h>
54#include <sys/zap.h>
55#include <sys/dirent.h>
56#include <sys/policy.h>
57#include <sys/sunddi.h>
58#include <sys/filio.h>
59#include <sys/zfs_ctldir.h>
60#include <sys/zfs_fuid.h>
61#include <sys/zfs_vfsops.h>
62#include <sys/dnlc.h>
63#include <sys/zfs_rlock.h>
64#include <sys/extdirent.h>
65#include <sys/kidmap.h>
66#include <sys/buf.h>
67#include <sys/sched.h>
68#include <sys/acl.h>
69#include <sys/extattr.h>
70
71#ifdef __NetBSD__
72#include <miscfs/genfs/genfs.h>
73#endif
74
75/*
76 * Programming rules.
77 *
78 * Each vnode op performs some logical unit of work.  To do this, the ZPL must
79 * properly lock its in-core state, create a DMU transaction, do the work,
80 * record this work in the intent log (ZIL), commit the DMU transaction,
81 * and wait for the intent log to commit if it is a synchronous operation.
82 * Moreover, the vnode ops must work in both normal and log replay context.
83 * The ordering of events is important to avoid deadlocks and references
84 * to freed memory.  The example below illustrates the following Big Rules:
85 *
86 *  (1) A check must be made in each zfs thread for a mounted file system.
87 *	This is done avoiding races using ZFS_ENTER(zfsvfs).
88 *      A ZFS_EXIT(zfsvfs) is needed before all returns.  Any znodes
89 *      must be checked with ZFS_VERIFY_ZP(zp).  Both of these macros
90 *      can return EIO from the calling function.
91 *
92 *  (2)	VN_RELE() should always be the last thing except for zil_commit()
93 *	(if necessary) and ZFS_EXIT(). This is for 3 reasons:
94 *	First, if it's the last reference, the vnode/znode
95 *	can be freed, so the zp may point to freed memory.  Second, the last
96 *	reference will call zfs_zinactive(), which may induce a lot of work --
97 *	pushing cached pages (which acquires range locks) and syncing out
98 *	cached atime changes.  Third, zfs_zinactive() may require a new tx,
99 *	which could deadlock the system if you were already holding one.
100 *	If you must call VN_RELE() within a tx then use VN_RELE_ASYNC().
101 *
102 *  (3)	All range locks must be grabbed before calling dmu_tx_assign(),
103 *	as they can span dmu_tx_assign() calls.
104 *
105 *  (4)	Always pass TXG_NOWAIT as the second argument to dmu_tx_assign().
106 *	This is critical because we don't want to block while holding locks.
107 *	Note, in particular, that if a lock is sometimes acquired before
108 *	the tx assigns, and sometimes after (e.g. z_lock), then failing to
109 *	use a non-blocking assign can deadlock the system.  The scenario:
110 *
111 *	Thread A has grabbed a lock before calling dmu_tx_assign().
112 *	Thread B is in an already-assigned tx, and blocks for this lock.
113 *	Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
114 *	forever, because the previous txg can't quiesce until B's tx commits.
115 *
116 *	If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
117 *	then drop all locks, call dmu_tx_wait(), and try again.
118 *
119 *  (5)	If the operation succeeded, generate the intent log entry for it
120 *	before dropping locks.  This ensures that the ordering of events
121 *	in the intent log matches the order in which they actually occurred.
122 *      During ZIL replay the zfs_log_* functions will update the sequence
123 *	number to indicate the zil transaction has replayed.
124 *
125 *  (6)	At the end of each vnode op, the DMU tx must always commit,
126 *	regardless of whether there were any errors.
127 *
128 *  (7)	After dropping all locks, invoke zil_commit(zilog, seq, foid)
129 *	to ensure that synchronous semantics are provided when necessary.
130 *
131 * In general, this is how things should be ordered in each vnode op:
132 *
133 *	ZFS_ENTER(zfsvfs);		// exit if unmounted
134 * top:
135 *	zfs_dirent_lock(&dl, ...)	// lock directory entry (may VN_HOLD())
136 *	rw_enter(...);			// grab any other locks you need
137 *	tx = dmu_tx_create(...);	// get DMU tx
138 *	dmu_tx_hold_*();		// hold each object you might modify
139 *	error = dmu_tx_assign(tx, TXG_NOWAIT);	// try to assign
140 *	if (error) {
141 *		rw_exit(...);		// drop locks
142 *		zfs_dirent_unlock(...);	// unlock directory entry
143 *		VN_RELE(...);		// release held vnodes
144 *		if (error == ERESTART) {
145 *			dmu_tx_wait(tx);
146 *			dmu_tx_abort(tx);
147 *			goto top;
148 *		}
149 *		dmu_tx_abort(tx);	// abort DMU tx
150 *		ZFS_EXIT(zfsvfs);	// finished in zfs
151 *		return (error);		// really out of space
152 *	}
153 *	error = do_real_work();		// do whatever this VOP does
154 *	if (error == 0)
155 *		zfs_log_*(...);		// on success, make ZIL entry
156 *	dmu_tx_commit(tx);		// commit DMU tx -- error or not
157 *	rw_exit(...);			// drop locks
158 *	zfs_dirent_unlock(dl, 0);	// unlock directory entry
159 *	VN_RELE(...);			// release held vnodes
160 *	zil_commit(zilog, seq, foid);	// synchronous when necessary
161 *	ZFS_EXIT(zfsvfs);		// finished in zfs
162 *	return (error);			// done, report error
163 */
164
165/* ARGSUSED */
166static int
167zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)
168{
169	znode_t	*zp = VTOZ(*vpp);
170
171	if ((flag & FWRITE) && (zp->z_phys->zp_flags & ZFS_APPENDONLY) &&
172	    ((flag & FAPPEND) == 0)) {
173		return (EPERM);
174	}
175
176	if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
177	    ZTOV(zp)->v_type == VREG &&
178	    !(zp->z_phys->zp_flags & ZFS_AV_QUARANTINED) &&
179	    zp->z_phys->zp_size > 0)
180		if (fs_vscan(*vpp, cr, 0) != 0)
181			return (EACCES);
182
183	/* Keep a count of the synchronous opens in the znode */
184	if (flag & (FSYNC | FDSYNC))
185		atomic_inc_32(&zp->z_sync_cnt);
186
187	return (0);
188}
189
190/* ARGSUSED */
191static int
192zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
193    caller_context_t *ct)
194{
195	znode_t	*zp = VTOZ(vp);
196	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
197
198	/*
199	 * Clean up any locks held by this process on the vp.
200	 */
201	cleanlocks(vp, ddi_get_pid(), 0);
202	cleanshares(vp, ddi_get_pid());
203
204	ZFS_ENTER(zfsvfs);
205	ZFS_VERIFY_ZP(zp);
206
207	dprintf("zfs_close called \n");
208	/* Decrement the synchronous opens in the znode */
209	if ((flag & (FSYNC | FDSYNC)) && (count == 1))
210		atomic_dec_32(&zp->z_sync_cnt);
211
212	if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
213	    ZTOV(zp)->v_type == VREG &&
214	    !(zp->z_phys->zp_flags & ZFS_AV_QUARANTINED) &&
215	    zp->z_phys->zp_size > 0)
216		VERIFY(fs_vscan(vp, cr, 1) == 0);
217
218	return (0);
219}
220
221#ifdef PORT_NETBSD
222/*
223 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and
224 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter.
225 */
226static int
227zfs_holey(vnode_t *vp, u_long cmd, offset_t *off)
228{
229	znode_t	*zp = VTOZ(vp);
230	uint64_t noff = (uint64_t)*off; /* new offset */
231	uint64_t file_sz;
232	int error;
233	boolean_t hole;
234
235	file_sz = zp->z_phys->zp_size;
236	if (noff >= file_sz)  {
237		return (ENXIO);
238	}
239
240	if (cmd == _FIO_SEEK_HOLE)
241		hole = B_TRUE;
242	else
243		hole = B_FALSE;
244
245	error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff);
246
247	/* end of file? */
248	if ((error == ESRCH) || (noff > file_sz)) {
249		/*
250		 * Handle the virtual hole at the end of file.
251		 */
252		if (hole) {
253			*off = file_sz;
254			return (0);
255		}
256		return (ENXIO);
257	}
258
259	if (noff < *off)
260		return (error);
261	*off = noff;
262	return (error);
263}
264#endif /* PORT_NETBSD */
265
266static int
267zfs_ioctl(vnode_t *vp, u_long com, intptr_t data, int flag, cred_t *cred,
268    int *rvalp, caller_context_t *ct)
269{
270	offset_t off;
271	int error;
272	zfsvfs_t *zfsvfs;
273	znode_t *zp;
274
275	switch (com) {
276	case _FIOFFS:
277		return (0);
278
279		/*
280		 * The following two ioctls are used by bfu.  Faking out,
281		 * necessary to avoid bfu errors.
282		 */
283	case _FIOGDIO:
284	case _FIOSDIO:
285		return (0);
286#ifdef PORT_NETBSD /* XXX NetBSD Do we support holes in files ? */
287	case _FIO_SEEK_DATA:
288	case _FIO_SEEK_HOLE:
289		if (ddi_copyin((void *)data, &off, sizeof (off), flag))
290			return (EFAULT);
291
292		zp = VTOZ(vp);
293		zfsvfs = zp->z_zfsvfs;
294		ZFS_ENTER(zfsvfs);
295		ZFS_VERIFY_ZP(zp);
296
297		/* offset parameter is in/out */
298		error = zfs_holey(vp, com, &off);
299		ZFS_EXIT(zfsvfs);
300		if (error)
301			return (error);
302		if (ddi_copyout(&off, (void *)data, sizeof (off), flag))
303			return (EFAULT);
304		return (0);
305#endif
306	}
307
308	return (ENOTTY);
309}
310
311#ifdef PORT_NETBSD
312/*
313 * When a file is memory mapped, we must keep the IO data synchronized
314 * between the DMU cache and the memory mapped pages.  What this means:
315 *
316 * On Write:	If we find a memory mapped page, we write to *both*
317 *		the page and the dmu buffer.
318 */
319static void
320update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid)
321{
322	int64_t	off;
323
324	off = start & PAGEOFFSET;
325	dirbytes = 0;
326	VM_OBJECT_LOCK(obj);
327	for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
328		page_t *pp;
329		uint64_t nbytes = MIN(PAGESIZE - off, len);
330
331		if (pp = page_lookup(vp, start, SE_SHARED)) {
332			caddr_t va;
333
334			va = zfs_map_page(pp, S_WRITE);
335			(void) dmu_read(os, oid, start+off, nbytes, va+off,
336			    DMU_READ_PREFETCH);
337			zfs_unmap_page(pp, va);
338			page_unlock(pp);
339		}
340		len -= nbytes;
341		off = 0;
342	}
343
344	VM_OBJECT_UNLOCK(obj);
345	if (error == 0 && dirbytes > 0)
346		error = dmu_write_uio(os, zp->z_id, uio, dirbytes, tx);
347	return (error);
348}
349
350/*
351 * When a file is memory mapped, we must keep the IO data synchronized
352 * between the DMU cache and the memory mapped pages.  What this means:
353 *
354 * On Read:	We "read" preferentially from memory mapped pages,
355 *		else we default from the dmu buffer.
356 *
357 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
358 *	the file is memory mapped.
359 */
360static int
361mappedread(vnode_t *vp, int nbytes, uio_t *uio)
362{
363	znode_t *zp = VTOZ(vp);
364	objset_t *os = zp->z_zfsvfs->z_os;
365	vm_object_t obj;
366	vm_page_t m;
367	struct sf_buf *sf;
368	int64_t start, off;
369	caddr_t va;
370	int len = nbytes;
371	int error = 0;
372	uint64_t dirbytes;
373
374	ASSERT(vp->v_mount != NULL);
375	obj = vp->v_object;
376	ASSERT(obj != NULL);
377
378	start = uio->uio_loffset;
379	off = start & PAGEOFFSET;
380	dirbytes = 0;
381	VM_OBJECT_LOCK(obj);
382	for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
383		uint64_t bytes = MIN(PAGESIZE - off, len);
384
385again:
386		if ((m = vm_page_lookup(obj, OFF_TO_IDX(start))) != NULL &&
387		    vm_page_is_valid(m, (vm_offset_t)off, bytes)) {
388			if (vm_page_sleep_if_busy(m, FALSE, "zfsmrb"))
389				goto again;
390			vm_page_busy(m);
391			VM_OBJECT_UNLOCK(obj);
392			if (dirbytes > 0) {
393				error = dmu_read_uio(os, zp->z_id, uio,
394				    dirbytes);
395				dirbytes = 0;
396			}
397			if (error == 0) {
398				sched_pin();
399				sf = sf_buf_alloc(m, SFB_CPUPRIVATE);
400				va = (caddr_t)sf_buf_kva(sf);
401				error = uiomove(va + off, bytes, UIO_READ, uio);
402				sf_buf_free(sf);
403				sched_unpin();
404			}
405			VM_OBJECT_LOCK(obj);
406			vm_page_wakeup(m);
407		} else if (m != NULL && uio->uio_segflg == UIO_NOCOPY) {
408			/*
409			 * The code below is here to make sendfile(2) work
410			 * correctly with ZFS. As pointed out by ups@
411			 * sendfile(2) should be changed to use VOP_GETPAGES(),
412			 * but it pessimize performance of sendfile/UFS, that's
413			 * why I handle this special case in ZFS code.
414			 */
415			if (vm_page_sleep_if_busy(m, FALSE, "zfsmrb"))
416				goto again;
417			vm_page_busy(m);
418			VM_OBJECT_UNLOCK(obj);
419			if (dirbytes > 0) {
420				error = dmu_read_uio(os, zp->z_id, uio,
421				    dirbytes);
422				dirbytes = 0;
423			}
424			if (error == 0) {
425				sched_pin();
426				sf = sf_buf_alloc(m, SFB_CPUPRIVATE);
427				va = (caddr_t)sf_buf_kva(sf);
428				error = dmu_read(os, zp->z_id, start + off,
429				    bytes, (void *)(va + off));
430				sf_buf_free(sf);
431				sched_unpin();
432			}
433			VM_OBJECT_LOCK(obj);
434			vm_page_wakeup(m);
435			if (error == 0)
436				uio->uio_resid -= bytes;
437		} else {
438			dirbytes += bytes;
439		}
440		len -= bytes;
441		off = 0;
442		if (error)
443			break;
444	}
445	VM_OBJECT_UNLOCK(obj);
446	if (error == 0 && dirbytes > 0)
447		error = dmu_read_uio(os, zp->z_id, uio, dirbytes);
448	return (error);
449}
450#endif  /* PORT_NETBSD */
451offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */
452
453/*
454 * Read bytes from specified file into supplied buffer.
455 *
456 *	IN:	vp	- vnode of file to be read from.
457 *		uio	- structure supplying read location, range info,
458 *			  and return buffer.
459 *		ioflag	- SYNC flags; used to provide FRSYNC semantics.
460 *		cr	- credentials of caller.
461 *		ct	- caller context
462 *
463 *	OUT:	uio	- updated offset and range, buffer filled.
464 *
465 *	RETURN:	0 if success
466 *		error code if failure
467 *
468 * Side Effects:
469 *	vp - atime updated if byte count > 0
470 */
471/* ARGSUSED */
472static int
473zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
474{
475	znode_t		*zp = VTOZ(vp);
476	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
477	objset_t	*os;
478	ssize_t		n, nbytes;
479	int		error;
480	rl_t		*rl;
481	xuio_t		*xuio = NULL;
482
483	dprintf("zfs_read called\n");
484
485	ZFS_ENTER(zfsvfs);
486	ZFS_VERIFY_ZP(zp);
487	os = zfsvfs->z_os;
488
489	if (zp->z_phys->zp_flags & ZFS_AV_QUARANTINED) {
490		ZFS_EXIT(zfsvfs);
491		return (EACCES);
492	}
493
494	/*
495	 * Validate file offset
496	 */
497	if (uio->uio_loffset < (offset_t)0) {
498		ZFS_EXIT(zfsvfs);
499		return (EINVAL);
500	}
501
502	/*
503	 * Fasttrack empty reads
504	 */
505	if (uio->uio_resid == 0) {
506		ZFS_EXIT(zfsvfs);
507		return (0);
508	}
509
510	/*
511	 * Check for mandatory locks
512	 */
513	if (MANDMODE((mode_t)zp->z_phys->zp_mode)) {
514		if (error = chklock(vp, FREAD,
515		    uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) {
516			ZFS_EXIT(zfsvfs);
517			return (error);
518		}
519	}
520
521	/*
522	 * If we're in FRSYNC mode, sync out this znode before reading it.
523	 */
524	if (ioflag & FRSYNC)
525		zil_commit(zfsvfs->z_log, zp->z_last_itx, zp->z_id);
526
527	/*
528	 * Lock the range against changes.
529	 */
530	rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER);
531
532	/*
533	 * If we are reading past end-of-file we can skip
534	 * to the end; but we might still need to set atime.
535	 */
536	if (uio->uio_loffset >= zp->z_phys->zp_size) {
537		error = 0;
538		goto out;
539	}
540
541	ASSERT(uio->uio_loffset < zp->z_phys->zp_size);
542	n = MIN(uio->uio_resid, zp->z_phys->zp_size - uio->uio_loffset);
543#ifdef PORT_SOLARIS
544	if ((uio->uio_extflg == UIO_XUIO) &&
545	    (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) {
546		int nblk;
547		int blksz = zp->z_blksz;
548		uint64_t offset = uio->uio_loffset;
549
550		xuio = (xuio_t *)uio;
551		if ((ISP2(blksz))) {
552			nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset,
553			    blksz)) / blksz;
554		} else {
555			ASSERT(offset + n <= blksz);
556			nblk = 1;
557		}
558		(void) dmu_xuio_init(xuio, nblk);
559
560		if (vn_has_cached_data(vp)) {
561			/*
562			 * For simplicity, we always allocate a full buffer
563			 * even if we only expect to read a portion of a block.
564			 */
565			while (--nblk >= 0) {
566				(void) dmu_xuio_add(xuio,
567				    dmu_request_arcbuf(zp->z_dbuf, blksz),
568				    0, blksz);
569			}
570		}
571	}
572#endif
573	while (n > 0) {
574		nbytes = MIN(n, zfs_read_chunk_size -
575		    P2PHASE(uio->uio_loffset, zfs_read_chunk_size));
576
577//		if (vn_has_cached_data(vp))
578//			error = mappedread(vp, nbytes, uio);
579//		else
580			error = dmu_read_uio(os, zp->z_id, uio, nbytes);
581		if (error) {
582			/* convert checksum errors into IO errors */
583			if (error == ECKSUM)
584				error = EIO;
585			break;
586		}
587
588		n -= nbytes;
589	}
590out:
591	zfs_range_unlock(rl);
592
593	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
594	ZFS_EXIT(zfsvfs);
595	return (error);
596}
597
598/*
599 * Fault in the pages of the first n bytes specified by the uio structure.
600 * 1 byte in each page is touched and the uio struct is unmodified.
601 * Any error will exit this routine as this is only a best
602 * attempt to get the pages resident. This is a copy of ufs_trans_touch().
603 */
604static void
605zfs_prefault_write(ssize_t n, struct uio *uio)
606{
607	struct iovec *iov;
608	ulong_t cnt, incr;
609	caddr_t p;
610
611	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
612		return;
613
614	iov = uio->uio_iov;
615
616	while (n) {
617		cnt = MIN(iov->iov_len, n);
618		if (cnt == 0) {
619			/* empty iov entry */
620			iov++;
621			continue;
622		}
623		n -= cnt;
624		/*
625		 * touch each page in this segment.
626		 */
627		p = iov->iov_base;
628		while (cnt) {
629			if (fubyte(p) == -1)
630				return;
631			incr = MIN(cnt, PAGESIZE);
632			p += incr;
633			cnt -= incr;
634		}
635		/*
636		 * touch the last byte in case it straddles a page.
637		 */
638		p--;
639		if (fubyte(p) == -1)
640			return;
641		iov++;
642	}
643}
644
645/*
646 * Write the bytes to a file.
647 *
648 *	IN:	vp	- vnode of file to be written to.
649 *		uio	- structure supplying write location, range info,
650 *			  and data buffer.
651 *		ioflag	- IO_APPEND flag set if in append mode.
652 *		cr	- credentials of caller.
653 *		ct	- caller context (NFS/CIFS fem monitor only)
654 *
655 *	OUT:	uio	- updated offset and range.
656 *
657 *	RETURN:	0 if success
658 *		error code if failure
659 *
660 * Timestamps:
661 *	vp - ctime|mtime updated if byte count > 0
662 */
663/* ARGSUSED */
664static int
665zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
666{
667	znode_t		*zp = VTOZ(vp);
668	rlim64_t	limit = MAXOFFSET_T;
669	ssize_t		start_resid = uio->uio_resid;
670	ssize_t		tx_bytes;
671	uint64_t	end_size;
672	dmu_tx_t	*tx;
673	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
674	zilog_t		*zilog;
675	offset_t	woff;
676	ssize_t		n, nbytes;
677	rl_t		*rl;
678	int		max_blksz = zfsvfs->z_max_blksz;
679	uint64_t	pflags;
680	int		error;
681	arc_buf_t	*abuf;
682	iovec_t		*aiov;
683	xuio_t		*xuio = NULL;
684	int		i_iov = 0;
685	int		iovcnt = uio->uio_iovcnt;
686	iovec_t		*iovp = uio->uio_iov;
687	int		write_eof;
688
689	dprintf("zfs_write called\n");
690
691	/*
692	 * Fasttrack empty write
693	 */
694	n = start_resid;
695	if (n == 0)
696		return (0);
697
698	if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
699		limit = MAXOFFSET_T;
700
701	ZFS_ENTER(zfsvfs);
702	ZFS_VERIFY_ZP(zp);
703
704	/*
705	 * If immutable or not appending then return EPERM
706	 */
707	pflags = zp->z_phys->zp_flags;
708	if ((pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) ||
709	    ((pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) &&
710	    (uio->uio_loffset < zp->z_phys->zp_size))) {
711		ZFS_EXIT(zfsvfs);
712		return (EPERM);
713	}
714
715	zilog = zfsvfs->z_log;
716
717	/*
718	 * Validate file offset
719	 */
720	woff = ioflag & FAPPEND ? zp->z_phys->zp_size : uio->uio_loffset;
721	if (woff < 0) {
722		ZFS_EXIT(zfsvfs);
723		return (EINVAL);
724	}
725
726	/*
727	 * Check for mandatory locks before calling zfs_range_lock()
728	 * in order to prevent a deadlock with locks set via fcntl().
729	 */
730	if (MANDMODE((mode_t)zp->z_phys->zp_mode) &&
731	    (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) {
732		ZFS_EXIT(zfsvfs);
733		return (error);
734	}
735
736	/*
737	 * Pre-fault the pages to ensure slow (eg NFS) pages
738	 * don't hold up txg.
739	 * Skip this if uio contains loaned arc_buf.
740	 */
741	zfs_prefault_write(n, uio);
742
743	/*
744	 * If in append mode, set the io offset pointer to eof.
745	 */
746	if (ioflag & IO_APPEND) {
747		/*
748		 * Obtain an appending range lock to guarantee file append
749		 * semantics.  We reset the write offset once we have the lock.
750		 */
751		rl = zfs_range_lock(zp, 0, n, RL_APPEND);
752		woff = rl->r_off;
753		if (rl->r_len == UINT64_MAX) {
754			/*
755			 * We overlocked the file because this write will cause
756			 * the file block size to increase.
757			 * Note that zp_size cannot change with this lock held.
758			 */
759			woff = zp->z_phys->zp_size;
760		}
761		uio->uio_loffset = woff;
762	} else {
763		/*
764		 * Note that if the file block size will change as a result of
765		 * this write, then this range lock will lock the entire file
766		 * so that we can re-write the block safely.
767		 */
768		rl = zfs_range_lock(zp, woff, n, RL_WRITER);
769	}
770
771	if (woff >= limit) {
772		zfs_range_unlock(rl);
773		ZFS_EXIT(zfsvfs);
774		return (EFBIG);
775	}
776
777	if ((woff + n) > limit || woff > (limit - n))
778		n = limit - woff;
779
780	/* Will this write extend the file length? */
781	write_eof = (woff + n > zp->z_phys->zp_size);
782
783	end_size = MAX(zp->z_phys->zp_size, woff + n);
784
785	/*
786	 * Write the file in reasonable size chunks.  Each chunk is written
787	 * in a separate transaction; this keeps the intent log records small
788	 * and allows us to do more fine-grained space accounting.
789	 */
790	while (n > 0) {
791		abuf = NULL;
792		woff = uio->uio_loffset;
793again:
794		if (zfs_usergroup_overquota(zfsvfs,
795		    B_FALSE, zp->z_phys->zp_uid) ||
796		    zfs_usergroup_overquota(zfsvfs,
797		    B_TRUE, zp->z_phys->zp_gid)) {
798			if (abuf != NULL)
799				dmu_return_arcbuf(abuf);
800			error = EDQUOT;
801			break;
802		}
803
804		if (xuio && abuf == NULL) {
805			ASSERT(i_iov < iovcnt);
806			aiov = &iovp[i_iov];
807			abuf = dmu_xuio_arcbuf(xuio, i_iov);
808			dmu_xuio_clear(xuio, i_iov);
809			DTRACE_PROBE3(zfs_cp_write, int, i_iov,
810			    iovec_t *, aiov, arc_buf_t *, abuf);
811			ASSERT((aiov->iov_base == abuf->b_data) ||
812			    ((char *)aiov->iov_base - (char *)abuf->b_data +
813			    aiov->iov_len == arc_buf_size(abuf)));
814			i_iov++;
815		} else if (abuf == NULL && n >= max_blksz &&
816		    woff >= zp->z_phys->zp_size &&
817		    P2PHASE(woff, max_blksz) == 0 &&
818		    zp->z_blksz == max_blksz) {
819			/*
820			 * This write covers a full block.  "Borrow" a buffer
821			 * from the dmu so that we can fill it before we enter
822			 * a transaction.  This avoids the possibility of
823			 * holding up the transaction if the data copy hangs
824			 * up on a pagefault (e.g., from an NFS server mapping).
825			 */
826			size_t cbytes;
827
828			abuf = dmu_request_arcbuf(zp->z_dbuf, max_blksz);
829			ASSERT(abuf != NULL);
830			ASSERT(arc_buf_size(abuf) == max_blksz);
831			if (error = uiocopy(abuf->b_data, max_blksz,
832			    UIO_WRITE, uio, &cbytes)) {
833				dmu_return_arcbuf(abuf);
834				break;
835			}
836			ASSERT(cbytes == max_blksz);
837		}
838
839		/*
840		 * Start a transaction.
841		 */
842		tx = dmu_tx_create(zfsvfs->z_os);
843		dmu_tx_hold_bonus(tx, zp->z_id);
844		dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
845		error = dmu_tx_assign(tx, TXG_NOWAIT);
846		if (error) {
847			if (error == ERESTART) {
848				dmu_tx_wait(tx);
849				dmu_tx_abort(tx);
850				goto again;
851			}
852			dmu_tx_abort(tx);
853			if (abuf != NULL)
854				dmu_return_arcbuf(abuf);
855			break;
856		}
857
858		/*
859		 * If zfs_range_lock() over-locked we grow the blocksize
860		 * and then reduce the lock range.  This will only happen
861		 * on the first iteration since zfs_range_reduce() will
862		 * shrink down r_len to the appropriate size.
863		 */
864		if (rl->r_len == UINT64_MAX) {
865			uint64_t new_blksz;
866
867			if (zp->z_blksz > max_blksz) {
868				ASSERT(!ISP2(zp->z_blksz));
869				new_blksz = MIN(end_size, SPA_MAXBLOCKSIZE);
870			} else {
871				new_blksz = MIN(end_size, max_blksz);
872			}
873			zfs_grow_blocksize(zp, new_blksz, tx);
874			zfs_range_reduce(rl, woff, n);
875		}
876
877		/*
878		 * XXX - should we really limit each write to z_max_blksz?
879		 * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
880		 */
881		nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz));
882
883		if (abuf == NULL) {
884			tx_bytes = uio->uio_resid;
885			error = dmu_write_uio(zfsvfs->z_os, zp->z_id, uio,
886			    nbytes, tx);
887			tx_bytes -= uio->uio_resid;
888		} else {
889			tx_bytes = nbytes;
890			ASSERT(xuio == NULL || tx_bytes == aiov->iov_len);
891			/*
892			 * If this is not a full block write, but we are
893			 * extending the file past EOF and this data starts
894			 * block-aligned, use assign_arcbuf().  Otherwise,
895			 * write via dmu_write().
896			 */
897			if (tx_bytes < max_blksz && (!write_eof ||
898			    aiov->iov_base != abuf->b_data)) {
899				ASSERT(xuio);
900				dmu_write(zfsvfs->z_os, zp->z_id, woff,
901				    aiov->iov_len, aiov->iov_base, tx);
902				dmu_return_arcbuf(abuf);
903				xuio_stat_wbuf_copied();
904			} else {
905				ASSERT(xuio || tx_bytes == max_blksz);
906				dmu_assign_arcbuf(zp->z_dbuf, woff, abuf, tx);
907			}
908			ASSERT(tx_bytes <= uio->uio_resid);
909			uioskip(uio, tx_bytes);
910		}
911#ifdef PORT_SOLARIS
912		if (tx_bytes && vn_has_cached_data(vp)) {
913			update_pages(vp, woff,
914			    tx_bytes, zfsvfs->z_os, zp->z_id);
915		}
916#endif
917		/*
918		 * If we made no progress, we're done.  If we made even
919		 * partial progress, update the znode and ZIL accordingly.
920		 */
921		if (tx_bytes == 0) {
922			dmu_tx_commit(tx);
923			ASSERT(error != 0);
924			break;
925		}
926
927		/*
928		 * Clear Set-UID/Set-GID bits on successful write if not
929		 * privileged and at least one of the excute bits is set.
930		 *
931		 * It would be nice to to this after all writes have
932		 * been done, but that would still expose the ISUID/ISGID
933		 * to another app after the partial write is committed.
934		 *
935		 * Note: we don't call zfs_fuid_map_id() here because
936		 * user 0 is not an ephemeral uid.
937		 */
938		mutex_enter(&zp->z_acl_lock);
939		if ((zp->z_phys->zp_mode & (S_IXUSR | (S_IXUSR >> 3) |
940		    (S_IXUSR >> 6))) != 0 &&
941		    (zp->z_phys->zp_mode & (S_ISUID | S_ISGID)) != 0 &&
942		    secpolicy_vnode_setid_retain(cr, (zp->z_phys->zp_mode & S_ISUID) != 0 && zp->z_phys->zp_uid == 0) != 0) {
943			zp->z_phys->zp_mode &= ~(S_ISUID | S_ISGID);
944		}
945		mutex_exit(&zp->z_acl_lock);
946
947		/*
948		 * Update time stamp.  NOTE: This marks the bonus buffer as
949		 * dirty, so we don't have to do it again for zp_size.
950		 */
951		zfs_time_stamper(zp, CONTENT_MODIFIED, tx);
952
953		/*
954		 * Update the file size (zp_size) if it has changed;
955		 * account for possible concurrent updates.
956		 */
957		while ((end_size = zp->z_phys->zp_size) < uio->uio_loffset)
958			(void) atomic_cas_64(&zp->z_phys->zp_size, end_size,
959			    uio->uio_loffset);
960		zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag);
961		dmu_tx_commit(tx);
962
963		if (error != 0)
964			break;
965		ASSERT(tx_bytes == nbytes);
966		n -= nbytes;
967	}
968
969	zfs_range_unlock(rl);
970
971	/*
972	 * If we're in replay mode, or we made no progress, return error.
973	 * Otherwise, it's at least a partial write, so it's successful.
974	 */
975	if (zfsvfs->z_replay || uio->uio_resid == start_resid) {
976		ZFS_EXIT(zfsvfs);
977		return (error);
978	}
979
980	if (ioflag & (FSYNC | FDSYNC))
981		zil_commit(zilog, zp->z_last_itx, zp->z_id);
982
983	ZFS_EXIT(zfsvfs);
984
985	return (0);
986}
987
988void
989zfs_get_done(zgd_t *zgd, int error)
990{
991	znode_t *zp = zgd->zgd_private;
992	objset_t *os = zp->z_zfsvfs->z_os;
993
994	if (zgd->zgd_db)
995		dmu_buf_rele(zgd->zgd_db, zgd);
996
997	zfs_range_unlock(zgd->zgd_rl);
998
999	/*
1000	 * Release the vnode asynchronously as we currently have the
1001	 * txg stopped from syncing.
1002	 */
1003	VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
1004
1005	if (error == 0 && zgd->zgd_bp)
1006		zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
1007
1008	kmem_free(zgd, sizeof (zgd_t));
1009}
1010
1011#ifdef DEBUG
1012static int zil_fault_io = 0;
1013#endif
1014
1015/*
1016 * Get data to generate a TX_WRITE intent log record.
1017 */
1018int
1019zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
1020{
1021	zfsvfs_t *zfsvfs = arg;
1022	objset_t *os = zfsvfs->z_os;
1023	znode_t *zp;
1024	uint64_t object = lr->lr_foid;
1025	uint64_t offset = lr->lr_offset;
1026	uint64_t size = lr->lr_length;
1027	blkptr_t *bp = &lr->lr_blkptr;
1028	dmu_buf_t *db;
1029	zgd_t *zgd;
1030	int error = 0;
1031
1032	ASSERT(zio != NULL);
1033	ASSERT(size != 0);
1034
1035	/*
1036	 * Nothing to do if the file has been removed
1037	 */
1038	if (zfs_zget(zfsvfs, object, &zp) != 0)
1039		return (ENOENT);
1040	if (zp->z_unlinked) {
1041		/*
1042		 * Release the vnode asynchronously as we currently have the
1043		 * txg stopped from syncing.
1044		 */
1045		VN_RELE_ASYNC(ZTOV(zp),
1046		    dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
1047		return (ENOENT);
1048	}
1049
1050	zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
1051	zgd->zgd_zilog = zfsvfs->z_log;
1052	zgd->zgd_private = zp;
1053
1054	/*
1055	 * Write records come in two flavors: immediate and indirect.
1056	 * For small writes it's cheaper to store the data with the
1057	 * log record (immediate); for large writes it's cheaper to
1058	 * sync the data and get a pointer to it (indirect) so that
1059	 * we don't have to write the data twice.
1060	 */
1061	if (buf != NULL) { /* immediate write */
1062		zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER);
1063		/* test for truncation needs to be done while range locked */
1064		if (offset >= zp->z_phys->zp_size) {
1065			error = ENOENT;
1066		} else {
1067			error = dmu_read(os, object, offset, size, buf,
1068			    DMU_READ_NO_PREFETCH);
1069		}
1070		ASSERT(error == 0 || error == ENOENT);
1071	} else { /* indirect write */
1072		/*
1073		 * Have to lock the whole block to ensure when it's
1074		 * written out and it's checksum is being calculated
1075		 * that no one can change the data. We need to re-check
1076		 * blocksize after we get the lock in case it's changed!
1077		 */
1078		for (;;) {
1079			uint64_t blkoff;
1080			size = zp->z_blksz;
1081			blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
1082			offset -= blkoff;
1083			zgd->zgd_rl = zfs_range_lock(zp, offset, size,
1084			    RL_READER);
1085			if (zp->z_blksz == size)
1086				break;
1087			offset += blkoff;
1088			zfs_range_unlock(zgd->zgd_rl);
1089		}
1090		/* test for truncation needs to be done while range locked */
1091		if (lr->lr_offset >= zp->z_phys->zp_size)
1092			error = ENOENT;
1093#ifdef DEBUG
1094		if (zil_fault_io) {
1095			error = EIO;
1096			zil_fault_io = 0;
1097		}
1098#endif
1099		if (error == 0)
1100			error = dmu_buf_hold(os, object, offset, zgd, &db);
1101
1102		if (error == 0) {
1103			zgd->zgd_db = db;
1104			zgd->zgd_bp = bp;
1105
1106			ASSERT(db->db_offset == offset);
1107			ASSERT(db->db_size == size);
1108
1109			error = dmu_sync(zio, lr->lr_common.lrc_txg,
1110			    zfs_get_done, zgd);
1111			ASSERT(error || lr->lr_length <= zp->z_blksz);
1112
1113			/*
1114			 * On success, we need to wait for the write I/O
1115			 * initiated by dmu_sync() to complete before we can
1116			 * release this dbuf.  We will finish everything up
1117			 * in the zfs_get_done() callback.
1118			 */
1119			if (error == 0)
1120				return (0);
1121
1122			if (error == EALREADY) {
1123				lr->lr_common.lrc_txtype = TX_WRITE2;
1124				error = 0;
1125			}
1126		}
1127	}
1128
1129	zfs_get_done(zgd, error);
1130
1131	return (error);
1132}
1133
1134/*ARGSUSED*/
1135static int
1136zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr,
1137    caller_context_t *ct)
1138{
1139	znode_t *zp = VTOZ(vp);
1140	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1141	int error;
1142
1143	ZFS_ENTER(zfsvfs);
1144	ZFS_VERIFY_ZP(zp);
1145
1146	if (flag & V_ACE_MASK)
1147		error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
1148	else
1149		error = zfs_zaccess_rwx(zp, mode, flag, cr);
1150
1151	ZFS_EXIT(zfsvfs);
1152	return (error);
1153}
1154
1155/*
1156 * If vnode is for a device return a specfs vnode instead.
1157 */
1158static int
1159specvp_check(vnode_t **vpp, cred_t *cr)
1160{
1161	int error = 0;
1162
1163	if (IS_DEVVP(*vpp)) {
1164		struct vnode *svp;
1165
1166		svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
1167		VN_RELE(*vpp);
1168		if (svp == NULL)
1169			error = ENOSYS;
1170		*vpp = svp;
1171	}
1172	return (error);
1173}
1174
1175
1176/*
1177 * Lookup an entry in a directory, or an extended attribute directory.
1178 * If it exists, return a held vnode reference for it.
1179 *
1180 *	IN:	dvp	- vnode of directory to search.
1181 *		nm	- name of entry to lookup.
1182 *		pnp	- full pathname to lookup [UNUSED].
1183 *		flags	- LOOKUP_XATTR set if looking for an attribute.
1184 *		rdir	- root directory vnode [UNUSED].
1185 *		cr	- credentials of caller.
1186 *		ct	- caller context
1187 *		direntflags - directory lookup flags
1188 *		realpnp - returned pathname.
1189 *
1190 *	OUT:	vpp	- vnode of located entry, NULL if not found.
1191 *
1192 *	RETURN:	0 if success
1193 *		error code if failure
1194 *
1195 * Timestamps:
1196 *	NA
1197 */
1198/* ARGSUSED */
1199static int
1200zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct componentname *cnp,
1201    int nameiop, cred_t *cr, int flags)
1202{
1203	znode_t *zdp = VTOZ(dvp);
1204	zfsvfs_t *zfsvfs = zdp->z_zfsvfs;
1205	int *direntflags = NULL;
1206	void *realpnp = NULL;
1207	int	error = 0;
1208
1209	/* fast path */
1210	if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
1211
1212		if (dvp->v_type != VDIR) {
1213			return (ENOTDIR);
1214		} else if (zdp->z_dbuf == NULL) {
1215			return (EIO);
1216		}
1217
1218		if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
1219			error = zfs_fastaccesschk_execute(zdp, cr);
1220			if (!error) {
1221				*vpp = dvp;
1222				VN_HOLD(*vpp);
1223				return (0);
1224			}
1225			return (error);
1226		} else {
1227			vnode_t *tvp = dnlc_lookup(dvp, nm);
1228
1229			if (tvp) {
1230				error = zfs_fastaccesschk_execute(zdp, cr);
1231				if (error) {
1232					VN_RELE(tvp);
1233					return (error);
1234				}
1235				if (tvp == DNLC_NO_VNODE) {
1236					VN_RELE(tvp);
1237					return (ENOENT);
1238				} else {
1239					*vpp = tvp;
1240					return (specvp_check(vpp, cr));
1241				}
1242			}
1243		}
1244	}
1245
1246	DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm);
1247
1248	ZFS_ENTER(zfsvfs);
1249	ZFS_VERIFY_ZP(zdp);
1250
1251	*vpp = NULL;
1252	dprintf("zfs_lookup called %s\n", nm);
1253	if (flags & LOOKUP_XATTR) {
1254#ifdef TODO
1255		/*
1256		 * If the xattr property is off, refuse the lookup request.
1257		 */
1258		if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) {
1259			ZFS_EXIT(zfsvfs);
1260			return (EINVAL);
1261		}
1262#endif
1263
1264		/*
1265		 * We don't allow recursive attributes..
1266		 * Maybe someday we will.
1267		 */
1268		if (zdp->z_phys->zp_flags & ZFS_XATTR) {
1269			ZFS_EXIT(zfsvfs);
1270			return (EINVAL);
1271		}
1272
1273		if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) {
1274			ZFS_EXIT(zfsvfs);
1275			return (error);
1276		}
1277
1278		/*
1279		 * Do we have permission to get into attribute directory?
1280		 */
1281		if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0,
1282		    B_FALSE, cr)) {
1283			VN_RELE(*vpp);
1284			*vpp = NULL;
1285		}
1286
1287		ZFS_EXIT(zfsvfs);
1288		return (error);
1289	}
1290
1291	if (dvp->v_type != VDIR) {
1292		ZFS_EXIT(zfsvfs);
1293		return (ENOTDIR);
1294	}
1295
1296	/*
1297	 * Check accessibility of directory.
1298	 */
1299	if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) {
1300		ZFS_EXIT(zfsvfs);
1301		return (error);
1302	}
1303
1304	/*
1305	 * Before tediously performing a linear scan of the directory,
1306	 * check the name cache to see if the directory/name pair
1307	 * we are looking for is known already.
1308	 */
1309
1310	if ((error = cache_lookup(dvp, vpp, cnp)) >= 0) {
1311		ZFS_EXIT(zfsvfs);
1312		return (error);
1313	}
1314
1315	if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
1316	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1317		ZFS_EXIT(zfsvfs);
1318		return (EILSEQ);
1319	}
1320
1321	error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp);
1322	if (error == 0)
1323		error = specvp_check(vpp, cr);
1324
1325	ZFS_EXIT(zfsvfs);
1326
1327	/* Translate errors and add SAVENAME when needed. */
1328	if (cnp->cn_flags & ISLASTCN) {
1329		switch (nameiop) {
1330		case CREATE:
1331		case RENAME:
1332			if (error == ENOENT) {
1333				error = EJUSTRETURN;
1334				break;
1335			}
1336			/* FALLTHROUGH */
1337		case DELETE:
1338			break;
1339		}
1340	}
1341
1342	if (error == 0 && (nm[0] != '.' || nm[1] != '\0')) {
1343		int ltype = 0;
1344
1345		if (cnp->cn_flags & ISDOTDOT) {
1346			ltype = VOP_ISLOCKED(dvp);
1347			VOP_UNLOCK(dvp);
1348		}
1349		error = vn_lock(*vpp, LK_EXCLUSIVE | LK_RETRY);
1350		if (cnp->cn_flags & ISDOTDOT)
1351			vn_lock(dvp, ltype | LK_RETRY);
1352		if (error != 0) {
1353			VN_RELE(*vpp);
1354			*vpp = NULL;
1355			return (error);
1356		}
1357	}
1358
1359	/*
1360	 * Insert name into cache if appropriate.
1361	 */
1362	if ((cnp->cn_flags & MAKEENTRY) == 0){
1363		return (error);
1364	}
1365	switch (error) {
1366	case 0:
1367		cache_enter(dvp, *vpp, cnp);
1368		break;
1369	case ENOENT:
1370		if (nameiop != CREATE)
1371			cache_enter(dvp, *vpp, cnp);
1372		break;
1373	default:
1374		break;
1375	}
1376	return (error);
1377}
1378
1379/*
1380 * Attempt to create a new entry in a directory.  If the entry
1381 * already exists, truncate the file if permissible, else return
1382 * an error.  Return the vp of the created or trunc'd file.
1383 *
1384 *	IN:	dvp	- vnode of directory to put new file entry in.
1385 *		name	- name of new file entry.
1386 *		vap	- attributes of new file.
1387 *		excl	- flag indicating exclusive or non-exclusive mode.
1388 *		mode	- mode to open file with.
1389 *		cr	- credentials of caller.
1390 *		flag	- large file flag [UNUSED].
1391 *		ct	- caller context
1392 *		vsecp 	- ACL to be set
1393 *
1394 *	OUT:	vpp	- vnode of created or trunc'd entry.
1395 *
1396 *	RETURN:	0 if success
1397 *		error code if failure
1398 *
1399 * Timestamps:
1400 *	dvp - ctime|mtime updated if new entry created
1401 *	 vp - ctime|mtime always, atime if new
1402 */
1403
1404/* ARGSUSED */
1405static int
1406zfs_create(vnode_t *dvp, char *name, vattr_t *vap, int excl, int mode,
1407    vnode_t **vpp, cred_t *cr)
1408{
1409	znode_t		*zp, *dzp = VTOZ(dvp);
1410	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1411	zilog_t		*zilog;
1412	objset_t	*os;
1413	zfs_dirlock_t	*dl;
1414	dmu_tx_t	*tx;
1415	int		error;
1416	void		*vsecp = NULL;
1417	int		flag = 0;
1418	zfs_acl_ids_t	acl_ids;
1419	boolean_t	fuid_dirtied;
1420
1421	dprintf("zfs_create called\n");
1422	/*
1423	 * If we have an ephemeral id, ACL, or XVATTR then
1424	 * make sure file system is at proper version
1425	 */
1426
1427	if (zfsvfs->z_use_fuids == B_FALSE &&
1428	    (vsecp || (vap->va_mask & AT_XVATTR) ||
1429	    IS_EPHEMERAL(crgetuid(cr)) || IS_EPHEMERAL(crgetgid(cr))))
1430		return (EINVAL);
1431
1432	ZFS_ENTER(zfsvfs);
1433	ZFS_VERIFY_ZP(dzp);
1434	os = zfsvfs->z_os;
1435	zilog = zfsvfs->z_log;
1436
1437	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
1438	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1439		ZFS_EXIT(zfsvfs);
1440		return (EILSEQ);
1441	}
1442
1443	if (vap->va_mask & AT_XVATTR) {
1444		if ((error = secpolicy_xvattr((xvattr_t *)vap,
1445		    crgetuid(cr), cr, vap->va_type)) != 0) {
1446			ZFS_EXIT(zfsvfs);
1447			return (error);
1448		}
1449	}
1450top:
1451	*vpp = NULL;
1452
1453	if ((vap->va_mode & S_ISVTX) && secpolicy_vnode_stky_modify(cr))
1454		vap->va_mode &= ~S_ISVTX;
1455
1456	if (*name == '\0') {
1457		/*
1458		 * Null component name refers to the directory itself.
1459		 */
1460		VN_HOLD(dvp);
1461		zp = dzp;
1462		dl = NULL;
1463		error = 0;
1464	} else {
1465		/* possible VN_HOLD(zp) */
1466		int zflg = 0;
1467
1468		if (flag & FIGNORECASE)
1469			zflg |= ZCILOOK;
1470
1471		error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1472		    NULL, NULL);
1473		if (error) {
1474			if (strcmp(name, "..") == 0)
1475				error = EISDIR;
1476			ZFS_EXIT(zfsvfs);
1477			return (error);
1478		}
1479	}
1480	if (zp == NULL) {
1481		uint64_t txtype;
1482
1483		/*
1484		 * Create a new file object and update the directory
1485		 * to reference it.
1486		 */
1487		if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
1488			goto out;
1489		}
1490
1491		/*
1492		 * We only support the creation of regular files in
1493		 * extended attribute directories.
1494		 */
1495		if ((dzp->z_phys->zp_flags & ZFS_XATTR) &&
1496		    (vap->va_type != VREG)) {
1497			error = EINVAL;
1498			goto out;
1499		}
1500
1501		if ((error = zfs_acl_ids_create(dzp, 0, vap, cr, vsecp,
1502		    &acl_ids)) != 0)
1503			goto out;
1504		if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1505			zfs_acl_ids_free(&acl_ids);
1506			error = EDQUOT;
1507			goto out;
1508		}
1509
1510		tx = dmu_tx_create(os);
1511		dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1512		fuid_dirtied = zfsvfs->z_fuid_dirty;
1513		if (fuid_dirtied)
1514			zfs_fuid_txhold(zfsvfs, tx);
1515		dmu_tx_hold_bonus(tx, dzp->z_id);
1516		dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
1517		if (acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1518			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1519			    0, SPA_MAXBLOCKSIZE);
1520		}
1521		error = dmu_tx_assign(tx, TXG_NOWAIT);
1522		if (error) {
1523			zfs_acl_ids_free(&acl_ids);
1524			zfs_dirent_unlock(dl);
1525			if (error == ERESTART) {
1526				dmu_tx_wait(tx);
1527				dmu_tx_abort(tx);
1528				goto top;
1529			}
1530			dmu_tx_abort(tx);
1531			ZFS_EXIT(zfsvfs);
1532			return (error);
1533		}
1534		zfs_mknode(dzp, vap, tx, cr, 0, &zp, 0, &acl_ids);
1535
1536		if (fuid_dirtied)
1537			zfs_fuid_sync(zfsvfs, tx);
1538
1539		(void) zfs_link_create(dl, zp, tx, ZNEW);
1540
1541		txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
1542		if (flag & FIGNORECASE)
1543			txtype |= TX_CI;
1544		zfs_log_create(zilog, tx, txtype, dzp, zp, name,
1545		    vsecp, acl_ids.z_fuidp, vap);
1546		zfs_acl_ids_free(&acl_ids);
1547		dmu_tx_commit(tx);
1548	} else {
1549		int aflags = (flag & FAPPEND) ? V_APPEND : 0;
1550
1551		/*
1552		 * A directory entry already exists for this name.
1553		 */
1554		/*
1555		 * Can't truncate an existing file if in exclusive mode.
1556		 */
1557		if (excl == EXCL) {
1558			error = EEXIST;
1559			goto out;
1560		}
1561		/*
1562		 * Can't open a directory for writing.
1563		 */
1564		if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) {
1565			error = EISDIR;
1566			goto out;
1567		}
1568		/*
1569		 * Verify requested access to file.
1570		 */
1571		if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) {
1572			goto out;
1573		}
1574
1575		mutex_enter(&dzp->z_lock);
1576		dzp->z_seq++;
1577		mutex_exit(&dzp->z_lock);
1578
1579		/*
1580		 * Truncate regular files if requested.
1581		 */
1582		if ((ZTOV(zp)->v_type == VREG) &&
1583		    (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) {
1584			/* we can't hold any locks when calling zfs_freesp() */
1585			zfs_dirent_unlock(dl);
1586			dl = NULL;
1587			error = zfs_freesp(zp, 0, 0, mode, TRUE);
1588			if (error == 0) {
1589				vnevent_create(ZTOV(zp), NULL);
1590			}
1591		}
1592	}
1593out:
1594	if (dl)
1595		zfs_dirent_unlock(dl);
1596
1597	if (error) {
1598		if (zp)
1599			VN_RELE(ZTOV(zp));
1600	} else {
1601		*vpp = ZTOV(zp);
1602		error = specvp_check(vpp, cr);
1603	}
1604
1605	ZFS_EXIT(zfsvfs);
1606	return (error);
1607}
1608
1609/*
1610 * Remove an entry from a directory.
1611 *
1612 *	IN:	dvp	- vnode of directory to remove entry from.
1613 *		name	- name of entry to remove.
1614 *		cr	- credentials of caller.
1615 *		ct	- caller context
1616 *		flags	- case flags
1617 *
1618 *	RETURN:	0 if success
1619 *		error code if failure
1620 *
1621 * Timestamps:
1622 *	dvp - ctime|mtime
1623 *	 vp - ctime (if nlink > 0)
1624 */
1625/*ARGSUSED*/
1626static int
1627zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct,
1628    int flags)
1629{
1630	znode_t		*zp, *dzp = VTOZ(dvp);
1631	znode_t		*xzp = NULL;
1632	vnode_t		*vp;
1633	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1634	zilog_t		*zilog;
1635	uint64_t	acl_obj, xattr_obj;
1636	zfs_dirlock_t	*dl;
1637	dmu_tx_t	*tx;
1638	boolean_t	may_delete_now, delete_now = FALSE;
1639	boolean_t	unlinked, toobig = FALSE;
1640	uint64_t	txtype;
1641	pathname_t	*realnmp = NULL;
1642	pathname_t	realnm;
1643	int		error;
1644	int		zflg = ZEXISTS;
1645
1646	dprintf("zfs_remove called\n");
1647
1648	ZFS_ENTER(zfsvfs);
1649	ZFS_VERIFY_ZP(dzp);
1650	zilog = zfsvfs->z_log;
1651
1652	if (flags & FIGNORECASE) {
1653		zflg |= ZCILOOK;
1654		pn_alloc(&realnm);
1655		realnmp = &realnm;
1656	}
1657
1658top:
1659	/*
1660	 * Attempt to lock directory; fail if entry doesn't exist.
1661	 */
1662	if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1663	    NULL, realnmp)) {
1664		if (realnmp)
1665			pn_free(realnmp);
1666		ZFS_EXIT(zfsvfs);
1667		return (error);
1668	}
1669
1670	vp = ZTOV(zp);
1671
1672	if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1673		goto out;
1674	}
1675
1676	/*
1677	 * Need to use rmdir for removing directories.
1678	 */
1679	if (vp->v_type == VDIR) {
1680		error = EPERM;
1681		goto out;
1682	}
1683
1684	vnevent_remove(vp, dvp, name, ct);
1685
1686	if (realnmp)
1687		dnlc_remove(dvp, realnmp->pn_buf);
1688	else
1689		dnlc_remove(dvp, name);
1690
1691	may_delete_now = FALSE;
1692
1693	/*
1694	 * We may delete the znode now, or we may put it in the unlinked set;
1695	 * it depends on whether we're the last link, and on whether there are
1696	 * other holds on the vnode.  So we dmu_tx_hold() the right things to
1697	 * allow for either case.
1698	 */
1699	tx = dmu_tx_create(zfsvfs->z_os);
1700	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1701	dmu_tx_hold_bonus(tx, zp->z_id);
1702	if (may_delete_now) {
1703		toobig =
1704		    zp->z_phys->zp_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT;
1705		/* if the file is too big, only hold_free a token amount */
1706		dmu_tx_hold_free(tx, zp->z_id, 0,
1707		    (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1708	}
1709
1710	/* are there any extended attributes? */
1711	if ((xattr_obj = zp->z_phys->zp_xattr) != 0) {
1712		/* XXX - do we need this if we are deleting? */
1713		dmu_tx_hold_bonus(tx, xattr_obj);
1714	}
1715
1716	/* are there any additional acls */
1717	if ((acl_obj = zp->z_phys->zp_acl.z_acl_extern_obj) != 0 &&
1718	    may_delete_now)
1719		dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1720
1721	/* charge as an update -- would be nice not to charge at all */
1722	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1723
1724	error = dmu_tx_assign(tx, TXG_NOWAIT);
1725	if (error) {
1726		zfs_dirent_unlock(dl);
1727		VN_RELE(vp);
1728		if (error == ERESTART) {
1729			dmu_tx_wait(tx);
1730			dmu_tx_abort(tx);
1731			goto top;
1732		}
1733		if (realnmp)
1734			pn_free(realnmp);
1735		dmu_tx_abort(tx);
1736		ZFS_EXIT(zfsvfs);
1737		return (error);
1738	}
1739
1740	/*
1741	 * Remove the directory entry.
1742	 */
1743	error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1744
1745	if (error) {
1746		dmu_tx_commit(tx);
1747		goto out;
1748	}
1749
1750	if (0 && unlinked) {
1751		KASSERT(0);	/* NetBSD: must now happen now */
1752		VI_LOCK(vp);
1753		delete_now = may_delete_now && !toobig &&
1754		    vp->v_count == 1 && !vn_has_cached_data(vp) &&
1755		    zp->z_phys->zp_xattr == xattr_obj &&
1756		    zp->z_phys->zp_acl.z_acl_extern_obj == acl_obj;
1757		VI_UNLOCK(vp);
1758		}
1759
1760	if (delete_now) {
1761		KASSERT(0);	/* NetBSD: must now happen now */
1762		if (zp->z_phys->zp_xattr) {
1763			error = zfs_zget(zfsvfs, zp->z_phys->zp_xattr, &xzp);
1764			ASSERT3U(error, ==, 0);
1765			ASSERT3U(xzp->z_phys->zp_links, ==, 2);
1766			dmu_buf_will_dirty(xzp->z_dbuf, tx);
1767			mutex_enter(&xzp->z_lock);
1768			xzp->z_unlinked = 1;
1769			xzp->z_phys->zp_links = 0;
1770			mutex_exit(&xzp->z_lock);
1771			zfs_unlinked_add(xzp, tx);
1772			zp->z_phys->zp_xattr = 0; /* probably unnecessary */
1773		}
1774		mutex_enter(&zp->z_lock);
1775		VI_LOCK(vp);
1776		vp->v_count--;
1777		ASSERT3U(vp->v_count, ==, 0);
1778		VI_UNLOCK(vp);
1779		mutex_exit(&zp->z_lock);
1780		zfs_znode_delete(zp, tx);
1781	} else if (unlinked) {
1782		zfs_unlinked_add(zp, tx);
1783	}
1784
1785	txtype = TX_REMOVE;
1786	if (flags & FIGNORECASE)
1787		txtype |= TX_CI;
1788	zfs_log_remove(zilog, tx, txtype, dzp, name);
1789
1790	dmu_tx_commit(tx);
1791out:
1792	if (realnmp)
1793		pn_free(realnmp);
1794
1795	zfs_dirent_unlock(dl);
1796
1797	if (!delete_now) {
1798		VN_RELE(vp);
1799	} else if (xzp) {
1800		/* this rele is delayed to prevent nesting transactions */
1801		VN_RELE(ZTOV(xzp));
1802	}
1803
1804	ZFS_EXIT(zfsvfs);
1805	return (error);
1806}
1807
1808/*
1809 * Create a new directory and insert it into dvp using the name
1810 * provided.  Return a pointer to the inserted directory.
1811 *
1812 *	IN:	dvp	- vnode of directory to add subdir to.
1813 *		dirname	- name of new directory.
1814 *		vap	- attributes of new directory.
1815 *		cr	- credentials of caller.
1816 *		ct	- caller context
1817 *		vsecp	- ACL to be set
1818 *
1819 *	OUT:	vpp	- vnode of created directory.
1820 *
1821 *	RETURN:	0 if success
1822 *		error code if failure
1823 *
1824 * Timestamps:
1825 *	dvp - ctime|mtime updated
1826 *	 vp - ctime|mtime|atime updated
1827 */
1828/*ARGSUSED*/
1829static int
1830zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr,
1831    caller_context_t *ct, int flags, vsecattr_t *vsecp)
1832{
1833	znode_t		*zp, *dzp = VTOZ(dvp);
1834	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1835	zilog_t		*zilog;
1836	zfs_dirlock_t	*dl;
1837	uint64_t	txtype;
1838	dmu_tx_t	*tx;
1839	int		error;
1840	int		zf = ZNEW;
1841	zfs_acl_ids_t	acl_ids;
1842	boolean_t	fuid_dirtied;
1843
1844	ASSERT(vap->va_type == VDIR);
1845
1846	/*
1847	 * If we have an ephemeral id, ACL, or XVATTR then
1848	 * make sure file system is at proper version
1849	 */
1850
1851	if (zfsvfs->z_use_fuids == B_FALSE &&
1852	    (vsecp || (vap->va_mask & AT_XVATTR) || IS_EPHEMERAL(crgetuid(cr))||
1853	    IS_EPHEMERAL(crgetgid(cr))))
1854		return (EINVAL);
1855
1856	ZFS_ENTER(zfsvfs);
1857	ZFS_VERIFY_ZP(dzp);
1858	zilog = zfsvfs->z_log;
1859
1860	if (dzp->z_phys->zp_flags & ZFS_XATTR) {
1861		ZFS_EXIT(zfsvfs);
1862		return (EINVAL);
1863	}
1864
1865	if (zfsvfs->z_utf8 && u8_validate(dirname,
1866	    strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1867		ZFS_EXIT(zfsvfs);
1868		return (EILSEQ);
1869	}
1870	if (flags & FIGNORECASE)
1871		zf |= ZCILOOK;
1872
1873	if (vap->va_mask & AT_XVATTR)
1874		if ((error = secpolicy_xvattr((xvattr_t *)vap,
1875		    crgetuid(cr), cr, vap->va_type)) != 0) {
1876			ZFS_EXIT(zfsvfs);
1877			return (error);
1878		}
1879
1880	/*
1881	 * First make sure the new directory doesn't exist.
1882	 */
1883top:
1884	*vpp = NULL;
1885
1886	if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
1887	    NULL, NULL)) {
1888		ZFS_EXIT(zfsvfs);
1889		return (error);
1890	}
1891
1892	if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) {
1893		zfs_dirent_unlock(dl);
1894		ZFS_EXIT(zfsvfs);
1895		return (error);
1896	}
1897
1898	if ((error = zfs_acl_ids_create(dzp, 0, vap, cr, vsecp,
1899	    &acl_ids)) != 0) {
1900		zfs_dirent_unlock(dl);
1901		ZFS_EXIT(zfsvfs);
1902		return (error);
1903	}
1904	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1905		zfs_acl_ids_free(&acl_ids);
1906		zfs_dirent_unlock(dl);
1907		ZFS_EXIT(zfsvfs);
1908		return (EDQUOT);
1909	}
1910
1911	/*
1912	 * Add a new entry to the directory.
1913	 */
1914	tx = dmu_tx_create(zfsvfs->z_os);
1915	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
1916	dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1917	fuid_dirtied = zfsvfs->z_fuid_dirty;
1918	if (fuid_dirtied)
1919		zfs_fuid_txhold(zfsvfs, tx);
1920	if (acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE)
1921		dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1922		    0, SPA_MAXBLOCKSIZE);
1923	error = dmu_tx_assign(tx, TXG_NOWAIT);
1924	if (error) {
1925		zfs_acl_ids_free(&acl_ids);
1926		zfs_dirent_unlock(dl);
1927		if (error == ERESTART) {
1928			dmu_tx_wait(tx);
1929			dmu_tx_abort(tx);
1930			goto top;
1931		}
1932		dmu_tx_abort(tx);
1933		ZFS_EXIT(zfsvfs);
1934		return (error);
1935	}
1936
1937	/*
1938	 * Create new node.
1939	 */
1940	zfs_mknode(dzp, vap, tx, cr, 0, &zp, 0, &acl_ids);
1941
1942	if (fuid_dirtied)
1943		zfs_fuid_sync(zfsvfs, tx);
1944	/*
1945	 * Now put new name in parent dir.
1946	 */
1947	(void) zfs_link_create(dl, zp, tx, ZNEW);
1948
1949	*vpp = ZTOV(zp);
1950
1951	txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
1952	if (flags & FIGNORECASE)
1953		txtype |= TX_CI;
1954	zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
1955	    acl_ids.z_fuidp, vap);
1956
1957	zfs_acl_ids_free(&acl_ids);
1958	dmu_tx_commit(tx);
1959
1960	zfs_dirent_unlock(dl);
1961
1962	ZFS_EXIT(zfsvfs);
1963	return (0);
1964}
1965
1966/*
1967 * Remove a directory subdir entry.  If the current working
1968 * directory is the same as the subdir to be removed, the
1969 * remove will fail.
1970 *
1971 *	IN:	dvp	- vnode of directory to remove from.
1972 *		name	- name of directory to be removed.
1973 *		cwd	- vnode of current working directory.
1974 *		cr	- credentials of caller.
1975 *		ct	- caller context
1976 *		flags	- case flags
1977 *
1978 *	RETURN:	0 if success
1979 *		error code if failure
1980 *
1981 * Timestamps:
1982 *	dvp - ctime|mtime updated
1983 */
1984/*ARGSUSED*/
1985static int
1986zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr,
1987    caller_context_t *ct, int flags)
1988{
1989	znode_t		*dzp = VTOZ(dvp);
1990	znode_t		*zp;
1991	vnode_t		*vp;
1992	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1993	zilog_t		*zilog;
1994	zfs_dirlock_t	*dl;
1995	dmu_tx_t	*tx;
1996	int		error;
1997	int		zflg = ZEXISTS;
1998
1999	ZFS_ENTER(zfsvfs);
2000	ZFS_VERIFY_ZP(dzp);
2001	zilog = zfsvfs->z_log;
2002
2003	if (flags & FIGNORECASE)
2004		zflg |= ZCILOOK;
2005top:
2006	zp = NULL;
2007
2008	/*
2009	 * Attempt to lock directory; fail if entry doesn't exist.
2010	 */
2011	if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
2012	    NULL, NULL)) {
2013		ZFS_EXIT(zfsvfs);
2014		return (error);
2015	}
2016
2017	vp = ZTOV(zp);
2018
2019	if (error = zfs_zaccess_delete(dzp, zp, cr)) {
2020		goto out;
2021	}
2022
2023	if (vp->v_type != VDIR) {
2024		error = ENOTDIR;
2025		goto out;
2026	}
2027
2028	if (vp == cwd) {
2029		error = EINVAL;
2030		goto out;
2031	}
2032
2033	vnevent_rmdir(vp, dvp, name, ct);
2034
2035	/*
2036	 * Grab a lock on the parent pointer to make sure we play well
2037	 * with the treewalk and directory rename code.
2038	 */
2039	rw_enter(&zp->z_parent_lock, RW_WRITER);
2040
2041	tx = dmu_tx_create(zfsvfs->z_os);
2042	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
2043	dmu_tx_hold_bonus(tx, zp->z_id);
2044	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
2045	error = dmu_tx_assign(tx, TXG_NOWAIT);
2046	if (error) {
2047		rw_exit(&zp->z_parent_lock);
2048		rw_exit(&zp->z_name_lock);
2049		zfs_dirent_unlock(dl);
2050		VN_RELE(vp);
2051		if (error == ERESTART) {
2052			dmu_tx_wait(tx);
2053			dmu_tx_abort(tx);
2054			goto top;
2055		}
2056		dmu_tx_abort(tx);
2057		ZFS_EXIT(zfsvfs);
2058		return (error);
2059	}
2060
2061	/* Purge cache entries, while still holding locks. */
2062	cache_purge(dvp);
2063	cache_purge(vp);
2064
2065	error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
2066
2067	if (error == 0) {
2068		uint64_t txtype = TX_RMDIR;
2069		if (flags & FIGNORECASE)
2070			txtype |= TX_CI;
2071		zfs_log_remove(zilog, tx, txtype, dzp, name);
2072	}
2073
2074	dmu_tx_commit(tx);
2075
2076	rw_exit(&zp->z_parent_lock);
2077	rw_exit(&zp->z_name_lock);
2078out:
2079	zfs_dirent_unlock(dl);
2080
2081	VN_RELE(vp);
2082
2083	ZFS_EXIT(zfsvfs);
2084	return (error);
2085}
2086
2087/*
2088 * Read as many directory entries as will fit into the provided
2089 * buffer from the given directory cursor position (specified in
2090 * the uio structure.
2091 *
2092 *	IN:	vp	- vnode of directory to read.
2093 *		uio	- structure supplying read location, range info,
2094 *			  and return buffer.
2095 *		cr	- credentials of caller.
2096 *		ct	- caller context
2097 *		flags	- case flags
2098 *
2099 *	OUT:	uio	- updated offset and range, buffer filled.
2100 *		eofp	- set to true if end-of-file detected.
2101 *
2102 *	RETURN:	0 if success
2103 *		error code if failure
2104 *
2105 * Timestamps:
2106 *	vp - atime updated
2107 *
2108 * Note that the low 4 bits of the cookie returned by zap is always zero.
2109 * This allows us to use the low range for "special" directory entries:
2110 * We use 0 for '.', and 1 for '..'.  If this is the root of the filesystem,
2111 * we use the offset 2 for the '.zfs' directory.
2112 */
2113/* ARGSUSED */
2114static int
2115zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp, int *ncookies, u_long **cookies)
2116{
2117	znode_t		*zp = VTOZ(vp);
2118	iovec_t		*iovp;
2119	edirent_t	*eodp;
2120	dirent64_t	*odp;
2121	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
2122	objset_t	*os;
2123	caddr_t		outbuf;
2124	size_t		bufsize;
2125	zap_cursor_t	zc;
2126	zap_attribute_t	zap;
2127	uint_t		bytes_wanted;
2128	uint64_t	offset; /* must be unsigned; checks for < 1 */
2129	int		local_eof;
2130	int		outcount;
2131	int		error;
2132	uint8_t		prefetch;
2133	boolean_t	check_sysattrs;
2134	uint8_t		type;
2135	int		ncooks;
2136	u_long		*cooks = NULL;
2137	int		flags = 0;
2138
2139	dprintf("zfs_readdir called\n");
2140
2141	ZFS_ENTER(zfsvfs);
2142	ZFS_VERIFY_ZP(zp);
2143
2144	/*
2145	 * If we are not given an eof variable,
2146	 * use a local one.
2147	 */
2148	if (eofp == NULL)
2149		eofp = &local_eof;
2150
2151	/*
2152	 * Check for valid iov_len.
2153	 */
2154	if (uio->uio_iov->iov_len <= 0) {
2155		ZFS_EXIT(zfsvfs);
2156		return (EINVAL);
2157	}
2158
2159	/*
2160	 * Quit if directory has been removed (posix)
2161	 */
2162	if ((*eofp = zp->z_unlinked) != 0) {
2163		ZFS_EXIT(zfsvfs);
2164		return (0);
2165	}
2166
2167	error = 0;
2168	os = zfsvfs->z_os;
2169	offset = uio->uio_loffset;
2170	prefetch = zp->z_zn_prefetch;
2171
2172	/*
2173	 * Initialize the iterator cursor.
2174	 */
2175	if (offset <= 3) {
2176		/*
2177		 * Start iteration from the beginning of the directory.
2178		 */
2179		zap_cursor_init(&zc, os, zp->z_id);
2180	} else {
2181		/*
2182		 * The offset is a serialized cursor.
2183		 */
2184		zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
2185	}
2186
2187	/*
2188	 * Get space to change directory entries into fs independent format.
2189	 */
2190	iovp = uio->uio_iov;
2191	bytes_wanted = iovp->iov_len;
2192	if (!VMSPACE_IS_KERNEL_P(uio->uio_vmspace) || uio->uio_iovcnt != 1) {
2193		bufsize = bytes_wanted;
2194		outbuf = kmem_alloc(bufsize, KM_SLEEP);
2195		memset(outbuf, 0, bufsize);
2196		odp = (struct dirent64 *)outbuf;
2197	} else {
2198		bufsize = bytes_wanted;
2199		odp = (struct dirent64 *)iovp->iov_base;
2200	}
2201	eodp = (struct edirent *)odp;
2202
2203	if (ncookies != NULL) {
2204		/*
2205		 * Minimum entry size is dirent size and 1 byte for a file name.
2206		 */
2207		ncooks = uio->uio_resid / _DIRENT_MINSIZE(odp);
2208//		    sizeof(struct dirent) - sizeof(((struct dirent *)NULL)->d_name) + 1);
2209		cooks = kmem_alloc(ncooks * sizeof(u_long), KM_SLEEP);
2210
2211		memset(cooks, 0, ncooks * sizeof(u_long));
2212		*cookies = cooks;
2213		*ncookies = ncooks;
2214	}
2215
2216	/*
2217	 * If this VFS supports the system attribute view interface; and
2218	 * we're looking at an extended attribute directory; and we care
2219	 * about normalization conflicts on this vfs; then we must check
2220	 * for normalization conflicts with the sysattr name space.
2221	 */
2222#ifdef TODO
2223	check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
2224	    (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm &&
2225	    (flags & V_RDDIR_ENTFLAGS);
2226#else
2227	check_sysattrs = 0;
2228#endif
2229
2230	/*
2231	 * Transform to file-system independent format
2232	 */
2233	outcount = 0;
2234	while (outcount < bytes_wanted) {
2235		ino64_t objnum;
2236		ushort_t reclen;
2237		off64_t *next;
2238
2239		/*
2240		 * Special case `.', `..', and `.zfs'.
2241		 */
2242		if (offset == 0) {
2243			(void) strcpy(zap.za_name, ".");
2244			zap.za_normalization_conflict = 0;
2245			objnum = zp->z_id;
2246			type = DT_DIR;
2247		} else if (offset == 1) {
2248			(void) strcpy(zap.za_name, "..");
2249			zap.za_normalization_conflict = 0;
2250			objnum = zp->z_phys->zp_parent;
2251			type = DT_DIR;
2252		} else if (offset == 2 && zfs_show_ctldir(zp)) {
2253			(void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
2254			zap.za_normalization_conflict = 0;
2255			objnum = ZFSCTL_INO_ROOT;
2256			type = DT_DIR;
2257		} else {
2258			/*
2259			 * Grab next entry.
2260			 */
2261			if (error = zap_cursor_retrieve(&zc, &zap)) {
2262				if ((*eofp = (error == ENOENT)) != 0)
2263					break;
2264				else
2265					goto update;
2266			}
2267
2268			if (zap.za_integer_length != 8 ||
2269			    zap.za_num_integers != 1) {
2270				cmn_err(CE_WARN, "zap_readdir: bad directory "
2271				    "entry, obj = %lld, offset = %lld\n",
2272				    (u_longlong_t)zp->z_id,
2273				    (u_longlong_t)offset);
2274				error = ENXIO;
2275				goto update;
2276			}
2277
2278			objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
2279			/*
2280			 * MacOS X can extract the object type here such as:
2281			 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer);
2282			 */
2283			type = ZFS_DIRENT_TYPE(zap.za_first_integer);
2284
2285			if (check_sysattrs && !zap.za_normalization_conflict) {
2286#ifdef TODO
2287				zap.za_normalization_conflict =
2288				    xattr_sysattr_casechk(zap.za_name);
2289#else
2290				panic("%s:%u: TODO", __func__, __LINE__);
2291#endif
2292			}
2293		}
2294
2295		if (flags & V_RDDIR_ACCFILTER) {
2296			/*
2297			 * If we have no access at all, don't include
2298			 * this entry in the returned information
2299			 */
2300			znode_t	*ezp;
2301			if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0)
2302				goto skip_entry;
2303			if (!zfs_has_access(ezp, cr)) {
2304				VN_RELE(ZTOV(ezp));
2305				goto skip_entry;
2306			}
2307			VN_RELE(ZTOV(ezp));
2308		}
2309
2310		if (flags & V_RDDIR_ENTFLAGS)
2311			reclen = EDIRENT_RECLEN(strlen(zap.za_name));
2312		else
2313			reclen = _DIRENT_RECLEN(odp, strlen(zap.za_name));
2314
2315		/*
2316		 * Will this entry fit in the buffer?
2317		 */
2318		if (outcount + reclen > bufsize) {
2319			/*
2320			 * Did we manage to fit anything in the buffer?
2321			 */
2322			if (!outcount) {
2323				error = EINVAL;
2324				goto update;
2325			}
2326			break;
2327		}
2328		if (flags & V_RDDIR_ENTFLAGS) {
2329			/*
2330			 * Add extended flag entry:
2331			 */
2332			eodp->ed_ino = objnum;
2333			eodp->ed_reclen = reclen;
2334			/* NOTE: ed_off is the offset for the *next* entry */
2335			next = &(eodp->ed_off);
2336			eodp->ed_eflags = zap.za_normalization_conflict ?
2337			    ED_CASE_CONFLICT : 0;
2338			(void) strncpy(eodp->ed_name, zap.za_name,
2339			    EDIRENT_NAMELEN(reclen));
2340			eodp = (edirent_t *)((intptr_t)eodp + reclen);
2341		} else {
2342			/*
2343			 * Add normal entry:
2344			 */
2345			odp->d_ino = objnum;
2346			odp->d_reclen = reclen;
2347			odp->d_namlen = strlen(zap.za_name);
2348			(void) strlcpy(odp->d_name, zap.za_name, odp->d_namlen + 1);
2349			odp->d_type = type;
2350			odp = (dirent64_t *)((intptr_t)odp + reclen);
2351		}
2352		outcount += reclen;
2353
2354		KASSERT(outcount <= bufsize);
2355
2356		/* Prefetch znode */
2357		if (prefetch)
2358			dmu_prefetch(os, objnum, 0, 0);
2359
2360	skip_entry:
2361		/*
2362		 * Move to the next entry, fill in the previous offset.
2363		 */
2364		if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
2365			zap_cursor_advance(&zc);
2366			offset = zap_cursor_serialize(&zc);
2367		} else {
2368			offset += 1;
2369		}
2370
2371		if (cooks != NULL) {
2372			*cooks++ = offset;
2373			ncooks--;
2374			KASSERT(ncooks >= 0);
2375		}
2376	}
2377	zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
2378
2379	/* Subtract unused cookies */
2380	if (ncookies != NULL)
2381		*ncookies -= ncooks;
2382
2383	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace) && uio->uio_iovcnt == 1) {
2384		iovp->iov_base += outcount;
2385		iovp->iov_len -= outcount;
2386		uio->uio_resid -= outcount;
2387	} else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) {
2388		/*
2389		 * Reset the pointer.
2390		 */
2391		offset = uio->uio_loffset;
2392	}
2393
2394update:
2395	zap_cursor_fini(&zc);
2396	if (!VMSPACE_IS_KERNEL_P(uio->uio_vmspace) || uio->uio_iovcnt != 1)
2397		kmem_free(outbuf, bufsize);
2398
2399	if (error == ENOENT)
2400		error = 0;
2401
2402	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
2403
2404	uio->uio_loffset = offset;
2405	ZFS_EXIT(zfsvfs);
2406	if (error != 0 && cookies != NULL) {
2407		kmem_free(*cookies, ncooks * sizeof(u_long));
2408		*cookies = NULL;
2409		*ncookies = 0;
2410	}
2411	return (error);
2412}
2413
2414ulong_t zfs_fsync_sync_cnt = 4;
2415
2416static int
2417zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)
2418{
2419	znode_t	*zp = VTOZ(vp);
2420	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2421	int error;
2422
2423	error = 0;
2424
2425	dprintf("zfs_fsync called vp %p -- zfsvfs %p\n", vp, zfsvfs);
2426	(void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);
2427
2428	ZFS_ENTER(zfsvfs);
2429	ZFS_VERIFY_ZP(zp);
2430	/*
2431	 * NetBSD: if the sync is from reclaim or from ioflush,
2432	 * push dirty atime now.  No need to lock: in the reclaim
2433	 * case, everything is single threaded and for ioflush this
2434	 * is a lazy writeback.
2435	 *
2436	 * XXXNETBSD: in the ioflush case, we don't want to push anything
2437	 * to disk immediately.  We just want to queue the update so it
2438	 * will happen "soon".  Check this is the case otherwise zfs will
2439	 * perform poorly.
2440	 */
2441	if (zp->z_atime_dirty && zp->z_unlinked == 0 &&
2442	    (syncflag & (FSYNC_RECLAIM | FSYNC_LAZY)) != 0) {
2443		dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
2444
2445		dmu_tx_hold_bonus(tx, zp->z_id);
2446		error = dmu_tx_assign(tx, TXG_WAIT);
2447		if (error) {
2448			dmu_tx_abort(tx);
2449		} else {
2450			dmu_buf_will_dirty(zp->z_dbuf, tx);
2451			mutex_enter(&zp->z_lock);
2452			zp->z_atime_dirty = 0;
2453			mutex_exit(&zp->z_lock);
2454			dmu_tx_commit(tx);
2455		}
2456	}
2457	zil_commit(zfsvfs->z_log, zp->z_last_itx, zp->z_id);
2458	ZFS_EXIT(zfsvfs);
2459	return (0);
2460}
2461
2462
2463/*
2464 * Get the requested file attributes and place them in the provided
2465 * vattr structure.
2466 *
2467 *	IN:	vp	- vnode of file.
2468 *		vap	- va_mask identifies requested attributes.
2469 *			  If AT_XVATTR set, then optional attrs are requested
2470 *		flags	- ATTR_NOACLCHECK (CIFS server context)
2471 *		cr	- credentials of caller.
2472 *		ct	- caller context
2473 *
2474 *	OUT:	vap	- attribute values.
2475 *
2476 *	RETURN:	0 (always succeeds)
2477 */
2478/* ARGSUSED */
2479static int
2480zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2481    caller_context_t *ct)
2482{
2483	znode_t *zp = VTOZ(vp);
2484	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2485	znode_phys_t *pzp;
2486	int	error = 0;
2487	uint32_t blksize;
2488	u_longlong_t nblocks;
2489	uint64_t links;
2490	xvattr_t *xvap = (xvattr_t *)vap;	/* vap may be an xvattr_t * */
2491	xoptattr_t *xoap = NULL;
2492	boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2493
2494	dprintf("zfs_getattr called\n");
2495
2496	ZFS_ENTER(zfsvfs);
2497	ZFS_VERIFY_ZP(zp);
2498	pzp = zp->z_phys;
2499
2500	/*
2501	 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES.
2502	 * Also, if we are the owner don't bother, since owner should
2503	 * always be allowed to read basic attributes of file.
2504	 */
2505	if (!(pzp->zp_flags & ZFS_ACL_TRIVIAL) &&
2506	    (pzp->zp_uid != crgetuid(cr))) {
2507		if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0,
2508		    skipaclchk, cr)) {
2509			ZFS_EXIT(zfsvfs);
2510			return (error);
2511		}
2512	}
2513
2514	/*
2515	 * Return all attributes.  It's cheaper to provide the answer
2516	 * than to determine whether we were asked the question.
2517	 */
2518	mutex_enter(&zp->z_lock);
2519	vap->va_type = IFTOVT(pzp->zp_mode);
2520	vap->va_mode = pzp->zp_mode & ~S_IFMT;
2521	zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid);
2522	vap->va_nodeid = zp->z_id;
2523	if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp))
2524		links = pzp->zp_links + 1;
2525	else
2526		links = pzp->zp_links;
2527	vap->va_nlink = MIN(links, UINT32_MAX);	/* nlink_t limit! */
2528	vap->va_size = pzp->zp_size;
2529	vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0];
2530//	vap->va_fsid = 0;
2531	vap->va_rdev = zfs_cmpldev(pzp->zp_rdev);
2532	vap->va_seq = zp->z_seq;
2533	vap->va_flags = 0;	/* FreeBSD: Reset chflags(2) flags. */
2534
2535	/*
2536	 * Add in any requested optional attributes and the create time.
2537	 * Also set the corresponding bits in the returned attribute bitmap.
2538	 */
2539	if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) {
2540		if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
2541			xoap->xoa_archive =
2542			    ((pzp->zp_flags & ZFS_ARCHIVE) != 0);
2543			XVA_SET_RTN(xvap, XAT_ARCHIVE);
2544		}
2545
2546		if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
2547			xoap->xoa_readonly =
2548			    ((pzp->zp_flags & ZFS_READONLY) != 0);
2549			XVA_SET_RTN(xvap, XAT_READONLY);
2550		}
2551
2552		if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
2553			xoap->xoa_system =
2554			    ((pzp->zp_flags & ZFS_SYSTEM) != 0);
2555			XVA_SET_RTN(xvap, XAT_SYSTEM);
2556		}
2557
2558		if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
2559			xoap->xoa_hidden =
2560			    ((pzp->zp_flags & ZFS_HIDDEN) != 0);
2561			XVA_SET_RTN(xvap, XAT_HIDDEN);
2562		}
2563
2564		if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2565			xoap->xoa_nounlink =
2566			    ((pzp->zp_flags & ZFS_NOUNLINK) != 0);
2567			XVA_SET_RTN(xvap, XAT_NOUNLINK);
2568		}
2569
2570		if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2571			xoap->xoa_immutable =
2572			    ((pzp->zp_flags & ZFS_IMMUTABLE) != 0);
2573			XVA_SET_RTN(xvap, XAT_IMMUTABLE);
2574		}
2575
2576		if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2577			xoap->xoa_appendonly =
2578			    ((pzp->zp_flags & ZFS_APPENDONLY) != 0);
2579			XVA_SET_RTN(xvap, XAT_APPENDONLY);
2580		}
2581
2582		if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2583			xoap->xoa_nodump =
2584			    ((pzp->zp_flags & ZFS_NODUMP) != 0);
2585			XVA_SET_RTN(xvap, XAT_NODUMP);
2586		}
2587
2588		if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
2589			xoap->xoa_opaque =
2590			    ((pzp->zp_flags & ZFS_OPAQUE) != 0);
2591			XVA_SET_RTN(xvap, XAT_OPAQUE);
2592		}
2593
2594		if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2595			xoap->xoa_av_quarantined =
2596			    ((pzp->zp_flags & ZFS_AV_QUARANTINED) != 0);
2597			XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
2598		}
2599
2600		if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2601			xoap->xoa_av_modified =
2602			    ((pzp->zp_flags & ZFS_AV_MODIFIED) != 0);
2603			XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
2604		}
2605
2606		if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) &&
2607		    vp->v_type == VREG &&
2608		    (pzp->zp_flags & ZFS_BONUS_SCANSTAMP)) {
2609			size_t len;
2610			dmu_object_info_t doi;
2611
2612			/*
2613			 * Only VREG files have anti-virus scanstamps, so we
2614			 * won't conflict with symlinks in the bonus buffer.
2615			 */
2616			dmu_object_info_from_db(zp->z_dbuf, &doi);
2617			len = sizeof (xoap->xoa_av_scanstamp) +
2618			    sizeof (znode_phys_t);
2619			if (len <= doi.doi_bonus_size) {
2620				/*
2621				 * pzp points to the start of the
2622				 * znode_phys_t. pzp + 1 points to the
2623				 * first byte after the znode_phys_t.
2624				 */
2625				(void) memcpy(xoap->xoa_av_scanstamp,
2626				    pzp + 1,
2627				    sizeof (xoap->xoa_av_scanstamp));
2628				XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP);
2629			}
2630		}
2631
2632		if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
2633			ZFS_TIME_DECODE(&xoap->xoa_createtime, pzp->zp_crtime);
2634			XVA_SET_RTN(xvap, XAT_CREATETIME);
2635		}
2636
2637		if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2638			xoap->xoa_reparse =
2639			    ((pzp->zp_flags & ZFS_REPARSE) != 0);
2640			XVA_SET_RTN(xvap, XAT_REPARSE);
2641		}
2642	}
2643
2644	ZFS_TIME_DECODE(&vap->va_atime, pzp->zp_atime);
2645	ZFS_TIME_DECODE(&vap->va_mtime, pzp->zp_mtime);
2646	ZFS_TIME_DECODE(&vap->va_ctime, pzp->zp_ctime);
2647	ZFS_TIME_DECODE(&vap->va_birthtime, pzp->zp_crtime);
2648
2649	mutex_exit(&zp->z_lock);
2650
2651	dmu_object_size_from_db(zp->z_dbuf, &blksize, &nblocks);
2652	vap->va_blksize = blksize;
2653	vap->va_bytes = nblocks << 9;	/* nblocks * 512 */
2654
2655	if (zp->z_blksz == 0) {
2656		/*
2657		 * Block size hasn't been set; suggest maximal I/O transfers.
2658		 */
2659		vap->va_blksize = zfsvfs->z_max_blksz;
2660	}
2661
2662	ZFS_EXIT(zfsvfs);
2663	return (0);
2664}
2665
2666/*
2667 * Set the file attributes to the values contained in the
2668 * vattr structure.
2669 *
2670 *	IN:	vp	- vnode of file to be modified.
2671 *		vap	- new attribute values.
2672 *			  If AT_XVATTR set, then optional attrs are being set
2673 *		flags	- ATTR_UTIME set if non-default time values provided.
2674 *			- ATTR_NOACLCHECK (CIFS context only).
2675 *		cr	- credentials of caller.
2676 *		ct	- caller context
2677 *
2678 *	RETURN:	0 if success
2679 *		error code if failure
2680 *
2681 * Timestamps:
2682 *	vp - ctime updated, mtime updated if size changed.
2683 */
2684/* ARGSUSED */
2685static int
2686zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2687	caller_context_t *ct)
2688{
2689	znode_t		*zp = VTOZ(vp);
2690	znode_phys_t	*pzp;
2691	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
2692	zilog_t		*zilog;
2693	dmu_tx_t	*tx;
2694	vattr_t		oldva;
2695	xvattr_t	tmpxvattr;
2696	uint_t		mask = vap->va_mask;
2697	uint_t		saved_mask;
2698	int		trim_mask = 0;
2699	uint64_t	new_mode;
2700	uint64_t	new_uid, new_gid;
2701	znode_t		*attrzp;
2702	int		need_policy = FALSE;
2703	int		err;
2704	zfs_fuid_info_t *fuidp = NULL;
2705	xvattr_t *xvap = (xvattr_t *)vap;	/* vap may be an xvattr_t * */
2706	xoptattr_t	*xoap;
2707	zfs_acl_t	*aclp = NULL;
2708	boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2709	boolean_t fuid_dirtied = B_FALSE;
2710
2711	dprintf("zfs_setattr called\n");
2712
2713	if (mask == 0)
2714		return (0);
2715
2716	if (mask & AT_NOSET)
2717		return (EINVAL);
2718
2719	ZFS_ENTER(zfsvfs);
2720	ZFS_VERIFY_ZP(zp);
2721
2722	pzp = zp->z_phys;
2723	zilog = zfsvfs->z_log;
2724
2725	/*
2726	 * Make sure that if we have ephemeral uid/gid or xvattr specified
2727	 * that file system is at proper version level
2728	 */
2729
2730	if (zfsvfs->z_use_fuids == B_FALSE &&
2731	    (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) ||
2732	    ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) ||
2733	    (mask & AT_XVATTR))) {
2734		ZFS_EXIT(zfsvfs);
2735		return (EINVAL);
2736	}
2737
2738	if (mask & AT_SIZE && vp->v_type == VDIR) {
2739		ZFS_EXIT(zfsvfs);
2740		return (EISDIR);
2741	}
2742
2743	if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) {
2744		ZFS_EXIT(zfsvfs);
2745		return (EINVAL);
2746	}
2747
2748	/*
2749	 * If this is an xvattr_t, then get a pointer to the structure of
2750	 * optional attributes.  If this is NULL, then we have a vattr_t.
2751	 */
2752	xoap = xva_getxoptattr(xvap);
2753
2754	xva_init(&tmpxvattr);
2755
2756	/*
2757	 * Immutable files can only alter immutable bit and atime
2758	 */
2759	if ((pzp->zp_flags & ZFS_IMMUTABLE) &&
2760	    ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) ||
2761	    ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
2762		ZFS_EXIT(zfsvfs);
2763		return (EPERM);
2764	}
2765
2766	if ((mask & AT_SIZE) && (pzp->zp_flags & ZFS_READONLY)) {
2767		ZFS_EXIT(zfsvfs);
2768		return (EPERM);
2769	}
2770
2771	/*
2772	 * Verify timestamps doesn't overflow 32 bits.
2773	 * ZFS can handle large timestamps, but 32bit syscalls can't
2774	 * handle times greater than 2039.  This check should be removed
2775	 * once large timestamps are fully supported.
2776	 */
2777	if (mask & (AT_ATIME | AT_MTIME)) {
2778		if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) ||
2779		    ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) {
2780			ZFS_EXIT(zfsvfs);
2781			return (EOVERFLOW);
2782		}
2783	}
2784
2785top:
2786	attrzp = NULL;
2787
2788	/* Can this be moved to before the top label? */
2789	if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
2790		ZFS_EXIT(zfsvfs);
2791		return (EROFS);
2792	}
2793
2794	/*
2795	 * First validate permissions
2796	 */
2797	if (mask & AT_SIZE) {
2798		err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr);
2799		if (err) {
2800			ZFS_EXIT(zfsvfs);
2801			return (err);
2802		}
2803		/*
2804		 * XXX - Note, we are not providing any open
2805		 * mode flags here (like FNDELAY), so we may
2806		 * block if there are locks present... this
2807		 * should be addressed in openat().
2808		 */
2809		/* XXX - would it be OK to generate a log record here? */
2810		err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
2811		if (err) {
2812			ZFS_EXIT(zfsvfs);
2813			return (err);
2814		}
2815	}
2816
2817	if (mask & (AT_ATIME|AT_MTIME) ||
2818	    ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
2819	    XVA_ISSET_REQ(xvap, XAT_READONLY) ||
2820	    XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
2821	    XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
2822	    XVA_ISSET_REQ(xvap, XAT_SYSTEM))))
2823		need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
2824		    skipaclchk, cr);
2825
2826	if (mask & (AT_UID|AT_GID)) {
2827		int	idmask = (mask & (AT_UID|AT_GID));
2828		int	take_owner;
2829		int	take_group;
2830
2831		/*
2832		 * NOTE: even if a new mode is being set,
2833		 * we may clear S_ISUID/S_ISGID bits.
2834		 */
2835
2836		if (!(mask & AT_MODE))
2837			vap->va_mode = pzp->zp_mode;
2838
2839		/*
2840		 * Take ownership or chgrp to group we are a member of
2841		 */
2842
2843		take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr));
2844		take_group = (mask & AT_GID) &&
2845		    zfs_groupmember(zfsvfs, vap->va_gid, cr);
2846
2847		/*
2848		 * If both AT_UID and AT_GID are set then take_owner and
2849		 * take_group must both be set in order to allow taking
2850		 * ownership.
2851		 *
2852		 * Otherwise, send the check through secpolicy_vnode_setattr()
2853		 *
2854		 */
2855
2856		if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) ||
2857		    ((idmask == AT_UID) && take_owner) ||
2858		    ((idmask == AT_GID) && take_group)) {
2859			if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
2860			    skipaclchk, cr) == 0) {
2861				/*
2862				 * Remove setuid/setgid for non-privileged users
2863				 */
2864				secpolicy_setid_clear(vap, cr);
2865				trim_mask = (mask & (AT_UID|AT_GID));
2866			} else {
2867				need_policy =  TRUE;
2868			}
2869		} else {
2870			need_policy =  TRUE;
2871		}
2872	}
2873
2874	mutex_enter(&zp->z_lock);
2875	oldva.va_mode = pzp->zp_mode;
2876	zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
2877	if (mask & AT_XVATTR) {
2878		/*
2879		 * Update xvattr mask to include only those attributes
2880		 * that are actually changing.
2881		 *
2882		 * the bits will be restored prior to actually setting
2883		 * the attributes so the caller thinks they were set.
2884		 */
2885		if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2886			if (xoap->xoa_appendonly !=
2887			    ((pzp->zp_flags & ZFS_APPENDONLY) != 0)) {
2888				need_policy = TRUE;
2889			} else {
2890				XVA_CLR_REQ(xvap, XAT_APPENDONLY);
2891				XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY);
2892			}
2893		}
2894
2895		if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2896			if (xoap->xoa_nounlink !=
2897			    ((pzp->zp_flags & ZFS_NOUNLINK) != 0)) {
2898				need_policy = TRUE;
2899			} else {
2900				XVA_CLR_REQ(xvap, XAT_NOUNLINK);
2901				XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK);
2902			}
2903		}
2904
2905		if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2906			if (xoap->xoa_immutable !=
2907			    ((pzp->zp_flags & ZFS_IMMUTABLE) != 0)) {
2908				need_policy = TRUE;
2909			} else {
2910				XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
2911				XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE);
2912			}
2913		}
2914
2915		if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2916			if (xoap->xoa_nodump !=
2917			    ((pzp->zp_flags & ZFS_NODUMP) != 0)) {
2918				need_policy = TRUE;
2919			} else {
2920				XVA_CLR_REQ(xvap, XAT_NODUMP);
2921				XVA_SET_REQ(&tmpxvattr, XAT_NODUMP);
2922			}
2923		}
2924
2925		if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2926			if (xoap->xoa_av_modified !=
2927			    ((pzp->zp_flags & ZFS_AV_MODIFIED) != 0)) {
2928				need_policy = TRUE;
2929			} else {
2930				XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
2931				XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED);
2932			}
2933		}
2934
2935		if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2936			if ((vp->v_type != VREG &&
2937			    xoap->xoa_av_quarantined) ||
2938			    xoap->xoa_av_quarantined !=
2939			    ((pzp->zp_flags & ZFS_AV_QUARANTINED) != 0)) {
2940				need_policy = TRUE;
2941			} else {
2942				XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
2943				XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED);
2944			}
2945		}
2946
2947		if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2948			mutex_exit(&zp->z_lock);
2949			ZFS_EXIT(zfsvfs);
2950			return (EPERM);
2951		}
2952
2953		if (need_policy == FALSE &&
2954		    (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
2955		    XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
2956			need_policy = TRUE;
2957		}
2958	}
2959
2960	mutex_exit(&zp->z_lock);
2961
2962	if (mask & AT_MODE) {
2963		if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) {
2964			err = secpolicy_setid_setsticky_clear(vp, vap,
2965			    &oldva, cr);
2966			if (err) {
2967				ZFS_EXIT(zfsvfs);
2968				return (err);
2969			}
2970			trim_mask |= AT_MODE;
2971		} else {
2972			need_policy = TRUE;
2973		}
2974	}
2975
2976	if (need_policy) {
2977		/*
2978		 * If trim_mask is set then take ownership
2979		 * has been granted or write_acl is present and user
2980		 * has the ability to modify mode.  In that case remove
2981		 * UID|GID and or MODE from mask so that
2982		 * secpolicy_vnode_setattr() doesn't revoke it.
2983		 */
2984
2985		if (trim_mask) {
2986			saved_mask = vap->va_mask;
2987			vap->va_mask &= ~trim_mask;
2988		}
2989		err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,
2990		    (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
2991		if (err) {
2992			ZFS_EXIT(zfsvfs);
2993			return (err);
2994		}
2995
2996		if (trim_mask)
2997			vap->va_mask |= saved_mask;
2998	}
2999	/*
3000	 * secpolicy_vnode_setattr, or take ownership may have
3001	 * changed va_mask
3002	 */
3003	mask = vap->va_mask;
3004
3005	tx = dmu_tx_create(zfsvfs->z_os);
3006	dmu_tx_hold_bonus(tx, zp->z_id);
3007
3008	if (mask & AT_MODE) {
3009		uint64_t pmode = pzp->zp_mode;
3010
3011		new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
3012
3013		if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode))
3014			goto out;
3015		if (pzp->zp_acl.z_acl_extern_obj) {
3016			/* Are we upgrading ACL from old V0 format to new V1 */
3017			if (zfsvfs->z_version <= ZPL_VERSION_FUID &&
3018			    pzp->zp_acl.z_acl_version ==
3019			    ZFS_ACL_VERSION_INITIAL) {
3020				dmu_tx_hold_free(tx,
3021				    pzp->zp_acl.z_acl_extern_obj, 0,
3022				    DMU_OBJECT_END);
3023				dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3024				    0, aclp->z_acl_bytes);
3025			} else {
3026				dmu_tx_hold_write(tx,
3027				    pzp->zp_acl.z_acl_extern_obj, 0,
3028				    aclp->z_acl_bytes);
3029			}
3030		} else if (aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3031			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3032			    0, aclp->z_acl_bytes);
3033		}
3034	}
3035
3036	if (mask & (AT_UID | AT_GID)) {
3037		if (pzp->zp_xattr) {
3038			err = zfs_zget(zp->z_zfsvfs, pzp->zp_xattr, &attrzp);
3039			if (err)
3040				goto out;
3041			dmu_tx_hold_bonus(tx, attrzp->z_id);
3042		}
3043		if (mask & AT_UID) {
3044			new_uid = zfs_fuid_create(zfsvfs,
3045			    (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
3046			if (new_uid != pzp->zp_uid &&
3047			    zfs_usergroup_overquota(zfsvfs, B_FALSE, new_uid)) {
3048				err = EDQUOT;
3049				goto out;
3050			}
3051		}
3052
3053		if (mask & AT_GID) {
3054			new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid,
3055			    cr, ZFS_GROUP, &fuidp);
3056			if (new_gid != pzp->zp_gid &&
3057			    zfs_usergroup_overquota(zfsvfs, B_TRUE, new_gid)) {
3058				err = EDQUOT;
3059				goto out;
3060			}
3061		}
3062		fuid_dirtied = zfsvfs->z_fuid_dirty;
3063		if (fuid_dirtied) {
3064			if (zfsvfs->z_fuid_obj == 0) {
3065				dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
3066				dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
3067				    FUID_SIZE_ESTIMATE(zfsvfs));
3068				dmu_tx_hold_zap(tx, MASTER_NODE_OBJ,
3069				    FALSE, NULL);
3070			} else {
3071				dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj);
3072				dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0,
3073				    FUID_SIZE_ESTIMATE(zfsvfs));
3074			}
3075		}
3076	}
3077
3078	err = dmu_tx_assign(tx, TXG_NOWAIT);
3079	if (err) {
3080		if (err == ERESTART)
3081			dmu_tx_wait(tx);
3082		goto out;
3083	}
3084
3085	dmu_buf_will_dirty(zp->z_dbuf, tx);
3086
3087	/*
3088	 * Set each attribute requested.
3089	 * We group settings according to the locks they need to acquire.
3090	 *
3091	 * Note: you cannot set ctime directly, although it will be
3092	 * updated as a side-effect of calling this function.
3093	 */
3094
3095	mutex_enter(&zp->z_lock);
3096
3097	if (mask & AT_MODE) {
3098		mutex_enter(&zp->z_acl_lock);
3099		zp->z_phys->zp_mode = new_mode;
3100		err = zfs_aclset_common(zp, aclp, cr, tx);
3101		ASSERT3U(err, ==, 0);
3102		zp->z_acl_cached = aclp;
3103		aclp = NULL;
3104		mutex_exit(&zp->z_acl_lock);
3105	}
3106
3107	if (attrzp)
3108		mutex_enter(&attrzp->z_lock);
3109
3110	if (mask & AT_UID) {
3111		pzp->zp_uid = new_uid;
3112		if (attrzp)
3113			attrzp->z_phys->zp_uid = new_uid;
3114	}
3115
3116	if (mask & AT_GID) {
3117		pzp->zp_gid = new_gid;
3118		if (attrzp)
3119			attrzp->z_phys->zp_gid = new_gid;
3120	}
3121
3122	if (attrzp)
3123		mutex_exit(&attrzp->z_lock);
3124
3125	if (mask & AT_ATIME)
3126		ZFS_TIME_ENCODE(&vap->va_atime, pzp->zp_atime);
3127
3128	if (mask & AT_MTIME)
3129		ZFS_TIME_ENCODE(&vap->va_mtime, pzp->zp_mtime);
3130
3131	/* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */
3132	if (mask & AT_SIZE)
3133		zfs_time_stamper_locked(zp, CONTENT_MODIFIED, tx);
3134	else if (mask != 0)
3135		zfs_time_stamper_locked(zp, STATE_CHANGED, tx);
3136	/*
3137	 * Do this after setting timestamps to prevent timestamp
3138	 * update from toggling bit
3139	 */
3140
3141	if (xoap && (mask & AT_XVATTR)) {
3142
3143		/*
3144		 * restore trimmed off masks
3145		 * so that return masks can be set for caller.
3146		 */
3147
3148		if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) {
3149			XVA_SET_REQ(xvap, XAT_APPENDONLY);
3150		}
3151		if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) {
3152			XVA_SET_REQ(xvap, XAT_NOUNLINK);
3153		}
3154		if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) {
3155			XVA_SET_REQ(xvap, XAT_IMMUTABLE);
3156		}
3157		if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) {
3158			XVA_SET_REQ(xvap, XAT_NODUMP);
3159		}
3160		if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) {
3161			XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
3162		}
3163		if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) {
3164			XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
3165		}
3166
3167		if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) {
3168			size_t len;
3169			dmu_object_info_t doi;
3170
3171			ASSERT(vp->v_type == VREG);
3172
3173			/* Grow the bonus buffer if necessary. */
3174			dmu_object_info_from_db(zp->z_dbuf, &doi);
3175			len = sizeof (xoap->xoa_av_scanstamp) +
3176			    sizeof (znode_phys_t);
3177			if (len > doi.doi_bonus_size)
3178				VERIFY(dmu_set_bonus(zp->z_dbuf, len, tx) == 0);
3179		}
3180		zfs_xvattr_set(zp, xvap);
3181	}
3182
3183	if (fuid_dirtied)
3184		zfs_fuid_sync(zfsvfs, tx);
3185
3186	if (mask != 0)
3187		zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
3188
3189	mutex_exit(&zp->z_lock);
3190
3191out:
3192	if (attrzp)
3193		VN_RELE(ZTOV(attrzp));
3194
3195	if (aclp)
3196		zfs_acl_free(aclp);
3197
3198	if (fuidp) {
3199		zfs_fuid_info_free(fuidp);
3200		fuidp = NULL;
3201	}
3202
3203	if (err)
3204		dmu_tx_abort(tx);
3205	else
3206		dmu_tx_commit(tx);
3207
3208	if (err == ERESTART)
3209		goto top;
3210
3211	ZFS_EXIT(zfsvfs);
3212	return (err);
3213}
3214
3215typedef struct zfs_zlock {
3216	krwlock_t	*zl_rwlock;	/* lock we acquired */
3217	znode_t		*zl_znode;	/* znode we held */
3218	struct zfs_zlock *zl_next;	/* next in list */
3219} zfs_zlock_t;
3220
3221/*
3222 * Drop locks and release vnodes that were held by zfs_rename_lock().
3223 */
3224static void
3225zfs_rename_unlock(zfs_zlock_t **zlpp)
3226{
3227	zfs_zlock_t *zl;
3228
3229	while ((zl = *zlpp) != NULL) {
3230		if (zl->zl_znode != NULL)
3231			VN_RELE(ZTOV(zl->zl_znode));
3232		rw_exit(zl->zl_rwlock);
3233		*zlpp = zl->zl_next;
3234		kmem_free(zl, sizeof (*zl));
3235	}
3236}
3237
3238/*
3239 * Search back through the directory tree, using the ".." entries.
3240 * Lock each directory in the chain to prevent concurrent renames.
3241 * Fail any attempt to move a directory into one of its own descendants.
3242 * XXX - z_parent_lock can overlap with map or grow locks
3243 */
3244static int
3245zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
3246{
3247	zfs_zlock_t	*zl;
3248	znode_t		*zp = tdzp;
3249	uint64_t	rootid = zp->z_zfsvfs->z_root;
3250	uint64_t	*oidp = &zp->z_id;
3251	krwlock_t	*rwlp = &szp->z_parent_lock;
3252	krw_t		rw = RW_WRITER;
3253
3254	/*
3255	 * First pass write-locks szp and compares to zp->z_id.
3256	 * Later passes read-lock zp and compare to zp->z_parent.
3257	 */
3258	do {
3259		if (!rw_tryenter(rwlp, rw)) {
3260			/*
3261			 * Another thread is renaming in this path.
3262			 * Note that if we are a WRITER, we don't have any
3263			 * parent_locks held yet.
3264			 */
3265			if (rw == RW_READER && zp->z_id > szp->z_id) {
3266				/*
3267				 * Drop our locks and restart
3268				 */
3269				zfs_rename_unlock(&zl);
3270				*zlpp = NULL;
3271				zp = tdzp;
3272				oidp = &zp->z_id;
3273				rwlp = &szp->z_parent_lock;
3274				rw = RW_WRITER;
3275				continue;
3276			} else {
3277				/*
3278				 * Wait for other thread to drop its locks
3279				 */
3280				rw_enter(rwlp, rw);
3281			}
3282		}
3283
3284		zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
3285		zl->zl_rwlock = rwlp;
3286		zl->zl_znode = NULL;
3287		zl->zl_next = *zlpp;
3288		*zlpp = zl;
3289
3290		if (*oidp == szp->z_id)		/* We're a descendant of szp */
3291			return (EINVAL);
3292
3293		if (*oidp == rootid)		/* We've hit the top */
3294			return (0);
3295
3296		if (rw == RW_READER) {		/* i.e. not the first pass */
3297			int error = zfs_zget(zp->z_zfsvfs, *oidp, &zp);
3298			if (error)
3299				return (error);
3300			zl->zl_znode = zp;
3301		}
3302		oidp = &zp->z_phys->zp_parent;
3303		rwlp = &zp->z_parent_lock;
3304		rw = RW_READER;
3305
3306	} while (zp->z_id != sdzp->z_id);
3307
3308	return (0);
3309}
3310
3311/*
3312 * Move an entry from the provided source directory to the target
3313 * directory.  Change the entry name as indicated.
3314 *
3315 *	IN:	sdvp	- Source directory containing the "old entry".
3316 *		snm	- Old entry name.
3317 *		tdvp	- Target directory to contain the "new entry".
3318 *		tnm	- New entry name.
3319 *		cr	- credentials of caller.
3320 *		ct	- caller context
3321 *		flags	- case flags
3322 *
3323 *	RETURN:	0 if success
3324 *		error code if failure
3325 *
3326 * Timestamps:
3327 *	sdvp,tdvp - ctime|mtime updated
3328 */
3329/* XXX NetBSD There is significant problem with dirent locking during rename
3330 * of files which are in a same dir. zfs_dirent_lock is then called twice on
3331 * same lock which panics LOCKDEBUG kernel. Locking twice is not needed.
3332 * Proper solution for this is add new flag to zfs_dirent_lock which will
3333 * disable rw_enter in it. Renaming of files in same dir is considered as broken
3334 * on LOCKDEBUG kernels on NetBSD for now.
3335 */
3336/*ARGSUSED*/
3337static int
3338zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr,
3339    caller_context_t *ct, int flags)
3340{
3341	znode_t		*tdzp, *szp, *tzp;
3342	znode_t		*sdzp = VTOZ(sdvp);
3343	zfsvfs_t	*zfsvfs = sdzp->z_zfsvfs;
3344	zilog_t		*zilog;
3345	vnode_t		*realvp;
3346	zfs_dirlock_t	*sdl, *tdl;
3347	dmu_tx_t	*tx;
3348	zfs_zlock_t	*zl;
3349	int		cmp, serr, terr;
3350	int		error = 0;
3351	int		zflg = 0;
3352	int		samedir = 0;
3353
3354	tdl = NULL;
3355	sdl = NULL;
3356
3357	dprintf("zfs_rename called\n");
3358
3359	ZFS_ENTER(zfsvfs);
3360	ZFS_VERIFY_ZP(sdzp);
3361	zilog = zfsvfs->z_log;
3362
3363	/*
3364	 * Make sure we have the real vp for the target directory.
3365	 */
3366	if (VOP_REALVP(tdvp, &realvp, ct) == 0)
3367		tdvp = realvp;
3368
3369	if (tdvp->v_vfsp != sdvp->v_vfsp) {
3370		ZFS_EXIT(zfsvfs);
3371		return (EXDEV);
3372	}
3373
3374	tdzp = VTOZ(tdvp);
3375	ZFS_VERIFY_ZP(tdzp);
3376	if (zfsvfs->z_utf8 && u8_validate(tnm,
3377	    strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3378		ZFS_EXIT(zfsvfs);
3379		return (EILSEQ);
3380	}
3381
3382	if (flags & FIGNORECASE)
3383		zflg |= ZCILOOK;
3384
3385top:
3386	szp = NULL;
3387	tzp = NULL;
3388	zl = NULL;
3389
3390	/*
3391	 * This is to prevent the creation of links into attribute space
3392	 * by renaming a linked file into/outof an attribute directory.
3393	 * See the comment in zfs_link() for why this is considered bad.
3394	 */
3395	if ((tdzp->z_phys->zp_flags & ZFS_XATTR) !=
3396	    (sdzp->z_phys->zp_flags & ZFS_XATTR)) {
3397		ZFS_EXIT(zfsvfs);
3398		return (EINVAL);
3399	}
3400
3401	/*
3402	 * Lock source and target directory entries.  To prevent deadlock,
3403	 * a lock ordering must be defined.  We lock the directory with
3404	 * the smallest object id first, or if it's a tie, the one with
3405	 * the lexically first name.
3406	 */
3407	if (sdzp->z_id < tdzp->z_id) {
3408		cmp = -1;
3409	} else if (sdzp->z_id > tdzp->z_id) {
3410		cmp = 1;
3411	} else {
3412		/*
3413		 * First compare the two name arguments without
3414		 * considering any case folding.
3415		 */
3416		int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);
3417
3418		cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
3419		ASSERT(error == 0 || !zfsvfs->z_utf8);
3420		if (cmp == 0) {
3421			/*
3422			 * POSIX: "If the old argument and the new argument
3423			 * both refer to links to the same existing file,
3424			 * the rename() function shall return successfully
3425			 * and perform no other action."
3426			 */
3427			ZFS_EXIT(zfsvfs);
3428			return (0);
3429		}
3430		/*
3431		 * If the file system is case-folding, then we may
3432		 * have some more checking to do.  A case-folding file
3433		 * system is either supporting mixed case sensitivity
3434		 * access or is completely case-insensitive.  Note
3435		 * that the file system is always case preserving.
3436		 *
3437		 * In mixed sensitivity mode case sensitive behavior
3438		 * is the default.  FIGNORECASE must be used to
3439		 * explicitly request case insensitive behavior.
3440		 *
3441		 * If the source and target names provided differ only
3442		 * by case (e.g., a request to rename 'tim' to 'Tim'),
3443		 * we will treat this as a special case in the
3444		 * case-insensitive mode: as long as the source name
3445		 * is an exact match, we will allow this to proceed as
3446		 * a name-change request.
3447		 */
3448		if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
3449		    (zfsvfs->z_case == ZFS_CASE_MIXED &&
3450		    flags & FIGNORECASE)) &&
3451		    u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
3452		    &error) == 0) {
3453			/*
3454			 * case preserving rename request, require exact
3455			 * name matches
3456			 */
3457			zflg |= ZCIEXACT;
3458			zflg &= ~ZCILOOK;
3459		}
3460	}
3461
3462	/*
3463	 * If the source and destination directories are the same, we should
3464	 * grab the z_name_lock of that directory only once.
3465	 */
3466	if (sdzp == tdzp) {
3467		zflg |= ZHAVELOCK;
3468		rw_enter(&sdzp->z_name_lock, RW_READER);
3469	}
3470
3471	if (cmp < 0) {
3472
3473		serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
3474		    ZEXISTS | zflg, NULL, NULL);
3475		if ((serr == 0) && (sdzp == tdzp)) {
3476			/*
3477			 * If renaming within the one directory we must
3478			 * be careful not to recursively acquire locks.
3479			 */
3480			zflg |= ZHAVELOCK;
3481		}
3482		terr = zfs_dirent_lock(&tdl,
3483		    tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
3484	} else {
3485		terr = zfs_dirent_lock(&tdl,
3486		    tdzp, tnm, &tzp, zflg, NULL, NULL);
3487
3488		if ((terr == 0) && (sdzp == tdzp)) {
3489			/*
3490			 * If renaming within the one directory we must
3491			 * be careful not to recursively acquire locks.
3492			 */
3493			zflg |= ZHAVELOCK;
3494		}
3495		serr = zfs_dirent_lock(&sdl,
3496		    sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
3497		    NULL, NULL);
3498	}
3499
3500	if (serr) {
3501		/*
3502		 * Source entry invalid or not there.
3503		 */
3504		if (!terr) {
3505			zfs_dirent_unlock(tdl);
3506			if (tzp)
3507				VN_RELE(ZTOV(tzp));
3508		}
3509
3510		if (sdzp == tdzp)
3511			rw_exit(&sdzp->z_name_lock);
3512
3513		if (strcmp(snm, "..") == 0)
3514			serr = EINVAL;
3515		ZFS_EXIT(zfsvfs);
3516		return (serr);
3517	}
3518	if (terr) {
3519		if (sdl != NULL)
3520			zfs_dirent_unlock(sdl);
3521		VN_RELE(ZTOV(szp));
3522
3523		if (sdzp == tdzp)
3524			rw_exit(&sdzp->z_name_lock);
3525
3526		if (strcmp(tnm, "..") == 0)
3527			terr = EINVAL;
3528		ZFS_EXIT(zfsvfs);
3529		return (terr);
3530	}
3531
3532	/*
3533	 * Must have write access at the source to remove the old entry
3534	 * and write access at the target to create the new entry.
3535	 * Note that if target and source are the same, this can be
3536	 * done in a single check.
3537	 */
3538
3539	if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr))
3540		goto out;
3541
3542	if (ZTOV(szp)->v_type == VDIR) {
3543		/*
3544		 * Check to make sure rename is valid.
3545		 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
3546		 */
3547		if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl))
3548			goto out;
3549	}
3550
3551	/*
3552	 * Does target exist?
3553	 */
3554	if (tzp) {
3555		/*
3556		 * Source and target must be the same type.
3557		 */
3558		if (ZTOV(szp)->v_type == VDIR) {
3559			if (ZTOV(tzp)->v_type != VDIR) {
3560				error = ENOTDIR;
3561				goto out;
3562			}
3563		} else {
3564			if (ZTOV(tzp)->v_type == VDIR) {
3565				error = EISDIR;
3566				goto out;
3567			}
3568		}
3569		/*
3570		 * POSIX dictates that when the source and target
3571		 * entries refer to the same file object, rename
3572		 * must do nothing and exit without error.
3573		 */
3574		if (szp->z_id == tzp->z_id) {
3575			error = 0;
3576			goto out;
3577		}
3578	}
3579
3580	vnevent_rename_src(ZTOV(szp), sdvp, snm, ct);
3581	if (tzp)
3582		vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct);
3583
3584	/*
3585	 * notify the target directory if it is not the same
3586	 * as source directory.
3587	 */
3588	if (tdvp != sdvp) {
3589		vnevent_rename_dest_dir(tdvp, ct);
3590	}
3591
3592	tx = dmu_tx_create(zfsvfs->z_os);
3593	dmu_tx_hold_bonus(tx, szp->z_id);	/* nlink changes */
3594	dmu_tx_hold_bonus(tx, sdzp->z_id);	/* nlink changes */
3595	dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
3596	dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
3597	if (sdzp != tdzp)
3598		dmu_tx_hold_bonus(tx, tdzp->z_id);	/* nlink changes */
3599	if (tzp)
3600		dmu_tx_hold_bonus(tx, tzp->z_id);	/* parent changes */
3601	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3602	error = dmu_tx_assign(tx, TXG_NOWAIT);
3603	if (error) {
3604		if (zl != NULL)
3605			zfs_rename_unlock(&zl);
3606
3607		zfs_dirent_unlock(sdl);
3608		zfs_dirent_unlock(tdl);
3609
3610		if (sdzp == tdzp)
3611			rw_exit(&sdzp->z_name_lock);
3612
3613		VN_RELE(ZTOV(szp));
3614		if (tzp)
3615			VN_RELE(ZTOV(tzp));
3616		if (error == ERESTART) {
3617			dmu_tx_wait(tx);
3618			dmu_tx_abort(tx);
3619			goto top;
3620		}
3621		dmu_tx_abort(tx);
3622		ZFS_EXIT(zfsvfs);
3623		return (error);
3624	}
3625
3626	if (tzp)	/* Attempt to remove the existing target */
3627		error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);
3628
3629	if (error == 0) {
3630		error = zfs_link_create(tdl, szp, tx, ZRENAMING);
3631		if (error == 0) {
3632			szp->z_phys->zp_flags |= ZFS_AV_MODIFIED;
3633
3634			error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
3635			ASSERT(error == 0);
3636
3637			zfs_log_rename(zilog, tx,
3638			    TX_RENAME | (flags & FIGNORECASE ? TX_CI : 0),
3639			    sdzp, sdl->dl_name, tdzp, tdl->dl_name, szp);
3640
3641			/* Update path information for the target vnode */
3642			vn_renamepath(tdvp, ZTOV(szp), tnm, strlen(tnm));
3643		}
3644		if (error == 0) {
3645			/* Purge cache entries, while still holding locks. */
3646			cache_purge(sdvp);
3647			cache_purge(tdvp);
3648		}
3649	}
3650
3651	dmu_tx_commit(tx);
3652out:
3653	if (zl != NULL)
3654		zfs_rename_unlock(&zl);
3655
3656	zfs_dirent_unlock(sdl);
3657	zfs_dirent_unlock(tdl);
3658
3659	if (sdzp == tdzp)
3660		rw_exit(&sdzp->z_name_lock);
3661
3662
3663	VN_RELE(ZTOV(szp));
3664	if (tzp)
3665		VN_RELE(ZTOV(tzp));
3666
3667	ZFS_EXIT(zfsvfs);
3668
3669	return (error);
3670}
3671
3672/*
3673 * Insert the indicated symbolic reference entry into the directory.
3674 *
3675 *	IN:	dvp	- Directory to contain new symbolic link.
3676 *		link	- Name for new symlink entry.
3677 *		vap	- Attributes of new entry.
3678 *		target	- Target path of new symlink.
3679 *		cr	- credentials of caller.
3680 *		ct	- caller context
3681 *		flags	- case flags
3682 *
3683 *	RETURN:	0 if success
3684 *		error code if failure
3685 *
3686 * Timestamps:
3687 *	dvp - ctime|mtime updated
3688 */
3689/*ARGSUSED*/
3690static int
3691zfs_symlink(vnode_t *dvp, vnode_t **vpp, char *name, vattr_t *vap, char *link,
3692    cred_t *cr, int flags)
3693{
3694	znode_t		*zp, *dzp = VTOZ(dvp);
3695	zfs_dirlock_t	*dl;
3696	dmu_tx_t	*tx;
3697	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
3698	zilog_t		*zilog;
3699	int		len = strlen(link);
3700	int		error;
3701	int		zflg = ZNEW;
3702	zfs_acl_ids_t	acl_ids;
3703	boolean_t	fuid_dirtied;
3704
3705	ASSERT(vap->va_type == VLNK);
3706
3707	ZFS_ENTER(zfsvfs);
3708	ZFS_VERIFY_ZP(dzp);
3709	zilog = zfsvfs->z_log;
3710
3711	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
3712	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3713		ZFS_EXIT(zfsvfs);
3714		return (EILSEQ);
3715	}
3716	if (flags & FIGNORECASE)
3717		zflg |= ZCILOOK;
3718top:
3719	if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
3720		ZFS_EXIT(zfsvfs);
3721		return (error);
3722	}
3723
3724	if (len > MAXPATHLEN) {
3725		ZFS_EXIT(zfsvfs);
3726		return (ENAMETOOLONG);
3727	}
3728
3729	/*
3730	 * Attempt to lock directory; fail if entry already exists.
3731	 */
3732	error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
3733	if (error) {
3734		ZFS_EXIT(zfsvfs);
3735		return (error);
3736	}
3737
3738	VERIFY(0 == zfs_acl_ids_create(dzp, 0, vap, cr, NULL, &acl_ids));
3739	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
3740		zfs_acl_ids_free(&acl_ids);
3741		zfs_dirent_unlock(dl);
3742		ZFS_EXIT(zfsvfs);
3743		return (EDQUOT);
3744	}
3745	tx = dmu_tx_create(zfsvfs->z_os);
3746	fuid_dirtied = zfsvfs->z_fuid_dirty;
3747	dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
3748	dmu_tx_hold_bonus(tx, dzp->z_id);
3749	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3750	if (acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE)
3751		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, SPA_MAXBLOCKSIZE);
3752	if (fuid_dirtied)
3753		zfs_fuid_txhold(zfsvfs, tx);
3754	error = dmu_tx_assign(tx, TXG_NOWAIT);
3755	if (error) {
3756		zfs_acl_ids_free(&acl_ids);
3757		zfs_dirent_unlock(dl);
3758		if (error == ERESTART) {
3759			dmu_tx_wait(tx);
3760			dmu_tx_abort(tx);
3761			goto top;
3762		}
3763		dmu_tx_abort(tx);
3764		ZFS_EXIT(zfsvfs);
3765		return (error);
3766	}
3767
3768	dmu_buf_will_dirty(dzp->z_dbuf, tx);
3769
3770	/*
3771	 * Create a new object for the symlink.
3772	 * Put the link content into bonus buffer if it will fit;
3773	 * otherwise, store it just like any other file data.
3774	 */
3775	if (sizeof (znode_phys_t) + len <= dmu_bonus_max()) {
3776		zfs_mknode(dzp, vap, tx, cr, 0, &zp, len, &acl_ids);
3777		if (len != 0)
3778			bcopy(link, zp->z_phys + 1, len);
3779	} else {
3780		dmu_buf_t *dbp;
3781
3782		zfs_mknode(dzp, vap, tx, cr, 0, &zp, 0, &acl_ids);
3783
3784		if (fuid_dirtied)
3785			zfs_fuid_sync(zfsvfs, tx);
3786		/*
3787		 * Nothing can access the znode yet so no locking needed
3788		 * for growing the znode's blocksize.
3789		 */
3790		zfs_grow_blocksize(zp, len, tx);
3791
3792		VERIFY(0 == dmu_buf_hold(zfsvfs->z_os,
3793		    zp->z_id, 0, FTAG, &dbp));
3794		dmu_buf_will_dirty(dbp, tx);
3795
3796		ASSERT3U(len, <=, dbp->db_size);
3797		bcopy(link, dbp->db_data, len);
3798		dmu_buf_rele(dbp, FTAG);
3799	}
3800	zp->z_phys->zp_size = len;
3801
3802	/*
3803	 * Insert the new object into the directory.
3804	 */
3805	(void) zfs_link_create(dl, zp, tx, ZNEW);
3806	if (error == 0) {
3807		uint64_t txtype = TX_SYMLINK;
3808		if (flags & FIGNORECASE)
3809			txtype |= TX_CI;
3810		zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
3811		*vpp = ZTOV(zp);
3812	}
3813
3814	zfs_acl_ids_free(&acl_ids);
3815
3816	dmu_tx_commit(tx);
3817
3818	zfs_dirent_unlock(dl);
3819
3820	ZFS_EXIT(zfsvfs);
3821	return (error);
3822}
3823
3824/*
3825 * Return, in the buffer contained in the provided uio structure,
3826 * the symbolic path referred to by vp.
3827 *
3828 *	IN:	vp	- vnode of symbolic link.
3829 *		uoip	- structure to contain the link path.
3830 *		cr	- credentials of caller.
3831 *		ct	- caller context
3832 *
3833 *	OUT:	uio	- structure to contain the link path.
3834 *
3835 *	RETURN:	0 if success
3836 *		error code if failure
3837 *
3838 * Timestamps:
3839 *	vp - atime updated
3840 */
3841/* ARGSUSED */
3842static int
3843zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct)
3844{
3845	znode_t		*zp = VTOZ(vp);
3846	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
3847	size_t		bufsz;
3848	int		error;
3849
3850	ZFS_ENTER(zfsvfs);
3851	ZFS_VERIFY_ZP(zp);
3852
3853	bufsz = (size_t)zp->z_phys->zp_size;
3854	if (bufsz + sizeof (znode_phys_t) <= zp->z_dbuf->db_size) {
3855		error = uiomove(zp->z_phys + 1,
3856		    MIN((size_t)bufsz, uio->uio_resid), UIO_READ, uio);
3857	} else {
3858		dmu_buf_t *dbp;
3859		error = dmu_buf_hold(zfsvfs->z_os, zp->z_id, 0, FTAG, &dbp);
3860		if (error) {
3861			ZFS_EXIT(zfsvfs);
3862			return (error);
3863		}
3864		error = uiomove(dbp->db_data,
3865		    MIN((size_t)bufsz, uio->uio_resid), UIO_READ, uio);
3866		dmu_buf_rele(dbp, FTAG);
3867	}
3868
3869	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
3870	ZFS_EXIT(zfsvfs);
3871	return (error);
3872}
3873
3874/*
3875 * Insert a new entry into directory tdvp referencing svp.
3876 *
3877 *	IN:	tdvp	- Directory to contain new entry.
3878 *		svp	- vnode of new entry.
3879 *		name	- name of new entry.
3880 *		cr	- credentials of caller.
3881 *		ct	- caller context
3882 *
3883 *	RETURN:	0 if success
3884 *		error code if failure
3885 *
3886 * Timestamps:
3887 *	tdvp - ctime|mtime updated
3888 *	 svp - ctime updated
3889 */
3890/* ARGSUSED */
3891static int
3892zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr,
3893    caller_context_t *ct, int flags)
3894{
3895	znode_t		*dzp = VTOZ(tdvp);
3896	znode_t		*tzp, *szp;
3897	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
3898	zilog_t		*zilog;
3899	zfs_dirlock_t	*dl;
3900	dmu_tx_t	*tx;
3901	vnode_t		*realvp;
3902	int		error;
3903	int		zf = ZNEW;
3904	uid_t		owner;
3905
3906	ASSERT(tdvp->v_type == VDIR);
3907
3908	ZFS_ENTER(zfsvfs);
3909	ZFS_VERIFY_ZP(dzp);
3910	zilog = zfsvfs->z_log;
3911
3912	if (VOP_REALVP(svp, &realvp, ct) == 0)
3913		svp = realvp;
3914
3915	if (svp->v_vfsp != tdvp->v_vfsp) {
3916		ZFS_EXIT(zfsvfs);
3917		return (EXDEV);
3918	}
3919	szp = VTOZ(svp);
3920	ZFS_VERIFY_ZP(szp);
3921
3922	if (zfsvfs->z_utf8 && u8_validate(name,
3923	    strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3924		ZFS_EXIT(zfsvfs);
3925		return (EILSEQ);
3926	}
3927	if (flags & FIGNORECASE)
3928		zf |= ZCILOOK;
3929
3930top:
3931	/*
3932	 * We do not support links between attributes and non-attributes
3933	 * because of the potential security risk of creating links
3934	 * into "normal" file space in order to circumvent restrictions
3935	 * imposed in attribute space.
3936	 */
3937	if ((szp->z_phys->zp_flags & ZFS_XATTR) !=
3938	    (dzp->z_phys->zp_flags & ZFS_XATTR)) {
3939		ZFS_EXIT(zfsvfs);
3940		return (EINVAL);
3941	}
3942
3943	/*
3944	 * POSIX dictates that we return EPERM here.
3945	 * Better choices include ENOTSUP or EISDIR.
3946	 */
3947	if (svp->v_type == VDIR) {
3948		ZFS_EXIT(zfsvfs);
3949		return (EPERM);
3950	}
3951
3952	owner = zfs_fuid_map_id(zfsvfs, szp->z_phys->zp_uid, cr, ZFS_OWNER);
3953	if (owner != crgetuid(cr) &&
3954	    secpolicy_basic_link(cr) != 0) {
3955		ZFS_EXIT(zfsvfs);
3956		return (EPERM);
3957	}
3958
3959	if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
3960		ZFS_EXIT(zfsvfs);
3961		return (error);
3962	}
3963
3964	/*
3965	 * Attempt to lock directory; fail if entry already exists.
3966	 */
3967	error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL);
3968	if (error) {
3969		ZFS_EXIT(zfsvfs);
3970		return (error);
3971	}
3972
3973	tx = dmu_tx_create(zfsvfs->z_os);
3974	dmu_tx_hold_bonus(tx, szp->z_id);
3975	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3976	error = dmu_tx_assign(tx, TXG_NOWAIT);
3977	if (error) {
3978		zfs_dirent_unlock(dl);
3979		if (error == ERESTART) {
3980			dmu_tx_wait(tx);
3981			dmu_tx_abort(tx);
3982			goto top;
3983		}
3984		dmu_tx_abort(tx);
3985		ZFS_EXIT(zfsvfs);
3986		return (error);
3987	}
3988
3989	error = zfs_link_create(dl, szp, tx, 0);
3990
3991	if (error == 0) {
3992		uint64_t txtype = TX_LINK;
3993		if (flags & FIGNORECASE)
3994			txtype |= TX_CI;
3995		zfs_log_link(zilog, tx, txtype, dzp, szp, name);
3996	}
3997
3998	dmu_tx_commit(tx);
3999
4000	zfs_dirent_unlock(dl);
4001
4002	if (error == 0) {
4003		vnevent_link(svp, ct);
4004	}
4005
4006	ZFS_EXIT(zfsvfs);
4007	return (error);
4008}
4009
4010/*ARGSUSED*/
4011
4012/* CTASSERT(sizeof(struct zfid_short) <= sizeof(struct fid)); */
4013/* CTASSERT(sizeof(struct zfid_long) <= sizeof(struct fid)); */
4014
4015/*ARGSUSED*/
4016static int
4017zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
4018{
4019	/* XXX This should bre reviewed maybe Opensolaris version of zfs_fid can
4020	   be used for NetBSD */
4021	znode_t		*zp = VTOZ(vp);
4022	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4023	uint32_t	gen;
4024	uint64_t	object = zp->z_id;
4025	zfid_short_t	*zfid;
4026	int		size, i;
4027
4028	ZFS_ENTER(zfsvfs);
4029	ZFS_VERIFY_ZP(zp);
4030	gen = (uint32_t)zp->z_gen;
4031
4032	size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN;
4033	fidp->fid_len = size;
4034
4035	zfid = (zfid_short_t *)fidp;
4036
4037	zfid->zf_len = size;
4038
4039	for (i = 0; i < sizeof (zfid->zf_object); i++)
4040		zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
4041
4042	/* Must have a non-zero generation number to distinguish from .zfs */
4043	if (gen == 0)
4044		gen = 1;
4045	for (i = 0; i < sizeof (zfid->zf_gen); i++)
4046		zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
4047
4048	if (size == LONG_FID_LEN) {
4049		uint64_t	objsetid = dmu_objset_id(zfsvfs->z_os);
4050		zfid_long_t	*zlfid;
4051
4052		zlfid = (zfid_long_t *)fidp;
4053
4054		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
4055			zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
4056
4057		/* XXX - this should be the generation number for the objset */
4058		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
4059			zlfid->zf_setgen[i] = 0;
4060	}
4061
4062	ZFS_EXIT(zfsvfs);
4063	return (0);
4064}
4065
4066/*
4067 * Copy the portion of the file indicated from pages into the file.
4068 * The pages are stored in a page list attached to the files vnode.
4069 *
4070 *	IN:	vp	- vnode of file to push page data to.
4071 *		off	- position in file to put data.
4072 *		len	- amount of data to write.
4073 *		flags	- flags to control the operation.
4074 *		cr	- credentials of caller.
4075 *		ct	- caller context.
4076 *
4077 *	RETURN:	0 if success
4078 *		error code if failure
4079 *
4080 * Timestamps:
4081 *	vp - ctime|mtime updated
4082 */
4083/*ARGSUSED*/
4084#ifdef PORT_SOLARIS
4085static int
4086zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr,
4087    caller_context_t *ct)
4088{
4089	znode_t		*zp = VTOZ(vp);
4090	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4091	page_t		*pp;
4092	size_t		io_len;
4093	u_offset_t	io_off;
4094	uint_t		blksz;
4095	rl_t		*rl;
4096	int		error = 0;
4097
4098	ZFS_ENTER(zfsvfs);
4099	ZFS_VERIFY_ZP(zp);
4100
4101	/*
4102	 * Align this request to the file block size in case we kluster.
4103	 * XXX - this can result in pretty aggresive locking, which can
4104	 * impact simultanious read/write access.  One option might be
4105	 * to break up long requests (len == 0) into block-by-block
4106	 * operations to get narrower locking.
4107	 */
4108	blksz = zp->z_blksz;
4109	if (ISP2(blksz))
4110		io_off = P2ALIGN_TYPED(off, blksz, u_offset_t);
4111	else
4112		io_off = 0;
4113	if (len > 0 && ISP2(blksz))
4114		io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t);
4115	else
4116		io_len = 0;
4117
4118	if (io_len == 0) {
4119		/*
4120		 * Search the entire vp list for pages >= io_off.
4121		 */
4122		rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER);
4123		error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr);
4124		goto out;
4125	}
4126	rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER);
4127
4128	if (off > zp->z_phys->zp_size) {
4129		/* past end of file */
4130		zfs_range_unlock(rl);
4131		ZFS_EXIT(zfsvfs);
4132		return (0);
4133	}
4134
4135	len = MIN(io_len, P2ROUNDUP(zp->z_phys->zp_size, PAGESIZE) - io_off);
4136
4137	for (off = io_off; io_off < off + len; io_off += io_len) {
4138		if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) {
4139			pp = page_lookup(vp, io_off,
4140			    (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED);
4141		} else {
4142			pp = page_lookup_nowait(vp, io_off,
4143			    (flags & B_FREE) ? SE_EXCL : SE_SHARED);
4144		}
4145
4146		if (pp != NULL && pvn_getdirty(pp, flags)) {
4147			int err;
4148
4149			/*
4150			 * Found a dirty page to push
4151			 */
4152			err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr);
4153			if (err)
4154				error = err;
4155		} else {
4156			io_len = PAGESIZE;
4157		}
4158	}
4159out:
4160	zfs_range_unlock(rl);
4161	if ((flags & B_ASYNC) == 0)
4162		zil_commit(zfsvfs->z_log, UINT64_MAX, zp->z_id);
4163	ZFS_EXIT(zfsvfs);
4164	return (error);
4165}
4166
4167/*ARGSUSED*/
4168void
4169zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
4170{
4171	znode_t	*zp = VTOZ(vp);
4172	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4173	int error;
4174
4175	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
4176	if (zp->z_dbuf == NULL) {
4177		/*
4178		 * The fs has been unmounted, or we did a
4179		 * suspend/resume and this file no longer exists.
4180		 */
4181		if (vn_has_cached_data(vp)) {
4182			(void) pvn_vplist_dirty(vp, 0, zfs_null_putapage,
4183			    B_INVAL, cr);
4184		}
4185
4186		mutex_enter(&zp->z_lock);
4187		mutex_enter(&vp->v_lock);
4188		ASSERT(vp->v_count == 1);
4189		vp->v_count = 0;
4190		mutex_exit(&vp->v_lock);
4191		mutex_exit(&zp->z_lock);
4192		rw_exit(&zfsvfs->z_teardown_inactive_lock);
4193		zfs_znode_free(zp);
4194		return;
4195	}
4196
4197	/*
4198	 * Attempt to push any data in the page cache.  If this fails
4199	 * we will get kicked out later in zfs_zinactive().
4200	 */
4201	if (vn_has_cached_data(vp)) {
4202		(void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC,
4203		    cr);
4204	}
4205
4206	if (zp->z_atime_dirty && zp->z_unlinked == 0) {
4207		dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
4208
4209		dmu_tx_hold_bonus(tx, zp->z_id);
4210		error = dmu_tx_assign(tx, TXG_WAIT);
4211		if (error) {
4212			dmu_tx_abort(tx);
4213		} else {
4214			dmu_buf_will_dirty(zp->z_dbuf, tx);
4215			mutex_enter(&zp->z_lock);
4216			zp->z_atime_dirty = 0;
4217			mutex_exit(&zp->z_lock);
4218			dmu_tx_commit(tx);
4219		}
4220	}
4221
4222	zfs_zinactive(zp);
4223	rw_exit(&zfsvfs->z_teardown_inactive_lock);
4224}
4225#endif /* PORT_SOLARIS */
4226
4227/*
4228 * Bounds-check the seek operation.
4229 *
4230 *	IN:	vp	- vnode seeking within
4231 *		ooff	- old file offset
4232 *		noffp	- pointer to new file offset
4233 *		ct	- caller context
4234 *
4235 *	RETURN:	0 if success
4236 *		EINVAL if new offset invalid
4237 */
4238/* ARGSUSED */
4239static int
4240zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp,
4241    caller_context_t *ct)
4242{
4243	if (vp->v_type == VDIR)
4244		return (0);
4245	return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
4246}
4247
4248#ifdef PORT_SOLARIS
4249/*
4250 * Pre-filter the generic locking function to trap attempts to place
4251 * a mandatory lock on a memory mapped file.
4252 */
4253static int
4254zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset,
4255    flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct)
4256{
4257	znode_t *zp = VTOZ(vp);
4258	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4259
4260	ZFS_ENTER(zfsvfs);
4261	ZFS_VERIFY_ZP(zp);
4262
4263	/*
4264	 * We are following the UFS semantics with respect to mapcnt
4265	 * here: If we see that the file is mapped already, then we will
4266	 * return an error, but we don't worry about races between this
4267	 * function and zfs_map().
4268	 */
4269	if (zp->z_mapcnt > 0 && MANDMODE((mode_t)zp->z_phys->zp_mode)) {
4270		ZFS_EXIT(zfsvfs);
4271		return (EAGAIN);
4272	}
4273	ZFS_EXIT(zfsvfs);
4274	return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
4275}
4276
4277
4278/*
4279 * If we can't find a page in the cache, we will create a new page
4280 * and fill it with file data.  For efficiency, we may try to fill
4281 * multiple pages at once (klustering) to fill up the supplied page
4282 * list.  Note that the pages to be filled are held with an exclusive
4283 * lock to prevent access by other threads while they are being filled.
4284 */
4285static int
4286zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg,
4287    caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw)
4288{
4289	znode_t *zp = VTOZ(vp);
4290	page_t *pp, *cur_pp;
4291	objset_t *os = zp->z_zfsvfs->z_os;
4292	u_offset_t io_off, total;
4293	size_t io_len;
4294	int err;
4295
4296	if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) {
4297		/*
4298		 * We only have a single page, don't bother klustering
4299		 */
4300		io_off = off;
4301		io_len = PAGESIZE;
4302		pp = page_create_va(vp, io_off, io_len,
4303		    PG_EXCL | PG_WAIT, seg, addr);
4304	} else {
4305		/*
4306		 * Try to find enough pages to fill the page list
4307		 */
4308		pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
4309		    &io_len, off, plsz, 0);
4310	}
4311	if (pp == NULL) {
4312		/*
4313		 * The page already exists, nothing to do here.
4314		 */
4315		*pl = NULL;
4316		return (0);
4317	}
4318
4319	/*
4320	 * Fill the pages in the kluster.
4321	 */
4322	cur_pp = pp;
4323	for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
4324		caddr_t va;
4325
4326		ASSERT3U(io_off, ==, cur_pp->p_offset);
4327		va = zfs_map_page(cur_pp, S_WRITE);
4328		err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va,
4329		    DMU_READ_PREFETCH);
4330		zfs_unmap_page(cur_pp, va);
4331		if (err) {
4332			/* On error, toss the entire kluster */
4333			pvn_read_done(pp, B_ERROR);
4334			/* convert checksum errors into IO errors */
4335			if (err == ECKSUM)
4336				err = EIO;
4337			return (err);
4338		}
4339		cur_pp = cur_pp->p_next;
4340	}
4341
4342	/*
4343	 * Fill in the page list array from the kluster starting
4344	 * from the desired offset `off'.
4345	 * NOTE: the page list will always be null terminated.
4346	 */
4347	pvn_plist_init(pp, pl, plsz, off, io_len, rw);
4348	ASSERT(pl == NULL || (*pl)->p_offset == off);
4349
4350	return (0);
4351}
4352
4353/*
4354 * Return pointers to the pages for the file region [off, off + len]
4355 * in the pl array.  If plsz is greater than len, this function may
4356 * also return page pointers from after the specified region
4357 * (i.e. the region [off, off + plsz]).  These additional pages are
4358 * only returned if they are already in the cache, or were created as
4359 * part of a klustered read.
4360 *
4361 *	IN:	vp	- vnode of file to get data from.
4362 *		off	- position in file to get data from.
4363 *		len	- amount of data to retrieve.
4364 *		plsz	- length of provided page list.
4365 *		seg	- segment to obtain pages for.
4366 *		addr	- virtual address of fault.
4367 *		rw	- mode of created pages.
4368 *		cr	- credentials of caller.
4369 *		ct	- caller context.
4370 *
4371 *	OUT:	protp	- protection mode of created pages.
4372 *		pl	- list of pages created.
4373 *
4374 *	RETURN:	0 if success
4375 *		error code if failure
4376 *
4377 * Timestamps:
4378 *	vp - atime updated
4379 */
4380/* ARGSUSED */
4381static int
4382zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
4383	page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
4384	enum seg_rw rw, cred_t *cr, caller_context_t *ct)
4385{
4386	znode_t		*zp = VTOZ(vp);
4387	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4388	page_t		**pl0 = pl;
4389	int		err = 0;
4390
4391	/* we do our own caching, faultahead is unnecessary */
4392	if (pl == NULL)
4393		return (0);
4394	else if (len > plsz)
4395		len = plsz;
4396	else
4397		len = P2ROUNDUP(len, PAGESIZE);
4398	ASSERT(plsz >= len);
4399
4400	ZFS_ENTER(zfsvfs);
4401	ZFS_VERIFY_ZP(zp);
4402
4403	if (protp)
4404		*protp = PROT_ALL;
4405
4406	/*
4407	 * Loop through the requested range [off, off + len) looking
4408	 * for pages.  If we don't find a page, we will need to create
4409	 * a new page and fill it with data from the file.
4410	 */
4411	while (len > 0) {
4412		if (*pl = page_lookup(vp, off, SE_SHARED))
4413			*(pl+1) = NULL;
4414		else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw))
4415			goto out;
4416		while (*pl) {
4417			ASSERT3U((*pl)->p_offset, ==, off);
4418			off += PAGESIZE;
4419			addr += PAGESIZE;
4420			if (len > 0) {
4421				ASSERT3U(len, >=, PAGESIZE);
4422				len -= PAGESIZE;
4423			}
4424			ASSERT3U(plsz, >=, PAGESIZE);
4425			plsz -= PAGESIZE;
4426			pl++;
4427		}
4428	}
4429
4430	/*
4431	 * Fill out the page array with any pages already in the cache.
4432	 */
4433	while (plsz > 0 &&
4434	    (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) {
4435			off += PAGESIZE;
4436			plsz -= PAGESIZE;
4437	}
4438out:
4439	if (err) {
4440		/*
4441		 * Release any pages we have previously locked.
4442		 */
4443		while (pl > pl0)
4444			page_unlock(*--pl);
4445	} else {
4446		ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
4447	}
4448
4449	*pl = NULL;
4450
4451	ZFS_EXIT(zfsvfs);
4452	return (err);
4453}
4454
4455/*
4456 * Request a memory map for a section of a file.  This code interacts
4457 * with common code and the VM system as follows:
4458 *
4459 *	common code calls mmap(), which ends up in smmap_common()
4460 *
4461 *	this calls VOP_MAP(), which takes you into (say) zfs
4462 *
4463 *	zfs_map() calls as_map(), passing segvn_create() as the callback
4464 *
4465 *	segvn_create() creates the new segment and calls VOP_ADDMAP()
4466 *
4467 *	zfs_addmap() updates z_mapcnt
4468 */
4469/*ARGSUSED*/
4470static int
4471zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
4472    size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4473    caller_context_t *ct)
4474{
4475	znode_t *zp = VTOZ(vp);
4476	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4477	segvn_crargs_t	vn_a;
4478	int		error;
4479
4480	ZFS_ENTER(zfsvfs);
4481	ZFS_VERIFY_ZP(zp);
4482
4483	if ((prot & PROT_WRITE) &&
4484	    (zp->z_phys->zp_flags & (ZFS_IMMUTABLE | ZFS_READONLY |
4485	    ZFS_APPENDONLY))) {
4486		ZFS_EXIT(zfsvfs);
4487		return (EPERM);
4488	}
4489
4490	if ((prot & (PROT_READ | PROT_EXEC)) &&
4491	    (zp->z_phys->zp_flags & ZFS_AV_QUARANTINED)) {
4492		ZFS_EXIT(zfsvfs);
4493		return (EACCES);
4494	}
4495
4496	if (vp->v_flag & VNOMAP) {
4497		ZFS_EXIT(zfsvfs);
4498		return (ENOSYS);
4499	}
4500
4501	if (off < 0 || len > MAXOFFSET_T - off) {
4502		ZFS_EXIT(zfsvfs);
4503		return (ENXIO);
4504	}
4505
4506	if (vp->v_type != VREG) {
4507		ZFS_EXIT(zfsvfs);
4508		return (ENODEV);
4509	}
4510
4511	/*
4512	 * If file is locked, disallow mapping.
4513	 */
4514	if (MANDMODE((mode_t)zp->z_phys->zp_mode) && vn_has_flocks(vp)) {
4515		ZFS_EXIT(zfsvfs);
4516		return (EAGAIN);
4517	}
4518
4519	as_rangelock(as);
4520	error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
4521	if (error != 0) {
4522		as_rangeunlock(as);
4523		ZFS_EXIT(zfsvfs);
4524		return (error);
4525	}
4526
4527	vn_a.vp = vp;
4528	vn_a.offset = (u_offset_t)off;
4529	vn_a.type = flags & MAP_TYPE;
4530	vn_a.prot = prot;
4531	vn_a.maxprot = maxprot;
4532	vn_a.cred = cr;
4533	vn_a.amp = NULL;
4534	vn_a.flags = flags & ~MAP_TYPE;
4535	vn_a.szc = 0;
4536	vn_a.lgrp_mem_policy_flags = 0;
4537
4538	error = as_map(as, *addrp, len, segvn_create, &vn_a);
4539
4540	as_rangeunlock(as);
4541	ZFS_EXIT(zfsvfs);
4542	return (error);
4543}
4544
4545/* ARGSUSED */
4546static int
4547zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4548    size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4549    caller_context_t *ct)
4550{
4551	uint64_t pages = btopr(len);
4552
4553	atomic_add_64(&VTOZ(vp)->z_mapcnt, pages);
4554	return (0);
4555}
4556
4557/*
4558 * The reason we push dirty pages as part of zfs_delmap() is so that we get a
4559 * more accurate mtime for the associated file.  Since we don't have a way of
4560 * detecting when the data was actually modified, we have to resort to
4561 * heuristics.  If an explicit msync() is done, then we mark the mtime when the
4562 * last page is pushed.  The problem occurs when the msync() call is omitted,
4563 * which by far the most common case:
4564 *
4565 * 	open()
4566 * 	mmap()
4567 * 	<modify memory>
4568 * 	munmap()
4569 * 	close()
4570 * 	<time lapse>
4571 * 	putpage() via fsflush
4572 *
4573 * If we wait until fsflush to come along, we can have a modification time that
4574 * is some arbitrary point in the future.  In order to prevent this in the
4575 * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is
4576 * torn down.
4577 */
4578/* ARGSUSED */
4579static int
4580zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4581    size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr,
4582    caller_context_t *ct)
4583{
4584	uint64_t pages = btopr(len);
4585
4586	ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages);
4587	atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages);
4588
4589	if ((flags & MAP_SHARED) && (prot & PROT_WRITE) &&
4590	    vn_has_cached_data(vp))
4591		(void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct);
4592
4593	return (0);
4594}
4595
4596/*
4597 * Free or allocate space in a file.  Currently, this function only
4598 * supports the `F_FREESP' command.  However, this command is somewhat
4599 * misnamed, as its functionality includes the ability to allocate as
4600 * well as free space.
4601 *
4602 *	IN:	vp	- vnode of file to free data in.
4603 *		cmd	- action to take (only F_FREESP supported).
4604 *		bfp	- section of file to free/alloc.
4605 *		flag	- current file open mode flags.
4606 *		offset	- current file offset.
4607 *		cr	- credentials of caller [UNUSED].
4608 *		ct	- caller context.
4609 *
4610 *	RETURN:	0 if success
4611 *		error code if failure
4612 *
4613 * Timestamps:
4614 *	vp - ctime|mtime updated
4615 */
4616/* ARGSUSED */
4617static int
4618zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag,
4619    offset_t offset, cred_t *cr, caller_context_t *ct)
4620{
4621	znode_t		*zp = VTOZ(vp);
4622	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4623	uint64_t	off, len;
4624	int		error;
4625
4626	ZFS_ENTER(zfsvfs);
4627	ZFS_VERIFY_ZP(zp);
4628
4629	if (cmd != F_FREESP) {
4630		ZFS_EXIT(zfsvfs);
4631		return (EINVAL);
4632	}
4633
4634	if (error = convoff(vp, bfp, 0, offset)) {
4635		ZFS_EXIT(zfsvfs);
4636		return (error);
4637	}
4638
4639	if (bfp->l_len < 0) {
4640		ZFS_EXIT(zfsvfs);
4641		return (EINVAL);
4642	}
4643
4644	off = bfp->l_start;
4645	len = bfp->l_len; /* 0 means from off to end of file */
4646
4647	error = zfs_freesp(zp, off, len, flag, TRUE);
4648
4649	ZFS_EXIT(zfsvfs);
4650	return (error);
4651}
4652
4653/*ARGSUSED*/
4654static int
4655zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
4656{
4657	znode_t		*zp = VTOZ(vp);
4658	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4659	uint32_t	gen;
4660	uint64_t	object = zp->z_id;
4661	zfid_short_t	*zfid;
4662	int		size, i;
4663
4664	ZFS_ENTER(zfsvfs);
4665	ZFS_VERIFY_ZP(zp);
4666	gen = (uint32_t)zp->z_gen;
4667
4668	size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN;
4669	if (fidp->fid_len < size) {
4670		fidp->fid_len = size;
4671		ZFS_EXIT(zfsvfs);
4672		return (ENOSPC);
4673	}
4674
4675	zfid = (zfid_short_t *)fidp;
4676
4677	zfid->zf_len = size;
4678
4679	for (i = 0; i < sizeof (zfid->zf_object); i++)
4680		zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
4681
4682	/* Must have a non-zero generation number to distinguish from .zfs */
4683	if (gen == 0)
4684		gen = 1;
4685	for (i = 0; i < sizeof (zfid->zf_gen); i++)
4686		zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
4687
4688	if (size == LONG_FID_LEN) {
4689		uint64_t	objsetid = dmu_objset_id(zfsvfs->z_os);
4690		zfid_long_t	*zlfid;
4691
4692		zlfid = (zfid_long_t *)fidp;
4693
4694		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
4695			zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
4696
4697		/* XXX - this should be the generation number for the objset */
4698		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
4699			zlfid->zf_setgen[i] = 0;
4700	}
4701
4702	ZFS_EXIT(zfsvfs);
4703	return (0);
4704}
4705#endif /* PORT_SOLARIS */
4706
4707static int
4708zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
4709    caller_context_t *ct)
4710{
4711	znode_t		*zp, *xzp;
4712	zfsvfs_t	*zfsvfs;
4713	zfs_dirlock_t	*dl;
4714	int		error;
4715
4716	switch (cmd) {
4717	case _PC_LINK_MAX:
4718		*valp = INT_MAX;
4719		return (0);
4720
4721	case _PC_FILESIZEBITS:
4722		*valp = 64;
4723		return (0);
4724
4725#if 0
4726	case _PC_XATTR_EXISTS:
4727		zp = VTOZ(vp);
4728		zfsvfs = zp->z_zfsvfs;
4729		ZFS_ENTER(zfsvfs);
4730		ZFS_VERIFY_ZP(zp);
4731		*valp = 0;
4732		error = zfs_dirent_lock(&dl, zp, "", &xzp,
4733		    ZXATTR | ZEXISTS | ZSHARED, NULL, NULL);
4734		if (error == 0) {
4735			zfs_dirent_unlock(dl);
4736			if (!zfs_dirempty(xzp))
4737				*valp = 1;
4738			VN_RELE(ZTOV(xzp));
4739		} else if (error == ENOENT) {
4740			/*
4741			 * If there aren't extended attributes, it's the
4742			 * same as having zero of them.
4743			 */
4744			error = 0;
4745		}
4746		ZFS_EXIT(zfsvfs);
4747		return (error);
4748#endif
4749	case _PC_SATTR_ENABLED:
4750	case _PC_SATTR_EXISTS:
4751		*valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
4752		    (vp->v_type == VREG || vp->v_type == VDIR);
4753		return (0);
4754
4755	case _PC_ACCESS_FILTERING:
4756		*valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) &&
4757		    vp->v_type == VDIR;
4758		return (0);
4759
4760	case _PC_ACL_ENABLED:
4761		*valp = _ACL_ACE_ENABLED;
4762		return (0);
4763
4764	case _PC_MIN_HOLE_SIZE:
4765		*valp = (int)SPA_MINBLOCKSIZE;
4766		return (0);
4767
4768	case _PC_TIMESTAMP_RESOLUTION:
4769		/* nanosecond timestamp resolution */
4770		*valp = 1L;
4771		return (0);
4772
4773	default:
4774		return (EOPNOTSUPP);
4775	}
4776}
4777
4778static int
4779zfs_netbsd_open(void *v)
4780{
4781	struct vop_open_args *ap = v;
4782	vnode_t	*vp = ap->a_vp;
4783	znode_t *zp = VTOZ(vp);
4784	int error;
4785
4786	error = zfs_open(&vp, ap->a_mode, ap->a_cred, NULL);
4787
4788	return (error);
4789}
4790
4791static int
4792zfs_netbsd_close(void *v)
4793{
4794	struct vop_close_args *ap = v;
4795
4796	return (zfs_close(ap->a_vp, ap->a_fflag, 0, 0, ap->a_cred, NULL));
4797}
4798
4799static int
4800zfs_netbsd_ioctl(void *v)
4801{
4802	struct vop_ioctl_args *ap = v;
4803
4804	return (zfs_ioctl(ap->a_vp, ap->a_command, (intptr_t)ap->a_data,
4805		ap->a_fflag, ap->a_cred, NULL, NULL));
4806}
4807
4808
4809static int
4810zfs_netbsd_read(void *v)
4811{
4812	struct vop_read_args *ap = v;
4813
4814	return (zfs_read(ap->a_vp, ap->a_uio, ap->a_ioflag, ap->a_cred, NULL));
4815}
4816
4817static int
4818zfs_netbsd_write(void *v)
4819{
4820	struct vop_write_args *ap = v;
4821
4822	return (zfs_write(ap->a_vp, ap->a_uio, ap->a_ioflag, ap->a_cred, NULL));
4823}
4824
4825static int
4826zfs_netbsd_access(void *v)
4827{
4828	struct vop_access_args *ap = v;
4829
4830	/*
4831	 * ZFS itself only knowns about VREAD, VWRITE and VEXEC, the rest
4832	 * we have to handle by calling vaccess().
4833	 */
4834	if ((ap->a_mode & ~(VREAD|VWRITE|VEXEC)) != 0) {
4835		vnode_t *vp = ap->a_vp;
4836		znode_t *zp = VTOZ(vp);
4837		znode_phys_t *zphys = zp->z_phys;
4838
4839		return (vaccess(vp->v_type, zphys->zp_mode, zphys->zp_uid,
4840		    zphys->zp_gid, ap->a_mode, ap->a_cred));
4841	}
4842
4843	return (zfs_access(ap->a_vp, ap->a_mode, 0, ap->a_cred, NULL));
4844}
4845
4846static int
4847zfs_netbsd_lookup(void *v)
4848{
4849	struct vop_lookup_args *ap = v;
4850	struct componentname *cnp = ap->a_cnp;
4851	char nm[NAME_MAX + 1];
4852	int err;
4853
4854	ASSERT(cnp->cn_namelen < sizeof(nm));
4855	strlcpy(nm, cnp->cn_nameptr, MIN(cnp->cn_namelen + 1, sizeof(nm)));
4856
4857	err = zfs_lookup(ap->a_dvp, nm, ap->a_vpp, cnp, cnp->cn_nameiop,
4858	    cnp->cn_cred, 0);
4859
4860	return err;
4861}
4862
4863static int
4864zfs_netbsd_create(void *v)
4865{
4866	struct vop_create_args *ap = v;
4867	struct componentname *cnp = ap->a_cnp;
4868	vattr_t *vap = ap->a_vap;
4869	int mode;
4870
4871	vattr_init_mask(vap);
4872	mode = vap->va_mode & ALLPERMS;
4873
4874	return (zfs_create(ap->a_dvp, (char *)cnp->cn_nameptr, vap, !EXCL, mode,
4875		ap->a_vpp, cnp->cn_cred));
4876}
4877
4878static int
4879zfs_netbsd_remove(void *v)
4880{
4881	struct vop_remove_args *ap = v;
4882
4883	return (zfs_remove(ap->a_dvp, (char *)ap->a_cnp->cn_nameptr,
4884	    ap->a_cnp->cn_cred, NULL, 0));
4885}
4886
4887static int
4888zfs_netbsd_mkdir(void *v)
4889{
4890	struct vop_mkdir_args *ap = v;
4891	vattr_t *vap = ap->a_vap;
4892
4893	vattr_init_mask(vap);
4894
4895	return (zfs_mkdir(ap->a_dvp, (char *)ap->a_cnp->cn_nameptr, vap, ap->a_vpp,
4896	    ap->a_cnp->cn_cred, NULL, 0, NULL));
4897}
4898
4899static int
4900zfs_netbsd_rmdir(void *v)
4901{
4902	struct vop_rmdir_args *ap = v;
4903	struct componentname *cnp = ap->a_cnp;
4904
4905	return (zfs_rmdir(ap->a_dvp, (char *)cnp->cn_nameptr, NULL, cnp->cn_cred, NULL, 0));
4906}
4907
4908static int
4909zfs_netbsd_readdir(void *v)
4910{
4911	struct vop_readdir_args *ap = v;
4912
4913	return (zfs_readdir(ap->a_vp, ap->a_uio, ap->a_cred, ap->a_eofflag,
4914		ap->a_ncookies, (u_long **)ap->a_cookies));
4915}
4916
4917static int
4918zfs_netbsd_fsync(void *v)
4919{
4920	struct vop_fsync_args *ap = v;
4921
4922	return (zfs_fsync(ap->a_vp, ap->a_flags, ap->a_cred, NULL));
4923}
4924
4925static int
4926zfs_netbsd_getattr(void *v)
4927{
4928	struct vop_getattr_args *ap = v;
4929	vattr_t *vap = ap->a_vap;
4930	xvattr_t xvap;
4931	u_long fflags = 0;
4932	int error;
4933
4934	xva_init(&xvap);
4935	xvap.xva_vattr = *vap;
4936	xvap.xva_vattr.va_mask |= AT_XVATTR;
4937
4938	/* Convert chflags into ZFS-type flags. */
4939	/* XXX: what about SF_SETTABLE?. */
4940	XVA_SET_REQ(&xvap, XAT_IMMUTABLE);
4941	XVA_SET_REQ(&xvap, XAT_APPENDONLY);
4942	XVA_SET_REQ(&xvap, XAT_NOUNLINK);
4943	XVA_SET_REQ(&xvap, XAT_NODUMP);
4944	error = zfs_getattr(ap->a_vp, (vattr_t *)&xvap, 0, ap->a_cred, NULL);
4945	if (error != 0)
4946		return (error);
4947
4948	/* Convert ZFS xattr into chflags. */
4949#define	FLAG_CHECK(fflag, xflag, xfield)	do {			\
4950	if (XVA_ISSET_RTN(&xvap, (xflag)) && (xfield) != 0)		\
4951		fflags |= (fflag);					\
4952} while (0)
4953	FLAG_CHECK(SF_IMMUTABLE, XAT_IMMUTABLE,
4954	    xvap.xva_xoptattrs.xoa_immutable);
4955	FLAG_CHECK(SF_APPEND, XAT_APPENDONLY,
4956	    xvap.xva_xoptattrs.xoa_appendonly);
4957	FLAG_CHECK(SF_NOUNLINK, XAT_NOUNLINK,
4958	    xvap.xva_xoptattrs.xoa_nounlink);
4959	FLAG_CHECK(UF_NODUMP, XAT_NODUMP,
4960	    xvap.xva_xoptattrs.xoa_nodump);
4961#undef	FLAG_CHECK
4962	*vap = xvap.xva_vattr;
4963	vap->va_flags = fflags;
4964	return (0);
4965}
4966
4967static int
4968zfs_netbsd_setattr(void *v)
4969{
4970	struct vop_setattr_args *ap = v;
4971	vnode_t *vp = ap->a_vp;
4972	vattr_t *vap = ap->a_vap;
4973	cred_t *cred = ap->a_cred;
4974	xvattr_t xvap;
4975	u_long fflags;
4976	uint64_t zflags;
4977
4978	vattr_init_mask(vap);
4979	vap->va_mask &= ~AT_NOSET;
4980
4981	xva_init(&xvap);
4982	xvap.xva_vattr = *vap;
4983
4984	zflags = VTOZ(vp)->z_phys->zp_flags;
4985
4986	if (vap->va_flags != VNOVAL) {
4987		int error;
4988
4989		fflags = vap->va_flags;
4990		if ((fflags & ~(SF_IMMUTABLE|SF_APPEND|SF_NOUNLINK|UF_NODUMP)) != 0)
4991			return (EOPNOTSUPP);
4992		/*
4993		 * Callers may only modify the file flags on objects they
4994		 * have VADMIN rights for.
4995		 */
4996		if ((error = VOP_ACCESS(vp, VWRITE, cred)) != 0)
4997			return (error);
4998		/*
4999		 * Unprivileged processes are not permitted to unset system
5000		 * flags, or modify flags if any system flags are set.
5001		 * Privileged non-jail processes may not modify system flags
5002		 * if securelevel > 0 and any existing system flags are set.
5003		 * Privileged jail processes behave like privileged non-jail
5004		 * processes if the security.jail.chflags_allowed sysctl is
5005		 * is non-zero; otherwise, they behave like unprivileged
5006		 * processes.
5007		 */
5008		if (kauth_authorize_system(cred, KAUTH_SYSTEM_CHSYSFLAGS, 0,
5009			NULL, NULL, NULL) != 0) {
5010
5011			if (zflags &
5012			    (ZFS_IMMUTABLE | ZFS_APPENDONLY | ZFS_NOUNLINK)) {
5013				return (EPERM);
5014			}
5015			if (fflags &
5016			    (SF_IMMUTABLE | SF_APPEND | SF_NOUNLINK)) {
5017				return (EPERM);
5018			}
5019		}
5020
5021#define	FLAG_CHANGE(fflag, zflag, xflag, xfield)	do {		\
5022	if (((fflags & (fflag)) && !(zflags & (zflag))) ||		\
5023	    ((zflags & (zflag)) && !(fflags & (fflag)))) {		\
5024		XVA_SET_REQ(&xvap, (xflag));				\
5025		(xfield) = ((fflags & (fflag)) != 0);			\
5026	}								\
5027} while (0)
5028		/* Convert chflags into ZFS-type flags. */
5029		/* XXX: what about SF_SETTABLE?. */
5030		FLAG_CHANGE(SF_IMMUTABLE, ZFS_IMMUTABLE, XAT_IMMUTABLE,
5031		    xvap.xva_xoptattrs.xoa_immutable);
5032		FLAG_CHANGE(SF_APPEND, ZFS_APPENDONLY, XAT_APPENDONLY,
5033		    xvap.xva_xoptattrs.xoa_appendonly);
5034		FLAG_CHANGE(SF_NOUNLINK, ZFS_NOUNLINK, XAT_NOUNLINK,
5035		    xvap.xva_xoptattrs.xoa_nounlink);
5036		FLAG_CHANGE(UF_NODUMP, ZFS_NODUMP, XAT_NODUMP,
5037		    xvap.xva_xoptattrs.xoa_nodump);
5038#undef	FLAG_CHANGE
5039	}
5040	return (zfs_setattr(vp, (vattr_t *)&xvap, 0, cred, NULL));
5041}
5042
5043static int
5044zfs_netbsd_rename(void *v)
5045{
5046	struct vop_rename_args  /* {
5047		struct vnode *a_fdvp;
5048		struct vnode *a_fvp;
5049		struct componentname *a_fcnp;
5050		struct vnode *a_tdvp;
5051		struct vnode *a_tvp;
5052		struct componentname *a_tcnp;
5053	} */ *ap = v;
5054	vnode_t *fdvp = ap->a_fdvp;
5055	vnode_t *fvp = ap->a_fvp;
5056	vnode_t *tdvp = ap->a_tdvp;
5057	vnode_t *tvp = ap->a_tvp;
5058	int error;
5059
5060	error = zfs_rename(fdvp, (char *)ap->a_fcnp->cn_nameptr, tdvp,
5061	    (char *)ap->a_tcnp->cn_nameptr, ap->a_fcnp->cn_cred, NULL, 0);
5062
5063	if (tdvp == tvp)
5064		VN_RELE(tdvp);
5065	else
5066		VN_URELE(tdvp);
5067	if (tvp)
5068		VN_URELE(tvp);
5069	VN_RELE(fdvp);
5070	VN_RELE(fvp);
5071
5072	return (error);
5073}
5074
5075static int
5076zfs_netbsd_symlink(void *v)
5077{
5078	struct vop_symlink_args *ap = v;
5079	struct componentname *cnp = ap->a_cnp;
5080	vattr_t *vap = ap->a_vap;
5081
5082	vap->va_type = VLNK;	/* Netbsd: Syscall only sets va_mode. */
5083	vattr_init_mask(vap);
5084
5085	return (zfs_symlink(ap->a_dvp, ap->a_vpp, (char *)cnp->cn_nameptr, vap,
5086		ap->a_target, cnp->cn_cred, 0));
5087}
5088
5089#ifdef PORT_SOLARIS
5090/*
5091 * Tunable, both must be a power of 2.
5092 *
5093 * zcr_blksz_min: the smallest read we may consider to loan out an arcbuf
5094 * zcr_blksz_max: if set to less than the file block size, allow loaning out of
5095 *                an arcbuf for a partial block read
5096 */
5097int zcr_blksz_min = (1 << 10);	/* 1K */
5098int zcr_blksz_max = (1 << 17);	/* 128K */
5099
5100/*ARGSUSED*/
5101static int
5102zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr,
5103    caller_context_t *ct)
5104{
5105	znode_t	*zp = VTOZ(vp);
5106	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5107	int max_blksz = zfsvfs->z_max_blksz;
5108	uio_t *uio = &xuio->xu_uio;
5109	ssize_t size = uio->uio_resid;
5110	offset_t offset = uio->uio_loffset;
5111	int blksz;
5112	int fullblk, i;
5113	arc_buf_t *abuf;
5114	ssize_t maxsize;
5115	int preamble, postamble;
5116
5117	if (xuio->xu_type != UIOTYPE_ZEROCOPY)
5118		return (EINVAL);
5119
5120	ZFS_ENTER(zfsvfs);
5121	ZFS_VERIFY_ZP(zp);
5122	switch (ioflag) {
5123	case UIO_WRITE:
5124		/*
5125		 * Loan out an arc_buf for write if write size is bigger than
5126		 * max_blksz, and the file's block size is also max_blksz.
5127		 */
5128		blksz = max_blksz;
5129		if (size < blksz || zp->z_blksz != blksz) {
5130			ZFS_EXIT(zfsvfs);
5131			return (EINVAL);
5132		}
5133		/*
5134		 * Caller requests buffers for write before knowing where the
5135		 * write offset might be (e.g. NFS TCP write).
5136		 */
5137		if (offset == -1) {
5138			preamble = 0;
5139		} else {
5140			preamble = P2PHASE(offset, blksz);
5141			if (preamble) {
5142				preamble = blksz - preamble;
5143				size -= preamble;
5144			}
5145		}
5146
5147		postamble = P2PHASE(size, blksz);
5148		size -= postamble;
5149
5150		fullblk = size / blksz;
5151		(void) dmu_xuio_init(xuio,
5152		    (preamble != 0) + fullblk + (postamble != 0));
5153		DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble,
5154		    int, postamble, int,
5155		    (preamble != 0) + fullblk + (postamble != 0));
5156
5157		/*
5158		 * Have to fix iov base/len for partial buffers.  They
5159		 * currently represent full arc_buf's.
5160		 */
5161		if (preamble) {
5162			/* data begins in the middle of the arc_buf */
5163			abuf = dmu_request_arcbuf(zp->z_dbuf, blksz);
5164			ASSERT(abuf);
5165			(void) dmu_xuio_add(xuio, abuf,
5166			    blksz - preamble, preamble);
5167		}
5168
5169		for (i = 0; i < fullblk; i++) {
5170			abuf = dmu_request_arcbuf(zp->z_dbuf, blksz);
5171			ASSERT(abuf);
5172			(void) dmu_xuio_add(xuio, abuf, 0, blksz);
5173		}
5174
5175		if (postamble) {
5176			/* data ends in the middle of the arc_buf */
5177			abuf = dmu_request_arcbuf(zp->z_dbuf, blksz);
5178			ASSERT(abuf);
5179			(void) dmu_xuio_add(xuio, abuf, 0, postamble);
5180		}
5181		break;
5182	case UIO_READ:
5183		/*
5184		 * Loan out an arc_buf for read if the read size is larger than
5185		 * the current file block size.  Block alignment is not
5186		 * considered.  Partial arc_buf will be loaned out for read.
5187		 */
5188		blksz = zp->z_blksz;
5189		if (blksz < zcr_blksz_min)
5190			blksz = zcr_blksz_min;
5191		if (blksz > zcr_blksz_max)
5192			blksz = zcr_blksz_max;
5193		/* avoid potential complexity of dealing with it */
5194		if (blksz > max_blksz) {
5195			ZFS_EXIT(zfsvfs);
5196			return (EINVAL);
5197		}
5198
5199		maxsize = zp->z_phys->zp_size - uio->uio_loffset;
5200		if (size > maxsize)
5201			size = maxsize;
5202
5203		if (size < blksz || vn_has_cached_data(vp)) {
5204			ZFS_EXIT(zfsvfs);
5205			return (EINVAL);
5206		}
5207		break;
5208	default:
5209		ZFS_EXIT(zfsvfs);
5210		return (EINVAL);
5211	}
5212
5213	uio->uio_extflg = UIO_XUIO;
5214	XUIO_XUZC_RW(xuio) = ioflag;
5215	ZFS_EXIT(zfsvfs);
5216	return (0);
5217}
5218
5219/*ARGSUSED*/
5220static int
5221zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct)
5222{
5223	int i;
5224	arc_buf_t *abuf;
5225	int ioflag = XUIO_XUZC_RW(xuio);
5226
5227	ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY);
5228
5229	i = dmu_xuio_cnt(xuio);
5230	while (i-- > 0) {
5231		abuf = dmu_xuio_arcbuf(xuio, i);
5232		/*
5233		 * if abuf == NULL, it must be a write buffer
5234		 * that has been returned in zfs_write().
5235		 */
5236		if (abuf)
5237			dmu_return_arcbuf(abuf);
5238		ASSERT(abuf || ioflag == UIO_WRITE);
5239	}
5240
5241	dmu_xuio_fini(xuio);
5242	return (0);
5243}
5244
5245/*
5246 * Predeclare these here so that the compiler assumes that
5247 * this is an "old style" function declaration that does
5248 * not include arguments => we won't get type mismatch errors
5249 * in the initializations that follow.
5250 */
5251static int zfs_inval();
5252static int zfs_isdir();
5253#endif
5254
5255static int
5256zfs_netbsd_readlink(void *v)
5257{
5258	struct vop_readlink_args *ap = v;
5259
5260	return (zfs_readlink(ap->a_vp, ap->a_uio, ap->a_cred, NULL));
5261}
5262
5263static int
5264zfs_netbsd_link(void *v)
5265{
5266	struct vop_link_args *ap = v;
5267	struct componentname *cnp = ap->a_cnp;
5268
5269	return (zfs_link(ap->a_dvp, ap->a_vp, (char *)cnp->cn_nameptr, cnp->cn_cred, NULL, 0));
5270}
5271
5272static int
5273zfs_netbsd_inactive(void *v)
5274{
5275	struct vop_inactive_args *ap = v;
5276	vnode_t *vp = ap->a_vp;
5277	znode_t	*zp = VTOZ(vp);
5278
5279	/*
5280	 * NetBSD: nothing to do here, other than indicate if the
5281	 * vnode should be reclaimed.  No need to lock, if we race
5282	 * vrele() will call us again.
5283	 */
5284	*ap->a_recycle = (zp->z_unlinked != 0);
5285	VOP_UNLOCK(vp);
5286	return (0);
5287}
5288
5289/*
5290 * Destroy znode from taskq thread without ZFS_OBJ_MUTEX held.
5291 */
5292static void
5293zfs_reclaim_deferred(void *arg)
5294{
5295	znode_t *zp = arg;
5296	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5297	uint64_t z_id = zp->z_id;
5298
5299	/*
5300	 * Don't allow a zfs_zget() while were trying to release this znode
5301	 */
5302	ZFS_OBJ_HOLD_ENTER(zfsvfs, z_id);
5303
5304	/* Don't need to call ZFS_OBJ_HOLD_EXIT zfs_inactive did thatfor us. */
5305	zfs_zinactive(zp);
5306
5307}
5308
5309static int
5310zfs_netbsd_reclaim(void *v)
5311{
5312	struct vop_reclaim_args *ap = v;
5313	vnode_t	*vp = ap->a_vp;
5314	znode_t	*zp = VTOZ(vp);
5315	zfsvfs_t *zfsvfs;
5316	int locked;
5317
5318	locked = 0;
5319
5320	ASSERT(zp != NULL);
5321	KASSERT(!vn_has_cached_data(vp));
5322
5323	zfsvfs = zp->z_zfsvfs;
5324
5325	mutex_enter(&zp->z_lock);
5326	ASSERT(zp->z_phys);
5327
5328//	dprintf("destroying znode %p -- vnode %p -- zp->z_buf = %p\n", zp, ZTOV(zp), zp->z_dbuf);
5329//	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
5330	genfs_node_destroy(vp);
5331	cache_purge(vp);
5332
5333	if (zp->z_dbuf == NULL) {
5334		/*
5335		 * The fs has been unmounted, or we did a
5336		 * suspend/resume and this file no longer exists.
5337		 */
5338		rw_exit(&zfsvfs->z_teardown_inactive_lock);
5339		mutex_exit(&zp->z_lock);
5340		zfs_znode_free(zp);
5341		return (0);
5342	}
5343	mutex_exit(&zp->z_lock);
5344
5345	mutex_enter(&zp->z_lock);
5346	if (!zp->z_unlinked) {
5347		/*
5348		 * XXX Hack because ZFS_OBJ_MUTEX is held we can't call zfs_zinactive
5349		 * now. I need to defer zfs_zinactive to another thread which doesn't hold this mutex.
5350		 */
5351		locked = MUTEX_HELD(ZFS_OBJ_MUTEX(zfsvfs, zp->z_id)) ? 2 :
5352		    ZFS_OBJ_HOLD_TRYENTER(zfsvfs, zp->z_id);
5353		if (locked == 0) {
5354			/*
5355			 * Lock can't be obtained due to deadlock possibility,
5356			 * so defer znode destruction.
5357			 */
5358			taskq_dispatch(system_taskq, zfs_reclaim_deferred, zp, 0);
5359		} else {
5360			zfs_znode_dmu_fini(zp);
5361			/* Our LWP is holding ZFS_OBJ_HELD mutex but it was locked before
5362			   zfs_zinactive was called therefore we can't release it. */
5363			if (locked == 1)
5364				ZFS_OBJ_HOLD_EXIT(zfsvfs, zp->z_id);
5365			zfs_znode_free(zp);
5366		}
5367	} else
5368		mutex_exit(&zp->z_lock);
5369
5370	ZTOV(zp) = NULL;
5371	vp->v_data = NULL; /* v_data must be NULL for a cleaned vnode. */
5372
5373	return (0);
5374}
5375
5376static int
5377zfs_netbsd_fid(void *v)
5378{
5379	struct vop_fid_args *ap = v;
5380
5381	return (zfs_fid(ap->a_vp, (void *)ap->a_fid, NULL));
5382}
5383
5384static int
5385zfs_netbsd_pathconf(void *v)
5386{
5387	struct vop_pathconf_args *ap = v;
5388	ulong_t val;
5389	int error;
5390
5391	error = zfs_pathconf(ap->a_vp, ap->a_name, &val, curthread->l_cred, NULL);
5392	if (error == 0)
5393		*ap->a_retval = val;
5394	else if (error == EOPNOTSUPP) {
5395		switch (ap->a_name) {
5396		case _PC_NAME_MAX:
5397			*ap->a_retval = NAME_MAX;
5398			return (0);
5399		case _PC_PATH_MAX:
5400			*ap->a_retval = PATH_MAX;
5401			return (0);
5402		case _PC_LINK_MAX:
5403			*ap->a_retval = LINK_MAX;
5404			return (0);
5405		case _PC_MAX_CANON:
5406			*ap->a_retval = MAX_CANON;
5407			return (0);
5408		case _PC_MAX_INPUT:
5409			*ap->a_retval = MAX_INPUT;
5410			return (0);
5411		case _PC_PIPE_BUF:
5412			*ap->a_retval = PIPE_BUF;
5413			return (0);
5414		case _PC_CHOWN_RESTRICTED:
5415			*ap->a_retval = 1;
5416			return (0);
5417		case _PC_VDISABLE:
5418			*ap->a_retval = _POSIX_VDISABLE;
5419			return (0);
5420		default:
5421			return (EINVAL);
5422		}
5423		/* NOTREACHED */
5424	}
5425	return (error);
5426}
5427
5428int
5429zfs_netbsd_lock(void *v)
5430{
5431	struct vop_lock_args *ap = v;
5432
5433	return 0;
5434}
5435
5436int
5437zfs_netbsd_unlock(void *v)
5438{
5439
5440	return 0;
5441}
5442/*
5443int
5444zfs_netbsd_getpages(void *v)
5445{
5446	struct vnode *vp = ((struct vop_getpages_args *)v)->a_vp;
5447	voff_t offset = ((struct vop_getpages_args *)v)->a_offset;
5448	struct vm_page **m = ((struct vop_getpages_args *)v)->a_m;
5449	int *count = ((struct vop_getpages_args *)v)->a_count;
5450	int centeridx = ((struct vop_getpages_args *)v)->a_centeridx;
5451	vm_prot_t access_type = ((struct vop_getpages_args *)v)->a_access_type;
5452	int advice = ((struct vop_getpages_args *)v)->a_advice;
5453	int flags = ((struct vop_getpages_args *)v)->a_flags;
5454
5455	int error;
5456
5457	error = 0;
5458
5459	KASSERT(!vn_has_cached_data(vp));
5460	mutex_exit(&vp->v_interlock);
5461
5462	return error;
5463}
5464*/
5465
5466int
5467zfs_netbsd_putpages(void *v)
5468{
5469	struct vnode *vp = ((struct vop_putpages_args *)v)->a_vp;
5470	voff_t offlo = ((struct vop_putpages_args *)v)->a_offlo;
5471	voff_t offhi = ((struct vop_putpages_args *)v)->a_offhi;
5472	int flags = ((struct vop_putpages_args *)v)->a_flags;
5473	znode_t *zp = VTOZ(vp);
5474
5475	int error;
5476
5477	dprintf("putpages entry %p -- zfsvfs %p\n", vp, zp->z_zfsvfs);
5478	error = genfs_putpages(v);
5479	dprintf("putpages exit %p -- zfsvfs %p\n", vp, zp->z_zfsvfs);
5480
5481	return error;
5482}
5483
5484#define zfs_netbsd_seek genfs_seek
5485#define zfs_netbsd_mmap genfs_mmap
5486#define zfs_netbsd_getpages genfs_compat_getpages
5487//#define zfs_netbsd_putpages genfs_putpages
5488#define zfs_netbsd_islocked genfs_islocked
5489
5490int (**zfs_vnodeop_p)(void *);
5491const struct vnodeopv_entry_desc zfs_vnodeop_entries[] = {
5492	{ &vop_default_desc,		vn_default_error },
5493	{ &vop_lookup_desc,		zfs_netbsd_lookup },
5494	{ &vop_create_desc,		zfs_netbsd_create },
5495	{ &vop_open_desc,		zfs_netbsd_open },
5496	{ &vop_close_desc,		zfs_netbsd_close },
5497	{ &vop_access_desc,		zfs_netbsd_access },
5498	{ &vop_getattr_desc,		zfs_netbsd_getattr },
5499	{ &vop_setattr_desc,		zfs_netbsd_setattr },
5500	{ &vop_read_desc,		zfs_netbsd_read },
5501	{ &vop_write_desc,		zfs_netbsd_write },
5502	{ &vop_ioctl_desc,		zfs_netbsd_ioctl },
5503	{ &vop_fsync_desc,		zfs_netbsd_fsync },
5504	{ &vop_remove_desc,		zfs_netbsd_remove },
5505	{ &vop_link_desc,		zfs_netbsd_link },
5506	{ &vop_lock_desc,		zfs_netbsd_lock },
5507	{ &vop_unlock_desc,		zfs_netbsd_unlock },
5508	{ &vop_rename_desc,		zfs_netbsd_rename },
5509	{ &vop_mkdir_desc,		zfs_netbsd_mkdir },
5510	{ &vop_rmdir_desc,		zfs_netbsd_rmdir },
5511	{ &vop_symlink_desc,		zfs_netbsd_symlink },
5512	{ &vop_readdir_desc,		zfs_netbsd_readdir },
5513	{ &vop_readlink_desc,		zfs_netbsd_readlink },
5514	{ &vop_inactive_desc,		zfs_netbsd_inactive },
5515	{ &vop_reclaim_desc,		zfs_netbsd_reclaim },
5516	{ &vop_pathconf_desc,		zfs_netbsd_pathconf },
5517	{ &vop_seek_desc,		zfs_netbsd_seek },
5518	{ &vop_getpages_desc,		zfs_netbsd_getpages },
5519	{ &vop_putpages_desc,		zfs_netbsd_putpages },
5520	{ &vop_mmap_desc,		zfs_netbsd_mmap },
5521	{ &vop_islocked_desc,		zfs_netbsd_islocked },
5522#ifdef notyet
5523	{ &vop_advlock_desc,		zfs_netbsd_advlock },
5524	{ &vop_fcntl_desc,		zfs_netbsd_fcntl },
5525	{ &vop_bmap_desc,		zfs_netbsd_bmap },
5526	{ &vop_strategy_desc,		zfs_netbsd_strategy },
5527	{ &vop_print_desc,		zfs_netbsd_print },
5528	{ &vop_bwrite_desc,		zfs_netbsd_bwrite },
5529#endif
5530	{ NULL, NULL }
5531};
5532
5533const struct vnodeopv_desc zfs_vnodeop_opv_desc =
5534	{ &zfs_vnodeop_p, zfs_vnodeop_entries };
5535