dcfd.c revision 1.1.1.1
1/*	$NetBSD: dcfd.c,v 1.1.1.1 2009/12/13 16:56:35 kardel Exp $	*/
2
3/*
4 * /src/NTP/REPOSITORY/ntp4-dev/parseutil/dcfd.c,v 4.18 2005/10/07 22:08:18 kardel RELEASE_20051008_A
5 *
6 * dcfd.c,v 4.18 2005/10/07 22:08:18 kardel RELEASE_20051008_A
7 *
8 * DCF77 100/200ms pulse synchronisation daemon program (via 50Baud serial line)
9 *
10 * Features:
11 *  DCF77 decoding
12 *  simple NTP loopfilter logic for local clock
13 *  interactive display for debugging
14 *
15 * Lacks:
16 *  Leap second handling (at that level you should switch to NTP Version 4 - really!)
17 *
18 * Copyright (c) 1995-2005 by Frank Kardel <kardel <AT> ntp.org>
19 * Copyright (c) 1989-1994 by Frank Kardel, Friedrich-Alexander Universit�t Erlangen-N�rnberg, Germany
20 *
21 * Redistribution and use in source and binary forms, with or without
22 * modification, are permitted provided that the following conditions
23 * are met:
24 * 1. Redistributions of source code must retain the above copyright
25 *    notice, this list of conditions and the following disclaimer.
26 * 2. Redistributions in binary form must reproduce the above copyright
27 *    notice, this list of conditions and the following disclaimer in the
28 *    documentation and/or other materials provided with the distribution.
29 * 3. Neither the name of the author nor the names of its contributors
30 *    may be used to endorse or promote products derived from this software
31 *    without specific prior written permission.
32 *
33 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
34 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
35 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
36 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
37 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
38 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
39 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
41 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
42 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
43 * SUCH DAMAGE.
44 *
45 */
46
47#ifdef HAVE_CONFIG_H
48# include <config.h>
49#endif
50
51#include <sys/ioctl.h>
52#include <unistd.h>
53#include <stdio.h>
54#include <fcntl.h>
55#include <sys/types.h>
56#include <sys/time.h>
57#include <signal.h>
58#include <syslog.h>
59#include <time.h>
60
61/*
62 * NTP compilation environment
63 */
64#include "ntp_stdlib.h"
65#include "ntpd.h"   /* indirectly include ntp.h to get YEAR_PIVOT   Y2KFixes */
66
67/*
68 * select which terminal handling to use (currently only SysV variants)
69 */
70#if defined(HAVE_TERMIOS_H) || defined(STREAM)
71#include <termios.h>
72#define TTY_GETATTR(_FD_, _ARG_) tcgetattr((_FD_), (_ARG_))
73#define TTY_SETATTR(_FD_, _ARG_) tcsetattr((_FD_), TCSANOW, (_ARG_))
74#else  /* not HAVE_TERMIOS_H || STREAM */
75# if defined(HAVE_TERMIO_H) || defined(HAVE_SYSV_TTYS)
76#  include <termio.h>
77#  define TTY_GETATTR(_FD_, _ARG_) ioctl((_FD_), TCGETA, (_ARG_))
78#  define TTY_SETATTR(_FD_, _ARG_) ioctl((_FD_), TCSETAW, (_ARG_))
79# endif/* HAVE_TERMIO_H || HAVE_SYSV_TTYS */
80#endif /* not HAVE_TERMIOS_H || STREAM */
81
82
83#ifndef TTY_GETATTR
84#include "Bletch: MUST DEFINE ONE OF 'HAVE_TERMIOS_H' or 'HAVE_TERMIO_H'"
85#endif
86
87#ifndef days_per_year
88#define days_per_year(_x_) (((_x_) % 4) ? 365 : (((_x_) % 400) ? 365 : 366))
89#endif
90
91#define timernormalize(_a_) \
92	if ((_a_)->tv_usec >= 1000000) \
93	{ \
94		(_a_)->tv_sec  += (_a_)->tv_usec / 1000000; \
95		(_a_)->tv_usec  = (_a_)->tv_usec % 1000000; \
96	} \
97	if ((_a_)->tv_usec < 0) \
98	{ \
99		(_a_)->tv_sec  -= 1 + (-(_a_)->tv_usec / 1000000); \
100		(_a_)->tv_usec = 999999 - (-(_a_)->tv_usec - 1); \
101	}
102
103#ifdef timeradd
104#undef timeradd
105#endif
106#define timeradd(_a_, _b_) \
107	(_a_)->tv_sec  += (_b_)->tv_sec; \
108	(_a_)->tv_usec += (_b_)->tv_usec; \
109	timernormalize((_a_))
110
111#ifdef timersub
112#undef timersub
113#endif
114#define timersub(_a_, _b_) \
115	(_a_)->tv_sec  -= (_b_)->tv_sec; \
116	(_a_)->tv_usec -= (_b_)->tv_usec; \
117	timernormalize((_a_))
118
119/*
120 * debug macros
121 */
122#define PRINTF if (interactive) printf
123#define LPRINTF if (interactive && loop_filter_debug) printf
124
125#ifdef DEBUG
126#define dprintf(_x_) LPRINTF _x_
127#else
128#define dprintf(_x_)
129#endif
130
131#ifdef DECL_ERRNO
132     extern int errno;
133#endif
134
135static char *revision = "4.18";
136
137/*
138 * display received data (avoids also detaching from tty)
139 */
140static int interactive = 0;
141
142/*
143 * display loopfilter (clock control) variables
144 */
145static int loop_filter_debug = 0;
146
147/*
148 * do not set/adjust system time
149 */
150static int no_set = 0;
151
152/*
153 * time that passes between start of DCF impulse and time stamping (fine
154 * adjustment) in microseconds (receiver/OS dependent)
155 */
156#define DEFAULT_DELAY	230000	/* rough estimate */
157
158/*
159 * The two states we can be in - eithe we receive nothing
160 * usable or we have the correct time
161 */
162#define NO_SYNC		0x01
163#define SYNC		0x02
164
165static int    sync_state = NO_SYNC;
166static time_t last_sync;
167
168static unsigned long ticks = 0;
169
170static char pat[] = "-\\|/";
171
172#define LINES		(24-2)	/* error lines after which the two headlines are repeated */
173
174#define MAX_UNSYNC	(10*60)	/* allow synchronisation loss for 10 minutes */
175#define NOTICE_INTERVAL (20*60)	/* mention missing synchronisation every 20 minutes */
176
177/*
178 * clock adjustment PLL - see NTP protocol spec (RFC1305) for details
179 */
180
181#define USECSCALE	10
182#define TIMECONSTANT	2
183#define ADJINTERVAL	0
184#define FREQ_WEIGHT	18
185#define PHASE_WEIGHT	7
186#define MAX_DRIFT	0x3FFFFFFF
187
188#define R_SHIFT(_X_, _Y_) (((_X_) < 0) ? -(-(_X_) >> (_Y_)) : ((_X_) >> (_Y_)))
189
190static long max_adj_offset_usec = 128000;
191
192static long clock_adjust = 0;	/* current adjustment value (usec * 2^USECSCALE) */
193static long accum_drift   = 0;	/* accumulated drift value  (usec / ADJINTERVAL) */
194static long adjustments  = 0;
195static char skip_adjust  = 1;	/* discard first adjustment (bad samples) */
196
197/*
198 * DCF77 state flags
199 */
200#define DCFB_ANNOUNCE		0x0001 /* switch time zone warning (DST switch) */
201#define DCFB_DST		0x0002 /* DST in effect */
202#define DCFB_LEAP		0x0004 /* LEAP warning (1 hour prior to occurrence) */
203#define DCFB_ALTERNATE		0x0008 /* alternate antenna used */
204
205struct clocktime		/* clock time broken up from time code */
206{
207	long wday;		/* Day of week: 1: Monday - 7: Sunday */
208	long day;
209	long month;
210	long year;
211	long hour;
212	long minute;
213	long second;
214	long usecond;
215	long utcoffset;	/* in minutes */
216	long flags;		/* current clock status  (DCF77 state flags) */
217};
218
219typedef struct clocktime clocktime_t;
220
221/*
222 * (usually) quick constant multiplications
223 */
224#define TIMES10(_X_) (((_X_) << 3) + ((_X_) << 1))	/* *8 + *2 */
225#define TIMES24(_X_) (((_X_) << 4) + ((_X_) << 3))      /* *16 + *8 */
226#define TIMES60(_X_) ((((_X_) << 4)  - (_X_)) << 2)     /* *(16 - 1) *4 */
227/*
228 * generic l_abs() function
229 */
230#define l_abs(_x_)     (((_x_) < 0) ? -(_x_) : (_x_))
231
232/*
233 * conversion related return/error codes
234 */
235#define CVT_MASK	0x0000000F /* conversion exit code */
236#define   CVT_NONE	0x00000001 /* format not applicable */
237#define   CVT_FAIL	0x00000002 /* conversion failed - error code returned */
238#define   CVT_OK	0x00000004 /* conversion succeeded */
239#define CVT_BADFMT	0x00000010 /* general format error - (unparsable) */
240#define CVT_BADDATE	0x00000020 /* invalid date */
241#define CVT_BADTIME	0x00000040 /* invalid time */
242
243/*
244 * DCF77 raw time code
245 *
246 * From "Zur Zeit", Physikalisch-Technische Bundesanstalt (PTB), Braunschweig
247 * und Berlin, Maerz 1989
248 *
249 * Timecode transmission:
250 * AM:
251 *	time marks are send every second except for the second before the
252 *	next minute mark
253 *	time marks consist of a reduction of transmitter power to 25%
254 *	of the nominal level
255 *	the falling edge is the time indication (on time)
256 *	time marks of a 100ms duration constitute a logical 0
257 *	time marks of a 200ms duration constitute a logical 1
258 * FM:
259 *	see the spec. (basically a (non-)inverted psuedo random phase shift)
260 *
261 * Encoding:
262 * Second	Contents
263 * 0  - 10	AM: free, FM: 0
264 * 11 - 14	free
265 * 15		R     - alternate antenna
266 * 16		A1    - expect zone change (1 hour before)
267 * 17 - 18	Z1,Z2 - time zone
268 *		 0  0 illegal
269 *		 0  1 MEZ  (MET)
270 *		 1  0 MESZ (MED, MET DST)
271 *		 1  1 illegal
272 * 19		A2    - expect leap insertion/deletion (1 hour before)
273 * 20		S     - start of time code (1)
274 * 21 - 24	M1    - BCD (lsb first) Minutes
275 * 25 - 27	M10   - BCD (lsb first) 10 Minutes
276 * 28		P1    - Minute Parity (even)
277 * 29 - 32	H1    - BCD (lsb first) Hours
278 * 33 - 34      H10   - BCD (lsb first) 10 Hours
279 * 35		P2    - Hour Parity (even)
280 * 36 - 39	D1    - BCD (lsb first) Days
281 * 40 - 41	D10   - BCD (lsb first) 10 Days
282 * 42 - 44	DW    - BCD (lsb first) day of week (1: Monday -> 7: Sunday)
283 * 45 - 49	MO    - BCD (lsb first) Month
284 * 50           MO0   - 10 Months
285 * 51 - 53	Y1    - BCD (lsb first) Years
286 * 54 - 57	Y10   - BCD (lsb first) 10 Years
287 * 58 		P3    - Date Parity (even)
288 * 59		      - usually missing (minute indication), except for leap insertion
289 */
290
291/*-----------------------------------------------------------------------
292 * conversion table to map DCF77 bit stream into data fields.
293 * Encoding:
294 *   Each field of the DCF77 code is described with two adjacent entries in
295 *   this table. The first entry specifies the offset into the DCF77 data stream
296 *   while the length is given as the difference between the start index and
297 *   the start index of the following field.
298 */
299static struct rawdcfcode
300{
301	char offset;			/* start bit */
302} rawdcfcode[] =
303{
304	{  0 }, { 15 }, { 16 }, { 17 }, { 19 }, { 20 }, { 21 }, { 25 }, { 28 }, { 29 },
305	{ 33 }, { 35 }, { 36 }, { 40 }, { 42 }, { 45 }, { 49 }, { 50 }, { 54 }, { 58 }, { 59 }
306};
307
308/*-----------------------------------------------------------------------
309 * symbolic names for the fields of DCF77 describes in "rawdcfcode".
310 * see comment above for the structure of the DCF77 data
311 */
312#define DCF_M	0
313#define DCF_R	1
314#define DCF_A1	2
315#define DCF_Z	3
316#define DCF_A2	4
317#define DCF_S	5
318#define DCF_M1	6
319#define DCF_M10	7
320#define DCF_P1	8
321#define DCF_H1	9
322#define DCF_H10	10
323#define DCF_P2	11
324#define DCF_D1	12
325#define DCF_D10	13
326#define DCF_DW	14
327#define DCF_MO	15
328#define DCF_MO0	16
329#define DCF_Y1	17
330#define DCF_Y10	18
331#define DCF_P3	19
332
333/*-----------------------------------------------------------------------
334 * parity field table (same encoding as rawdcfcode)
335 * This table describes the sections of the DCF77 code that are
336 * parity protected
337 */
338static struct partab
339{
340	char offset;			/* start bit of parity field */
341} partab[] =
342{
343	{ 21 }, { 29 }, { 36 }, { 59 }
344};
345
346/*-----------------------------------------------------------------------
347 * offsets for parity field descriptions
348 */
349#define DCF_P_P1	0
350#define DCF_P_P2	1
351#define DCF_P_P3	2
352
353/*-----------------------------------------------------------------------
354 * legal values for time zone information
355 */
356#define DCF_Z_MET 0x2
357#define DCF_Z_MED 0x1
358
359/*-----------------------------------------------------------------------
360 * symbolic representation if the DCF77 data stream
361 */
362static struct dcfparam
363{
364	unsigned char onebits[60];
365	unsigned char zerobits[60];
366} dcfparam =
367{
368	"###############RADMLS1248124P124812P1248121241248112481248P", /* 'ONE' representation */
369	"--------------------s-------p------p----------------------p"  /* 'ZERO' representation */
370};
371
372/*-----------------------------------------------------------------------
373 * extract a bitfield from DCF77 datastream
374 * All numeric fields are LSB first.
375 * buf holds a pointer to a DCF77 data buffer in symbolic
376 *     representation
377 * idx holds the index to the field description in rawdcfcode
378 */
379static unsigned long
380ext_bf(
381	register unsigned char *buf,
382	register int   idx
383	)
384{
385	register unsigned long sum = 0;
386	register int i, first;
387
388	first = rawdcfcode[idx].offset;
389
390	for (i = rawdcfcode[idx+1].offset - 1; i >= first; i--)
391	{
392		sum <<= 1;
393		sum |= (buf[i] != dcfparam.zerobits[i]);
394	}
395	return sum;
396}
397
398/*-----------------------------------------------------------------------
399 * check even parity integrity for a bitfield
400 *
401 * buf holds a pointer to a DCF77 data buffer in symbolic
402 *     representation
403 * idx holds the index to the field description in partab
404 */
405static unsigned
406pcheck(
407	register unsigned char *buf,
408	register int   idx
409	)
410{
411	register int i,last;
412	register unsigned psum = 1;
413
414	last = partab[idx+1].offset;
415
416	for (i = partab[idx].offset; i < last; i++)
417	    psum ^= (buf[i] != dcfparam.zerobits[i]);
418
419	return psum;
420}
421
422/*-----------------------------------------------------------------------
423 * convert a DCF77 data buffer into wall clock time + flags
424 *
425 * buffer holds a pointer to a DCF77 data buffer in symbolic
426 *        representation
427 * size   describes the length of DCF77 information in bits (represented
428 *        as chars in symbolic notation
429 * clock  points to a wall clock time description of the DCF77 data (result)
430 */
431static unsigned long
432convert_rawdcf(
433	       unsigned char   *buffer,
434	       int              size,
435	       clocktime_t     *clock_time
436	       )
437{
438	if (size < 57)
439	{
440		PRINTF("%-30s", "*** INCOMPLETE");
441		return CVT_NONE;
442	}
443
444	/*
445	 * check Start and Parity bits
446	 */
447	if ((ext_bf(buffer, DCF_S) == 1) &&
448	    pcheck(buffer, DCF_P_P1) &&
449	    pcheck(buffer, DCF_P_P2) &&
450	    pcheck(buffer, DCF_P_P3))
451	{
452		/*
453		 * buffer OK - extract all fields and build wall clock time from them
454		 */
455
456		clock_time->flags  = 0;
457		clock_time->usecond= 0;
458		clock_time->second = 0;
459		clock_time->minute = ext_bf(buffer, DCF_M10);
460		clock_time->minute = TIMES10(clock_time->minute) + ext_bf(buffer, DCF_M1);
461		clock_time->hour   = ext_bf(buffer, DCF_H10);
462		clock_time->hour   = TIMES10(clock_time->hour)   + ext_bf(buffer, DCF_H1);
463		clock_time->day    = ext_bf(buffer, DCF_D10);
464		clock_time->day    = TIMES10(clock_time->day)    + ext_bf(buffer, DCF_D1);
465		clock_time->month  = ext_bf(buffer, DCF_MO0);
466		clock_time->month  = TIMES10(clock_time->month)  + ext_bf(buffer, DCF_MO);
467		clock_time->year   = ext_bf(buffer, DCF_Y10);
468		clock_time->year   = TIMES10(clock_time->year)   + ext_bf(buffer, DCF_Y1);
469		clock_time->wday   = ext_bf(buffer, DCF_DW);
470
471		/*
472		 * determine offset to UTC by examining the time zone
473		 */
474		switch (ext_bf(buffer, DCF_Z))
475		{
476		    case DCF_Z_MET:
477			clock_time->utcoffset = -60;
478			break;
479
480		    case DCF_Z_MED:
481			clock_time->flags     |= DCFB_DST;
482			clock_time->utcoffset  = -120;
483			break;
484
485		    default:
486			PRINTF("%-30s", "*** BAD TIME ZONE");
487			return CVT_FAIL|CVT_BADFMT;
488		}
489
490		/*
491		 * extract various warnings from DCF77
492		 */
493		if (ext_bf(buffer, DCF_A1))
494		    clock_time->flags |= DCFB_ANNOUNCE;
495
496		if (ext_bf(buffer, DCF_A2))
497		    clock_time->flags |= DCFB_LEAP;
498
499		if (ext_bf(buffer, DCF_R))
500		    clock_time->flags |= DCFB_ALTERNATE;
501
502		return CVT_OK;
503	}
504	else
505	{
506		/*
507		 * bad format - not for us
508		 */
509		PRINTF("%-30s", "*** BAD FORMAT (invalid/parity)");
510		return CVT_FAIL|CVT_BADFMT;
511	}
512}
513
514/*-----------------------------------------------------------------------
515 * raw dcf input routine - fix up 50 baud
516 * characters for 1/0 decision
517 */
518static unsigned long
519cvt_rawdcf(
520	   unsigned char   *buffer,
521	   int              size,
522	   clocktime_t     *clock_time
523	   )
524{
525	register unsigned char *s = buffer;
526	register unsigned char *e = buffer + size;
527	register unsigned char *b = dcfparam.onebits;
528	register unsigned char *c = dcfparam.zerobits;
529	register unsigned rtc = CVT_NONE;
530	register unsigned int i, lowmax, highmax, cutoff, span;
531#define BITS 9
532	unsigned char     histbuf[BITS];
533	/*
534	 * the input buffer contains characters with runs of consecutive
535	 * bits set. These set bits are an indication of the DCF77 pulse
536	 * length. We assume that we receive the pulse at 50 Baud. Thus
537	 * a 100ms pulse would generate a 4 bit train (20ms per bit and
538	 * start bit)
539	 * a 200ms pulse would create all zeroes (and probably a frame error)
540	 *
541	 * The basic idea is that on corret reception we must have two
542	 * maxima in the pulse length distribution histogram. (one for
543	 * the zero representing pulses and one for the one representing
544	 * pulses)
545	 * There will always be ones in the datastream, thus we have to see
546	 * two maxima.
547	 * The best point to cut for a 1/0 decision is the minimum between those
548	 * between the maxima. The following code tries to find this cutoff point.
549	 */
550
551	/*
552	 * clear histogram buffer
553	 */
554	for (i = 0; i < BITS; i++)
555	{
556		histbuf[i] = 0;
557	}
558
559	cutoff = 0;
560	lowmax = 0;
561
562	/*
563	 * convert sequences of set bits into bits counts updating
564	 * the histogram alongway
565	 */
566	while (s < e)
567	{
568		register unsigned int ch = *s ^ 0xFF;
569		/*
570		 * check integrity and update histogramm
571		 */
572		if (!((ch+1) & ch) || !*s)
573		{
574			/*
575			 * character ok
576			 */
577			for (i = 0; ch; i++)
578			{
579				ch >>= 1;
580			}
581
582			*s = i;
583			histbuf[i]++;
584			cutoff += i;
585			lowmax++;
586		}
587		else
588		{
589			/*
590			 * invalid character (no consecutive bit sequence)
591			 */
592			dprintf(("parse: cvt_rawdcf: character check for 0x%x@%d FAILED\n", *s, s - buffer));
593			*s = (unsigned char)~0;
594			rtc = CVT_FAIL|CVT_BADFMT;
595		}
596		s++;
597	}
598
599	/*
600	 * first cutoff estimate (average bit count - must be between both
601	 * maxima)
602	 */
603	if (lowmax)
604	{
605		cutoff /= lowmax;
606	}
607	else
608	{
609		cutoff = 4;	/* doesn't really matter - it'll fail anyway, but gives error output */
610	}
611
612	dprintf(("parse: cvt_rawdcf: average bit count: %d\n", cutoff));
613
614	lowmax = 0;  /* weighted sum */
615	highmax = 0; /* bitcount */
616
617	/*
618	 * collect weighted sum of lower bits (left of initial guess)
619	 */
620	dprintf(("parse: cvt_rawdcf: histogram:"));
621	for (i = 0; i <= cutoff; i++)
622	{
623		lowmax  += histbuf[i] * i;
624		highmax += histbuf[i];
625		dprintf((" %d", histbuf[i]));
626	}
627	dprintf((" <M>"));
628
629	/*
630	 * round up
631	 */
632	lowmax += highmax / 2;
633
634	/*
635	 * calculate lower bit maximum (weighted sum / bit count)
636	 *
637	 * avoid divide by zero
638	 */
639	if (highmax)
640	{
641		lowmax /= highmax;
642	}
643	else
644	{
645		lowmax = 0;
646	}
647
648	highmax = 0; /* weighted sum of upper bits counts */
649	cutoff = 0;  /* bitcount */
650
651	/*
652	 * collect weighted sum of lower bits (right of initial guess)
653	 */
654	for (; i < BITS; i++)
655	{
656		highmax+=histbuf[i] * i;
657		cutoff +=histbuf[i];
658		dprintf((" %d", histbuf[i]));
659	}
660	dprintf(("\n"));
661
662	/*
663	 * determine upper maximum (weighted sum / bit count)
664	 */
665	if (cutoff)
666	{
667		highmax /= cutoff;
668	}
669	else
670	{
671		highmax = BITS-1;
672	}
673
674	/*
675	 * following now holds:
676	 * lowmax <= cutoff(initial guess) <= highmax
677	 * best cutoff is the minimum nearest to higher bits
678	 */
679
680	/*
681	 * find the minimum between lowmax and highmax (detecting
682	 * possibly a minimum span)
683	 */
684	span = cutoff = lowmax;
685	for (i = lowmax; i <= highmax; i++)
686	{
687		if (histbuf[cutoff] > histbuf[i])
688		{
689			/*
690			 * got a new minimum move beginning of minimum (cutoff) and
691			 * end of minimum (span) there
692			 */
693			cutoff = span = i;
694		}
695		else
696		    if (histbuf[cutoff] == histbuf[i])
697		    {
698			    /*
699			     * minimum not better yet - but it spans more than
700			     * one bit value - follow it
701			     */
702			    span = i;
703		    }
704	}
705
706	/*
707	 * cutoff point for 1/0 decision is the middle of the minimum section
708	 * in the histogram
709	 */
710	cutoff = (cutoff + span) / 2;
711
712	dprintf(("parse: cvt_rawdcf: lower maximum %d, higher maximum %d, cutoff %d\n", lowmax, highmax, cutoff));
713
714	/*
715	 * convert the bit counts to symbolic 1/0 information for data conversion
716	 */
717	s = buffer;
718	while ((s < e) && *c && *b)
719	{
720		if (*s == (unsigned char)~0)
721		{
722			/*
723			 * invalid character
724			 */
725			*s = '?';
726		}
727		else
728		{
729			/*
730			 * symbolic 1/0 representation
731			 */
732			*s = (*s >= cutoff) ? *b : *c;
733		}
734		s++;
735		b++;
736		c++;
737	}
738
739	/*
740	 * if everything went well so far return the result of the symbolic
741	 * conversion routine else just the accumulated errors
742	 */
743	if (rtc != CVT_NONE)
744	{
745		PRINTF("%-30s", "*** BAD DATA");
746	}
747
748	return (rtc == CVT_NONE) ? convert_rawdcf(buffer, size, clock_time) : rtc;
749}
750
751/*-----------------------------------------------------------------------
752 * convert a wall clock time description of DCF77 to a Unix time (seconds
753 * since 1.1. 1970 UTC)
754 */
755static time_t
756dcf_to_unixtime(
757		clocktime_t   *clock_time,
758		unsigned *cvtrtc
759		)
760{
761#define SETRTC(_X_)	{ if (cvtrtc) *cvtrtc = (_X_); }
762	static int days_of_month[] =
763	{
764		0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
765	};
766	register int i;
767	time_t t;
768
769	/*
770	 * map 2 digit years to 19xx (DCF77 is a 20th century item)
771	 */
772	if ( clock_time->year < YEAR_PIVOT ) 	/* in case of	   Y2KFixes [ */
773		clock_time->year += 100;	/* *year%100, make tm_year */
774						/* *(do we need this?) */
775	if ( clock_time->year < YEAR_BREAK )	/* (failsafe if) */
776	    clock_time->year += 1900;				/* Y2KFixes ] */
777
778	/*
779	 * must have been a really bad year code - drop it
780	 */
781	if (clock_time->year < (YEAR_PIVOT + 1900) )		/* Y2KFixes */
782	{
783		SETRTC(CVT_FAIL|CVT_BADDATE);
784		return -1;
785	}
786	/*
787	 * sorry, slow section here - but it's not time critical anyway
788	 */
789
790	/*
791	 * calculate days since 1970 (watching leap years)
792	 */
793	t = julian0( clock_time->year ) - julian0( 1970 );
794
795  				/* month */
796	if (clock_time->month <= 0 || clock_time->month > 12)
797	{
798		SETRTC(CVT_FAIL|CVT_BADDATE);
799		return -1;		/* bad month */
800	}
801				/* adjust current leap year */
802#if 0
803	if (clock_time->month < 3 && days_per_year(clock_time->year) == 366)
804	    t--;
805#endif
806
807	/*
808	 * collect days from months excluding the current one
809	 */
810	for (i = 1; i < clock_time->month; i++)
811	{
812		t += days_of_month[i];
813	}
814				/* day */
815	if (clock_time->day < 1 || ((clock_time->month == 2 && days_per_year(clock_time->year) == 366) ?
816			       clock_time->day > 29 : clock_time->day > days_of_month[clock_time->month]))
817	{
818		SETRTC(CVT_FAIL|CVT_BADDATE);
819		return -1;		/* bad day */
820	}
821
822	/*
823	 * collect days from date excluding the current one
824	 */
825	t += clock_time->day - 1;
826
827				/* hour */
828	if (clock_time->hour < 0 || clock_time->hour >= 24)
829	{
830		SETRTC(CVT_FAIL|CVT_BADTIME);
831		return -1;		/* bad hour */
832	}
833
834	/*
835	 * calculate hours from 1. 1. 1970
836	 */
837	t = TIMES24(t) + clock_time->hour;
838
839  				/* min */
840	if (clock_time->minute < 0 || clock_time->minute > 59)
841	{
842		SETRTC(CVT_FAIL|CVT_BADTIME);
843		return -1;		/* bad min */
844	}
845
846	/*
847	 * calculate minutes from 1. 1. 1970
848	 */
849	t = TIMES60(t) + clock_time->minute;
850				/* sec */
851
852	/*
853	 * calculate UTC in minutes
854	 */
855	t += clock_time->utcoffset;
856
857	if (clock_time->second < 0 || clock_time->second > 60)	/* allow for LEAPs */
858	{
859		SETRTC(CVT_FAIL|CVT_BADTIME);
860		return -1;		/* bad sec */
861	}
862
863	/*
864	 * calculate UTC in seconds - phew !
865	 */
866	t  = TIMES60(t) + clock_time->second;
867				/* done */
868	return t;
869}
870
871/*-----------------------------------------------------------------------
872 * cheap half baked 1/0 decision - for interactive operation only
873 */
874static char
875type(
876     unsigned int c
877     )
878{
879	c ^= 0xFF;
880	return (c > 0xF);
881}
882
883/*-----------------------------------------------------------------------
884 * week day representation
885 */
886static const char *wday[8] =
887{
888	"??",
889	"Mo",
890	"Tu",
891	"We",
892	"Th",
893	"Fr",
894	"Sa",
895	"Su"
896};
897
898/*-----------------------------------------------------------------------
899 * generate a string representation for a timeval
900 */
901static char *
902pr_timeval(
903	   struct timeval *val
904	   )
905{
906	static char buf[20];
907
908	if (val->tv_sec == 0)
909	    sprintf(buf, "%c0.%06ld", (val->tv_usec < 0) ? '-' : '+', (long int)l_abs(val->tv_usec));
910	else
911	    sprintf(buf, "%ld.%06ld", (long int)val->tv_sec, (long int)l_abs(val->tv_usec));
912	return buf;
913}
914
915/*-----------------------------------------------------------------------
916 * correct the current time by an offset by setting the time rigorously
917 */
918static void
919set_time(
920	 struct timeval *offset
921	 )
922{
923	struct timeval the_time;
924
925	if (no_set)
926	    return;
927
928	LPRINTF("set_time: %s ", pr_timeval(offset));
929	syslog(LOG_NOTICE, "setting time (offset %s)", pr_timeval(offset));
930
931	if (gettimeofday(&the_time, 0L) == -1)
932	{
933		perror("gettimeofday()");
934	}
935	else
936	{
937		timeradd(&the_time, offset);
938		if (settimeofday(&the_time, 0L) == -1)
939		{
940			perror("settimeofday()");
941		}
942	}
943}
944
945/*-----------------------------------------------------------------------
946 * slew the time by a given offset
947 */
948static void
949adj_time(
950	 long offset
951	 )
952{
953	struct timeval time_offset;
954
955	if (no_set)
956	    return;
957
958	time_offset.tv_sec  = offset / 1000000;
959	time_offset.tv_usec = offset % 1000000;
960
961	LPRINTF("adj_time: %ld us ", (long int)offset);
962	if (adjtime(&time_offset, 0L) == -1)
963	    perror("adjtime()");
964}
965
966/*-----------------------------------------------------------------------
967 * read in a possibly previously written drift value
968 */
969static void
970read_drift(
971	   const char *drift_file
972	   )
973{
974	FILE *df;
975
976	df = fopen(drift_file, "r");
977	if (df != NULL)
978	{
979		int idrift = 0, fdrift = 0;
980
981		fscanf(df, "%4d.%03d", &idrift, &fdrift);
982		fclose(df);
983		LPRINTF("read_drift: %d.%03d ppm ", idrift, fdrift);
984
985		accum_drift = idrift << USECSCALE;
986		fdrift     = (fdrift << USECSCALE) / 1000;
987		accum_drift += fdrift & (1<<USECSCALE);
988		LPRINTF("read_drift: drift_comp %ld ", (long int)accum_drift);
989	}
990}
991
992/*-----------------------------------------------------------------------
993 * write out the current drift value
994 */
995static void
996update_drift(
997	     const char *drift_file,
998	     long offset,
999	     time_t reftime
1000	     )
1001{
1002	FILE *df;
1003
1004	df = fopen(drift_file, "w");
1005	if (df != NULL)
1006	{
1007		int idrift = R_SHIFT(accum_drift, USECSCALE);
1008		int fdrift = accum_drift & ((1<<USECSCALE)-1);
1009
1010		LPRINTF("update_drift: drift_comp %ld ", (long int)accum_drift);
1011		fdrift = (fdrift * 1000) / (1<<USECSCALE);
1012		fprintf(df, "%4d.%03d %c%ld.%06ld %.24s\n", idrift, fdrift,
1013			(offset < 0) ? '-' : '+', (long int)(l_abs(offset) / 1000000),
1014			(long int)(l_abs(offset) % 1000000), asctime(localtime(&reftime)));
1015		fclose(df);
1016		LPRINTF("update_drift: %d.%03d ppm ", idrift, fdrift);
1017	}
1018}
1019
1020/*-----------------------------------------------------------------------
1021 * process adjustments derived from the DCF77 observation
1022 * (controls clock PLL)
1023 */
1024static void
1025adjust_clock(
1026	     struct timeval *offset,
1027	     const char *drift_file,
1028	     time_t reftime
1029	     )
1030{
1031	struct timeval toffset;
1032	register long usecoffset;
1033	int tmp;
1034
1035	if (no_set)
1036	    return;
1037
1038	if (skip_adjust)
1039	{
1040		skip_adjust = 0;
1041		return;
1042	}
1043
1044	toffset = *offset;
1045	toffset.tv_sec  = l_abs(toffset.tv_sec);
1046	toffset.tv_usec = l_abs(toffset.tv_usec);
1047	if (toffset.tv_sec ||
1048	    (!toffset.tv_sec && toffset.tv_usec > max_adj_offset_usec))
1049	{
1050		/*
1051		 * hopeless - set the clock - and clear the timing
1052		 */
1053		set_time(offset);
1054		clock_adjust = 0;
1055		skip_adjust  = 1;
1056		return;
1057	}
1058
1059	usecoffset   = offset->tv_sec * 1000000 + offset->tv_usec;
1060
1061	clock_adjust = R_SHIFT(usecoffset, TIMECONSTANT);	/* adjustment to make for next period */
1062
1063	tmp = 0;
1064	while (adjustments > (1 << tmp))
1065	    tmp++;
1066	adjustments = 0;
1067	if (tmp > FREQ_WEIGHT)
1068	    tmp = FREQ_WEIGHT;
1069
1070	accum_drift  += R_SHIFT(usecoffset << USECSCALE, TIMECONSTANT+TIMECONSTANT+FREQ_WEIGHT-tmp);
1071
1072	if (accum_drift > MAX_DRIFT)		/* clamp into interval */
1073	    accum_drift = MAX_DRIFT;
1074	else
1075	    if (accum_drift < -MAX_DRIFT)
1076		accum_drift = -MAX_DRIFT;
1077
1078	update_drift(drift_file, usecoffset, reftime);
1079	LPRINTF("clock_adjust: %s, clock_adjust %ld, drift_comp %ld(%ld) ",
1080		pr_timeval(offset),(long int) R_SHIFT(clock_adjust, USECSCALE),
1081		(long int)R_SHIFT(accum_drift, USECSCALE), (long int)accum_drift);
1082}
1083
1084/*-----------------------------------------------------------------------
1085 * adjust the clock by a small mount to simulate frequency correction
1086 */
1087static void
1088periodic_adjust(
1089		void
1090		)
1091{
1092	register long adjustment;
1093
1094	adjustments++;
1095
1096	adjustment = R_SHIFT(clock_adjust, PHASE_WEIGHT);
1097
1098	clock_adjust -= adjustment;
1099
1100	adjustment += R_SHIFT(accum_drift, USECSCALE+ADJINTERVAL);
1101
1102	adj_time(adjustment);
1103}
1104
1105/*-----------------------------------------------------------------------
1106 * control synchronisation status (warnings) and do periodic adjusts
1107 * (frequency control simulation)
1108 */
1109static void
1110tick(
1111     int signum
1112     )
1113{
1114	static unsigned long last_notice = 0;
1115
1116#if !defined(HAVE_SIGACTION) && !defined(HAVE_SIGVEC)
1117	(void)signal(SIGALRM, tick);
1118#endif
1119
1120	periodic_adjust();
1121
1122	ticks += 1<<ADJINTERVAL;
1123
1124	if ((ticks - last_sync) > MAX_UNSYNC)
1125	{
1126		/*
1127		 * not getting time for a while
1128		 */
1129		if (sync_state == SYNC)
1130		{
1131			/*
1132			 * completely lost information
1133			 */
1134			sync_state = NO_SYNC;
1135			syslog(LOG_INFO, "DCF77 reception lost (timeout)");
1136			last_notice = ticks;
1137		}
1138		else
1139		    /*
1140		     * in NO_SYNC state - look whether its time to speak up again
1141		     */
1142		    if ((ticks - last_notice) > NOTICE_INTERVAL)
1143		    {
1144			    syslog(LOG_NOTICE, "still not synchronized to DCF77 - check receiver/signal");
1145			    last_notice = ticks;
1146		    }
1147	}
1148
1149#ifndef ITIMER_REAL
1150	(void) alarm(1<<ADJINTERVAL);
1151#endif
1152}
1153
1154/*-----------------------------------------------------------------------
1155 * break association from terminal to avoid catching terminal
1156 * or process group related signals (-> daemon operation)
1157 */
1158static void
1159detach(
1160       void
1161       )
1162{
1163#   ifdef HAVE_DAEMON
1164	daemon(0, 0);
1165#   else /* not HAVE_DAEMON */
1166	if (fork())
1167	    exit(0);
1168
1169	{
1170		u_long s;
1171		int max_fd;
1172
1173#if defined(HAVE_SYSCONF) && defined(_SC_OPEN_MAX)
1174		max_fd = sysconf(_SC_OPEN_MAX);
1175#else /* HAVE_SYSCONF && _SC_OPEN_MAX */
1176		max_fd = getdtablesize();
1177#endif /* HAVE_SYSCONF && _SC_OPEN_MAX */
1178		for (s = 0; s < max_fd; s++)
1179		    (void) close((int)s);
1180		(void) open("/", 0);
1181		(void) dup2(0, 1);
1182		(void) dup2(0, 2);
1183#ifdef SYS_DOMAINOS
1184		{
1185			uid_$t puid;
1186			status_$t st;
1187
1188			proc2_$who_am_i(&puid);
1189			proc2_$make_server(&puid, &st);
1190		}
1191#endif /* SYS_DOMAINOS */
1192#if defined(HAVE_SETPGID) || defined(HAVE_SETSID)
1193# ifdef HAVE_SETSID
1194		if (setsid() == (pid_t)-1)
1195		    syslog(LOG_ERR, "dcfd: setsid(): %m");
1196# else
1197		if (setpgid(0, 0) == -1)
1198		    syslog(LOG_ERR, "dcfd: setpgid(): %m");
1199# endif
1200#else /* HAVE_SETPGID || HAVE_SETSID */
1201		{
1202			int fid;
1203
1204			fid = open("/dev/tty", 2);
1205			if (fid >= 0)
1206			{
1207				(void) ioctl(fid, (u_long) TIOCNOTTY, (char *) 0);
1208				(void) close(fid);
1209			}
1210# ifdef HAVE_SETPGRP_0
1211			(void) setpgrp();
1212# else /* HAVE_SETPGRP_0 */
1213			(void) setpgrp(0, getpid());
1214# endif /* HAVE_SETPGRP_0 */
1215		}
1216#endif /* HAVE_SETPGID || HAVE_SETSID */
1217	}
1218#endif /* not HAVE_DAEMON */
1219}
1220
1221/*-----------------------------------------------------------------------
1222 * list possible arguments and options
1223 */
1224static void
1225usage(
1226      char *program
1227      )
1228{
1229  fprintf(stderr, "usage: %s [-n] [-f] [-l] [-t] [-i] [-o] [-d <drift_file>] [-D <input delay>] <device>\n", program);
1230	fprintf(stderr, "\t-n              do not change time\n");
1231	fprintf(stderr, "\t-i              interactive\n");
1232	fprintf(stderr, "\t-t              trace (print all datagrams)\n");
1233	fprintf(stderr, "\t-f              print all databits (includes PTB private data)\n");
1234	fprintf(stderr, "\t-l              print loop filter debug information\n");
1235	fprintf(stderr, "\t-o              print offet average for current minute\n");
1236	fprintf(stderr, "\t-Y              make internal Y2K checks then exit\n");	/* Y2KFixes */
1237	fprintf(stderr, "\t-d <drift_file> specify alternate drift file\n");
1238	fprintf(stderr, "\t-D <input delay>specify delay from input edge to processing in micro seconds\n");
1239}
1240
1241/*-----------------------------------------------------------------------
1242 * check_y2k() - internal check of Y2K logic
1243 *	(a lot of this logic lifted from ../ntpd/check_y2k.c)
1244 */
1245static int
1246check_y2k( void )
1247{
1248    int  year;			/* current working year */
1249    int  year0 = 1900;		/* sarting year for NTP time */
1250    int  yearend;		/* ending year we test for NTP time.
1251				    * 32-bit systems: through 2036, the
1252				      **year in which NTP time overflows.
1253				    * 64-bit systems: a reasonable upper
1254				      **limit (well, maybe somewhat beyond
1255				      **reasonable, but well before the
1256				      **max time, by which time the earth
1257				      **will be dead.) */
1258    time_t Time;
1259    struct tm LocalTime;
1260
1261    int Fatals, Warnings;
1262#define Error(year) if ( (year)>=2036 && LocalTime.tm_year < 110 ) \
1263	Warnings++; else Fatals++
1264
1265    Fatals = Warnings = 0;
1266
1267    Time = time( (time_t *)NULL );
1268    LocalTime = *localtime( &Time );
1269
1270    year = ( sizeof( u_long ) > 4 ) 	/* save max span using year as temp */
1271		? ( 400 * 3 ) 		/* three greater gregorian cycles */
1272		: ((int)(0x7FFFFFFF / 365.242 / 24/60/60)* 2 ); /*32-bit limit*/
1273			/* NOTE: will automacially expand test years on
1274			 * 64 bit machines.... this may cause some of the
1275			 * existing ntp logic to fail for years beyond
1276			 * 2036 (the current 32-bit limit). If all checks
1277			 * fail ONLY beyond year 2036 you may ignore such
1278			 * errors, at least for a decade or so. */
1279    yearend = year0 + year;
1280
1281    year = 1900+YEAR_PIVOT;
1282    printf( "  starting year %04d\n", (int) year );
1283    printf( "  ending year   %04d\n", (int) yearend );
1284
1285    for ( ; year < yearend; year++ )
1286    {
1287	clocktime_t  ct;
1288	time_t	     Observed;
1289	time_t	     Expected;
1290	unsigned     Flag;
1291	unsigned long t;
1292
1293	ct.day = 1;
1294	ct.month = 1;
1295	ct.year = year;
1296	ct.hour = ct.minute = ct.second = ct.usecond = 0;
1297	ct.utcoffset = 0;
1298	ct.flags = 0;
1299
1300	Flag = 0;
1301 	Observed = dcf_to_unixtime( &ct, &Flag );
1302		/* seems to be a clone of parse_to_unixtime() with
1303		 * *a minor difference to arg2 type */
1304	if ( ct.year != year )
1305	{
1306	    fprintf( stdout,
1307	       "%04d: dcf_to_unixtime(,%d) CORRUPTED ct.year: was %d\n",
1308	       (int)year, (int)Flag, (int)ct.year );
1309	    Error(year);
1310	    break;
1311	}
1312	t = julian0(year) - julian0(1970);	/* Julian day from 1970 */
1313	Expected = t * 24 * 60 * 60;
1314	if ( Observed != Expected  ||  Flag )
1315	{   /* time difference */
1316	    fprintf( stdout,
1317	       "%04d: dcf_to_unixtime(,%d) FAILURE: was=%lu s/b=%lu  (%ld)\n",
1318	       year, (int)Flag,
1319	       (unsigned long)Observed, (unsigned long)Expected,
1320	       ((long)Observed - (long)Expected) );
1321	    Error(year);
1322	    break;
1323	}
1324
1325	if ( year >= YEAR_PIVOT+1900 )
1326	{
1327	    /* check year % 100 code we put into dcf_to_unixtime() */
1328	    ct.year = year % 100;
1329	    Flag = 0;
1330
1331	    Observed = dcf_to_unixtime( &ct, &Flag );
1332
1333	    if ( Observed != Expected  ||  Flag )
1334	    {   /* time difference */
1335		fprintf( stdout,
1336"%04d: dcf_to_unixtime(%d,%d) FAILURE: was=%lu s/b=%lu  (%ld)\n",
1337		   year, (int)ct.year, (int)Flag,
1338		   (unsigned long)Observed, (unsigned long)Expected,
1339		   ((long)Observed - (long)Expected) );
1340		Error(year);
1341		break;
1342	    }
1343
1344	    /* check year - 1900 code we put into dcf_to_unixtime() */
1345	    ct.year = year - 1900;
1346	    Flag = 0;
1347
1348	    Observed = dcf_to_unixtime( &ct, &Flag );
1349
1350	    if ( Observed != Expected  ||  Flag ) {   /* time difference */
1351		    fprintf( stdout,
1352			     "%04d: dcf_to_unixtime(%d,%d) FAILURE: was=%lu s/b=%lu  (%ld)\n",
1353			     year, (int)ct.year, (int)Flag,
1354			     (unsigned long)Observed, (unsigned long)Expected,
1355			     ((long)Observed - (long)Expected) );
1356		    Error(year);
1357		break;
1358	    }
1359
1360
1361	}
1362    }
1363
1364    return ( Fatals );
1365}
1366
1367/*--------------------------------------------------
1368 * rawdcf_init - set up modem lines for RAWDCF receivers
1369 */
1370#if defined(TIOCMSET) && (defined(TIOCM_DTR) || defined(CIOCM_DTR))
1371static void
1372rawdcf_init(
1373	int fd
1374	)
1375{
1376	/*
1377	 * You can use the RS232 to supply the power for a DCF77 receiver.
1378	 * Here a voltage between the DTR and the RTS line is used. Unfortunately
1379	 * the name has changed from CIOCM_DTR to TIOCM_DTR recently.
1380	 */
1381
1382#ifdef TIOCM_DTR
1383	int sl232 = TIOCM_DTR;	/* turn on DTR for power supply */
1384#else
1385	int sl232 = CIOCM_DTR;	/* turn on DTR for power supply */
1386#endif
1387
1388	if (ioctl(fd, TIOCMSET, (caddr_t)&sl232) == -1)
1389	{
1390		syslog(LOG_NOTICE, "rawdcf_init: WARNING: ioctl(fd, TIOCMSET, [C|T]IOCM_DTR): %m");
1391	}
1392}
1393#else
1394static void
1395rawdcf_init(
1396	    int fd
1397	)
1398{
1399	syslog(LOG_NOTICE, "rawdcf_init: WARNING: OS interface incapable of setting DTR to power DCF modules");
1400}
1401#endif  /* DTR initialisation type */
1402
1403/*-----------------------------------------------------------------------
1404 * main loop - argument interpreter / setup / main loop
1405 */
1406int
1407main(
1408     int argc,
1409     char **argv
1410     )
1411{
1412	unsigned char c;
1413	char **a = argv;
1414	int  ac = argc;
1415	char *file = NULL;
1416	const char *drift_file = "/etc/dcfd.drift";
1417	int fd;
1418	int offset = 15;
1419	int offsets = 0;
1420	int delay = DEFAULT_DELAY;	/* average delay from input edge to time stamping */
1421	int trace = 0;
1422	int errs = 0;
1423
1424	/*
1425	 * process arguments
1426	 */
1427	while (--ac)
1428	{
1429		char *arg = *++a;
1430		if (*arg == '-')
1431		    while ((c = *++arg))
1432			switch (c)
1433			{
1434			    case 't':
1435				trace = 1;
1436				interactive = 1;
1437				break;
1438
1439			    case 'f':
1440				offset = 0;
1441				interactive = 1;
1442				break;
1443
1444			    case 'l':
1445				loop_filter_debug = 1;
1446				offsets = 1;
1447				interactive = 1;
1448				break;
1449
1450			    case 'n':
1451				no_set = 1;
1452				break;
1453
1454			    case 'o':
1455				offsets = 1;
1456				interactive = 1;
1457				break;
1458
1459			    case 'i':
1460				interactive = 1;
1461				break;
1462
1463			    case 'D':
1464				if (ac > 1)
1465				{
1466					delay = atoi(*++a);
1467					ac--;
1468				}
1469				else
1470				{
1471					fprintf(stderr, "%s: -D requires integer argument\n", argv[0]);
1472					errs=1;
1473				}
1474				break;
1475
1476			    case 'd':
1477				if (ac > 1)
1478				{
1479					drift_file = *++a;
1480					ac--;
1481				}
1482				else
1483				{
1484					fprintf(stderr, "%s: -d requires file name argument\n", argv[0]);
1485					errs=1;
1486				}
1487				break;
1488
1489			    case 'Y':
1490				errs=check_y2k();
1491				exit( errs ? 1 : 0 );
1492
1493			    default:
1494				fprintf(stderr, "%s: unknown option -%c\n", argv[0], c);
1495				errs=1;
1496				break;
1497			}
1498		else
1499		    if (file == NULL)
1500			file = arg;
1501		    else
1502		    {
1503			    fprintf(stderr, "%s: device specified twice\n", argv[0]);
1504			    errs=1;
1505		    }
1506	}
1507
1508	if (errs)
1509	{
1510		usage(argv[0]);
1511		exit(1);
1512	}
1513	else
1514	    if (file == NULL)
1515	    {
1516		    fprintf(stderr, "%s: device not specified\n", argv[0]);
1517		    usage(argv[0]);
1518		    exit(1);
1519	    }
1520
1521	errs = LINES+1;
1522
1523	/*
1524	 * get access to DCF77 tty port
1525	 */
1526	fd = open(file, O_RDONLY);
1527	if (fd == -1)
1528	{
1529		perror(file);
1530		exit(1);
1531	}
1532	else
1533	{
1534		int i, rrc;
1535		struct timeval t, tt, tlast;
1536		struct timeval timeout;
1537		struct timeval phase;
1538		struct timeval time_offset;
1539		char pbuf[61];		/* printable version */
1540		char buf[61];		/* raw data */
1541		clocktime_t clock_time;	/* wall clock time */
1542		time_t utc_time = 0;
1543		time_t last_utc_time = 0;
1544		long usecerror = 0;
1545		long lasterror = 0;
1546#if defined(HAVE_TERMIOS_H) || defined(STREAM)
1547		struct termios term;
1548#else  /* not HAVE_TERMIOS_H || STREAM */
1549# if defined(HAVE_TERMIO_H) || defined(HAVE_SYSV_TTYS)
1550		struct termio term;
1551# endif/* HAVE_TERMIO_H || HAVE_SYSV_TTYS */
1552#endif /* not HAVE_TERMIOS_H || STREAM */
1553		unsigned int rtc = CVT_NONE;
1554
1555		rawdcf_init(fd);
1556
1557		timeout.tv_sec  = 1;
1558		timeout.tv_usec = 500000;
1559
1560		phase.tv_sec    = 0;
1561		phase.tv_usec   = delay;
1562
1563		/*
1564		 * setup TTY (50 Baud, Read, 8Bit, No Hangup, 1 character IO)
1565		 */
1566		if (TTY_GETATTR(fd,  &term) == -1)
1567		{
1568			perror("tcgetattr");
1569			exit(1);
1570		}
1571
1572		memset(term.c_cc, 0, sizeof(term.c_cc));
1573		term.c_cc[VMIN] = 1;
1574#ifdef NO_PARENB_IGNPAR
1575		term.c_cflag = CS8|CREAD|CLOCAL;
1576#else
1577		term.c_cflag = CS8|CREAD|CLOCAL|PARENB;
1578#endif
1579		term.c_iflag = IGNPAR;
1580		term.c_oflag = 0;
1581		term.c_lflag = 0;
1582
1583		cfsetispeed(&term, B50);
1584		cfsetospeed(&term, B50);
1585
1586		if (TTY_SETATTR(fd, &term) == -1)
1587		{
1588			perror("tcsetattr");
1589			exit(1);
1590		}
1591
1592		/*
1593		 * lose terminal if in daemon operation
1594		 */
1595		if (!interactive)
1596		    detach();
1597
1598		/*
1599		 * get syslog() initialized
1600		 */
1601#ifdef LOG_DAEMON
1602		openlog("dcfd", LOG_PID, LOG_DAEMON);
1603#else
1604		openlog("dcfd", LOG_PID);
1605#endif
1606
1607		/*
1608		 * setup periodic operations (state control / frequency control)
1609		 */
1610#ifdef HAVE_SIGACTION
1611		{
1612			struct sigaction act;
1613
1614# ifdef HAVE_SA_SIGACTION_IN_STRUCT_SIGACTION
1615			act.sa_sigaction = (void (*) (int, siginfo_t *, void *))0;
1616# endif /* HAVE_SA_SIGACTION_IN_STRUCT_SIGACTION */
1617			act.sa_handler   = tick;
1618			sigemptyset(&act.sa_mask);
1619			act.sa_flags     = 0;
1620
1621			if (sigaction(SIGALRM, &act, (struct sigaction *)0) == -1)
1622			{
1623				syslog(LOG_ERR, "sigaction(SIGALRM): %m");
1624				exit(1);
1625			}
1626		}
1627#else
1628#ifdef HAVE_SIGVEC
1629		{
1630			struct sigvec vec;
1631
1632			vec.sv_handler   = tick;
1633			vec.sv_mask      = 0;
1634			vec.sv_flags     = 0;
1635
1636			if (sigvec(SIGALRM, &vec, (struct sigvec *)0) == -1)
1637			{
1638				syslog(LOG_ERR, "sigvec(SIGALRM): %m");
1639				exit(1);
1640			}
1641		}
1642#else
1643		(void) signal(SIGALRM, tick);
1644#endif
1645#endif
1646
1647#ifdef ITIMER_REAL
1648		{
1649			struct itimerval it;
1650
1651			it.it_interval.tv_sec  = 1<<ADJINTERVAL;
1652			it.it_interval.tv_usec = 0;
1653			it.it_value.tv_sec     = 1<<ADJINTERVAL;
1654			it.it_value.tv_usec    = 0;
1655
1656			if (setitimer(ITIMER_REAL, &it, (struct itimerval *)0) == -1)
1657			{
1658				syslog(LOG_ERR, "setitimer: %m");
1659				exit(1);
1660			}
1661		}
1662#else
1663		(void) alarm(1<<ADJINTERVAL);
1664#endif
1665
1666		PRINTF("  DCF77 monitor %s - Copyright (C) 1993-2005 by Frank Kardel\n\n", revision);
1667
1668		pbuf[60] = '\0';
1669		for ( i = 0; i < 60; i++)
1670		    pbuf[i] = '.';
1671
1672		read_drift(drift_file);
1673
1674		/*
1675		 * what time is it now (for interval measurement)
1676		 */
1677		gettimeofday(&tlast, 0L);
1678		i = 0;
1679		/*
1680		 * loop until input trouble ...
1681		 */
1682		do
1683		{
1684			/*
1685			 * get an impulse
1686			 */
1687			while ((rrc = read(fd, &c, 1)) == 1)
1688			{
1689				gettimeofday(&t, 0L);
1690				tt = t;
1691				timersub(&t, &tlast);
1692
1693				if (errs > LINES)
1694				{
1695					PRINTF("  %s", &"PTB private....RADMLSMin....PHour..PMDay..DayMonthYear....P\n"[offset]);
1696					PRINTF("  %s", &"---------------RADMLS1248124P124812P1248121241248112481248P\n"[offset]);
1697					errs = 0;
1698				}
1699
1700				/*
1701				 * timeout -> possible minute mark -> interpretation
1702				 */
1703				if (timercmp(&t, &timeout, >))
1704				{
1705					PRINTF("%c %.*s ", pat[i % (sizeof(pat)-1)], 59 - offset, &pbuf[offset]);
1706
1707					if ((rtc = cvt_rawdcf((unsigned char *)buf, i, &clock_time)) != CVT_OK)
1708					{
1709						/*
1710						 * this data was bad - well - forget synchronisation for now
1711						 */
1712						PRINTF("\n");
1713						if (sync_state == SYNC)
1714						{
1715							sync_state = NO_SYNC;
1716							syslog(LOG_INFO, "DCF77 reception lost (bad data)");
1717						}
1718						errs++;
1719					}
1720					else
1721					    if (trace)
1722					    {
1723						    PRINTF("\r  %.*s ", 59 - offset, &buf[offset]);
1724					    }
1725
1726
1727					buf[0] = c;
1728
1729					/*
1730					 * collect first character
1731					 */
1732					if (((c^0xFF)+1) & (c^0xFF))
1733					    pbuf[0] = '?';
1734					else
1735					    pbuf[0] = type(c) ? '#' : '-';
1736
1737					for ( i = 1; i < 60; i++)
1738					    pbuf[i] = '.';
1739
1740					i = 0;
1741				}
1742				else
1743				{
1744					/*
1745					 * collect character
1746					 */
1747					buf[i] = c;
1748
1749					/*
1750					 * initial guess (usually correct)
1751					 */
1752					if (((c^0xFF)+1) & (c^0xFF))
1753					    pbuf[i] = '?';
1754					else
1755					    pbuf[i] = type(c) ? '#' : '-';
1756
1757					PRINTF("%c %.*s ", pat[i % (sizeof(pat)-1)], 59 - offset, &pbuf[offset]);
1758				}
1759
1760				if (i == 0 && rtc == CVT_OK)
1761				{
1762					/*
1763					 * we got a good time code here - try to convert it to
1764					 * UTC
1765					 */
1766					if ((utc_time = dcf_to_unixtime(&clock_time, &rtc)) == -1)
1767					{
1768						PRINTF("*** BAD CONVERSION\n");
1769					}
1770
1771					if (utc_time != (last_utc_time + 60))
1772					{
1773						/*
1774						 * well, two successive sucessful telegrams are not 60 seconds
1775						 * apart
1776						 */
1777						PRINTF("*** NO MINUTE INC\n");
1778						if (sync_state == SYNC)
1779						{
1780							sync_state = NO_SYNC;
1781							syslog(LOG_INFO, "DCF77 reception lost (data mismatch)");
1782						}
1783						errs++;
1784						rtc = CVT_FAIL|CVT_BADTIME|CVT_BADDATE;
1785					}
1786					else
1787					    usecerror = 0;
1788
1789					last_utc_time = utc_time;
1790				}
1791
1792				if (rtc == CVT_OK)
1793				{
1794					if (i == 0)
1795					{
1796						/*
1797						 * valid time code - determine offset and
1798						 * note regained reception
1799						 */
1800						last_sync = ticks;
1801						if (sync_state == NO_SYNC)
1802						{
1803							syslog(LOG_INFO, "receiving DCF77");
1804						}
1805						else
1806						{
1807							/*
1808							 * we had at least one minute SYNC - thus
1809							 * last error is valid
1810							 */
1811							time_offset.tv_sec  = lasterror / 1000000;
1812							time_offset.tv_usec = lasterror % 1000000;
1813							adjust_clock(&time_offset, drift_file, utc_time);
1814						}
1815						sync_state = SYNC;
1816					}
1817
1818					time_offset.tv_sec  = utc_time + i;
1819					time_offset.tv_usec = 0;
1820
1821					timeradd(&time_offset, &phase);
1822
1823					usecerror += (time_offset.tv_sec - tt.tv_sec) * 1000000 + time_offset.tv_usec
1824						-tt.tv_usec;
1825
1826					/*
1827					 * output interpreted DCF77 data
1828					 */
1829					PRINTF(offsets ? "%s, %2ld:%02ld:%02d, %ld.%02ld.%02ld, <%s%s%s%s> (%c%ld.%06lds)" :
1830					       "%s, %2ld:%02ld:%02d, %ld.%02ld.%02ld, <%s%s%s%s>",
1831					       wday[clock_time.wday],
1832					       clock_time.hour, clock_time.minute, i, clock_time.day, clock_time.month,
1833					       clock_time.year,
1834					       (clock_time.flags & DCFB_ALTERNATE) ? "R" : "_",
1835					       (clock_time.flags & DCFB_ANNOUNCE) ? "A" : "_",
1836					       (clock_time.flags & DCFB_DST) ? "D" : "_",
1837					       (clock_time.flags & DCFB_LEAP) ? "L" : "_",
1838					       (lasterror < 0) ? '-' : '+', l_abs(lasterror) / 1000000, l_abs(lasterror) % 1000000
1839					       );
1840
1841					if (trace && (i == 0))
1842					{
1843						PRINTF("\n");
1844						errs++;
1845					}
1846					lasterror = usecerror / (i+1);
1847				}
1848				else
1849				{
1850					lasterror = 0; /* we cannot calculate phase errors on bad reception */
1851				}
1852
1853				PRINTF("\r");
1854
1855				if (i < 60)
1856				{
1857					i++;
1858				}
1859
1860				tlast = tt;
1861
1862				if (interactive)
1863				    fflush(stdout);
1864			}
1865		} while ((rrc == -1) && (errno == EINTR));
1866
1867		/*
1868		 * lost IO - sorry guys
1869		 */
1870		syslog(LOG_ERR, "TERMINATING - cannot read from device %s (%m)", file);
1871
1872		(void)close(fd);
1873	}
1874
1875	closelog();
1876
1877	return 0;
1878}
1879
1880/*
1881 * History:
1882 *
1883 * dcfd.c,v
1884 * Revision 4.18  2005/10/07 22:08:18  kardel
1885 * make dcfd.c compile on NetBSD 3.99.9 again (configure/sigvec compatibility fix)
1886 *
1887 * Revision 4.17.2.1  2005/10/03 19:15:16  kardel
1888 * work around configure not detecting a missing sigvec compatibility
1889 * interface on NetBSD 3.99.9 and above
1890 *
1891 * Revision 4.17  2005/08/10 10:09:44  kardel
1892 * output revision information
1893 *
1894 * Revision 4.16  2005/08/10 06:33:25  kardel
1895 * cleanup warnings
1896 *
1897 * Revision 4.15  2005/08/10 06:28:45  kardel
1898 * fix setting of baud rate
1899 *
1900 * Revision 4.14  2005/04/16 17:32:10  kardel
1901 * update copyright
1902 *
1903 * Revision 4.13  2004/11/14 15:29:41  kardel
1904 * support PPSAPI, upgrade Copyright to Berkeley style
1905 *
1906 */
1907