1/* ssl/s3_cbc.c */
2/* ====================================================================
3 * Copyright (c) 2012 The OpenSSL Project.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in
14 *    the documentation and/or other materials provided with the
15 *    distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 *    software must display the following acknowledgment:
19 *    "This product includes software developed by the OpenSSL Project
20 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 *    endorse or promote products derived from this software without
24 *    prior written permission. For written permission, please contact
25 *    openssl-core@openssl.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 *    nor may "OpenSSL" appear in their names without prior written
29 *    permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 *    acknowledgment:
33 *    "This product includes software developed by the OpenSSL Project
34 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ====================================================================
49 *
50 * This product includes cryptographic software written by Eric Young
51 * (eay@cryptsoft.com).  This product includes software written by Tim
52 * Hudson (tjh@cryptsoft.com).
53 *
54 */
55
56#include "ssl_locl.h"
57
58#include <openssl/md5.h>
59#include <openssl/sha.h>
60
61/* MAX_HASH_BIT_COUNT_BYTES is the maximum number of bytes in the hash's length
62 * field. (SHA-384/512 have 128-bit length.) */
63#define MAX_HASH_BIT_COUNT_BYTES 16
64
65/* MAX_HASH_BLOCK_SIZE is the maximum hash block size that we'll support.
66 * Currently SHA-384/512 has a 128-byte block size and that's the largest
67 * supported by TLS.) */
68#define MAX_HASH_BLOCK_SIZE 128
69
70/* Some utility functions are needed:
71 *
72 * These macros return the given value with the MSB copied to all the other
73 * bits. They use the fact that arithmetic shift shifts-in the sign bit.
74 * However, this is not ensured by the C standard so you may need to replace
75 * them with something else on odd CPUs. */
76#define DUPLICATE_MSB_TO_ALL(x) ( (unsigned)( (int)(x) >> (sizeof(int)*8-1) ) )
77#define DUPLICATE_MSB_TO_ALL_8(x) ((unsigned char)(DUPLICATE_MSB_TO_ALL(x)))
78
79/* constant_time_lt returns 0xff if a<b and 0x00 otherwise. */
80static unsigned constant_time_lt(unsigned a, unsigned b)
81	{
82	a -= b;
83	return DUPLICATE_MSB_TO_ALL(a);
84	}
85
86/* constant_time_ge returns 0xff if a>=b and 0x00 otherwise. */
87static unsigned constant_time_ge(unsigned a, unsigned b)
88	{
89	a -= b;
90	return DUPLICATE_MSB_TO_ALL(~a);
91	}
92
93/* constant_time_eq_8 returns 0xff if a==b and 0x00 otherwise. */
94static unsigned char constant_time_eq_8(unsigned a, unsigned b)
95	{
96	unsigned c = a ^ b;
97	c--;
98	return DUPLICATE_MSB_TO_ALL_8(c);
99	}
100
101/* ssl3_cbc_remove_padding removes padding from the decrypted, SSLv3, CBC
102 * record in |rec| by updating |rec->length| in constant time.
103 *
104 * block_size: the block size of the cipher used to encrypt the record.
105 * returns:
106 *   0: (in non-constant time) if the record is publicly invalid.
107 *   1: if the padding was valid
108 *  -1: otherwise. */
109int ssl3_cbc_remove_padding(const SSL* s,
110			    SSL3_RECORD *rec,
111			    unsigned block_size,
112			    unsigned mac_size)
113	{
114	unsigned padding_length, good;
115	const unsigned overhead = 1 /* padding length byte */ + mac_size;
116
117	/* These lengths are all public so we can test them in non-constant
118	 * time. */
119	if (overhead > rec->length)
120		return 0;
121
122	padding_length = rec->data[rec->length-1];
123	good = constant_time_ge(rec->length, padding_length+overhead);
124	/* SSLv3 requires that the padding is minimal. */
125	good &= constant_time_ge(block_size, padding_length+1);
126	padding_length = good & (padding_length+1);
127	rec->length -= padding_length;
128	rec->type |= padding_length<<8;	/* kludge: pass padding length */
129	return (int)((good & 1) | (~good & -1));
130}
131
132/* tls1_cbc_remove_padding removes the CBC padding from the decrypted, TLS, CBC
133 * record in |rec| in constant time and returns 1 if the padding is valid and
134 * -1 otherwise. It also removes any explicit IV from the start of the record
135 * without leaking any timing about whether there was enough space after the
136 * padding was removed.
137 *
138 * block_size: the block size of the cipher used to encrypt the record.
139 * returns:
140 *   0: (in non-constant time) if the record is publicly invalid.
141 *   1: if the padding was valid
142 *  -1: otherwise. */
143int tls1_cbc_remove_padding(const SSL* s,
144			    SSL3_RECORD *rec,
145			    unsigned block_size,
146			    unsigned mac_size)
147	{
148	unsigned padding_length, good, to_check, i;
149	const unsigned overhead = 1 /* padding length byte */ + mac_size;
150	/* Check if version requires explicit IV */
151	if (s->version >= TLS1_1_VERSION || s->version == DTLS1_BAD_VER)
152		{
153		/* These lengths are all public so we can test them in
154		 * non-constant time.
155		 */
156		if (overhead + block_size > rec->length)
157			return 0;
158		/* We can now safely skip explicit IV */
159		rec->data += block_size;
160		rec->input += block_size;
161		rec->length -= block_size;
162		}
163	else if (overhead > rec->length)
164		return 0;
165
166	padding_length = rec->data[rec->length-1];
167
168	/* NB: if compression is in operation the first packet may not be of
169	 * even length so the padding bug check cannot be performed. This bug
170	 * workaround has been around since SSLeay so hopefully it is either
171	 * fixed now or no buggy implementation supports compression [steve]
172	 */
173	if ( (s->options&SSL_OP_TLS_BLOCK_PADDING_BUG) && !s->expand)
174		{
175		/* First packet is even in size, so check */
176		if ((memcmp(s->s3->read_sequence, "\0\0\0\0\0\0\0\0",8) == 0) &&
177		    !(padding_length & 1))
178			{
179			s->s3->flags|=TLS1_FLAGS_TLS_PADDING_BUG;
180			}
181		if ((s->s3->flags & TLS1_FLAGS_TLS_PADDING_BUG) &&
182		    padding_length > 0)
183			{
184			padding_length--;
185			}
186		}
187
188	if (EVP_CIPHER_flags(s->enc_read_ctx->cipher)&EVP_CIPH_FLAG_AEAD_CIPHER)
189		{
190		/* padding is already verified */
191		rec->length -= padding_length + 1;
192		return 1;
193		}
194
195	good = constant_time_ge(rec->length, overhead+padding_length);
196	/* The padding consists of a length byte at the end of the record and
197	 * then that many bytes of padding, all with the same value as the
198	 * length byte. Thus, with the length byte included, there are i+1
199	 * bytes of padding.
200	 *
201	 * We can't check just |padding_length+1| bytes because that leaks
202	 * decrypted information. Therefore we always have to check the maximum
203	 * amount of padding possible. (Again, the length of the record is
204	 * public information so we can use it.) */
205	to_check = 255; /* maximum amount of padding. */
206	if (to_check > rec->length-1)
207		to_check = rec->length-1;
208
209	for (i = 0; i < to_check; i++)
210		{
211		unsigned char mask = constant_time_ge(padding_length, i);
212		unsigned char b = rec->data[rec->length-1-i];
213		/* The final |padding_length+1| bytes should all have the value
214		 * |padding_length|. Therefore the XOR should be zero. */
215		good &= ~(mask&(padding_length ^ b));
216		}
217
218	/* If any of the final |padding_length+1| bytes had the wrong value,
219	 * one or more of the lower eight bits of |good| will be cleared. We
220	 * AND the bottom 8 bits together and duplicate the result to all the
221	 * bits. */
222	good &= good >> 4;
223	good &= good >> 2;
224	good &= good >> 1;
225	good <<= sizeof(good)*8-1;
226	good = DUPLICATE_MSB_TO_ALL(good);
227
228	padding_length = good & (padding_length+1);
229	rec->length -= padding_length;
230	rec->type |= padding_length<<8;	/* kludge: pass padding length */
231
232	return (int)((good & 1) | (~good & -1));
233	}
234
235/* ssl3_cbc_copy_mac copies |md_size| bytes from the end of |rec| to |out| in
236 * constant time (independent of the concrete value of rec->length, which may
237 * vary within a 256-byte window).
238 *
239 * ssl3_cbc_remove_padding or tls1_cbc_remove_padding must be called prior to
240 * this function.
241 *
242 * On entry:
243 *   rec->orig_len >= md_size
244 *   md_size <= EVP_MAX_MD_SIZE
245 *
246 * If CBC_MAC_ROTATE_IN_PLACE is defined then the rotation is performed with
247 * variable accesses in a 64-byte-aligned buffer. Assuming that this fits into
248 * a single or pair of cache-lines, then the variable memory accesses don't
249 * actually affect the timing. CPUs with smaller cache-lines [if any] are
250 * not multi-core and are not considered vulnerable to cache-timing attacks.
251 */
252#define CBC_MAC_ROTATE_IN_PLACE
253
254void ssl3_cbc_copy_mac(unsigned char* out,
255		       const SSL3_RECORD *rec,
256		       unsigned md_size,unsigned orig_len)
257	{
258#if defined(CBC_MAC_ROTATE_IN_PLACE)
259	unsigned char rotated_mac_buf[64+EVP_MAX_MD_SIZE];
260	unsigned char *rotated_mac;
261#else
262	unsigned char rotated_mac[EVP_MAX_MD_SIZE];
263#endif
264
265	/* mac_end is the index of |rec->data| just after the end of the MAC. */
266	unsigned mac_end = rec->length;
267	unsigned mac_start = mac_end - md_size;
268	/* scan_start contains the number of bytes that we can ignore because
269	 * the MAC's position can only vary by 255 bytes. */
270	unsigned scan_start = 0;
271	unsigned i, j;
272	unsigned div_spoiler;
273	unsigned rotate_offset;
274
275	OPENSSL_assert(orig_len >= md_size);
276	OPENSSL_assert(md_size <= EVP_MAX_MD_SIZE);
277
278#if defined(CBC_MAC_ROTATE_IN_PLACE)
279	rotated_mac = rotated_mac_buf + ((0-(size_t)rotated_mac_buf)&63);
280#endif
281
282	/* This information is public so it's safe to branch based on it. */
283	if (orig_len > md_size + 255 + 1)
284		scan_start = orig_len - (md_size + 255 + 1);
285	/* div_spoiler contains a multiple of md_size that is used to cause the
286	 * modulo operation to be constant time. Without this, the time varies
287	 * based on the amount of padding when running on Intel chips at least.
288	 *
289	 * The aim of right-shifting md_size is so that the compiler doesn't
290	 * figure out that it can remove div_spoiler as that would require it
291	 * to prove that md_size is always even, which I hope is beyond it. */
292	div_spoiler = md_size >> 1;
293	div_spoiler <<= (sizeof(div_spoiler)-1)*8;
294	rotate_offset = (div_spoiler + mac_start - scan_start) % md_size;
295
296	memset(rotated_mac, 0, md_size);
297	for (i = scan_start, j = 0; i < orig_len; i++)
298		{
299		unsigned char mac_started = constant_time_ge(i, mac_start);
300		unsigned char mac_ended = constant_time_ge(i, mac_end);
301		unsigned char b = rec->data[i];
302		rotated_mac[j++] |= b & mac_started & ~mac_ended;
303		j &= constant_time_lt(j,md_size);
304		}
305
306	/* Now rotate the MAC */
307#if defined(CBC_MAC_ROTATE_IN_PLACE)
308	j = 0;
309	for (i = 0; i < md_size; i++)
310		{
311		/* in case cache-line is 32 bytes, touch second line */
312		((volatile unsigned char *)rotated_mac)[rotate_offset^32];
313		out[j++] = rotated_mac[rotate_offset++];
314		rotate_offset &= constant_time_lt(rotate_offset,md_size);
315		}
316#else
317	memset(out, 0, md_size);
318	rotate_offset = md_size - rotate_offset;
319	rotate_offset &= constant_time_lt(rotate_offset,md_size);
320	for (i = 0; i < md_size; i++)
321		{
322		for (j = 0; j < md_size; j++)
323			out[j] |= rotated_mac[i] & constant_time_eq_8(j, rotate_offset);
324		rotate_offset++;
325		rotate_offset &= constant_time_lt(rotate_offset,md_size);
326		}
327#endif
328	}
329
330/* u32toLE serialises an unsigned, 32-bit number (n) as four bytes at (p) in
331 * little-endian order. The value of p is advanced by four. */
332#define u32toLE(n, p) \
333	(*((p)++)=(unsigned char)(n), \
334	 *((p)++)=(unsigned char)(n>>8), \
335	 *((p)++)=(unsigned char)(n>>16), \
336	 *((p)++)=(unsigned char)(n>>24))
337
338/* These functions serialize the state of a hash and thus perform the standard
339 * "final" operation without adding the padding and length that such a function
340 * typically does. */
341static void tls1_md5_final_raw(void* ctx, unsigned char *md_out)
342	{
343	MD5_CTX *md5 = ctx;
344	u32toLE(md5->A, md_out);
345	u32toLE(md5->B, md_out);
346	u32toLE(md5->C, md_out);
347	u32toLE(md5->D, md_out);
348	}
349
350static void tls1_sha1_final_raw(void* ctx, unsigned char *md_out)
351	{
352	SHA_CTX *sha1 = ctx;
353	l2n(sha1->h0, md_out);
354	l2n(sha1->h1, md_out);
355	l2n(sha1->h2, md_out);
356	l2n(sha1->h3, md_out);
357	l2n(sha1->h4, md_out);
358	}
359#define LARGEST_DIGEST_CTX SHA_CTX
360
361#ifndef OPENSSL_NO_SHA256
362static void tls1_sha256_final_raw(void* ctx, unsigned char *md_out)
363	{
364	SHA256_CTX *sha256 = ctx;
365	unsigned i;
366
367	for (i = 0; i < 8; i++)
368		{
369		l2n(sha256->h[i], md_out);
370		}
371	}
372#undef  LARGEST_DIGEST_CTX
373#define LARGEST_DIGEST_CTX SHA256_CTX
374#endif
375
376#ifndef OPENSSL_NO_SHA512
377static void tls1_sha512_final_raw(void* ctx, unsigned char *md_out)
378	{
379	SHA512_CTX *sha512 = ctx;
380	unsigned i;
381
382	for (i = 0; i < 8; i++)
383		{
384		l2n8(sha512->h[i], md_out);
385		}
386	}
387#undef  LARGEST_DIGEST_CTX
388#define LARGEST_DIGEST_CTX SHA512_CTX
389#endif
390
391/* ssl3_cbc_record_digest_supported returns 1 iff |ctx| uses a hash function
392 * which ssl3_cbc_digest_record supports. */
393char ssl3_cbc_record_digest_supported(const EVP_MD_CTX *ctx)
394	{
395#ifdef OPENSSL_FIPS
396	if (FIPS_mode())
397		return 0;
398#endif
399	switch (EVP_MD_CTX_type(ctx))
400		{
401		case NID_md5:
402		case NID_sha1:
403#ifndef OPENSSL_NO_SHA256
404		case NID_sha224:
405		case NID_sha256:
406#endif
407#ifndef OPENSSL_NO_SHA512
408		case NID_sha384:
409		case NID_sha512:
410#endif
411			return 1;
412		default:
413			return 0;
414		}
415	}
416
417/* ssl3_cbc_digest_record computes the MAC of a decrypted, padded SSLv3/TLS
418 * record.
419 *
420 *   ctx: the EVP_MD_CTX from which we take the hash function.
421 *     ssl3_cbc_record_digest_supported must return true for this EVP_MD_CTX.
422 *   md_out: the digest output. At most EVP_MAX_MD_SIZE bytes will be written.
423 *   md_out_size: if non-NULL, the number of output bytes is written here.
424 *   header: the 13-byte, TLS record header.
425 *   data: the record data itself, less any preceeding explicit IV.
426 *   data_plus_mac_size: the secret, reported length of the data and MAC
427 *     once the padding has been removed.
428 *   data_plus_mac_plus_padding_size: the public length of the whole
429 *     record, including padding.
430 *   is_sslv3: non-zero if we are to use SSLv3. Otherwise, TLS.
431 *
432 * On entry: by virtue of having been through one of the remove_padding
433 * functions, above, we know that data_plus_mac_size is large enough to contain
434 * a padding byte and MAC. (If the padding was invalid, it might contain the
435 * padding too. ) */
436void ssl3_cbc_digest_record(
437	const EVP_MD_CTX *ctx,
438	unsigned char* md_out,
439	size_t* md_out_size,
440	const unsigned char header[13],
441	const unsigned char *data,
442	size_t data_plus_mac_size,
443	size_t data_plus_mac_plus_padding_size,
444	const unsigned char *mac_secret,
445	unsigned mac_secret_length,
446	char is_sslv3)
447	{
448	union {	double align;
449		unsigned char c[sizeof(LARGEST_DIGEST_CTX)]; } md_state;
450	void (*md_final_raw)(void *ctx, unsigned char *md_out);
451	void (*md_transform)(void *ctx, const unsigned char *block);
452	unsigned md_size, md_block_size = 64;
453	unsigned sslv3_pad_length = 40, header_length, variance_blocks,
454		 len, max_mac_bytes, num_blocks,
455		 num_starting_blocks, k, mac_end_offset, c, index_a, index_b;
456	unsigned int bits;	/* at most 18 bits */
457	unsigned char length_bytes[MAX_HASH_BIT_COUNT_BYTES];
458	/* hmac_pad is the masked HMAC key. */
459	unsigned char hmac_pad[MAX_HASH_BLOCK_SIZE];
460	unsigned char first_block[MAX_HASH_BLOCK_SIZE];
461	unsigned char mac_out[EVP_MAX_MD_SIZE];
462	unsigned i, j, md_out_size_u;
463	EVP_MD_CTX md_ctx;
464	/* mdLengthSize is the number of bytes in the length field that terminates
465	* the hash. */
466	unsigned md_length_size = 8;
467	char length_is_big_endian = 1;
468
469	/* This is a, hopefully redundant, check that allows us to forget about
470	 * many possible overflows later in this function. */
471	OPENSSL_assert(data_plus_mac_plus_padding_size < 1024*1024);
472
473	switch (EVP_MD_CTX_type(ctx))
474		{
475		case NID_md5:
476			MD5_Init((MD5_CTX*)md_state.c);
477			md_final_raw = tls1_md5_final_raw;
478			md_transform = (void(*)(void *ctx, const unsigned char *block)) MD5_Transform;
479			md_size = 16;
480			sslv3_pad_length = 48;
481			length_is_big_endian = 0;
482			break;
483		case NID_sha1:
484			SHA1_Init((SHA_CTX*)md_state.c);
485			md_final_raw = tls1_sha1_final_raw;
486			md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA1_Transform;
487			md_size = 20;
488			break;
489#ifndef OPENSSL_NO_SHA256
490		case NID_sha224:
491			SHA224_Init((SHA256_CTX*)md_state.c);
492			md_final_raw = tls1_sha256_final_raw;
493			md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA256_Transform;
494			md_size = 224/8;
495			break;
496		case NID_sha256:
497			SHA256_Init((SHA256_CTX*)md_state.c);
498			md_final_raw = tls1_sha256_final_raw;
499			md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA256_Transform;
500			md_size = 32;
501			break;
502#endif
503#ifndef OPENSSL_NO_SHA512
504		case NID_sha384:
505			SHA384_Init((SHA512_CTX*)md_state.c);
506			md_final_raw = tls1_sha512_final_raw;
507			md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA512_Transform;
508			md_size = 384/8;
509			md_block_size = 128;
510			md_length_size = 16;
511			break;
512		case NID_sha512:
513			SHA512_Init((SHA512_CTX*)md_state.c);
514			md_final_raw = tls1_sha512_final_raw;
515			md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA512_Transform;
516			md_size = 64;
517			md_block_size = 128;
518			md_length_size = 16;
519			break;
520#endif
521		default:
522			/* ssl3_cbc_record_digest_supported should have been
523			 * called first to check that the hash function is
524			 * supported. */
525			OPENSSL_assert(0);
526			if (md_out_size)
527				*md_out_size = -1;
528			return;
529		}
530
531	OPENSSL_assert(md_length_size <= MAX_HASH_BIT_COUNT_BYTES);
532	OPENSSL_assert(md_block_size <= MAX_HASH_BLOCK_SIZE);
533	OPENSSL_assert(md_size <= EVP_MAX_MD_SIZE);
534
535	header_length = 13;
536	if (is_sslv3)
537		{
538		header_length =
539			mac_secret_length +
540			sslv3_pad_length +
541			8 /* sequence number */ +
542			1 /* record type */ +
543			2 /* record length */;
544		}
545
546	/* variance_blocks is the number of blocks of the hash that we have to
547	 * calculate in constant time because they could be altered by the
548	 * padding value.
549	 *
550	 * In SSLv3, the padding must be minimal so the end of the plaintext
551	 * varies by, at most, 15+20 = 35 bytes. (We conservatively assume that
552	 * the MAC size varies from 0..20 bytes.) In case the 9 bytes of hash
553	 * termination (0x80 + 64-bit length) don't fit in the final block, we
554	 * say that the final two blocks can vary based on the padding.
555	 *
556	 * TLSv1 has MACs up to 48 bytes long (SHA-384) and the padding is not
557	 * required to be minimal. Therefore we say that the final six blocks
558	 * can vary based on the padding.
559	 *
560	 * Later in the function, if the message is short and there obviously
561	 * cannot be this many blocks then variance_blocks can be reduced. */
562	variance_blocks = is_sslv3 ? 2 : 6;
563	/* From now on we're dealing with the MAC, which conceptually has 13
564	 * bytes of `header' before the start of the data (TLS) or 71/75 bytes
565	 * (SSLv3) */
566	len = data_plus_mac_plus_padding_size + header_length;
567	/* max_mac_bytes contains the maximum bytes of bytes in the MAC, including
568	* |header|, assuming that there's no padding. */
569	max_mac_bytes = len - md_size - 1;
570	/* num_blocks is the maximum number of hash blocks. */
571	num_blocks = (max_mac_bytes + 1 + md_length_size + md_block_size - 1) / md_block_size;
572	/* In order to calculate the MAC in constant time we have to handle
573	 * the final blocks specially because the padding value could cause the
574	 * end to appear somewhere in the final |variance_blocks| blocks and we
575	 * can't leak where. However, |num_starting_blocks| worth of data can
576	 * be hashed right away because no padding value can affect whether
577	 * they are plaintext. */
578	num_starting_blocks = 0;
579	/* k is the starting byte offset into the conceptual header||data where
580	 * we start processing. */
581	k = 0;
582	/* mac_end_offset is the index just past the end of the data to be
583	 * MACed. */
584	mac_end_offset = data_plus_mac_size + header_length - md_size;
585	/* c is the index of the 0x80 byte in the final hash block that
586	 * contains application data. */
587	c = mac_end_offset % md_block_size;
588	/* index_a is the hash block number that contains the 0x80 terminating
589	 * value. */
590	index_a = mac_end_offset / md_block_size;
591	/* index_b is the hash block number that contains the 64-bit hash
592	 * length, in bits. */
593	index_b = (mac_end_offset + md_length_size) / md_block_size;
594	/* bits is the hash-length in bits. It includes the additional hash
595	 * block for the masked HMAC key, or whole of |header| in the case of
596	 * SSLv3. */
597
598	/* For SSLv3, if we're going to have any starting blocks then we need
599	 * at least two because the header is larger than a single block. */
600	if (num_blocks > variance_blocks + (is_sslv3 ? 1 : 0))
601		{
602		num_starting_blocks = num_blocks - variance_blocks;
603		k = md_block_size*num_starting_blocks;
604		}
605
606	bits = 8*mac_end_offset;
607	if (!is_sslv3)
608		{
609		/* Compute the initial HMAC block. For SSLv3, the padding and
610		 * secret bytes are included in |header| because they take more
611		 * than a single block. */
612		bits += 8*md_block_size;
613		memset(hmac_pad, 0, md_block_size);
614		OPENSSL_assert(mac_secret_length <= sizeof(hmac_pad));
615		memcpy(hmac_pad, mac_secret, mac_secret_length);
616		for (i = 0; i < md_block_size; i++)
617			hmac_pad[i] ^= 0x36;
618
619		md_transform(md_state.c, hmac_pad);
620		}
621
622	if (length_is_big_endian)
623		{
624		memset(length_bytes,0,md_length_size-4);
625		length_bytes[md_length_size-4] = (unsigned char)(bits>>24);
626		length_bytes[md_length_size-3] = (unsigned char)(bits>>16);
627		length_bytes[md_length_size-2] = (unsigned char)(bits>>8);
628		length_bytes[md_length_size-1] = (unsigned char)bits;
629		}
630	else
631		{
632		memset(length_bytes,0,md_length_size);
633		length_bytes[md_length_size-5] = (unsigned char)(bits>>24);
634		length_bytes[md_length_size-6] = (unsigned char)(bits>>16);
635		length_bytes[md_length_size-7] = (unsigned char)(bits>>8);
636		length_bytes[md_length_size-8] = (unsigned char)bits;
637		}
638
639	if (k > 0)
640		{
641		if (is_sslv3)
642			{
643			/* The SSLv3 header is larger than a single block.
644			 * overhang is the number of bytes beyond a single
645			 * block that the header consumes: either 7 bytes
646			 * (SHA1) or 11 bytes (MD5). */
647			unsigned overhang = header_length-md_block_size;
648			md_transform(md_state.c, header);
649			memcpy(first_block, header + md_block_size, overhang);
650			memcpy(first_block + overhang, data, md_block_size-overhang);
651			md_transform(md_state.c, first_block);
652			for (i = 1; i < k/md_block_size - 1; i++)
653				md_transform(md_state.c, data + md_block_size*i - overhang);
654			}
655		else
656			{
657			/* k is a multiple of md_block_size. */
658			memcpy(first_block, header, 13);
659			memcpy(first_block+13, data, md_block_size-13);
660			md_transform(md_state.c, first_block);
661			for (i = 1; i < k/md_block_size; i++)
662				md_transform(md_state.c, data + md_block_size*i - 13);
663			}
664		}
665
666	memset(mac_out, 0, sizeof(mac_out));
667
668	/* We now process the final hash blocks. For each block, we construct
669	 * it in constant time. If the |i==index_a| then we'll include the 0x80
670	 * bytes and zero pad etc. For each block we selectively copy it, in
671	 * constant time, to |mac_out|. */
672	for (i = num_starting_blocks; i <= num_starting_blocks+variance_blocks; i++)
673		{
674		unsigned char block[MAX_HASH_BLOCK_SIZE];
675		unsigned char is_block_a = constant_time_eq_8(i, index_a);
676		unsigned char is_block_b = constant_time_eq_8(i, index_b);
677		for (j = 0; j < md_block_size; j++)
678			{
679			unsigned char b = 0, is_past_c, is_past_cp1;
680			if (k < header_length)
681				b = header[k];
682			else if (k < data_plus_mac_plus_padding_size + header_length)
683				b = data[k-header_length];
684			k++;
685
686			is_past_c = is_block_a & constant_time_ge(j, c);
687			is_past_cp1 = is_block_a & constant_time_ge(j, c+1);
688			/* If this is the block containing the end of the
689			 * application data, and we are at the offset for the
690			 * 0x80 value, then overwrite b with 0x80. */
691			b = (b&~is_past_c) | (0x80&is_past_c);
692			/* If this the the block containing the end of the
693			 * application data and we're past the 0x80 value then
694			 * just write zero. */
695			b = b&~is_past_cp1;
696			/* If this is index_b (the final block), but not
697			 * index_a (the end of the data), then the 64-bit
698			 * length didn't fit into index_a and we're having to
699			 * add an extra block of zeros. */
700			b &= ~is_block_b | is_block_a;
701
702			/* The final bytes of one of the blocks contains the
703			 * length. */
704			if (j >= md_block_size - md_length_size)
705				{
706				/* If this is index_b, write a length byte. */
707				b = (b&~is_block_b) | (is_block_b&length_bytes[j-(md_block_size-md_length_size)]);
708				}
709			block[j] = b;
710			}
711
712		md_transform(md_state.c, block);
713		md_final_raw(md_state.c, block);
714		/* If this is index_b, copy the hash value to |mac_out|. */
715		for (j = 0; j < md_size; j++)
716			mac_out[j] |= block[j]&is_block_b;
717		}
718
719	EVP_MD_CTX_init(&md_ctx);
720	EVP_DigestInit_ex(&md_ctx, ctx->digest, NULL /* engine */);
721	if (is_sslv3)
722		{
723		/* We repurpose |hmac_pad| to contain the SSLv3 pad2 block. */
724		memset(hmac_pad, 0x5c, sslv3_pad_length);
725
726		EVP_DigestUpdate(&md_ctx, mac_secret, mac_secret_length);
727		EVP_DigestUpdate(&md_ctx, hmac_pad, sslv3_pad_length);
728		EVP_DigestUpdate(&md_ctx, mac_out, md_size);
729		}
730	else
731		{
732		/* Complete the HMAC in the standard manner. */
733		for (i = 0; i < md_block_size; i++)
734			hmac_pad[i] ^= 0x6a;
735
736		EVP_DigestUpdate(&md_ctx, hmac_pad, md_block_size);
737		EVP_DigestUpdate(&md_ctx, mac_out, md_size);
738		}
739	EVP_DigestFinal(&md_ctx, md_out, &md_out_size_u);
740	if (md_out_size)
741		*md_out_size = md_out_size_u;
742	EVP_MD_CTX_cleanup(&md_ctx);
743	}
744
745#ifdef OPENSSL_FIPS
746
747/* Due to the need to use EVP in FIPS mode we can't reimplement digests but
748 * we can ensure the number of blocks processed is equal for all cases
749 * by digesting additional data.
750 */
751
752void tls_fips_digest_extra(
753	const EVP_CIPHER_CTX *cipher_ctx, EVP_MD_CTX *mac_ctx,
754	const unsigned char *data, size_t data_len, size_t orig_len)
755	{
756	size_t block_size, digest_pad, blocks_data, blocks_orig;
757	if (EVP_CIPHER_CTX_mode(cipher_ctx) != EVP_CIPH_CBC_MODE)
758		return;
759	block_size = EVP_MD_CTX_block_size(mac_ctx);
760	/* We are in FIPS mode if we get this far so we know we have only SHA*
761	 * digests and TLS to deal with.
762	 * Minimum digest padding length is 17 for SHA384/SHA512 and 9
763	 * otherwise.
764	 * Additional header is 13 bytes. To get the number of digest blocks
765	 * processed round up the amount of data plus padding to the nearest
766	 * block length. Block length is 128 for SHA384/SHA512 and 64 otherwise.
767	 * So we have:
768	 * blocks = (payload_len + digest_pad + 13 + block_size - 1)/block_size
769	 * equivalently:
770	 * blocks = (payload_len + digest_pad + 12)/block_size + 1
771	 * HMAC adds a constant overhead.
772	 * We're ultimately only interested in differences so this becomes
773	 * blocks = (payload_len + 29)/128
774	 * for SHA384/SHA512 and
775	 * blocks = (payload_len + 21)/64
776	 * otherwise.
777	 */
778	digest_pad = block_size == 64 ? 21 : 29;
779	blocks_orig = (orig_len + digest_pad)/block_size;
780	blocks_data = (data_len + digest_pad)/block_size;
781	/* MAC enough blocks to make up the difference between the original
782	 * and actual lengths plus one extra block to ensure this is never a
783	 * no op. The "data" pointer should always have enough space to
784	 * perform this operation as it is large enough for a maximum
785	 * length TLS buffer.
786	 */
787	EVP_DigestSignUpdate(mac_ctx, data,
788				(blocks_orig - blocks_data + 1) * block_size);
789	}
790#endif
791