1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License, Version 1.0 only
6 * (the "License").  You may not use this file except in compliance
7 * with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or http://www.opensolaris.org/os/licensing.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22/*
23 * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24 * Use is subject to license terms.
25 */
26
27#pragma ident	"%Z%%M%	%I%	%E% SMI"
28
29#include <sys/types.h>
30#include <sys/sysmacros.h>
31#include <sys/isa_defs.h>
32
33#include <strings.h>
34#include <stdlib.h>
35#include <setjmp.h>
36#include <assert.h>
37#include <errno.h>
38
39#include <dt_impl.h>
40#include <dt_grammar.h>
41#include <dt_parser.h>
42#include <dt_provider.h>
43
44static void dt_cg_node(dt_node_t *, dt_irlist_t *, dt_regset_t *);
45
46static dt_irnode_t *
47dt_cg_node_alloc(uint_t label, dif_instr_t instr)
48{
49	dt_irnode_t *dip = malloc(sizeof (dt_irnode_t));
50
51	if (dip == NULL)
52		longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);
53
54	dip->di_label = label;
55	dip->di_instr = instr;
56	dip->di_extern = NULL;
57	dip->di_next = NULL;
58
59	return (dip);
60}
61
62/*
63 * Code generator wrapper function for ctf_member_info.  If we are given a
64 * reference to a forward declaration tag, search the entire type space for
65 * the actual definition and then call ctf_member_info on the result.
66 */
67static ctf_file_t *
68dt_cg_membinfo(ctf_file_t *fp, ctf_id_t type, const char *s, ctf_membinfo_t *mp)
69{
70	while (ctf_type_kind(fp, type) == CTF_K_FORWARD) {
71		char n[DT_TYPE_NAMELEN];
72		dtrace_typeinfo_t dtt;
73
74		if (ctf_type_name(fp, type, n, sizeof (n)) == NULL ||
75		    dt_type_lookup(n, &dtt) == -1 || (
76		    dtt.dtt_ctfp == fp && dtt.dtt_type == type))
77			break; /* unable to improve our position */
78
79		fp = dtt.dtt_ctfp;
80		type = ctf_type_resolve(fp, dtt.dtt_type);
81	}
82
83	if (ctf_member_info(fp, type, s, mp) == CTF_ERR)
84		return (NULL); /* ctf_errno is set for us */
85
86	return (fp);
87}
88
89static void
90dt_cg_xsetx(dt_irlist_t *dlp, dt_ident_t *idp, uint_t lbl, int reg, uint64_t x)
91{
92	int flag = idp != NULL ? DT_INT_PRIVATE : DT_INT_SHARED;
93	int intoff = dt_inttab_insert(yypcb->pcb_inttab, x, flag);
94	dif_instr_t instr = DIF_INSTR_SETX((uint_t)intoff, reg);
95
96	if (intoff == -1)
97		longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);
98
99	if (intoff > DIF_INTOFF_MAX)
100		longjmp(yypcb->pcb_jmpbuf, EDT_INT2BIG);
101
102	dt_irlist_append(dlp, dt_cg_node_alloc(lbl, instr));
103
104	if (idp != NULL)
105		dlp->dl_last->di_extern = idp;
106}
107
108static void
109dt_cg_setx(dt_irlist_t *dlp, int reg, uint64_t x)
110{
111	dt_cg_xsetx(dlp, NULL, DT_LBL_NONE, reg, x);
112}
113
114/*
115 * When loading bit-fields, we want to convert a byte count in the range
116 * 1-8 to the closest power of 2 (e.g. 3->4, 5->8, etc).  The clp2() function
117 * is a clever implementation from "Hacker's Delight" by Henry Warren, Jr.
118 */
119static size_t
120clp2(size_t x)
121{
122	x--;
123
124	x |= (x >> 1);
125	x |= (x >> 2);
126	x |= (x >> 4);
127	x |= (x >> 8);
128	x |= (x >> 16);
129
130	return (x + 1);
131}
132
133/*
134 * Lookup the correct load opcode to use for the specified node and CTF type.
135 * We determine the size and convert it to a 3-bit index.  Our lookup table
136 * is constructed to use a 5-bit index, consisting of the 3-bit size 0-7, a
137 * bit for the sign, and a bit for userland address.  For example, a 4-byte
138 * signed load from userland would be at the following table index:
139 * user=1 sign=1 size=4 => binary index 11011 = decimal index 27
140 */
141static uint_t
142dt_cg_load(dt_node_t *dnp, ctf_file_t *ctfp, ctf_id_t type)
143{
144	static const uint_t ops[] = {
145		DIF_OP_LDUB,	DIF_OP_LDUH,	0,	DIF_OP_LDUW,
146		0,		0,		0,	DIF_OP_LDX,
147		DIF_OP_LDSB,	DIF_OP_LDSH,	0,	DIF_OP_LDSW,
148		0,		0,		0,	DIF_OP_LDX,
149		DIF_OP_ULDUB,	DIF_OP_ULDUH,	0,	DIF_OP_ULDUW,
150		0,		0,		0,	DIF_OP_ULDX,
151		DIF_OP_ULDSB,	DIF_OP_ULDSH,	0,	DIF_OP_ULDSW,
152		0,		0,		0,	DIF_OP_ULDX,
153	};
154
155	ctf_encoding_t e;
156	ssize_t size;
157
158	/*
159	 * If we're loading a bit-field, the size of our load is found by
160	 * rounding cte_bits up to a byte boundary and then finding the
161	 * nearest power of two to this value (see clp2(), above).
162	 */
163	if ((dnp->dn_flags & DT_NF_BITFIELD) &&
164	    ctf_type_encoding(ctfp, type, &e) != CTF_ERR)
165		size = clp2(P2ROUNDUP(e.cte_bits, NBBY) / NBBY);
166	else
167		size = ctf_type_size(ctfp, type);
168
169	if (size < 1 || size > 8 || (size & (size - 1)) != 0) {
170		xyerror(D_UNKNOWN, "internal error -- cg cannot load "
171		    "size %ld when passed by value\n", (long)size);
172	}
173
174	size--; /* convert size to 3-bit index */
175
176	if (dnp->dn_flags & DT_NF_SIGNED)
177		size |= 0x08;
178	if (dnp->dn_flags & DT_NF_USERLAND)
179		size |= 0x10;
180
181	return (ops[size]);
182}
183
184static void
185dt_cg_ptrsize(dt_node_t *dnp, dt_irlist_t *dlp, dt_regset_t *drp,
186    uint_t op, int dreg)
187{
188	ctf_file_t *ctfp = dnp->dn_ctfp;
189	ctf_arinfo_t r;
190	dif_instr_t instr;
191	ctf_id_t type;
192	uint_t kind;
193	ssize_t size;
194	int sreg;
195
196	if ((sreg = dt_regset_alloc(drp)) == -1)
197		longjmp(yypcb->pcb_jmpbuf, EDT_NOREG);
198
199	type = ctf_type_resolve(ctfp, dnp->dn_type);
200	kind = ctf_type_kind(ctfp, type);
201	assert(kind == CTF_K_POINTER || kind == CTF_K_ARRAY);
202
203	if (kind == CTF_K_ARRAY) {
204		if (ctf_array_info(ctfp, type, &r) != 0) {
205			yypcb->pcb_hdl->dt_ctferr = ctf_errno(ctfp);
206			longjmp(yypcb->pcb_jmpbuf, EDT_CTF);
207		}
208		type = r.ctr_contents;
209	} else
210		type = ctf_type_reference(ctfp, type);
211
212	if ((size = ctf_type_size(ctfp, type)) == 1)
213		return; /* multiply or divide by one can be omitted */
214
215	dt_cg_setx(dlp, sreg, size);
216	instr = DIF_INSTR_FMT(op, dreg, sreg, dreg);
217	dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
218	dt_regset_free(drp, sreg);
219}
220
221/*
222 * If the result of a "." or "->" operation is a bit-field, we use this routine
223 * to generate an epilogue to the load instruction that extracts the value.  In
224 * the diagrams below the "ld??" is the load instruction that is generated to
225 * load the containing word that is generating prior to calling this function.
226 *
227 * Epilogue for unsigned fields:	Epilogue for signed fields:
228 *
229 * ldu?	[r1], r1			lds? [r1], r1
230 * setx	USHIFT, r2			setx 64 - SSHIFT, r2
231 * srl	r1, r2, r1			sll  r1, r2, r1
232 * setx	(1 << bits) - 1, r2		setx 64 - bits, r2
233 * and	r1, r2, r1			sra  r1, r2, r1
234 *
235 * The *SHIFT constants above changes value depending on the endian-ness of our
236 * target architecture.  Refer to the comments below for more details.
237 */
238static void
239dt_cg_field_get(dt_node_t *dnp, dt_irlist_t *dlp, dt_regset_t *drp,
240    ctf_file_t *fp, const ctf_membinfo_t *mp)
241{
242	ctf_encoding_t e;
243	dif_instr_t instr;
244	uint64_t shift;
245	int r1, r2;
246
247	if (ctf_type_encoding(fp, mp->ctm_type, &e) != 0 || e.cte_bits > 64) {
248		xyerror(D_UNKNOWN, "cg: bad field: off %lu type <%ld> "
249		    "bits %u\n", mp->ctm_offset, mp->ctm_type, e.cte_bits);
250	}
251
252	assert(dnp->dn_op == DT_TOK_PTR || dnp->dn_op == DT_TOK_DOT);
253	r1 = dnp->dn_left->dn_reg;
254
255	if ((r2 = dt_regset_alloc(drp)) == -1)
256		longjmp(yypcb->pcb_jmpbuf, EDT_NOREG);
257
258	/*
259	 * On little-endian architectures, ctm_offset counts from the right so
260	 * ctm_offset % NBBY itself is the amount we want to shift right to
261	 * move the value bits to the little end of the register to mask them.
262	 * On big-endian architectures, ctm_offset counts from the left so we
263	 * must subtract (ctm_offset % NBBY + cte_bits) from the size in bits
264	 * we used for the load.  The size of our load in turn is found by
265	 * rounding cte_bits up to a byte boundary and then finding the
266	 * nearest power of two to this value (see clp2(), above).  These
267	 * properties are used to compute shift as USHIFT or SSHIFT, below.
268	 */
269	if (dnp->dn_flags & DT_NF_SIGNED) {
270#if BYTE_ORDER == _BIG_ENDIAN
271		shift = clp2(P2ROUNDUP(e.cte_bits, NBBY) / NBBY) * NBBY -
272		    mp->ctm_offset % NBBY;
273#else
274		shift = mp->ctm_offset % NBBY + e.cte_bits;
275#endif
276		dt_cg_setx(dlp, r2, 64 - shift);
277		instr = DIF_INSTR_FMT(DIF_OP_SLL, r1, r2, r1);
278		dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
279
280		dt_cg_setx(dlp, r2, 64 - e.cte_bits);
281		instr = DIF_INSTR_FMT(DIF_OP_SRA, r1, r2, r1);
282		dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
283	} else {
284#if BYTE_ORDER == _BIG_ENDIAN
285		shift = clp2(P2ROUNDUP(e.cte_bits, NBBY) / NBBY) * NBBY -
286		    (mp->ctm_offset % NBBY + e.cte_bits);
287#else
288		shift = mp->ctm_offset % NBBY;
289#endif
290		dt_cg_setx(dlp, r2, shift);
291		instr = DIF_INSTR_FMT(DIF_OP_SRL, r1, r2, r1);
292		dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
293
294		dt_cg_setx(dlp, r2, (1ULL << e.cte_bits) - 1);
295		instr = DIF_INSTR_FMT(DIF_OP_AND, r1, r2, r1);
296		dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
297	}
298
299	dt_regset_free(drp, r2);
300}
301
302/*
303 * If the destination of a store operation is a bit-field, we use this routine
304 * to generate a prologue to the store instruction that loads the surrounding
305 * bits, clears the destination field, and ORs in the new value of the field.
306 * In the diagram below the "st?" is the store instruction that is generated to
307 * store the containing word that is generating after calling this function.
308 *
309 * ld	[dst->dn_reg], r1
310 * setx	~(((1 << cte_bits) - 1) << (ctm_offset % NBBY)), r2
311 * and	r1, r2, r1
312 *
313 * setx	(1 << cte_bits) - 1, r2
314 * and	src->dn_reg, r2, r2
315 * setx ctm_offset % NBBY, r3
316 * sll	r2, r3, r2
317 *
318 * or	r1, r2, r1
319 * st?	r1, [dst->dn_reg]
320 *
321 * This routine allocates a new register to hold the value to be stored and
322 * returns it.  The caller is responsible for freeing this register later.
323 */
324static int
325dt_cg_field_set(dt_node_t *src, dt_irlist_t *dlp,
326    dt_regset_t *drp, dt_node_t *dst)
327{
328	uint64_t cmask, fmask, shift;
329	dif_instr_t instr;
330	int r1, r2, r3;
331
332	ctf_membinfo_t m;
333	ctf_encoding_t e;
334	ctf_file_t *fp, *ofp;
335	ctf_id_t type;
336
337	assert(dst->dn_op == DT_TOK_PTR || dst->dn_op == DT_TOK_DOT);
338	assert(dst->dn_right->dn_kind == DT_NODE_IDENT);
339
340	fp = dst->dn_left->dn_ctfp;
341	type = ctf_type_resolve(fp, dst->dn_left->dn_type);
342
343	if (dst->dn_op == DT_TOK_PTR) {
344		type = ctf_type_reference(fp, type);
345		type = ctf_type_resolve(fp, type);
346	}
347
348	if ((fp = dt_cg_membinfo(ofp = fp, type,
349	    dst->dn_right->dn_string, &m)) == NULL) {
350		yypcb->pcb_hdl->dt_ctferr = ctf_errno(ofp);
351		longjmp(yypcb->pcb_jmpbuf, EDT_CTF);
352	}
353
354	if (ctf_type_encoding(fp, m.ctm_type, &e) != 0 || e.cte_bits > 64) {
355		xyerror(D_UNKNOWN, "cg: bad field: off %lu type <%ld> "
356		    "bits %u\n", m.ctm_offset, m.ctm_type, e.cte_bits);
357	}
358
359	if ((r1 = dt_regset_alloc(drp)) == -1 ||
360	    (r2 = dt_regset_alloc(drp)) == -1 ||
361	    (r3 = dt_regset_alloc(drp)) == -1)
362		longjmp(yypcb->pcb_jmpbuf, EDT_NOREG);
363
364	/*
365	 * Compute shifts and masks.  We need to compute "shift" as the amount
366	 * we need to shift left to position our field in the containing word.
367	 * Refer to the comments in dt_cg_field_get(), above, for more info.
368	 * We then compute fmask as the mask that truncates the value in the
369	 * input register to width cte_bits, and cmask as the mask used to
370	 * pass through the containing bits and zero the field bits.
371	 */
372#if BYTE_ORDER == _BIG_ENDIAN
373	shift = clp2(P2ROUNDUP(e.cte_bits, NBBY) / NBBY) * NBBY -
374	    (m.ctm_offset % NBBY + e.cte_bits);
375#else
376	shift = m.ctm_offset % NBBY;
377#endif
378	fmask = (1ULL << e.cte_bits) - 1;
379	cmask = ~(fmask << shift);
380
381	instr = DIF_INSTR_LOAD(
382	    dt_cg_load(dst, fp, m.ctm_type), dst->dn_reg, r1);
383	dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
384
385	dt_cg_setx(dlp, r2, cmask);
386	instr = DIF_INSTR_FMT(DIF_OP_AND, r1, r2, r1);
387	dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
388
389	dt_cg_setx(dlp, r2, fmask);
390	instr = DIF_INSTR_FMT(DIF_OP_AND, src->dn_reg, r2, r2);
391	dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
392
393	dt_cg_setx(dlp, r3, shift);
394	instr = DIF_INSTR_FMT(DIF_OP_SLL, r2, r3, r2);
395	dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
396
397	instr = DIF_INSTR_FMT(DIF_OP_OR, r1, r2, r1);
398	dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
399
400	dt_regset_free(drp, r3);
401	dt_regset_free(drp, r2);
402
403	return (r1);
404}
405
406static void
407dt_cg_store(dt_node_t *src, dt_irlist_t *dlp, dt_regset_t *drp, dt_node_t *dst)
408{
409	ctf_encoding_t e;
410	dif_instr_t instr;
411	size_t size;
412	int reg;
413
414	/*
415	 * If we're loading a bit-field, the size of our store is found by
416	 * rounding dst's cte_bits up to a byte boundary and then finding the
417	 * nearest power of two to this value (see clp2(), above).
418	 */
419	if ((dst->dn_flags & DT_NF_BITFIELD) &&
420	    ctf_type_encoding(dst->dn_ctfp, dst->dn_type, &e) != CTF_ERR)
421		size = clp2(P2ROUNDUP(e.cte_bits, NBBY) / NBBY);
422	else
423		size = dt_node_type_size(src);
424
425	if (src->dn_flags & DT_NF_REF) {
426		if ((reg = dt_regset_alloc(drp)) == -1)
427			longjmp(yypcb->pcb_jmpbuf, EDT_NOREG);
428		dt_cg_setx(dlp, reg, size);
429		instr = DIF_INSTR_COPYS(src->dn_reg, reg, dst->dn_reg);
430		dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
431		dt_regset_free(drp, reg);
432	} else {
433		if (dst->dn_flags & DT_NF_BITFIELD)
434			reg = dt_cg_field_set(src, dlp, drp, dst);
435		else
436			reg = src->dn_reg;
437
438		switch (size) {
439		case 1:
440			instr = DIF_INSTR_STORE(DIF_OP_STB, reg, dst->dn_reg);
441			break;
442		case 2:
443			instr = DIF_INSTR_STORE(DIF_OP_STH, reg, dst->dn_reg);
444			break;
445		case 4:
446			instr = DIF_INSTR_STORE(DIF_OP_STW, reg, dst->dn_reg);
447			break;
448		case 8:
449			instr = DIF_INSTR_STORE(DIF_OP_STX, reg, dst->dn_reg);
450			break;
451		default:
452			xyerror(D_UNKNOWN, "internal error -- cg cannot store "
453			    "size %lu when passed by value\n", (ulong_t)size);
454		}
455		dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
456
457		if (dst->dn_flags & DT_NF_BITFIELD)
458			dt_regset_free(drp, reg);
459	}
460}
461
462/*
463 * Generate code for a typecast or for argument promotion from the type of the
464 * actual to the type of the formal.  We need to generate code for casts when
465 * a scalar type is being narrowed or changing signed-ness.  We first shift the
466 * desired bits high (losing excess bits if narrowing) and then shift them down
467 * using logical shift (unsigned result) or arithmetic shift (signed result).
468 */
469static void
470dt_cg_typecast(const dt_node_t *src, const dt_node_t *dst,
471    dt_irlist_t *dlp, dt_regset_t *drp)
472{
473	size_t srcsize = dt_node_type_size(src);
474	size_t dstsize = dt_node_type_size(dst);
475
476	dif_instr_t instr;
477	int reg, n;
478
479	if (dt_node_is_scalar(dst) && (dstsize < srcsize ||
480	    (src->dn_flags & DT_NF_SIGNED) ^ (dst->dn_flags & DT_NF_SIGNED))) {
481		if ((reg = dt_regset_alloc(drp)) == -1)
482			longjmp(yypcb->pcb_jmpbuf, EDT_NOREG);
483
484		if (dstsize < srcsize)
485			n = sizeof (uint64_t) * NBBY - dstsize * NBBY;
486		else
487			n = sizeof (uint64_t) * NBBY - srcsize * NBBY;
488
489		dt_cg_setx(dlp, reg, n);
490
491		instr = DIF_INSTR_FMT(DIF_OP_SLL,
492		    src->dn_reg, reg, dst->dn_reg);
493		dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
494
495		instr = DIF_INSTR_FMT((dst->dn_flags & DT_NF_SIGNED) ?
496		    DIF_OP_SRA : DIF_OP_SRL, dst->dn_reg, reg, dst->dn_reg);
497
498		dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
499		dt_regset_free(drp, reg);
500	}
501}
502
503/*
504 * Generate code to push the specified argument list on to the tuple stack.
505 * We use this routine for handling subroutine calls and associative arrays.
506 * We must first generate code for all subexpressions before loading the stack
507 * because any subexpression could itself require the use of the tuple stack.
508 * This holds a number of registers equal to the number of arguments, but this
509 * is not a huge problem because the number of arguments can't exceed the
510 * number of tuple register stack elements anyway.  At most one extra register
511 * is required (either by dt_cg_typecast() or for dtdt_size, below).  This
512 * implies that a DIF implementation should offer a number of general purpose
513 * registers at least one greater than the number of tuple registers.
514 */
515static void
516dt_cg_arglist(dt_ident_t *idp, dt_node_t *args,
517    dt_irlist_t *dlp, dt_regset_t *drp)
518{
519	const dt_idsig_t *isp = idp->di_data;
520	dt_node_t *dnp;
521	int i = 0;
522
523	for (dnp = args; dnp != NULL; dnp = dnp->dn_list)
524		dt_cg_node(dnp, dlp, drp);
525
526	dt_irlist_append(dlp,
527	    dt_cg_node_alloc(DT_LBL_NONE, DIF_INSTR_FLUSHTS));
528
529	for (dnp = args; dnp != NULL; dnp = dnp->dn_list, i++) {
530		dtrace_diftype_t t;
531		dif_instr_t instr;
532		uint_t op;
533		int reg;
534
535		dt_node_diftype(yypcb->pcb_hdl, dnp, &t);
536
537		isp->dis_args[i].dn_reg = dnp->dn_reg; /* re-use register */
538		dt_cg_typecast(dnp, &isp->dis_args[i], dlp, drp);
539		isp->dis_args[i].dn_reg = -1;
540
541		if (t.dtdt_flags & DIF_TF_BYREF)
542			op = DIF_OP_PUSHTR;
543		else
544			op = DIF_OP_PUSHTV;
545
546		if (t.dtdt_size != 0) {
547			if ((reg = dt_regset_alloc(drp)) == -1)
548				longjmp(yypcb->pcb_jmpbuf, EDT_NOREG);
549			dt_cg_setx(dlp, reg, t.dtdt_size);
550		} else
551			reg = DIF_REG_R0;
552
553		instr = DIF_INSTR_PUSHTS(op, t.dtdt_kind, reg, dnp->dn_reg);
554		dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
555		dt_regset_free(drp, dnp->dn_reg);
556
557		if (reg != DIF_REG_R0)
558			dt_regset_free(drp, reg);
559	}
560
561	if (i > yypcb->pcb_hdl->dt_conf.dtc_diftupregs)
562		longjmp(yypcb->pcb_jmpbuf, EDT_NOTUPREG);
563}
564
565static void
566dt_cg_arithmetic_op(dt_node_t *dnp, dt_irlist_t *dlp,
567    dt_regset_t *drp, uint_t op)
568{
569	int is_ptr_op = (dnp->dn_op == DT_TOK_ADD || dnp->dn_op == DT_TOK_SUB ||
570	    dnp->dn_op == DT_TOK_ADD_EQ || dnp->dn_op == DT_TOK_SUB_EQ);
571
572	int lp_is_ptr = dt_node_is_pointer(dnp->dn_left);
573	int rp_is_ptr = dt_node_is_pointer(dnp->dn_right);
574
575	dif_instr_t instr;
576
577	if (lp_is_ptr && rp_is_ptr) {
578		assert(dnp->dn_op == DT_TOK_SUB);
579		is_ptr_op = 0;
580	}
581
582	dt_cg_node(dnp->dn_left, dlp, drp);
583	if (is_ptr_op && rp_is_ptr)
584		dt_cg_ptrsize(dnp, dlp, drp, DIF_OP_MUL, dnp->dn_left->dn_reg);
585
586	dt_cg_node(dnp->dn_right, dlp, drp);
587	if (is_ptr_op && lp_is_ptr)
588		dt_cg_ptrsize(dnp, dlp, drp, DIF_OP_MUL, dnp->dn_right->dn_reg);
589
590	instr = DIF_INSTR_FMT(op, dnp->dn_left->dn_reg,
591	    dnp->dn_right->dn_reg, dnp->dn_left->dn_reg);
592
593	dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
594	dt_regset_free(drp, dnp->dn_right->dn_reg);
595	dnp->dn_reg = dnp->dn_left->dn_reg;
596
597	if (lp_is_ptr && rp_is_ptr)
598		dt_cg_ptrsize(dnp->dn_right,
599		    dlp, drp, DIF_OP_UDIV, dnp->dn_reg);
600}
601
602static uint_t
603dt_cg_stvar(const dt_ident_t *idp)
604{
605	static const uint_t aops[] = { DIF_OP_STGAA, DIF_OP_STTAA, DIF_OP_NOP };
606	static const uint_t sops[] = { DIF_OP_STGS, DIF_OP_STTS, DIF_OP_STLS };
607
608	uint_t i = (((idp->di_flags & DT_IDFLG_LOCAL) != 0) << 1) |
609	    ((idp->di_flags & DT_IDFLG_TLS) != 0);
610
611	return (idp->di_kind == DT_IDENT_ARRAY ? aops[i] : sops[i]);
612}
613
614static void
615dt_cg_prearith_op(dt_node_t *dnp, dt_irlist_t *dlp, dt_regset_t *drp, uint_t op)
616{
617	ctf_file_t *ctfp = dnp->dn_ctfp;
618	dif_instr_t instr;
619	ctf_id_t type;
620	ssize_t size = 1;
621	int reg;
622
623	if (dt_node_is_pointer(dnp)) {
624		type = ctf_type_resolve(ctfp, dnp->dn_type);
625		assert(ctf_type_kind(ctfp, type) == CTF_K_POINTER);
626		size = ctf_type_size(ctfp, ctf_type_reference(ctfp, type));
627	}
628
629	dt_cg_node(dnp->dn_child, dlp, drp);
630	dnp->dn_reg = dnp->dn_child->dn_reg;
631
632	if ((reg = dt_regset_alloc(drp)) == -1)
633		longjmp(yypcb->pcb_jmpbuf, EDT_NOREG);
634
635	dt_cg_setx(dlp, reg, size);
636
637	instr = DIF_INSTR_FMT(op, dnp->dn_reg, reg, dnp->dn_reg);
638	dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
639	dt_regset_free(drp, reg);
640
641	/*
642	 * If we are modifying a variable, generate an stv instruction from
643	 * the variable specified by the identifier.  If we are storing to a
644	 * memory address, generate code again for the left-hand side using
645	 * DT_NF_REF to get the address, and then generate a store to it.
646	 * In both paths, we store the value in dnp->dn_reg (the new value).
647	 */
648	if (dnp->dn_child->dn_kind == DT_NODE_VAR) {
649		dt_ident_t *idp = dt_ident_resolve(dnp->dn_child->dn_ident);
650
651		idp->di_flags |= DT_IDFLG_DIFW;
652		instr = DIF_INSTR_STV(dt_cg_stvar(idp),
653		    idp->di_id, dnp->dn_reg);
654		dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
655	} else {
656		uint_t rbit = dnp->dn_child->dn_flags & DT_NF_REF;
657
658		assert(dnp->dn_child->dn_flags & DT_NF_WRITABLE);
659		assert(dnp->dn_child->dn_flags & DT_NF_LVALUE);
660
661		dnp->dn_child->dn_flags |= DT_NF_REF; /* force pass-by-ref */
662		dt_cg_node(dnp->dn_child, dlp, drp);
663
664		dt_cg_store(dnp, dlp, drp, dnp->dn_child);
665		dt_regset_free(drp, dnp->dn_child->dn_reg);
666
667		dnp->dn_left->dn_flags &= ~DT_NF_REF;
668		dnp->dn_left->dn_flags |= rbit;
669	}
670}
671
672static void
673dt_cg_postarith_op(dt_node_t *dnp, dt_irlist_t *dlp,
674    dt_regset_t *drp, uint_t op)
675{
676	ctf_file_t *ctfp = dnp->dn_ctfp;
677	dif_instr_t instr;
678	ctf_id_t type;
679	ssize_t size = 1;
680	int nreg;
681
682	if (dt_node_is_pointer(dnp)) {
683		type = ctf_type_resolve(ctfp, dnp->dn_type);
684		assert(ctf_type_kind(ctfp, type) == CTF_K_POINTER);
685		size = ctf_type_size(ctfp, ctf_type_reference(ctfp, type));
686	}
687
688	dt_cg_node(dnp->dn_child, dlp, drp);
689	dnp->dn_reg = dnp->dn_child->dn_reg;
690
691	if ((nreg = dt_regset_alloc(drp)) == -1)
692		longjmp(yypcb->pcb_jmpbuf, EDT_NOREG);
693
694	dt_cg_setx(dlp, nreg, size);
695	instr = DIF_INSTR_FMT(op, dnp->dn_reg, nreg, nreg);
696	dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
697
698	/*
699	 * If we are modifying a variable, generate an stv instruction from
700	 * the variable specified by the identifier.  If we are storing to a
701	 * memory address, generate code again for the left-hand side using
702	 * DT_NF_REF to get the address, and then generate a store to it.
703	 * In both paths, we store the value from 'nreg' (the new value).
704	 */
705	if (dnp->dn_child->dn_kind == DT_NODE_VAR) {
706		dt_ident_t *idp = dt_ident_resolve(dnp->dn_child->dn_ident);
707
708		idp->di_flags |= DT_IDFLG_DIFW;
709		instr = DIF_INSTR_STV(dt_cg_stvar(idp), idp->di_id, nreg);
710		dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
711	} else {
712		uint_t rbit = dnp->dn_child->dn_flags & DT_NF_REF;
713		int oreg = dnp->dn_reg;
714
715		assert(dnp->dn_child->dn_flags & DT_NF_WRITABLE);
716		assert(dnp->dn_child->dn_flags & DT_NF_LVALUE);
717
718		dnp->dn_child->dn_flags |= DT_NF_REF; /* force pass-by-ref */
719		dt_cg_node(dnp->dn_child, dlp, drp);
720
721		dnp->dn_reg = nreg;
722		dt_cg_store(dnp, dlp, drp, dnp->dn_child);
723		dnp->dn_reg = oreg;
724
725		dt_regset_free(drp, dnp->dn_child->dn_reg);
726		dnp->dn_left->dn_flags &= ~DT_NF_REF;
727		dnp->dn_left->dn_flags |= rbit;
728	}
729
730	dt_regset_free(drp, nreg);
731}
732
733/*
734 * Determine if we should perform signed or unsigned comparison for an OP2.
735 * If both operands are of arithmetic type, perform the usual arithmetic
736 * conversions to determine the common real type for comparison [ISOC 6.5.8.3].
737 */
738static int
739dt_cg_compare_signed(dt_node_t *dnp)
740{
741	dt_node_t dn;
742
743	if (dt_node_is_string(dnp->dn_left) ||
744	    dt_node_is_string(dnp->dn_right))
745		return (1); /* strings always compare signed */
746	else if (!dt_node_is_arith(dnp->dn_left) ||
747	    !dt_node_is_arith(dnp->dn_right))
748		return (0); /* non-arithmetic types always compare unsigned */
749
750	bzero(&dn, sizeof (dn));
751	dt_node_promote(dnp->dn_left, dnp->dn_right, &dn);
752	return (dn.dn_flags & DT_NF_SIGNED);
753}
754
755static void
756dt_cg_compare_op(dt_node_t *dnp, dt_irlist_t *dlp, dt_regset_t *drp, uint_t op)
757{
758	uint_t lbl_true = dt_irlist_label(dlp);
759	uint_t lbl_post = dt_irlist_label(dlp);
760
761	dif_instr_t instr;
762	uint_t opc;
763
764	dt_cg_node(dnp->dn_left, dlp, drp);
765	dt_cg_node(dnp->dn_right, dlp, drp);
766
767	if (dt_node_is_string(dnp->dn_left) || dt_node_is_string(dnp->dn_right))
768		opc = DIF_OP_SCMP;
769	else
770		opc = DIF_OP_CMP;
771
772	instr = DIF_INSTR_CMP(opc, dnp->dn_left->dn_reg, dnp->dn_right->dn_reg);
773	dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
774	dt_regset_free(drp, dnp->dn_right->dn_reg);
775	dnp->dn_reg = dnp->dn_left->dn_reg;
776
777	instr = DIF_INSTR_BRANCH(op, lbl_true);
778	dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
779
780	instr = DIF_INSTR_MOV(DIF_REG_R0, dnp->dn_reg);
781	dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
782
783	instr = DIF_INSTR_BRANCH(DIF_OP_BA, lbl_post);
784	dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
785
786	dt_cg_xsetx(dlp, NULL, lbl_true, dnp->dn_reg, 1);
787	dt_irlist_append(dlp, dt_cg_node_alloc(lbl_post, DIF_INSTR_NOP));
788}
789
790/*
791 * Code generation for the ternary op requires some trickery with the assembler
792 * in order to conserve registers.  We generate code for dn_expr and dn_left
793 * and free their registers so they do not have be consumed across codegen for
794 * dn_right.  We insert a dummy MOV at the end of dn_left into the destination
795 * register, which is not yet known because we haven't done dn_right yet, and
796 * save the pointer to this instruction node.  We then generate code for
797 * dn_right and use its register as our output.  Finally, we reach back and
798 * patch the instruction for dn_left to move its output into this register.
799 */
800static void
801dt_cg_ternary_op(dt_node_t *dnp, dt_irlist_t *dlp, dt_regset_t *drp)
802{
803	uint_t lbl_false = dt_irlist_label(dlp);
804	uint_t lbl_post = dt_irlist_label(dlp);
805
806	dif_instr_t instr;
807	dt_irnode_t *dip;
808
809	dt_cg_node(dnp->dn_expr, dlp, drp);
810	instr = DIF_INSTR_TST(dnp->dn_expr->dn_reg);
811	dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
812	dt_regset_free(drp, dnp->dn_expr->dn_reg);
813
814	instr = DIF_INSTR_BRANCH(DIF_OP_BE, lbl_false);
815	dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
816
817	dt_cg_node(dnp->dn_left, dlp, drp);
818	instr = DIF_INSTR_MOV(dnp->dn_left->dn_reg, DIF_REG_R0);
819	dip = dt_cg_node_alloc(DT_LBL_NONE, instr); /* save dip for below */
820	dt_irlist_append(dlp, dip);
821	dt_regset_free(drp, dnp->dn_left->dn_reg);
822
823	instr = DIF_INSTR_BRANCH(DIF_OP_BA, lbl_post);
824	dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
825
826	dt_irlist_append(dlp, dt_cg_node_alloc(lbl_false, DIF_INSTR_NOP));
827	dt_cg_node(dnp->dn_right, dlp, drp);
828	dnp->dn_reg = dnp->dn_right->dn_reg;
829
830	/*
831	 * Now that dn_reg is assigned, reach back and patch the correct MOV
832	 * instruction into the tail of dn_left.  We know dn_reg was unused
833	 * at that point because otherwise dn_right couldn't have allocated it.
834	 */
835	dip->di_instr = DIF_INSTR_MOV(dnp->dn_left->dn_reg, dnp->dn_reg);
836	dt_irlist_append(dlp, dt_cg_node_alloc(lbl_post, DIF_INSTR_NOP));
837}
838
839static void
840dt_cg_logical_and(dt_node_t *dnp, dt_irlist_t *dlp, dt_regset_t *drp)
841{
842	uint_t lbl_false = dt_irlist_label(dlp);
843	uint_t lbl_post = dt_irlist_label(dlp);
844
845	dif_instr_t instr;
846
847	dt_cg_node(dnp->dn_left, dlp, drp);
848	instr = DIF_INSTR_TST(dnp->dn_left->dn_reg);
849	dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
850	dt_regset_free(drp, dnp->dn_left->dn_reg);
851
852	instr = DIF_INSTR_BRANCH(DIF_OP_BE, lbl_false);
853	dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
854
855	dt_cg_node(dnp->dn_right, dlp, drp);
856	instr = DIF_INSTR_TST(dnp->dn_right->dn_reg);
857	dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
858	dnp->dn_reg = dnp->dn_right->dn_reg;
859
860	instr = DIF_INSTR_BRANCH(DIF_OP_BE, lbl_false);
861	dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
862
863	dt_cg_setx(dlp, dnp->dn_reg, 1);
864
865	instr = DIF_INSTR_BRANCH(DIF_OP_BA, lbl_post);
866	dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
867
868	instr = DIF_INSTR_MOV(DIF_REG_R0, dnp->dn_reg);
869	dt_irlist_append(dlp, dt_cg_node_alloc(lbl_false, instr));
870
871	dt_irlist_append(dlp, dt_cg_node_alloc(lbl_post, DIF_INSTR_NOP));
872}
873
874static void
875dt_cg_logical_xor(dt_node_t *dnp, dt_irlist_t *dlp, dt_regset_t *drp)
876{
877	uint_t lbl_next = dt_irlist_label(dlp);
878	uint_t lbl_tail = dt_irlist_label(dlp);
879
880	dif_instr_t instr;
881
882	dt_cg_node(dnp->dn_left, dlp, drp);
883	instr = DIF_INSTR_TST(dnp->dn_left->dn_reg);
884	dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
885
886	instr = DIF_INSTR_BRANCH(DIF_OP_BE, lbl_next);
887	dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
888	dt_cg_setx(dlp, dnp->dn_left->dn_reg, 1);
889
890	dt_irlist_append(dlp, dt_cg_node_alloc(lbl_next, DIF_INSTR_NOP));
891	dt_cg_node(dnp->dn_right, dlp, drp);
892
893	instr = DIF_INSTR_TST(dnp->dn_right->dn_reg);
894	dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
895
896	instr = DIF_INSTR_BRANCH(DIF_OP_BE, lbl_tail);
897	dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
898	dt_cg_setx(dlp, dnp->dn_right->dn_reg, 1);
899
900	instr = DIF_INSTR_FMT(DIF_OP_XOR, dnp->dn_left->dn_reg,
901	    dnp->dn_right->dn_reg, dnp->dn_left->dn_reg);
902
903	dt_irlist_append(dlp, dt_cg_node_alloc(lbl_tail, instr));
904
905	dt_regset_free(drp, dnp->dn_right->dn_reg);
906	dnp->dn_reg = dnp->dn_left->dn_reg;
907}
908
909static void
910dt_cg_logical_or(dt_node_t *dnp, dt_irlist_t *dlp, dt_regset_t *drp)
911{
912	uint_t lbl_true = dt_irlist_label(dlp);
913	uint_t lbl_false = dt_irlist_label(dlp);
914	uint_t lbl_post = dt_irlist_label(dlp);
915
916	dif_instr_t instr;
917
918	dt_cg_node(dnp->dn_left, dlp, drp);
919	instr = DIF_INSTR_TST(dnp->dn_left->dn_reg);
920	dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
921	dt_regset_free(drp, dnp->dn_left->dn_reg);
922
923	instr = DIF_INSTR_BRANCH(DIF_OP_BNE, lbl_true);
924	dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
925
926	dt_cg_node(dnp->dn_right, dlp, drp);
927	instr = DIF_INSTR_TST(dnp->dn_right->dn_reg);
928	dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
929	dnp->dn_reg = dnp->dn_right->dn_reg;
930
931	instr = DIF_INSTR_BRANCH(DIF_OP_BE, lbl_false);
932	dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
933
934	dt_cg_xsetx(dlp, NULL, lbl_true, dnp->dn_reg, 1);
935
936	instr = DIF_INSTR_BRANCH(DIF_OP_BA, lbl_post);
937	dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
938
939	instr = DIF_INSTR_MOV(DIF_REG_R0, dnp->dn_reg);
940	dt_irlist_append(dlp, dt_cg_node_alloc(lbl_false, instr));
941
942	dt_irlist_append(dlp, dt_cg_node_alloc(lbl_post, DIF_INSTR_NOP));
943}
944
945static void
946dt_cg_logical_neg(dt_node_t *dnp, dt_irlist_t *dlp, dt_regset_t *drp)
947{
948	uint_t lbl_zero = dt_irlist_label(dlp);
949	uint_t lbl_post = dt_irlist_label(dlp);
950
951	dif_instr_t instr;
952
953	dt_cg_node(dnp->dn_child, dlp, drp);
954	dnp->dn_reg = dnp->dn_child->dn_reg;
955
956	instr = DIF_INSTR_TST(dnp->dn_reg);
957	dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
958
959	instr = DIF_INSTR_BRANCH(DIF_OP_BE, lbl_zero);
960	dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
961
962	instr = DIF_INSTR_MOV(DIF_REG_R0, dnp->dn_reg);
963	dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
964
965	instr = DIF_INSTR_BRANCH(DIF_OP_BA, lbl_post);
966	dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
967
968	dt_cg_xsetx(dlp, NULL, lbl_zero, dnp->dn_reg, 1);
969	dt_irlist_append(dlp, dt_cg_node_alloc(lbl_post, DIF_INSTR_NOP));
970}
971
972static void
973dt_cg_asgn_op(dt_node_t *dnp, dt_irlist_t *dlp, dt_regset_t *drp)
974{
975	dif_instr_t instr;
976	dt_ident_t *idp;
977
978	/*
979	 * If we are performing a structure assignment of a translated type,
980	 * we must instantiate all members and create a snapshot of the object
981	 * in scratch space.  We allocs a chunk of memory, generate code for
982	 * each member, and then set dnp->dn_reg to the scratch object address.
983	 */
984	if ((idp = dt_node_resolve(dnp->dn_right, DT_IDENT_XLSOU)) != NULL) {
985		ctf_membinfo_t ctm;
986		dt_xlator_t *dxp = idp->di_data;
987		dt_node_t *mnp, dn, mn;
988		int r1, r2;
989
990		/*
991		 * Create two fake dt_node_t's representing operator "." and a
992		 * right-hand identifier child node.  These will be repeatedly
993		 * modified according to each instantiated member so that we
994		 * can pass them to dt_cg_store() and effect a member store.
995		 */
996		bzero(&dn, sizeof (dt_node_t));
997		dn.dn_kind = DT_NODE_OP2;
998		dn.dn_op = DT_TOK_DOT;
999		dn.dn_left = dnp;
1000		dn.dn_right = &mn;
1001
1002		bzero(&mn, sizeof (dt_node_t));
1003		mn.dn_kind = DT_NODE_IDENT;
1004		mn.dn_op = DT_TOK_IDENT;
1005
1006		/*
1007		 * Allocate a register for our scratch data pointer.  First we
1008		 * set it to the size of our data structure, and then replace
1009		 * it with the result of an allocs of the specified size.
1010		 */
1011		if ((r1 = dt_regset_alloc(drp)) == -1)
1012			longjmp(yypcb->pcb_jmpbuf, EDT_NOREG);
1013
1014		dt_cg_setx(dlp, r1,
1015		    ctf_type_size(dxp->dx_dst_ctfp, dxp->dx_dst_base));
1016
1017		instr = DIF_INSTR_ALLOCS(r1, r1);
1018		dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
1019
1020		/*
1021		 * When dt_cg_asgn_op() is called, we have already generated
1022		 * code for dnp->dn_right, which is the translator input.  We
1023		 * now associate this register with the translator's input
1024		 * identifier so it can be referenced during our member loop.
1025		 */
1026		dxp->dx_ident->di_flags |= DT_IDFLG_CGREG;
1027		dxp->dx_ident->di_id = dnp->dn_right->dn_reg;
1028
1029		for (mnp = dxp->dx_members; mnp != NULL; mnp = mnp->dn_list) {
1030			/*
1031			 * Generate code for the translator member expression,
1032			 * and then cast the result to the member type.
1033			 */
1034			dt_cg_node(mnp->dn_membexpr, dlp, drp);
1035			mnp->dn_reg = mnp->dn_membexpr->dn_reg;
1036			dt_cg_typecast(mnp->dn_membexpr, mnp, dlp, drp);
1037
1038			/*
1039			 * Ask CTF for the offset of the member so we can store
1040			 * to the appropriate offset.  This call has already
1041			 * been done once by the parser, so it should succeed.
1042			 */
1043			if (ctf_member_info(dxp->dx_dst_ctfp, dxp->dx_dst_base,
1044			    mnp->dn_membname, &ctm) == CTF_ERR) {
1045				yypcb->pcb_hdl->dt_ctferr =
1046				    ctf_errno(dxp->dx_dst_ctfp);
1047				longjmp(yypcb->pcb_jmpbuf, EDT_CTF);
1048			}
1049
1050			/*
1051			 * If the destination member is at offset 0, store the
1052			 * result directly to r1 (the scratch buffer address).
1053			 * Otherwise allocate another temporary for the offset
1054			 * and add r1 to it before storing the result.
1055			 */
1056			if (ctm.ctm_offset != 0) {
1057				if ((r2 = dt_regset_alloc(drp)) == -1)
1058					longjmp(yypcb->pcb_jmpbuf, EDT_NOREG);
1059
1060				/*
1061				 * Add the member offset rounded down to the
1062				 * nearest byte.  If the offset was not aligned
1063				 * on a byte boundary, this member is a bit-
1064				 * field and dt_cg_store() will handle masking.
1065				 */
1066				dt_cg_setx(dlp, r2, ctm.ctm_offset / NBBY);
1067				instr = DIF_INSTR_FMT(DIF_OP_ADD, r1, r2, r2);
1068				dt_irlist_append(dlp,
1069				    dt_cg_node_alloc(DT_LBL_NONE, instr));
1070
1071				dt_node_type_propagate(mnp, &dn);
1072				dn.dn_right->dn_string = mnp->dn_membname;
1073				dn.dn_reg = r2;
1074
1075				dt_cg_store(mnp, dlp, drp, &dn);
1076				dt_regset_free(drp, r2);
1077
1078			} else {
1079				dt_node_type_propagate(mnp, &dn);
1080				dn.dn_right->dn_string = mnp->dn_membname;
1081				dn.dn_reg = r1;
1082
1083				dt_cg_store(mnp, dlp, drp, &dn);
1084			}
1085
1086			dt_regset_free(drp, mnp->dn_reg);
1087		}
1088
1089		dxp->dx_ident->di_flags &= ~DT_IDFLG_CGREG;
1090		dxp->dx_ident->di_id = 0;
1091
1092		if (dnp->dn_right->dn_reg != -1)
1093			dt_regset_free(drp, dnp->dn_right->dn_reg);
1094
1095		assert(dnp->dn_reg == dnp->dn_right->dn_reg);
1096		dnp->dn_reg = r1;
1097	}
1098
1099	/*
1100	 * If we are storing to a variable, generate an stv instruction from
1101	 * the variable specified by the identifier.  If we are storing to a
1102	 * memory address, generate code again for the left-hand side using
1103	 * DT_NF_REF to get the address, and then generate a store to it.
1104	 * In both paths, we assume dnp->dn_reg already has the new value.
1105	 */
1106	if (dnp->dn_left->dn_kind == DT_NODE_VAR) {
1107		idp = dt_ident_resolve(dnp->dn_left->dn_ident);
1108
1109		if (idp->di_kind == DT_IDENT_ARRAY)
1110			dt_cg_arglist(idp, dnp->dn_left->dn_args, dlp, drp);
1111
1112		idp->di_flags |= DT_IDFLG_DIFW;
1113		instr = DIF_INSTR_STV(dt_cg_stvar(idp),
1114		    idp->di_id, dnp->dn_reg);
1115		dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
1116	} else {
1117		uint_t rbit = dnp->dn_left->dn_flags & DT_NF_REF;
1118
1119		assert(dnp->dn_left->dn_flags & DT_NF_WRITABLE);
1120		assert(dnp->dn_left->dn_flags & DT_NF_LVALUE);
1121
1122		dnp->dn_left->dn_flags |= DT_NF_REF; /* force pass-by-ref */
1123
1124		dt_cg_node(dnp->dn_left, dlp, drp);
1125		dt_cg_store(dnp, dlp, drp, dnp->dn_left);
1126		dt_regset_free(drp, dnp->dn_left->dn_reg);
1127
1128		dnp->dn_left->dn_flags &= ~DT_NF_REF;
1129		dnp->dn_left->dn_flags |= rbit;
1130	}
1131}
1132
1133static void
1134dt_cg_assoc_op(dt_node_t *dnp, dt_irlist_t *dlp, dt_regset_t *drp)
1135{
1136	dif_instr_t instr;
1137	uint_t op;
1138
1139	assert(dnp->dn_kind == DT_NODE_VAR);
1140	assert(!(dnp->dn_ident->di_flags & DT_IDFLG_LOCAL));
1141	assert(dnp->dn_args != NULL);
1142
1143	dt_cg_arglist(dnp->dn_ident, dnp->dn_args, dlp, drp);
1144
1145	if ((dnp->dn_reg = dt_regset_alloc(drp)) == -1)
1146		longjmp(yypcb->pcb_jmpbuf, EDT_NOREG);
1147
1148	if (dnp->dn_ident->di_flags & DT_IDFLG_TLS)
1149		op = DIF_OP_LDTAA;
1150	else
1151		op = DIF_OP_LDGAA;
1152
1153	dnp->dn_ident->di_flags |= DT_IDFLG_DIFR;
1154	instr = DIF_INSTR_LDV(op, dnp->dn_ident->di_id, dnp->dn_reg);
1155	dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
1156
1157	/*
1158	 * If the associative array is a pass-by-reference type, then we are
1159	 * loading its value as a pointer to either load or store through it.
1160	 * The array element in question may not have been faulted in yet, in
1161	 * which case DIF_OP_LD*AA will return zero.  We append an epilogue
1162	 * of instructions similar to the following:
1163	 *
1164	 *	  ld?aa	 id, %r1	! base ld?aa instruction above
1165	 *	  tst	 %r1		! start of epilogue
1166	 *   +--- bne	 label
1167	 *   |    setx	 size, %r1
1168	 *   |    allocs %r1, %r1
1169	 *   |    st?aa	 id, %r1
1170	 *   |    ld?aa	 id, %r1
1171	 *   v
1172	 * label: < rest of code >
1173	 *
1174	 * The idea is that we allocs a zero-filled chunk of scratch space and
1175	 * do a DIF_OP_ST*AA to fault in and initialize the array element, and
1176	 * then reload it to get the faulted-in address of the new variable
1177	 * storage.  This isn't cheap, but pass-by-ref associative array values
1178	 * are (thus far) uncommon and the allocs cost only occurs once.  If
1179	 * this path becomes important to DTrace users, we can improve things
1180	 * by adding a new DIF opcode to fault in associative array elements.
1181	 */
1182	if (dnp->dn_flags & DT_NF_REF) {
1183		uint_t stvop = op == DIF_OP_LDTAA ? DIF_OP_STTAA : DIF_OP_STGAA;
1184		uint_t label = dt_irlist_label(dlp);
1185
1186		instr = DIF_INSTR_TST(dnp->dn_reg);
1187		dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
1188
1189		instr = DIF_INSTR_BRANCH(DIF_OP_BNE, label);
1190		dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
1191
1192		dt_cg_setx(dlp, dnp->dn_reg, dt_node_type_size(dnp));
1193		instr = DIF_INSTR_ALLOCS(dnp->dn_reg, dnp->dn_reg);
1194		dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
1195
1196		dnp->dn_ident->di_flags |= DT_IDFLG_DIFW;
1197		instr = DIF_INSTR_STV(stvop, dnp->dn_ident->di_id, dnp->dn_reg);
1198		dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
1199
1200		instr = DIF_INSTR_LDV(op, dnp->dn_ident->di_id, dnp->dn_reg);
1201		dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
1202
1203		dt_irlist_append(dlp, dt_cg_node_alloc(label, DIF_INSTR_NOP));
1204	}
1205}
1206
1207static void
1208dt_cg_array_op(dt_node_t *dnp, dt_irlist_t *dlp, dt_regset_t *drp)
1209{
1210	dt_probe_t *prp = yypcb->pcb_probe;
1211	uintmax_t saved = dnp->dn_args->dn_value;
1212	dt_ident_t *idp = dnp->dn_ident;
1213
1214	dif_instr_t instr;
1215	uint_t op;
1216	size_t size;
1217	int reg, n;
1218
1219	assert(dnp->dn_kind == DT_NODE_VAR);
1220	assert(!(idp->di_flags & DT_IDFLG_LOCAL));
1221
1222	assert(dnp->dn_args->dn_kind == DT_NODE_INT);
1223	assert(dnp->dn_args->dn_list == NULL);
1224
1225	/*
1226	 * If this is a reference in the args[] array, temporarily modify the
1227	 * array index according to the static argument mapping (if any),
1228	 * unless the argument reference is provided by a dynamic translator.
1229	 * If we're using a dynamic translator for args[], then just set dn_reg
1230	 * to an invalid reg and return: DIF_OP_XLARG will fetch the arg later.
1231	 */
1232	if (idp->di_id == DIF_VAR_ARGS) {
1233		if ((idp->di_kind == DT_IDENT_XLPTR ||
1234		    idp->di_kind == DT_IDENT_XLSOU) &&
1235		    dt_xlator_dynamic(idp->di_data)) {
1236			dnp->dn_reg = -1;
1237			return;
1238		}
1239		dnp->dn_args->dn_value = prp->pr_mapping[saved];
1240	}
1241
1242	dt_cg_node(dnp->dn_args, dlp, drp);
1243	dnp->dn_args->dn_value = saved;
1244
1245	dnp->dn_reg = dnp->dn_args->dn_reg;
1246
1247	if (idp->di_flags & DT_IDFLG_TLS)
1248		op = DIF_OP_LDTA;
1249	else
1250		op = DIF_OP_LDGA;
1251
1252	idp->di_flags |= DT_IDFLG_DIFR;
1253
1254	instr = DIF_INSTR_LDA(op, idp->di_id,
1255	    dnp->dn_args->dn_reg, dnp->dn_reg);
1256
1257	dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
1258
1259	/*
1260	 * If this is a reference to the args[] array, we need to take the
1261	 * additional step of explicitly eliminating any bits larger than the
1262	 * type size: the DIF interpreter in the kernel will always give us
1263	 * the raw (64-bit) argument value, and any bits larger than the type
1264	 * size may be junk.  As a practical matter, this arises only on 64-bit
1265	 * architectures and only when the argument index is larger than the
1266	 * number of arguments passed directly to DTrace: if a 8-, 16- or
1267	 * 32-bit argument must be retrieved from the stack, it is possible
1268	 * (and it some cases, likely) that the upper bits will be garbage.
1269	 */
1270	if (idp->di_id != DIF_VAR_ARGS || !dt_node_is_scalar(dnp))
1271		return;
1272
1273	if ((size = dt_node_type_size(dnp)) == sizeof (uint64_t))
1274		return;
1275
1276	if ((reg = dt_regset_alloc(drp)) == -1)
1277		longjmp(yypcb->pcb_jmpbuf, EDT_NOREG);
1278
1279	assert(size < sizeof (uint64_t));
1280	n = sizeof (uint64_t) * NBBY - size * NBBY;
1281
1282	dt_cg_setx(dlp, reg, n);
1283
1284	instr = DIF_INSTR_FMT(DIF_OP_SLL, dnp->dn_reg, reg, dnp->dn_reg);
1285	dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
1286
1287	instr = DIF_INSTR_FMT((dnp->dn_flags & DT_NF_SIGNED) ?
1288	    DIF_OP_SRA : DIF_OP_SRL, dnp->dn_reg, reg, dnp->dn_reg);
1289
1290	dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
1291	dt_regset_free(drp, reg);
1292}
1293
1294/*
1295 * Generate code for an inlined variable reference.  Inlines can be used to
1296 * define either scalar or associative array substitutions.  For scalars, we
1297 * simply generate code for the parse tree saved in the identifier's din_root,
1298 * and then cast the resulting expression to the inline's declaration type.
1299 * For arrays, we take the input parameter subtrees from dnp->dn_args and
1300 * temporarily store them in the din_root of each din_argv[i] identifier,
1301 * which are themselves inlines and were set up for us by the parser.  The
1302 * result is that any reference to the inlined parameter inside the top-level
1303 * din_root will turn into a recursive call to dt_cg_inline() for a scalar
1304 * inline whose din_root will refer to the subtree pointed to by the argument.
1305 */
1306static void
1307dt_cg_inline(dt_node_t *dnp, dt_irlist_t *dlp, dt_regset_t *drp)
1308{
1309	dt_ident_t *idp = dnp->dn_ident;
1310	dt_idnode_t *inp = idp->di_iarg;
1311
1312	dt_idnode_t *pinp;
1313	dt_node_t *pnp;
1314	int i;
1315
1316	assert(idp->di_flags & DT_IDFLG_INLINE);
1317	assert(idp->di_ops == &dt_idops_inline);
1318
1319	if (idp->di_kind == DT_IDENT_ARRAY) {
1320		for (i = 0, pnp = dnp->dn_args;
1321		    pnp != NULL; pnp = pnp->dn_list, i++) {
1322			if (inp->din_argv[i] != NULL) {
1323				pinp = inp->din_argv[i]->di_iarg;
1324				pinp->din_root = pnp;
1325			}
1326		}
1327	}
1328
1329	dt_cg_node(inp->din_root, dlp, drp);
1330	dnp->dn_reg = inp->din_root->dn_reg;
1331	dt_cg_typecast(inp->din_root, dnp, dlp, drp);
1332
1333	if (idp->di_kind == DT_IDENT_ARRAY) {
1334		for (i = 0; i < inp->din_argc; i++) {
1335			pinp = inp->din_argv[i]->di_iarg;
1336			pinp->din_root = NULL;
1337		}
1338	}
1339}
1340
1341static void
1342dt_cg_func_typeref(dtrace_hdl_t *dtp, dt_node_t *dnp)
1343{
1344	dtrace_typeinfo_t dtt;
1345	dt_node_t *addr = dnp->dn_args;
1346	dt_node_t *nelm = addr->dn_list;
1347	dt_node_t *strp = nelm->dn_list;
1348	dt_node_t *typs = strp->dn_list;
1349	char buf[DT_TYPE_NAMELEN];
1350	char *p;
1351
1352	ctf_type_name(addr->dn_ctfp, addr->dn_type, buf, sizeof (buf));
1353
1354	/*
1355	 * XXX Hack alert! XXX
1356	 * The prototype has two dummy args that we munge to represent
1357	 * the type string and the type size.
1358	 *
1359	 * Yes, I hear your grumble, but it works for now. We'll come
1360	 * up with a more elegant implementation later. :-)
1361	 */
1362	free(strp->dn_string);
1363
1364	if ((p = strchr(buf, '*')) != NULL)
1365		*p = '\0';
1366
1367	strp->dn_string = strdup(buf);
1368
1369	if (dtrace_lookup_by_type(dtp,  DTRACE_OBJ_EVERY, buf, &dtt) < 0)
1370		return;
1371
1372	typs->dn_value = ctf_type_size(dtt.dtt_ctfp, dtt.dtt_type);
1373}
1374
1375static void
1376dt_cg_node(dt_node_t *dnp, dt_irlist_t *dlp, dt_regset_t *drp)
1377{
1378	ctf_file_t *ctfp = dnp->dn_ctfp;
1379	ctf_file_t *octfp;
1380	ctf_membinfo_t m;
1381	ctf_id_t type;
1382
1383	dif_instr_t instr;
1384	dt_ident_t *idp;
1385	ssize_t stroff;
1386	uint_t op;
1387	int reg;
1388
1389	switch (dnp->dn_op) {
1390	case DT_TOK_COMMA:
1391		dt_cg_node(dnp->dn_left, dlp, drp);
1392		dt_regset_free(drp, dnp->dn_left->dn_reg);
1393		dt_cg_node(dnp->dn_right, dlp, drp);
1394		dnp->dn_reg = dnp->dn_right->dn_reg;
1395		break;
1396
1397	case DT_TOK_ASGN:
1398		dt_cg_node(dnp->dn_right, dlp, drp);
1399		dnp->dn_reg = dnp->dn_right->dn_reg;
1400		dt_cg_asgn_op(dnp, dlp, drp);
1401		break;
1402
1403	case DT_TOK_ADD_EQ:
1404		dt_cg_arithmetic_op(dnp, dlp, drp, DIF_OP_ADD);
1405		dt_cg_asgn_op(dnp, dlp, drp);
1406		break;
1407
1408	case DT_TOK_SUB_EQ:
1409		dt_cg_arithmetic_op(dnp, dlp, drp, DIF_OP_SUB);
1410		dt_cg_asgn_op(dnp, dlp, drp);
1411		break;
1412
1413	case DT_TOK_MUL_EQ:
1414		dt_cg_arithmetic_op(dnp, dlp, drp, DIF_OP_MUL);
1415		dt_cg_asgn_op(dnp, dlp, drp);
1416		break;
1417
1418	case DT_TOK_DIV_EQ:
1419		dt_cg_arithmetic_op(dnp, dlp, drp,
1420		    (dnp->dn_flags & DT_NF_SIGNED) ? DIF_OP_SDIV : DIF_OP_UDIV);
1421		dt_cg_asgn_op(dnp, dlp, drp);
1422		break;
1423
1424	case DT_TOK_MOD_EQ:
1425		dt_cg_arithmetic_op(dnp, dlp, drp,
1426		    (dnp->dn_flags & DT_NF_SIGNED) ? DIF_OP_SREM : DIF_OP_UREM);
1427		dt_cg_asgn_op(dnp, dlp, drp);
1428		break;
1429
1430	case DT_TOK_AND_EQ:
1431		dt_cg_arithmetic_op(dnp, dlp, drp, DIF_OP_AND);
1432		dt_cg_asgn_op(dnp, dlp, drp);
1433		break;
1434
1435	case DT_TOK_XOR_EQ:
1436		dt_cg_arithmetic_op(dnp, dlp, drp, DIF_OP_XOR);
1437		dt_cg_asgn_op(dnp, dlp, drp);
1438		break;
1439
1440	case DT_TOK_OR_EQ:
1441		dt_cg_arithmetic_op(dnp, dlp, drp, DIF_OP_OR);
1442		dt_cg_asgn_op(dnp, dlp, drp);
1443		break;
1444
1445	case DT_TOK_LSH_EQ:
1446		dt_cg_arithmetic_op(dnp, dlp, drp, DIF_OP_SLL);
1447		dt_cg_asgn_op(dnp, dlp, drp);
1448		break;
1449
1450	case DT_TOK_RSH_EQ:
1451		dt_cg_arithmetic_op(dnp, dlp, drp,
1452		    (dnp->dn_flags & DT_NF_SIGNED) ? DIF_OP_SRA : DIF_OP_SRL);
1453		dt_cg_asgn_op(dnp, dlp, drp);
1454		break;
1455
1456	case DT_TOK_QUESTION:
1457		dt_cg_ternary_op(dnp, dlp, drp);
1458		break;
1459
1460	case DT_TOK_LOR:
1461		dt_cg_logical_or(dnp, dlp, drp);
1462		break;
1463
1464	case DT_TOK_LXOR:
1465		dt_cg_logical_xor(dnp, dlp, drp);
1466		break;
1467
1468	case DT_TOK_LAND:
1469		dt_cg_logical_and(dnp, dlp, drp);
1470		break;
1471
1472	case DT_TOK_BOR:
1473		dt_cg_arithmetic_op(dnp, dlp, drp, DIF_OP_OR);
1474		break;
1475
1476	case DT_TOK_XOR:
1477		dt_cg_arithmetic_op(dnp, dlp, drp, DIF_OP_XOR);
1478		break;
1479
1480	case DT_TOK_BAND:
1481		dt_cg_arithmetic_op(dnp, dlp, drp, DIF_OP_AND);
1482		break;
1483
1484	case DT_TOK_EQU:
1485		dt_cg_compare_op(dnp, dlp, drp, DIF_OP_BE);
1486		break;
1487
1488	case DT_TOK_NEQ:
1489		dt_cg_compare_op(dnp, dlp, drp, DIF_OP_BNE);
1490		break;
1491
1492	case DT_TOK_LT:
1493		dt_cg_compare_op(dnp, dlp, drp,
1494		    dt_cg_compare_signed(dnp) ? DIF_OP_BL : DIF_OP_BLU);
1495		break;
1496
1497	case DT_TOK_LE:
1498		dt_cg_compare_op(dnp, dlp, drp,
1499		    dt_cg_compare_signed(dnp) ? DIF_OP_BLE : DIF_OP_BLEU);
1500		break;
1501
1502	case DT_TOK_GT:
1503		dt_cg_compare_op(dnp, dlp, drp,
1504		    dt_cg_compare_signed(dnp) ? DIF_OP_BG : DIF_OP_BGU);
1505		break;
1506
1507	case DT_TOK_GE:
1508		dt_cg_compare_op(dnp, dlp, drp,
1509		    dt_cg_compare_signed(dnp) ? DIF_OP_BGE : DIF_OP_BGEU);
1510		break;
1511
1512	case DT_TOK_LSH:
1513		dt_cg_arithmetic_op(dnp, dlp, drp, DIF_OP_SLL);
1514		break;
1515
1516	case DT_TOK_RSH:
1517		dt_cg_arithmetic_op(dnp, dlp, drp,
1518		    (dnp->dn_flags & DT_NF_SIGNED) ? DIF_OP_SRA : DIF_OP_SRL);
1519		break;
1520
1521	case DT_TOK_ADD:
1522		dt_cg_arithmetic_op(dnp, dlp, drp, DIF_OP_ADD);
1523		break;
1524
1525	case DT_TOK_SUB:
1526		dt_cg_arithmetic_op(dnp, dlp, drp, DIF_OP_SUB);
1527		break;
1528
1529	case DT_TOK_MUL:
1530		dt_cg_arithmetic_op(dnp, dlp, drp, DIF_OP_MUL);
1531		break;
1532
1533	case DT_TOK_DIV:
1534		dt_cg_arithmetic_op(dnp, dlp, drp,
1535		    (dnp->dn_flags & DT_NF_SIGNED) ? DIF_OP_SDIV : DIF_OP_UDIV);
1536		break;
1537
1538	case DT_TOK_MOD:
1539		dt_cg_arithmetic_op(dnp, dlp, drp,
1540		    (dnp->dn_flags & DT_NF_SIGNED) ? DIF_OP_SREM : DIF_OP_UREM);
1541		break;
1542
1543	case DT_TOK_LNEG:
1544		dt_cg_logical_neg(dnp, dlp, drp);
1545		break;
1546
1547	case DT_TOK_BNEG:
1548		dt_cg_node(dnp->dn_child, dlp, drp);
1549		dnp->dn_reg = dnp->dn_child->dn_reg;
1550		instr = DIF_INSTR_NOT(dnp->dn_reg, dnp->dn_reg);
1551		dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
1552		break;
1553
1554	case DT_TOK_PREINC:
1555		dt_cg_prearith_op(dnp, dlp, drp, DIF_OP_ADD);
1556		break;
1557
1558	case DT_TOK_POSTINC:
1559		dt_cg_postarith_op(dnp, dlp, drp, DIF_OP_ADD);
1560		break;
1561
1562	case DT_TOK_PREDEC:
1563		dt_cg_prearith_op(dnp, dlp, drp, DIF_OP_SUB);
1564		break;
1565
1566	case DT_TOK_POSTDEC:
1567		dt_cg_postarith_op(dnp, dlp, drp, DIF_OP_SUB);
1568		break;
1569
1570	case DT_TOK_IPOS:
1571		dt_cg_node(dnp->dn_child, dlp, drp);
1572		dnp->dn_reg = dnp->dn_child->dn_reg;
1573		break;
1574
1575	case DT_TOK_INEG:
1576		dt_cg_node(dnp->dn_child, dlp, drp);
1577		dnp->dn_reg = dnp->dn_child->dn_reg;
1578
1579		instr = DIF_INSTR_FMT(DIF_OP_SUB, DIF_REG_R0,
1580		    dnp->dn_reg, dnp->dn_reg);
1581
1582		dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
1583		break;
1584
1585	case DT_TOK_DEREF:
1586		dt_cg_node(dnp->dn_child, dlp, drp);
1587		dnp->dn_reg = dnp->dn_child->dn_reg;
1588
1589		if (!(dnp->dn_flags & DT_NF_REF)) {
1590			uint_t ubit = dnp->dn_flags & DT_NF_USERLAND;
1591
1592			/*
1593			 * Save and restore DT_NF_USERLAND across dt_cg_load():
1594			 * we need the sign bit from dnp and the user bit from
1595			 * dnp->dn_child in order to get the proper opcode.
1596			 */
1597			dnp->dn_flags |=
1598			    (dnp->dn_child->dn_flags & DT_NF_USERLAND);
1599
1600			instr = DIF_INSTR_LOAD(dt_cg_load(dnp, ctfp,
1601			    dnp->dn_type), dnp->dn_reg, dnp->dn_reg);
1602
1603			dnp->dn_flags &= ~DT_NF_USERLAND;
1604			dnp->dn_flags |= ubit;
1605
1606			dt_irlist_append(dlp,
1607			    dt_cg_node_alloc(DT_LBL_NONE, instr));
1608		}
1609		break;
1610
1611	case DT_TOK_ADDROF: {
1612		uint_t rbit = dnp->dn_child->dn_flags & DT_NF_REF;
1613
1614		dnp->dn_child->dn_flags |= DT_NF_REF; /* force pass-by-ref */
1615		dt_cg_node(dnp->dn_child, dlp, drp);
1616		dnp->dn_reg = dnp->dn_child->dn_reg;
1617
1618		dnp->dn_child->dn_flags &= ~DT_NF_REF;
1619		dnp->dn_child->dn_flags |= rbit;
1620		break;
1621	}
1622
1623	case DT_TOK_SIZEOF: {
1624		size_t size = dt_node_sizeof(dnp->dn_child);
1625
1626		if ((dnp->dn_reg = dt_regset_alloc(drp)) == -1)
1627			longjmp(yypcb->pcb_jmpbuf, EDT_NOREG);
1628
1629		assert(size != 0);
1630		dt_cg_setx(dlp, dnp->dn_reg, size);
1631		break;
1632	}
1633
1634	case DT_TOK_STRINGOF:
1635		dt_cg_node(dnp->dn_child, dlp, drp);
1636		dnp->dn_reg = dnp->dn_child->dn_reg;
1637		break;
1638
1639	case DT_TOK_XLATE:
1640		/*
1641		 * An xlate operator appears in either an XLATOR, indicating a
1642		 * reference to a dynamic translator, or an OP2, indicating
1643		 * use of the xlate operator in the user's program.  For the
1644		 * dynamic case, generate an xlate opcode with a reference to
1645		 * the corresponding member, pre-computed for us in dn_members.
1646		 */
1647		if (dnp->dn_kind == DT_NODE_XLATOR) {
1648			dt_xlator_t *dxp = dnp->dn_xlator;
1649
1650			assert(dxp->dx_ident->di_flags & DT_IDFLG_CGREG);
1651			assert(dxp->dx_ident->di_id != 0);
1652
1653			if ((dnp->dn_reg = dt_regset_alloc(drp)) == -1)
1654				longjmp(yypcb->pcb_jmpbuf, EDT_NOREG);
1655
1656			if (dxp->dx_arg == -1) {
1657				instr = DIF_INSTR_MOV(
1658				    dxp->dx_ident->di_id, dnp->dn_reg);
1659				dt_irlist_append(dlp,
1660				    dt_cg_node_alloc(DT_LBL_NONE, instr));
1661				op = DIF_OP_XLATE;
1662			} else
1663				op = DIF_OP_XLARG;
1664
1665			instr = DIF_INSTR_XLATE(op, 0, dnp->dn_reg);
1666			dt_irlist_append(dlp,
1667			    dt_cg_node_alloc(DT_LBL_NONE, instr));
1668
1669			dlp->dl_last->di_extern = dnp->dn_xmember;
1670			break;
1671		}
1672
1673		assert(dnp->dn_kind == DT_NODE_OP2);
1674		dt_cg_node(dnp->dn_right, dlp, drp);
1675		dnp->dn_reg = dnp->dn_right->dn_reg;
1676		break;
1677
1678	case DT_TOK_LPAR:
1679		dt_cg_node(dnp->dn_right, dlp, drp);
1680		dnp->dn_reg = dnp->dn_right->dn_reg;
1681		dt_cg_typecast(dnp->dn_right, dnp, dlp, drp);
1682		break;
1683
1684	case DT_TOK_PTR:
1685	case DT_TOK_DOT:
1686		assert(dnp->dn_right->dn_kind == DT_NODE_IDENT);
1687		dt_cg_node(dnp->dn_left, dlp, drp);
1688
1689		/*
1690		 * If the left-hand side of PTR or DOT is a dynamic variable,
1691		 * we expect it to be the output of a D translator.   In this
1692		 * case, we look up the parse tree corresponding to the member
1693		 * that is being accessed and run the code generator over it.
1694		 * We then cast the result as if by the assignment operator.
1695		 */
1696		if ((idp = dt_node_resolve(
1697		    dnp->dn_left, DT_IDENT_XLSOU)) != NULL ||
1698		    (idp = dt_node_resolve(
1699		    dnp->dn_left, DT_IDENT_XLPTR)) != NULL) {
1700
1701			dt_xlator_t *dxp;
1702			dt_node_t *mnp;
1703
1704			dxp = idp->di_data;
1705			mnp = dt_xlator_member(dxp, dnp->dn_right->dn_string);
1706			assert(mnp != NULL);
1707
1708			dxp->dx_ident->di_flags |= DT_IDFLG_CGREG;
1709			dxp->dx_ident->di_id = dnp->dn_left->dn_reg;
1710
1711			dt_cg_node(mnp->dn_membexpr, dlp, drp);
1712			dnp->dn_reg = mnp->dn_membexpr->dn_reg;
1713			dt_cg_typecast(mnp->dn_membexpr, dnp, dlp, drp);
1714
1715			dxp->dx_ident->di_flags &= ~DT_IDFLG_CGREG;
1716			dxp->dx_ident->di_id = 0;
1717
1718			if (dnp->dn_left->dn_reg != -1)
1719				dt_regset_free(drp, dnp->dn_left->dn_reg);
1720			break;
1721		}
1722
1723		ctfp = dnp->dn_left->dn_ctfp;
1724		type = ctf_type_resolve(ctfp, dnp->dn_left->dn_type);
1725
1726		if (dnp->dn_op == DT_TOK_PTR) {
1727			type = ctf_type_reference(ctfp, type);
1728			type = ctf_type_resolve(ctfp, type);
1729		}
1730
1731		if ((ctfp = dt_cg_membinfo(octfp = ctfp, type,
1732		    dnp->dn_right->dn_string, &m)) == NULL) {
1733			yypcb->pcb_hdl->dt_ctferr = ctf_errno(octfp);
1734			longjmp(yypcb->pcb_jmpbuf, EDT_CTF);
1735		}
1736
1737		if (m.ctm_offset != 0) {
1738			if ((reg = dt_regset_alloc(drp)) == -1)
1739				longjmp(yypcb->pcb_jmpbuf, EDT_NOREG);
1740
1741			/*
1742			 * If the offset is not aligned on a byte boundary, it
1743			 * is a bit-field member and we will extract the value
1744			 * bits below after we generate the appropriate load.
1745			 */
1746			dt_cg_setx(dlp, reg, m.ctm_offset / NBBY);
1747
1748			instr = DIF_INSTR_FMT(DIF_OP_ADD,
1749			    dnp->dn_left->dn_reg, reg, dnp->dn_left->dn_reg);
1750
1751			dt_irlist_append(dlp,
1752			    dt_cg_node_alloc(DT_LBL_NONE, instr));
1753			dt_regset_free(drp, reg);
1754		}
1755
1756		if (!(dnp->dn_flags & DT_NF_REF)) {
1757			uint_t ubit = dnp->dn_flags & DT_NF_USERLAND;
1758
1759			/*
1760			 * Save and restore DT_NF_USERLAND across dt_cg_load():
1761			 * we need the sign bit from dnp and the user bit from
1762			 * dnp->dn_left in order to get the proper opcode.
1763			 */
1764			dnp->dn_flags |=
1765			    (dnp->dn_left->dn_flags & DT_NF_USERLAND);
1766
1767			instr = DIF_INSTR_LOAD(dt_cg_load(dnp,
1768			    ctfp, m.ctm_type), dnp->dn_left->dn_reg,
1769			    dnp->dn_left->dn_reg);
1770
1771			dnp->dn_flags &= ~DT_NF_USERLAND;
1772			dnp->dn_flags |= ubit;
1773
1774			dt_irlist_append(dlp,
1775			    dt_cg_node_alloc(DT_LBL_NONE, instr));
1776
1777			if (dnp->dn_flags & DT_NF_BITFIELD)
1778				dt_cg_field_get(dnp, dlp, drp, ctfp, &m);
1779		}
1780
1781		dnp->dn_reg = dnp->dn_left->dn_reg;
1782		break;
1783
1784	case DT_TOK_STRING:
1785		if ((dnp->dn_reg = dt_regset_alloc(drp)) == -1)
1786			longjmp(yypcb->pcb_jmpbuf, EDT_NOREG);
1787
1788		assert(dnp->dn_kind == DT_NODE_STRING);
1789		stroff = dt_strtab_insert(yypcb->pcb_strtab, dnp->dn_string);
1790
1791		if (stroff == -1L)
1792			longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM);
1793		if (stroff > DIF_STROFF_MAX)
1794			longjmp(yypcb->pcb_jmpbuf, EDT_STR2BIG);
1795
1796		instr = DIF_INSTR_SETS((ulong_t)stroff, dnp->dn_reg);
1797		dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr));
1798		break;
1799
1800	case DT_TOK_IDENT:
1801		/*
1802		 * If the specified identifier is a variable on which we have
1803		 * set the code generator register flag, then this variable
1804		 * has already had code generated for it and saved in di_id.
1805		 * Allocate a new register and copy the existing value to it.
1806		 */
1807		if (dnp->dn_kind == DT_NODE_VAR &&
1808		    (dnp->dn_ident->di_flags & DT_IDFLG_CGREG)) {
1809			if ((dnp->dn_reg = dt_regset_alloc(drp)) == -1)
1810				longjmp(yypcb->pcb_jmpbuf, EDT_NOREG);
1811			instr = DIF_INSTR_MOV(dnp->dn_ident->di_id,
1812			    dnp->dn_reg);
1813			dt_irlist_append(dlp,
1814			    dt_cg_node_alloc(DT_LBL_NONE, instr));
1815			break;
1816		}
1817
1818		/*
1819		 * Identifiers can represent function calls, variable refs, or
1820		 * symbols.  First we check for inlined variables, and handle
1821		 * them by generating code for the inline parse tree.
1822		 */
1823		if (dnp->dn_kind == DT_NODE_VAR &&
1824		    (dnp->dn_ident->di_flags & DT_IDFLG_INLINE)) {
1825			dt_cg_inline(dnp, dlp, drp);
1826			break;
1827		}
1828
1829		switch (dnp->dn_kind) {
1830		case DT_NODE_FUNC: {
1831			dtrace_hdl_t *dtp = yypcb->pcb_hdl;
1832
1833			if ((idp = dnp->dn_ident)->di_kind != DT_IDENT_FUNC) {
1834				dnerror(dnp, D_CG_EXPR, "%s %s( ) may not be "
1835				    "called from a D expression (D program "
1836				    "context required)\n",
1837				    dt_idkind_name(idp->di_kind), idp->di_name);
1838			}
1839
1840			switch (idp->di_id) {
1841			case DIF_SUBR_TYPEREF:
1842				dt_cg_func_typeref(dtp, dnp);
1843				break;
1844
1845			default:
1846				break;
1847			}
1848
1849			dt_cg_arglist(dnp->dn_ident, dnp->dn_args, dlp, drp);
1850
1851			if ((dnp->dn_reg = dt_regset_alloc(drp)) == -1)
1852				longjmp(yypcb->pcb_jmpbuf, EDT_NOREG);
1853
1854			instr = DIF_INSTR_CALL(
1855			    dnp->dn_ident->di_id, dnp->dn_reg);
1856
1857			dt_irlist_append(dlp,
1858			    dt_cg_node_alloc(DT_LBL_NONE, instr));
1859
1860			break;
1861		}
1862
1863		case DT_NODE_VAR:
1864			if (dnp->dn_ident->di_kind == DT_IDENT_XLSOU ||
1865			    dnp->dn_ident->di_kind == DT_IDENT_XLPTR) {
1866				/*
1867				 * This can only happen if we have translated
1868				 * args[].  See dt_idcook_args() for details.
1869				 */
1870				assert(dnp->dn_ident->di_id == DIF_VAR_ARGS);
1871				dt_cg_array_op(dnp, dlp, drp);
1872				break;
1873			}
1874
1875			if (dnp->dn_ident->di_kind == DT_IDENT_ARRAY) {
1876				if (dnp->dn_ident->di_id > DIF_VAR_ARRAY_MAX)
1877					dt_cg_assoc_op(dnp, dlp, drp);
1878				else
1879					dt_cg_array_op(dnp, dlp, drp);
1880				break;
1881			}
1882
1883			if ((dnp->dn_reg = dt_regset_alloc(drp)) == -1)
1884				longjmp(yypcb->pcb_jmpbuf, EDT_NOREG);
1885
1886			if (dnp->dn_ident->di_flags & DT_IDFLG_LOCAL)
1887				op = DIF_OP_LDLS;
1888			else if (dnp->dn_ident->di_flags & DT_IDFLG_TLS)
1889				op = DIF_OP_LDTS;
1890			else
1891				op = DIF_OP_LDGS;
1892
1893			dnp->dn_ident->di_flags |= DT_IDFLG_DIFR;
1894
1895			instr = DIF_INSTR_LDV(op,
1896			    dnp->dn_ident->di_id, dnp->dn_reg);
1897
1898			dt_irlist_append(dlp,
1899			    dt_cg_node_alloc(DT_LBL_NONE, instr));
1900			break;
1901
1902		case DT_NODE_SYM: {
1903			dtrace_hdl_t *dtp = yypcb->pcb_hdl;
1904			dtrace_syminfo_t *sip = dnp->dn_ident->di_data;
1905			GElf_Sym sym;
1906
1907			if (dtrace_lookup_by_name(dtp,
1908			    sip->dts_object, sip->dts_name, &sym, NULL) == -1) {
1909				xyerror(D_UNKNOWN, "cg failed for symbol %s`%s:"
1910				    " %s\n", sip->dts_object, sip->dts_name,
1911				    dtrace_errmsg(dtp, dtrace_errno(dtp)));
1912			}
1913
1914			if ((dnp->dn_reg = dt_regset_alloc(drp)) == -1)
1915				longjmp(yypcb->pcb_jmpbuf, EDT_NOREG);
1916
1917			dt_cg_xsetx(dlp, dnp->dn_ident,
1918			    DT_LBL_NONE, dnp->dn_reg, sym.st_value);
1919
1920			if (!(dnp->dn_flags & DT_NF_REF)) {
1921				instr = DIF_INSTR_LOAD(dt_cg_load(dnp, ctfp,
1922				    dnp->dn_type), dnp->dn_reg, dnp->dn_reg);
1923				dt_irlist_append(dlp,
1924				    dt_cg_node_alloc(DT_LBL_NONE, instr));
1925			}
1926			break;
1927		}
1928
1929		default:
1930			xyerror(D_UNKNOWN, "internal error -- node type %u is "
1931			    "not valid for an identifier\n", dnp->dn_kind);
1932		}
1933		break;
1934
1935	case DT_TOK_INT:
1936		if ((dnp->dn_reg = dt_regset_alloc(drp)) == -1)
1937			longjmp(yypcb->pcb_jmpbuf, EDT_NOREG);
1938
1939		dt_cg_setx(dlp, dnp->dn_reg, dnp->dn_value);
1940		break;
1941
1942	default:
1943		xyerror(D_UNKNOWN, "internal error -- token type %u is not a "
1944		    "valid D compilation token\n", dnp->dn_op);
1945	}
1946}
1947
1948void
1949dt_cg(dt_pcb_t *pcb, dt_node_t *dnp)
1950{
1951	dif_instr_t instr;
1952	dt_xlator_t *dxp;
1953
1954	if (pcb->pcb_regs == NULL && (pcb->pcb_regs =
1955	    dt_regset_create(pcb->pcb_hdl->dt_conf.dtc_difintregs)) == NULL)
1956		longjmp(pcb->pcb_jmpbuf, EDT_NOMEM);
1957
1958	dt_regset_reset(pcb->pcb_regs);
1959	(void) dt_regset_alloc(pcb->pcb_regs); /* allocate %r0 */
1960
1961	if (pcb->pcb_inttab != NULL)
1962		dt_inttab_destroy(pcb->pcb_inttab);
1963
1964	if ((pcb->pcb_inttab = dt_inttab_create(yypcb->pcb_hdl)) == NULL)
1965		longjmp(pcb->pcb_jmpbuf, EDT_NOMEM);
1966
1967	if (pcb->pcb_strtab != NULL)
1968		dt_strtab_destroy(pcb->pcb_strtab);
1969
1970	if ((pcb->pcb_strtab = dt_strtab_create(BUFSIZ)) == NULL)
1971		longjmp(pcb->pcb_jmpbuf, EDT_NOMEM);
1972
1973	dt_irlist_destroy(&pcb->pcb_ir);
1974	dt_irlist_create(&pcb->pcb_ir);
1975
1976	assert(pcb->pcb_dret == NULL);
1977	pcb->pcb_dret = dnp;
1978
1979	if (dt_node_is_dynamic(dnp)) {
1980		dnerror(dnp, D_CG_DYN, "expression cannot evaluate to result "
1981		    "of dynamic type\n");
1982	}
1983
1984	/*
1985	 * If we're generating code for a translator body, assign the input
1986	 * parameter to the first available register (i.e. caller passes %r1).
1987	 */
1988	if (dnp->dn_kind == DT_NODE_MEMBER) {
1989		dxp = dnp->dn_membxlator;
1990		dnp = dnp->dn_membexpr;
1991
1992		dxp->dx_ident->di_flags |= DT_IDFLG_CGREG;
1993		dxp->dx_ident->di_id = dt_regset_alloc(pcb->pcb_regs);
1994	}
1995
1996	dt_cg_node(dnp, &pcb->pcb_ir, pcb->pcb_regs);
1997	instr = DIF_INSTR_RET(dnp->dn_reg);
1998	dt_regset_free(pcb->pcb_regs, dnp->dn_reg);
1999	dt_irlist_append(&pcb->pcb_ir, dt_cg_node_alloc(DT_LBL_NONE, instr));
2000
2001	if (dnp->dn_kind == DT_NODE_MEMBER) {
2002		dt_regset_free(pcb->pcb_regs, dxp->dx_ident->di_id);
2003		dxp->dx_ident->di_id = 0;
2004		dxp->dx_ident->di_flags &= ~DT_IDFLG_CGREG;
2005	}
2006}
2007