zfs_fuid.c revision 1.3
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26#include <sys/zfs_context.h>
27#include <sys/dmu.h>
28#include <sys/avl.h>
29#include <sys/zap.h>
30#include <sys/refcount.h>
31#include <sys/nvpair.h>
32#ifdef _KERNEL
33#include <sys/kidmap.h>
34#include <sys/sid.h>
35#include <sys/zfs_vfsops.h>
36#include <sys/zfs_znode.h>
37#endif
38#include <sys/zfs_fuid.h>
39
40/*
41 * FUID Domain table(s).
42 *
43 * The FUID table is stored as a packed nvlist of an array
44 * of nvlists which contain an index, domain string and offset
45 *
46 * During file system initialization the nvlist(s) are read and
47 * two AVL trees are created.  One tree is keyed by the index number
48 * and the other by the domain string.  Nodes are never removed from
49 * trees, but new entries may be added.  If a new entry is added then
50 * the zfsvfs->z_fuid_dirty flag is set to true and the caller will then
51 * be responsible for calling zfs_fuid_sync() to sync the changes to disk.
52 *
53 */
54
55#define	FUID_IDX	"fuid_idx"
56#define	FUID_DOMAIN	"fuid_domain"
57#define	FUID_OFFSET	"fuid_offset"
58#define	FUID_NVP_ARRAY	"fuid_nvlist"
59
60typedef struct fuid_domain {
61	avl_node_t	f_domnode;
62	avl_node_t	f_idxnode;
63	ksiddomain_t	*f_ksid;
64	uint64_t	f_idx;
65} fuid_domain_t;
66
67static char *nulldomain = "";
68
69/*
70 * Compare two indexes.
71 */
72static int
73idx_compare(const void *arg1, const void *arg2)
74{
75	const fuid_domain_t *node1 = arg1;
76	const fuid_domain_t *node2 = arg2;
77
78	if (node1->f_idx < node2->f_idx)
79		return (-1);
80	else if (node1->f_idx > node2->f_idx)
81		return (1);
82	return (0);
83}
84
85/*
86 * Compare two domain strings.
87 */
88static int
89domain_compare(const void *arg1, const void *arg2)
90{
91	const fuid_domain_t *node1 = arg1;
92	const fuid_domain_t *node2 = arg2;
93	int val;
94
95	val = strcmp(node1->f_ksid->kd_name, node2->f_ksid->kd_name);
96	if (val == 0)
97		return (0);
98	return (val > 0 ? 1 : -1);
99}
100
101void
102zfs_fuid_avl_tree_create(avl_tree_t *idx_tree, avl_tree_t *domain_tree)
103{
104	avl_create(idx_tree, idx_compare,
105	    sizeof (fuid_domain_t), offsetof(fuid_domain_t, f_idxnode));
106	avl_create(domain_tree, domain_compare,
107	    sizeof (fuid_domain_t), offsetof(fuid_domain_t, f_domnode));
108}
109
110/*
111 * load initial fuid domain and idx trees.  This function is used by
112 * both the kernel and zdb.
113 */
114uint64_t
115zfs_fuid_table_load(objset_t *os, uint64_t fuid_obj, avl_tree_t *idx_tree,
116    avl_tree_t *domain_tree)
117{
118	dmu_buf_t *db;
119	uint64_t fuid_size;
120
121	ASSERT(fuid_obj != 0);
122	VERIFY(0 == dmu_bonus_hold(os, fuid_obj,
123	    FTAG, &db));
124	fuid_size = *(uint64_t *)db->db_data;
125	dmu_buf_rele(db, FTAG);
126
127	if (fuid_size)  {
128		nvlist_t **fuidnvp;
129		nvlist_t *nvp = NULL;
130		uint_t count;
131		char *packed;
132		int i;
133
134		packed = kmem_alloc(fuid_size, KM_SLEEP);
135		VERIFY(dmu_read(os, fuid_obj, 0,
136		    fuid_size, packed, DMU_READ_PREFETCH) == 0);
137		VERIFY(nvlist_unpack(packed, fuid_size,
138		    &nvp, 0) == 0);
139		VERIFY(nvlist_lookup_nvlist_array(nvp, FUID_NVP_ARRAY,
140		    &fuidnvp, &count) == 0);
141
142		for (i = 0; i != count; i++) {
143			fuid_domain_t *domnode;
144			char *domain;
145			uint64_t idx;
146
147			VERIFY(nvlist_lookup_string(fuidnvp[i], FUID_DOMAIN,
148			    &domain) == 0);
149			VERIFY(nvlist_lookup_uint64(fuidnvp[i], FUID_IDX,
150			    &idx) == 0);
151
152			domnode = kmem_alloc(sizeof (fuid_domain_t), KM_SLEEP);
153
154			domnode->f_idx = idx;
155			domnode->f_ksid = ksid_lookupdomain(domain);
156			avl_add(idx_tree, domnode);
157			avl_add(domain_tree, domnode);
158		}
159		nvlist_free(nvp);
160		kmem_free(packed, fuid_size);
161	}
162	return (fuid_size);
163}
164
165void
166zfs_fuid_table_destroy(avl_tree_t *idx_tree, avl_tree_t *domain_tree)
167{
168	fuid_domain_t *domnode;
169	void *cookie;
170
171	cookie = NULL;
172	while (domnode = avl_destroy_nodes(domain_tree, &cookie))
173		ksiddomain_rele(domnode->f_ksid);
174
175	avl_destroy(domain_tree);
176	cookie = NULL;
177	while (domnode = avl_destroy_nodes(idx_tree, &cookie))
178		kmem_free(domnode, sizeof (fuid_domain_t));
179	avl_destroy(idx_tree);
180}
181
182char *
183zfs_fuid_idx_domain(avl_tree_t *idx_tree, uint32_t idx)
184{
185	fuid_domain_t searchnode, *findnode;
186	avl_index_t loc;
187
188	searchnode.f_idx = idx;
189
190	findnode = avl_find(idx_tree, &searchnode, &loc);
191
192	return (findnode ? findnode->f_ksid->kd_name : nulldomain);
193}
194
195#ifdef _KERNEL
196/*
197 * Load the fuid table(s) into memory.
198 */
199static void
200zfs_fuid_init(zfsvfs_t *zfsvfs)
201{
202	rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER);
203
204	if (zfsvfs->z_fuid_loaded) {
205		rw_exit(&zfsvfs->z_fuid_lock);
206		return;
207	}
208
209	zfs_fuid_avl_tree_create(&zfsvfs->z_fuid_idx, &zfsvfs->z_fuid_domain);
210
211	(void) zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ,
212	    ZFS_FUID_TABLES, 8, 1, &zfsvfs->z_fuid_obj);
213	if (zfsvfs->z_fuid_obj != 0) {
214		zfsvfs->z_fuid_size = zfs_fuid_table_load(zfsvfs->z_os,
215		    zfsvfs->z_fuid_obj, &zfsvfs->z_fuid_idx,
216		    &zfsvfs->z_fuid_domain);
217	}
218
219	zfsvfs->z_fuid_loaded = B_TRUE;
220	rw_exit(&zfsvfs->z_fuid_lock);
221}
222
223/*
224 * sync out AVL trees to persistent storage.
225 */
226void
227zfs_fuid_sync(zfsvfs_t *zfsvfs, dmu_tx_t *tx)
228{
229	nvlist_t *nvp;
230	nvlist_t **fuids;
231	size_t nvsize = 0;
232	char *packed;
233	dmu_buf_t *db;
234	fuid_domain_t *domnode;
235	int numnodes;
236	int i;
237
238	if (!zfsvfs->z_fuid_dirty) {
239		return;
240	}
241
242	rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER);
243
244	/*
245	 * First see if table needs to be created?
246	 */
247	if (zfsvfs->z_fuid_obj == 0) {
248		zfsvfs->z_fuid_obj = dmu_object_alloc(zfsvfs->z_os,
249		    DMU_OT_FUID, 1 << 14, DMU_OT_FUID_SIZE,
250		    sizeof (uint64_t), tx);
251		VERIFY(zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
252		    ZFS_FUID_TABLES, sizeof (uint64_t), 1,
253		    &zfsvfs->z_fuid_obj, tx) == 0);
254	}
255
256	VERIFY(nvlist_alloc(&nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
257
258	numnodes = avl_numnodes(&zfsvfs->z_fuid_idx);
259	fuids = kmem_alloc(numnodes * sizeof (void *), KM_SLEEP);
260	for (i = 0, domnode = avl_first(&zfsvfs->z_fuid_domain); domnode; i++,
261	    domnode = AVL_NEXT(&zfsvfs->z_fuid_domain, domnode)) {
262		VERIFY(nvlist_alloc(&fuids[i], NV_UNIQUE_NAME, KM_SLEEP) == 0);
263		VERIFY(nvlist_add_uint64(fuids[i], FUID_IDX,
264		    domnode->f_idx) == 0);
265		VERIFY(nvlist_add_uint64(fuids[i], FUID_OFFSET, 0) == 0);
266		VERIFY(nvlist_add_string(fuids[i], FUID_DOMAIN,
267		    domnode->f_ksid->kd_name) == 0);
268	}
269	VERIFY(nvlist_add_nvlist_array(nvp, FUID_NVP_ARRAY,
270	    fuids, numnodes) == 0);
271	for (i = 0; i != numnodes; i++)
272		nvlist_free(fuids[i]);
273	kmem_free(fuids, numnodes * sizeof (void *));
274	VERIFY(nvlist_size(nvp, &nvsize, NV_ENCODE_XDR) == 0);
275	packed = kmem_alloc(nvsize, KM_SLEEP);
276	VERIFY(nvlist_pack(nvp, &packed, &nvsize,
277	    NV_ENCODE_XDR, KM_SLEEP) == 0);
278	nvlist_free(nvp);
279	zfsvfs->z_fuid_size = nvsize;
280	dmu_write(zfsvfs->z_os, zfsvfs->z_fuid_obj, 0,
281	    zfsvfs->z_fuid_size, packed, tx);
282	kmem_free(packed, zfsvfs->z_fuid_size);
283	VERIFY(0 == dmu_bonus_hold(zfsvfs->z_os, zfsvfs->z_fuid_obj,
284	    FTAG, &db));
285	dmu_buf_will_dirty(db, tx);
286	*(uint64_t *)db->db_data = zfsvfs->z_fuid_size;
287	dmu_buf_rele(db, FTAG);
288
289	zfsvfs->z_fuid_dirty = B_FALSE;
290	rw_exit(&zfsvfs->z_fuid_lock);
291}
292
293/*
294 * Query domain table for a given domain.
295 *
296 * If domain isn't found and addok is set, it is added to AVL trees and
297 * the zfsvfs->z_fuid_dirty flag will be set to TRUE.  It will then be
298 * necessary for the caller or another thread to detect the dirty table
299 * and sync out the changes.
300 */
301int
302zfs_fuid_find_by_domain(zfsvfs_t *zfsvfs, const char *domain,
303    char **retdomain, boolean_t addok)
304{
305	fuid_domain_t searchnode, *findnode;
306	avl_index_t loc;
307	krw_t rw = RW_READER;
308
309	/*
310	 * If the dummy "nobody" domain then return an index of 0
311	 * to cause the created FUID to be a standard POSIX id
312	 * for the user nobody.
313	 */
314	if (domain[0] == '\0') {
315		if (retdomain)
316			*retdomain = nulldomain;
317		return (0);
318	}
319
320	searchnode.f_ksid = ksid_lookupdomain(domain);
321	if (retdomain)
322		*retdomain = searchnode.f_ksid->kd_name;
323	if (!zfsvfs->z_fuid_loaded)
324		zfs_fuid_init(zfsvfs);
325
326retry:
327	rw_enter(&zfsvfs->z_fuid_lock, rw);
328	findnode = avl_find(&zfsvfs->z_fuid_domain, &searchnode, &loc);
329
330	if (findnode) {
331		rw_exit(&zfsvfs->z_fuid_lock);
332		ksiddomain_rele(searchnode.f_ksid);
333		return (findnode->f_idx);
334	} else if (addok) {
335		fuid_domain_t *domnode;
336		uint64_t retidx;
337
338		if (rw == RW_READER && !rw_tryupgrade(&zfsvfs->z_fuid_lock)) {
339			rw_exit(&zfsvfs->z_fuid_lock);
340			rw = RW_WRITER;
341			goto retry;
342		}
343
344		domnode = kmem_alloc(sizeof (fuid_domain_t), KM_SLEEP);
345		domnode->f_ksid = searchnode.f_ksid;
346
347		retidx = domnode->f_idx = avl_numnodes(&zfsvfs->z_fuid_idx) + 1;
348
349		avl_add(&zfsvfs->z_fuid_domain, domnode);
350		avl_add(&zfsvfs->z_fuid_idx, domnode);
351		zfsvfs->z_fuid_dirty = B_TRUE;
352		rw_exit(&zfsvfs->z_fuid_lock);
353		return (retidx);
354	} else {
355		rw_exit(&zfsvfs->z_fuid_lock);
356		return (-1);
357	}
358}
359
360/*
361 * Query domain table by index, returning domain string
362 *
363 * Returns a pointer from an avl node of the domain string.
364 *
365 */
366const char *
367zfs_fuid_find_by_idx(zfsvfs_t *zfsvfs, uint32_t idx)
368{
369	char *domain;
370
371	if (idx == 0 || !zfsvfs->z_use_fuids)
372		return (NULL);
373
374	if (!zfsvfs->z_fuid_loaded)
375		zfs_fuid_init(zfsvfs);
376
377	rw_enter(&zfsvfs->z_fuid_lock, RW_READER);
378
379	if (zfsvfs->z_fuid_obj)
380		domain = zfs_fuid_idx_domain(&zfsvfs->z_fuid_idx, idx);
381	else
382		domain = nulldomain;
383	rw_exit(&zfsvfs->z_fuid_lock);
384
385	ASSERT(domain);
386	return (domain);
387}
388
389void
390zfs_fuid_map_ids(znode_t *zp, cred_t *cr, uid_t *uidp, uid_t *gidp)
391{
392	*uidp = zfs_fuid_map_id(zp->z_zfsvfs, zp->z_phys->zp_uid,
393	    cr, ZFS_OWNER);
394	*gidp = zfs_fuid_map_id(zp->z_zfsvfs, zp->z_phys->zp_gid,
395	    cr, ZFS_GROUP);
396}
397
398uid_t
399zfs_fuid_map_id(zfsvfs_t *zfsvfs, uint64_t fuid,
400    cred_t *cr, zfs_fuid_type_t type)
401{
402	uint32_t index = FUID_INDEX(fuid);
403	const char *domain;
404	uid_t id;
405
406	if (index == 0)
407		return (fuid);
408
409	domain = zfs_fuid_find_by_idx(zfsvfs, index);
410	ASSERT(domain != NULL);
411
412	if (type == ZFS_OWNER || type == ZFS_ACE_USER) {
413		(void) kidmap_getuidbysid(crgetzone(cr), domain,
414		    FUID_RID(fuid), &id);
415	} else {
416		(void) kidmap_getgidbysid(crgetzone(cr), domain,
417		    FUID_RID(fuid), &id);
418	}
419	return (id);
420}
421
422/*
423 * Add a FUID node to the list of fuid's being created for this
424 * ACL
425 *
426 * If ACL has multiple domains, then keep only one copy of each unique
427 * domain.
428 */
429void
430zfs_fuid_node_add(zfs_fuid_info_t **fuidpp, const char *domain, uint32_t rid,
431    uint64_t idx, uint64_t id, zfs_fuid_type_t type)
432{
433	zfs_fuid_t *fuid;
434	zfs_fuid_domain_t *fuid_domain;
435	zfs_fuid_info_t *fuidp;
436	uint64_t fuididx;
437	boolean_t found = B_FALSE;
438
439	if (*fuidpp == NULL)
440		*fuidpp = zfs_fuid_info_alloc();
441
442	fuidp = *fuidpp;
443	/*
444	 * First find fuid domain index in linked list
445	 *
446	 * If one isn't found then create an entry.
447	 */
448
449	for (fuididx = 1, fuid_domain = list_head(&fuidp->z_domains);
450	    fuid_domain; fuid_domain = list_next(&fuidp->z_domains,
451	    fuid_domain), fuididx++) {
452		if (idx == fuid_domain->z_domidx) {
453			found = B_TRUE;
454			break;
455		}
456	}
457
458	if (!found) {
459		fuid_domain = kmem_alloc(sizeof (zfs_fuid_domain_t), KM_SLEEP);
460		fuid_domain->z_domain = domain;
461		fuid_domain->z_domidx = idx;
462		list_insert_tail(&fuidp->z_domains, fuid_domain);
463		fuidp->z_domain_str_sz += strlen(domain) + 1;
464		fuidp->z_domain_cnt++;
465	}
466
467	if (type == ZFS_ACE_USER || type == ZFS_ACE_GROUP) {
468
469		/*
470		 * Now allocate fuid entry and add it on the end of the list
471		 */
472
473		fuid = kmem_alloc(sizeof (zfs_fuid_t), KM_SLEEP);
474		fuid->z_id = id;
475		fuid->z_domidx = idx;
476		fuid->z_logfuid = FUID_ENCODE(fuididx, rid);
477
478		list_insert_tail(&fuidp->z_fuids, fuid);
479		fuidp->z_fuid_cnt++;
480	} else {
481		if (type == ZFS_OWNER)
482			fuidp->z_fuid_owner = FUID_ENCODE(fuididx, rid);
483		else
484			fuidp->z_fuid_group = FUID_ENCODE(fuididx, rid);
485	}
486}
487
488/*
489 * Create a file system FUID, based on information in the users cred
490 */
491uint64_t
492zfs_fuid_create_cred(zfsvfs_t *zfsvfs, zfs_fuid_type_t type,
493    cred_t *cr, zfs_fuid_info_t **fuidp)
494{
495	uint64_t	idx;
496	ksid_t		*ksid;
497	uint32_t	rid;
498	char 		*kdomain;
499	const char	*domain;
500	uid_t		id;
501
502	VERIFY(type == ZFS_OWNER || type == ZFS_GROUP);
503
504	if (type == ZFS_OWNER)
505		id = crgetuid(cr);
506	else
507		id = crgetgid(cr);
508
509#ifdef PORT_SOLARIS
510	ksid = crgetsid(cr, (type == ZFS_OWNER) ? KSID_OWNER : KSID_GROUP);
511	if (ksid) {
512		id = ksid_getid(ksid);
513	} else {
514		if (type == ZFS_OWNER)
515			id = crgetuid(cr);
516		else
517			id = crgetgid(cr);
518
519		if (IS_EPHEMERAL(id)) {
520			return ((uint64_t)(type == ZFS_OWNER ?
521			    UID_NOBODY : GID_NOBODY));
522		}
523	}
524#endif
525
526	if (!zfsvfs->z_use_fuids || (!IS_EPHEMERAL(id)))
527		return ((uint64_t)id);
528
529#ifdef PORT_SOLARIS
530	rid = ksid_getrid(ksid);
531	domain = ksid_getdomain(ksid);
532
533	idx = zfs_fuid_find_by_domain(zfsvfs, domain, &kdomain, B_TRUE);
534
535	zfs_fuid_node_add(fuidp, kdomain, rid, idx, id, type);
536
537	return (FUID_ENCODE(idx, rid));
538#else
539	panic(__func__);
540#endif
541}
542
543/*
544 * Create a file system FUID for an ACL ace
545 * or a chown/chgrp of the file.
546 * This is similar to zfs_fuid_create_cred, except that
547 * we can't find the domain + rid information in the
548 * cred.  Instead we have to query Winchester for the
549 * domain and rid.
550 *
551 * During replay operations the domain+rid information is
552 * found in the zfs_fuid_info_t that the replay code has
553 * attached to the zfsvfs of the file system.
554 */
555uint64_t
556zfs_fuid_create(zfsvfs_t *zfsvfs, uint64_t id, cred_t *cr,
557    zfs_fuid_type_t type, zfs_fuid_info_t **fuidpp)
558{
559	const char *domain;
560	char *kdomain;
561	uint32_t fuid_idx = FUID_INDEX(id);
562	uint32_t rid;
563	idmap_stat status;
564	uint64_t idx;
565	zfs_fuid_t *zfuid = NULL;
566	zfs_fuid_info_t *fuidp;
567
568	/*
569	 * If POSIX ID, or entry is already a FUID then
570	 * just return the id
571	 *
572	 * We may also be handed an already FUID'ized id via
573	 * chmod.
574	 */
575
576	if (!zfsvfs->z_use_fuids || !IS_EPHEMERAL(id) || fuid_idx != 0)
577		return (id);
578
579	if (zfsvfs->z_replay) {
580		fuidp = zfsvfs->z_fuid_replay;
581
582		/*
583		 * If we are passed an ephemeral id, but no
584		 * fuid_info was logged then return NOBODY.
585		 * This is most likely a result of idmap service
586		 * not being available.
587		 */
588		/* XXX NetBSD we need to define UID_NOBODY in
589		   kernel sources otherwise */
590		if (fuidp == NULL)
591			return (crgetuid(cr));
592
593		switch (type) {
594		case ZFS_ACE_USER:
595		case ZFS_ACE_GROUP:
596			zfuid = list_head(&fuidp->z_fuids);
597			rid = FUID_RID(zfuid->z_logfuid);
598			idx = FUID_INDEX(zfuid->z_logfuid);
599			break;
600		case ZFS_OWNER:
601			rid = FUID_RID(fuidp->z_fuid_owner);
602			idx = FUID_INDEX(fuidp->z_fuid_owner);
603			break;
604		case ZFS_GROUP:
605			rid = FUID_RID(fuidp->z_fuid_group);
606			idx = FUID_INDEX(fuidp->z_fuid_group);
607			break;
608		};
609		domain = fuidp->z_domain_table[idx -1];
610	} else {
611#ifdef PORT_SOLARIS
612		if (type == ZFS_OWNER || type == ZFS_ACE_USER)
613			status = kidmap_getsidbyuid(crgetzone(cr), id,
614			    &domain, &rid);
615		else
616			status = kidmap_getsidbygid(crgetzone(cr), id,
617			    &domain, &rid);
618
619		if (status != 0) {
620			/*
621			 * When returning nobody we will need to
622			 * make a dummy fuid table entry for logging
623			 * purposes.
624			 */
625			rid = UID_NOBODY;
626			domain = nulldomain;
627		}
628#else
629		panic(__func__);
630#endif
631	}
632
633	idx = zfs_fuid_find_by_domain(zfsvfs, domain, &kdomain, B_TRUE);
634
635	if (!zfsvfs->z_replay)
636		zfs_fuid_node_add(fuidpp, kdomain,
637		    rid, idx, id, type);
638	else if (zfuid != NULL) {
639		list_remove(&fuidp->z_fuids, zfuid);
640		kmem_free(zfuid, sizeof (zfs_fuid_t));
641	}
642	return (FUID_ENCODE(idx, rid));
643}
644
645void
646zfs_fuid_destroy(zfsvfs_t *zfsvfs)
647{
648	rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER);
649	if (!zfsvfs->z_fuid_loaded) {
650		rw_exit(&zfsvfs->z_fuid_lock);
651		return;
652	}
653	zfs_fuid_table_destroy(&zfsvfs->z_fuid_idx, &zfsvfs->z_fuid_domain);
654	rw_exit(&zfsvfs->z_fuid_lock);
655}
656
657/*
658 * Allocate zfs_fuid_info for tracking FUIDs created during
659 * zfs_mknode, VOP_SETATTR() or VOP_SETSECATTR()
660 */
661zfs_fuid_info_t *
662zfs_fuid_info_alloc(void)
663{
664	zfs_fuid_info_t *fuidp;
665
666	fuidp = kmem_zalloc(sizeof (zfs_fuid_info_t), KM_SLEEP);
667	list_create(&fuidp->z_domains, sizeof (zfs_fuid_domain_t),
668	    offsetof(zfs_fuid_domain_t, z_next));
669	list_create(&fuidp->z_fuids, sizeof (zfs_fuid_t),
670	    offsetof(zfs_fuid_t, z_next));
671	return (fuidp);
672}
673
674/*
675 * Release all memory associated with zfs_fuid_info_t
676 */
677void
678zfs_fuid_info_free(zfs_fuid_info_t *fuidp)
679{
680	zfs_fuid_t *zfuid;
681	zfs_fuid_domain_t *zdomain;
682
683	while ((zfuid = list_head(&fuidp->z_fuids)) != NULL) {
684		list_remove(&fuidp->z_fuids, zfuid);
685		kmem_free(zfuid, sizeof (zfs_fuid_t));
686	}
687
688	if (fuidp->z_domain_table != NULL)
689		kmem_free(fuidp->z_domain_table,
690		    (sizeof (char **)) * fuidp->z_domain_cnt);
691
692	while ((zdomain = list_head(&fuidp->z_domains)) != NULL) {
693		list_remove(&fuidp->z_domains, zdomain);
694		kmem_free(zdomain, sizeof (zfs_fuid_domain_t));
695	}
696
697	kmem_free(fuidp, sizeof (zfs_fuid_info_t));
698}
699
700/*
701 * Check to see if id is a groupmember.  If cred
702 * has ksid info then sidlist is checked first
703 * and if still not found then POSIX groups are checked
704 *
705 * Will use a straight FUID compare when possible.
706 */
707boolean_t
708zfs_groupmember(zfsvfs_t *zfsvfs, uint64_t id, cred_t *cr)
709{
710	ksid_t		*ksid = crgetsid(cr, KSID_GROUP);
711	uid_t		gid;
712
713#ifdef PORT_SOLARIS
714	ksidlist_t	*ksidlist = crgetsidlist(cr);
715
716	if (ksid && ksidlist) {
717		int 		i;
718		ksid_t		*ksid_groups;
719		uint32_t	idx = FUID_INDEX(id);
720		uint32_t	rid = FUID_RID(id);
721
722		ksid_groups = ksidlist->ksl_sids;
723
724		for (i = 0; i != ksidlist->ksl_nsid; i++) {
725			if (idx == 0) {
726				if (id != IDMAP_WK_CREATOR_GROUP_GID &&
727				    id == ksid_groups[i].ks_id) {
728					return (B_TRUE);
729				}
730			} else {
731				const char *domain;
732
733				domain = zfs_fuid_find_by_idx(zfsvfs, idx);
734				ASSERT(domain != NULL);
735
736				if (strcmp(domain,
737				    IDMAP_WK_CREATOR_SID_AUTHORITY) == 0)
738					return (B_FALSE);
739
740				if ((strcmp(domain,
741				    ksid_groups[i].ks_domain->kd_name) == 0) &&
742				    rid == ksid_groups[i].ks_rid)
743					return (B_TRUE);
744			}
745		}
746	}
747#endif
748	/*
749	 * Not found in ksidlist, check posix groups
750	 */
751	gid = zfs_fuid_map_id(zfsvfs, id, cr, ZFS_GROUP);
752	return (groupmember(gid, cr));
753}
754
755void
756zfs_fuid_txhold(zfsvfs_t *zfsvfs, dmu_tx_t *tx)
757{
758	if (zfsvfs->z_fuid_obj == 0) {
759		dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
760		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
761		    FUID_SIZE_ESTIMATE(zfsvfs));
762		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, FALSE, NULL);
763	} else {
764		dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj);
765		dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0,
766		    FUID_SIZE_ESTIMATE(zfsvfs));
767	}
768}
769#endif
770