1/*
2 * Copyright (c) 2003-2012 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28/*
29 * @OSF_COPYRIGHT@
30 */
31/*
32 * Mach Operating System
33 * Copyright (c) 1991,1990,1989, 1988 Carnegie Mellon University
34 * All Rights Reserved.
35 *
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
41 *
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
45 *
46 * Carnegie Mellon requests users of this software to return to
47 *
48 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
49 *  School of Computer Science
50 *  Carnegie Mellon University
51 *  Pittsburgh PA 15213-3890
52 *
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
55 */
56
57#include <platforms.h>
58
59#include <mach/i386/vm_param.h>
60
61#include <string.h>
62#include <mach/vm_param.h>
63#include <mach/vm_prot.h>
64#include <mach/machine.h>
65#include <mach/time_value.h>
66#include <kern/spl.h>
67#include <kern/assert.h>
68#include <kern/debug.h>
69#include <kern/misc_protos.h>
70#include <kern/cpu_data.h>
71#include <kern/processor.h>
72#include <vm/vm_page.h>
73#include <vm/pmap.h>
74#include <vm/vm_kern.h>
75#include <i386/pmap.h>
76#include <i386/misc_protos.h>
77#include <i386/cpuid.h>
78#include <mach/thread_status.h>
79#include <pexpert/i386/efi.h>
80#include <i386/i386_lowmem.h>
81#include <x86_64/lowglobals.h>
82#include <i386/pal_routines.h>
83
84#include <mach-o/loader.h>
85#include <libkern/kernel_mach_header.h>
86
87
88vm_size_t	mem_size = 0;
89pmap_paddr_t	first_avail = 0;/* first after page tables */
90
91uint64_t	max_mem;        /* Size of physical memory (bytes), adjusted by maxmem */
92uint64_t        mem_actual;
93uint64_t	sane_size = 0;  /* Memory size for defaults calculations */
94
95/*
96 * KASLR parameters
97 */
98ppnum_t		vm_kernel_base_page;
99vm_offset_t	vm_kernel_base;
100vm_offset_t	vm_kernel_top;
101vm_offset_t	vm_kernel_stext;
102vm_offset_t	vm_kernel_etext;
103vm_offset_t	vm_kernel_slide;
104vm_offset_t	vm_kext_base = VM_MIN_KERNEL_AND_KEXT_ADDRESS;
105vm_offset_t	vm_kext_top = VM_MIN_KERNEL_ADDRESS;
106
107#define MAXLORESERVE	(32 * 1024 * 1024)
108
109ppnum_t		max_ppnum = 0;
110ppnum_t		lowest_lo = 0;
111ppnum_t		lowest_hi = 0;
112ppnum_t		highest_hi = 0;
113
114enum {PMAP_MAX_RESERVED_RANGES = 32};
115uint32_t pmap_reserved_pages_allocated = 0;
116uint32_t pmap_reserved_range_indices[PMAP_MAX_RESERVED_RANGES];
117uint32_t pmap_last_reserved_range_index = 0;
118uint32_t pmap_reserved_ranges = 0;
119
120extern unsigned int bsd_mbuf_cluster_reserve(boolean_t *);
121
122pmap_paddr_t     avail_start, avail_end;
123vm_offset_t	virtual_avail, virtual_end;
124static pmap_paddr_t	avail_remaining;
125vm_offset_t     static_memory_end = 0;
126
127vm_offset_t	sHIB, eHIB, stext, etext, sdata, edata, sconstdata, econstdata, end;
128
129/*
130 * _mh_execute_header is the mach_header for the currently executing kernel
131 */
132vm_offset_t segTEXTB; unsigned long segSizeTEXT;
133vm_offset_t segDATAB; unsigned long segSizeDATA;
134vm_offset_t segLINKB; unsigned long segSizeLINK;
135vm_offset_t segPRELINKB; unsigned long segSizePRELINK;
136vm_offset_t segHIBB; unsigned long segSizeHIB;
137vm_offset_t sectCONSTB; unsigned long sectSizeConst;
138
139boolean_t doconstro_override = FALSE;
140
141static kernel_segment_command_t *segTEXT, *segDATA;
142static kernel_section_t *cursectTEXT, *lastsectTEXT;
143static kernel_section_t *sectDCONST;
144
145extern uint64_t firmware_Conventional_bytes;
146extern uint64_t firmware_RuntimeServices_bytes;
147extern uint64_t firmware_ACPIReclaim_bytes;
148extern uint64_t firmware_ACPINVS_bytes;
149extern uint64_t firmware_PalCode_bytes;
150extern uint64_t firmware_Reserved_bytes;
151extern uint64_t firmware_Unusable_bytes;
152extern uint64_t firmware_other_bytes;
153uint64_t firmware_MMIO_bytes;
154
155/*
156 * Linker magic to establish the highest address in the kernel.
157 */
158extern void 	*last_kernel_symbol;
159
160#if	DEBUG
161#define	PRINT_PMAP_MEMORY_TABLE
162#define DBG(x...)       kprintf(x)
163#else
164#define DBG(x...)
165#endif /* DEBUG */
166/*
167 * Basic VM initialization.
168 */
169void
170i386_vm_init(uint64_t	maxmem,
171	     boolean_t	IA32e,
172	     boot_args	*args)
173{
174	pmap_memory_region_t *pmptr;
175        pmap_memory_region_t *prev_pmptr;
176	EfiMemoryRange *mptr;
177        unsigned int mcount;
178        unsigned int msize;
179	ppnum_t fap;
180	unsigned int i;
181	ppnum_t maxpg = 0;
182        uint32_t pmap_type;
183	uint32_t maxloreserve;
184	uint32_t maxdmaaddr;
185	uint32_t  mbuf_reserve = 0;
186	boolean_t mbuf_override = FALSE;
187	boolean_t coalescing_permitted;
188	vm_kernel_base_page = i386_btop(args->kaddr);
189	vm_offset_t base_address;
190	vm_offset_t static_base_address;
191
192	/*
193	 * Establish the KASLR parameters.
194	 */
195	static_base_address = ml_static_ptovirt(KERNEL_BASE_OFFSET);
196	base_address        = ml_static_ptovirt(args->kaddr);
197	vm_kernel_slide     = base_address - static_base_address;
198	if (args->kslide) {
199		kprintf("KASLR slide: 0x%016lx dynamic\n", vm_kernel_slide);
200		if (vm_kernel_slide != ((vm_offset_t)args->kslide))
201			panic("Kernel base inconsistent with slide - rebased?");
202	} else {
203		/* No slide relative to on-disk symbols */
204		kprintf("KASLR slide: 0x%016lx static and ignored\n",
205			vm_kernel_slide);
206		vm_kernel_slide = 0;
207	}
208
209	/*
210	 * Zero out local relocations to avoid confusing kxld.
211	 * TODO: might be better to move this code to OSKext::initialize
212	 */
213	if (_mh_execute_header.flags & MH_PIE) {
214		struct load_command *loadcmd;
215		uint32_t cmd;
216
217		loadcmd = (struct load_command *)((uintptr_t)&_mh_execute_header +
218						  sizeof (_mh_execute_header));
219
220		for (cmd = 0; cmd < _mh_execute_header.ncmds; cmd++) {
221			if (loadcmd->cmd == LC_DYSYMTAB) {
222				struct dysymtab_command *dysymtab;
223
224				dysymtab = (struct dysymtab_command *)loadcmd;
225				dysymtab->nlocrel = 0;
226				dysymtab->locreloff = 0;
227				kprintf("Hiding local relocations\n");
228				break;
229			}
230			loadcmd = (struct load_command *)((uintptr_t)loadcmd + loadcmd->cmdsize);
231		}
232	}
233
234	/*
235	 * Now retrieve addresses for end, edata, and etext
236	 * from MACH-O headers.
237	 */
238	segTEXTB = (vm_offset_t) getsegdatafromheader(&_mh_execute_header,
239					"__TEXT", &segSizeTEXT);
240	segDATAB = (vm_offset_t) getsegdatafromheader(&_mh_execute_header,
241					"__DATA", &segSizeDATA);
242	segLINKB = (vm_offset_t) getsegdatafromheader(&_mh_execute_header,
243					"__LINKEDIT", &segSizeLINK);
244	segHIBB  = (vm_offset_t) getsegdatafromheader(&_mh_execute_header,
245					"__HIB", &segSizeHIB);
246	segPRELINKB = (vm_offset_t) getsegdatafromheader(&_mh_execute_header,
247					"__PRELINK_TEXT", &segSizePRELINK);
248	segTEXT = getsegbynamefromheader(&_mh_execute_header,
249					"__TEXT");
250	segDATA = getsegbynamefromheader(&_mh_execute_header,
251					"__DATA");
252	sectDCONST = getsectbynamefromheader(&_mh_execute_header,
253					"__DATA", "__const");
254	cursectTEXT = lastsectTEXT = firstsect(segTEXT);
255	/* Discover the last TEXT section within the TEXT segment */
256	while ((cursectTEXT = nextsect(segTEXT, cursectTEXT)) != NULL) {
257		lastsectTEXT = cursectTEXT;
258	}
259
260	sHIB  = segHIBB;
261	eHIB  = segHIBB + segSizeHIB;
262	/* Zero-padded from ehib to stext if text is 2M-aligned */
263	stext = segTEXTB;
264	lowGlo.lgStext = stext;
265	etext = (vm_offset_t) round_page_64(lastsectTEXT->addr + lastsectTEXT->size);
266	/* Zero-padded from etext to sdata if text is 2M-aligned */
267	sdata = segDATAB;
268	edata = segDATAB + segSizeDATA;
269
270	sectCONSTB = (vm_offset_t) sectDCONST->addr;
271	sectSizeConst = sectDCONST->size;
272	sconstdata = sectCONSTB;
273	econstdata = sectCONSTB + sectSizeConst;
274
275	if (sectSizeConst & PAGE_MASK) {
276		kernel_section_t *ns = nextsect(segDATA, sectDCONST);
277		if (ns && !(ns->addr & PAGE_MASK))
278			doconstro_override = TRUE;
279	} else
280		doconstro_override = TRUE;
281
282	DBG("segTEXTB    = %p\n", (void *) segTEXTB);
283	DBG("segDATAB    = %p\n", (void *) segDATAB);
284	DBG("segLINKB    = %p\n", (void *) segLINKB);
285	DBG("segHIBB     = %p\n", (void *) segHIBB);
286	DBG("segPRELINKB = %p\n", (void *) segPRELINKB);
287	DBG("sHIB        = %p\n", (void *) sHIB);
288	DBG("eHIB        = %p\n", (void *) eHIB);
289	DBG("stext       = %p\n", (void *) stext);
290	DBG("etext       = %p\n", (void *) etext);
291	DBG("sdata       = %p\n", (void *) sdata);
292	DBG("edata       = %p\n", (void *) edata);
293	DBG("sconstdata  = %p\n", (void *) sconstdata);
294	DBG("econstdata  = %p\n", (void *) econstdata);
295	DBG("kernel_top  = %p\n", (void *) &last_kernel_symbol);
296
297	vm_kernel_base  = sHIB;
298	vm_kernel_top   = (vm_offset_t) &last_kernel_symbol;
299	vm_kernel_stext = stext;
300	vm_kernel_etext = etext;
301
302	vm_set_page_size();
303
304	/*
305	 * Compute the memory size.
306	 */
307
308	avail_remaining = 0;
309	avail_end = 0;
310	pmptr = pmap_memory_regions;
311        prev_pmptr = 0;
312	pmap_memory_region_count = pmap_memory_region_current = 0;
313	fap = (ppnum_t) i386_btop(first_avail);
314
315	mptr = (EfiMemoryRange *)ml_static_ptovirt((vm_offset_t)args->MemoryMap);
316        if (args->MemoryMapDescriptorSize == 0)
317	        panic("Invalid memory map descriptor size");
318        msize = args->MemoryMapDescriptorSize;
319        mcount = args->MemoryMapSize / msize;
320
321#define FOURGIG 0x0000000100000000ULL
322#define ONEGIG  0x0000000040000000ULL
323
324	for (i = 0; i < mcount; i++, mptr = (EfiMemoryRange *)(((vm_offset_t)mptr) + msize)) {
325	        ppnum_t base, top;
326		uint64_t region_bytes = 0;
327
328		if (pmap_memory_region_count >= PMAP_MEMORY_REGIONS_SIZE) {
329		        kprintf("WARNING: truncating memory region count at %d\n", pmap_memory_region_count);
330			break;
331		}
332		base = (ppnum_t) (mptr->PhysicalStart >> I386_PGSHIFT);
333		top = (ppnum_t) (((mptr->PhysicalStart) >> I386_PGSHIFT) + mptr->NumberOfPages - 1);
334
335		if (base == 0) {
336			/*
337			 * Avoid having to deal with the edge case of the
338			 * very first possible physical page and the roll-over
339			 * to -1; just ignore that page.
340			 */
341			kprintf("WARNING: ignoring first page in [0x%llx:0x%llx]\n", (uint64_t) base, (uint64_t) top);
342			base++;
343		}
344		if (top + 1 == 0) {
345			/*
346			 * Avoid having to deal with the edge case of the
347			 * very last possible physical page and the roll-over
348			 * to 0; just ignore that page.
349			 */
350			kprintf("WARNING: ignoring last page in [0x%llx:0x%llx]\n", (uint64_t) base, (uint64_t) top);
351			top--;
352		}
353		if (top < base) {
354			/*
355			 * That was the only page in that region, so
356			 * ignore the whole region.
357			 */
358			continue;
359		}
360
361#if	MR_RSV_TEST
362		static uint32_t nmr = 0;
363		if ((base > 0x20000) && (nmr++ < 4))
364			mptr->Attribute |= EFI_MEMORY_KERN_RESERVED;
365#endif
366		region_bytes = (uint64_t)(mptr->NumberOfPages << I386_PGSHIFT);
367		pmap_type = mptr->Type;
368
369		switch (mptr->Type) {
370		case kEfiLoaderCode:
371		case kEfiLoaderData:
372		case kEfiBootServicesCode:
373		case kEfiBootServicesData:
374		case kEfiConventionalMemory:
375		        /*
376			 * Consolidate usable memory types into one.
377			 */
378		        pmap_type = kEfiConventionalMemory;
379		        sane_size += region_bytes;
380			firmware_Conventional_bytes += region_bytes;
381			break;
382			/*
383			 * sane_size should reflect the total amount of physical
384			 * RAM in the system, not just the amount that is
385			 * available for the OS to use.
386			 * FIXME:Consider deriving this value from SMBIOS tables
387			 * rather than reverse engineering the memory map.
388			 * Alternatively, see
389			 * <rdar://problem/4642773> Memory map should
390			 * describe all memory
391			 * Firmware on some systems guarantees that the memory
392			 * map is complete via the "RomReservedMemoryTracked"
393			 * feature field--consult that where possible to
394			 * avoid the "round up to 128M" workaround below.
395			 */
396
397		case kEfiRuntimeServicesCode:
398		case kEfiRuntimeServicesData:
399			firmware_RuntimeServices_bytes += region_bytes;
400			sane_size += region_bytes;
401			break;
402		case kEfiACPIReclaimMemory:
403			firmware_ACPIReclaim_bytes += region_bytes;
404			sane_size += region_bytes;
405			break;
406		case kEfiACPIMemoryNVS:
407			firmware_ACPINVS_bytes += region_bytes;
408			sane_size += region_bytes;
409			break;
410		case kEfiPalCode:
411			firmware_PalCode_bytes += region_bytes;
412		        sane_size += region_bytes;
413			break;
414
415		case kEfiReservedMemoryType:
416			firmware_Reserved_bytes += region_bytes;
417			break;
418		case kEfiUnusableMemory:
419			firmware_Unusable_bytes += region_bytes;
420			break;
421		case kEfiMemoryMappedIO:
422		case kEfiMemoryMappedIOPortSpace:
423			firmware_MMIO_bytes += region_bytes;
424			break;
425		default:
426			firmware_other_bytes += region_bytes;
427			break;
428		}
429
430		DBG("EFI region %d: type %u/%d, base 0x%x, top 0x%x %s\n",
431		    i, mptr->Type, pmap_type, base, top,
432		    (mptr->Attribute&EFI_MEMORY_KERN_RESERVED)? "RESERVED" :
433		    (mptr->Attribute&EFI_MEMORY_RUNTIME)? "RUNTIME" : "");
434
435		if (maxpg) {
436		        if (base >= maxpg)
437				break;
438		        top = (top > maxpg) ? maxpg : top;
439		}
440
441		/*
442		 * handle each region
443		 */
444		if ((mptr->Attribute & EFI_MEMORY_RUNTIME) == EFI_MEMORY_RUNTIME ||
445		    pmap_type != kEfiConventionalMemory) {
446		        prev_pmptr = 0;
447			continue;
448		} else {
449		        /*
450			 * Usable memory region
451			 */
452		        if (top < I386_LOWMEM_RESERVED ||
453			    !pal_is_usable_memory(base, top)) {
454			        prev_pmptr = 0;
455				continue;
456			}
457			/*
458			 * A range may be marked with with the
459			 * EFI_MEMORY_KERN_RESERVED attribute
460			 * on some systems, to indicate that the range
461			 * must not be made available to devices.
462			 */
463
464			if (mptr->Attribute & EFI_MEMORY_KERN_RESERVED) {
465				if (++pmap_reserved_ranges > PMAP_MAX_RESERVED_RANGES) {
466					panic("Too many reserved ranges %u\n", pmap_reserved_ranges);
467				}
468			}
469
470			if (top < fap) {
471			        /*
472				 * entire range below first_avail
473			         * salvage some low memory pages
474				 * we use some very low memory at startup
475				 * mark as already allocated here
476				 */
477			        if (base >= I386_LOWMEM_RESERVED)
478				        pmptr->base = base;
479				else
480				        pmptr->base = I386_LOWMEM_RESERVED;
481
482				pmptr->end = top;
483
484
485				if ((mptr->Attribute & EFI_MEMORY_KERN_RESERVED) &&
486				    (top < vm_kernel_base_page)) {
487					pmptr->alloc_up = pmptr->base;
488					pmptr->alloc_down = pmptr->end;
489					pmap_reserved_range_indices[pmap_last_reserved_range_index++] = pmap_memory_region_count;
490				}
491				else {
492					/*
493					 * mark as already mapped
494					 */
495					pmptr->alloc_up = top + 1;
496					pmptr->alloc_down = top;
497				}
498				pmptr->type = pmap_type;
499				pmptr->attribute = mptr->Attribute;
500			}
501			else if ( (base < fap) && (top > fap) ) {
502			        /*
503				 * spans first_avail
504				 * put mem below first avail in table but
505				 * mark already allocated
506				 */
507			        pmptr->base = base;
508				pmptr->end = (fap - 1);
509				pmptr->alloc_up = pmptr->end + 1;
510				pmptr->alloc_down = pmptr->end;
511				pmptr->type = pmap_type;
512				pmptr->attribute = mptr->Attribute;
513				/*
514				 * we bump these here inline so the accounting
515				 * below works correctly
516				 */
517				pmptr++;
518				pmap_memory_region_count++;
519
520				pmptr->alloc_up = pmptr->base = fap;
521				pmptr->type = pmap_type;
522				pmptr->attribute = mptr->Attribute;
523				pmptr->alloc_down = pmptr->end = top;
524
525				if (mptr->Attribute & EFI_MEMORY_KERN_RESERVED)
526					pmap_reserved_range_indices[pmap_last_reserved_range_index++] = pmap_memory_region_count;
527			} else {
528			        /*
529				 * entire range useable
530				 */
531			        pmptr->alloc_up = pmptr->base = base;
532				pmptr->type = pmap_type;
533				pmptr->attribute = mptr->Attribute;
534				pmptr->alloc_down = pmptr->end = top;
535				if (mptr->Attribute & EFI_MEMORY_KERN_RESERVED)
536					pmap_reserved_range_indices[pmap_last_reserved_range_index++] = pmap_memory_region_count;
537			}
538
539			if (i386_ptob(pmptr->end) > avail_end )
540			        avail_end = i386_ptob(pmptr->end);
541
542			avail_remaining += (pmptr->end - pmptr->base);
543			coalescing_permitted = (prev_pmptr && (pmptr->attribute == prev_pmptr->attribute) && ((pmptr->attribute & EFI_MEMORY_KERN_RESERVED) == 0));
544			/*
545			 * Consolidate contiguous memory regions, if possible
546			 */
547			if (prev_pmptr &&
548			    (pmptr->type == prev_pmptr->type) &&
549			    (coalescing_permitted) &&
550			    (pmptr->base == pmptr->alloc_up) &&
551			    (prev_pmptr->end == prev_pmptr->alloc_down) &&
552			    (pmptr->base == (prev_pmptr->end + 1)))
553			{
554				prev_pmptr->end = pmptr->end;
555				prev_pmptr->alloc_down = pmptr->alloc_down;
556			} else {
557			        pmap_memory_region_count++;
558				prev_pmptr = pmptr;
559				pmptr++;
560			}
561		}
562	}
563
564#ifdef PRINT_PMAP_MEMORY_TABLE
565	{
566        unsigned int j;
567        pmap_memory_region_t *p = pmap_memory_regions;
568        addr64_t region_start, region_end;
569        addr64_t efi_start, efi_end;
570        for (j=0;j<pmap_memory_region_count;j++, p++) {
571            kprintf("pmap region %d type %d base 0x%llx alloc_up 0x%llx alloc_down 0x%llx top 0x%llx\n",
572		    j, p->type,
573                    (addr64_t) p->base  << I386_PGSHIFT,
574		    (addr64_t) p->alloc_up << I386_PGSHIFT,
575		    (addr64_t) p->alloc_down << I386_PGSHIFT,
576		    (addr64_t) p->end   << I386_PGSHIFT);
577            region_start = (addr64_t) p->base << I386_PGSHIFT;
578            region_end = ((addr64_t) p->end << I386_PGSHIFT) - 1;
579	    mptr = (EfiMemoryRange *) ml_static_ptovirt((vm_offset_t)args->MemoryMap);
580            for (i=0; i<mcount; i++, mptr = (EfiMemoryRange *)(((vm_offset_t)mptr) + msize)) {
581                if (mptr->Type != kEfiLoaderCode &&
582                    mptr->Type != kEfiLoaderData &&
583                    mptr->Type != kEfiBootServicesCode &&
584                    mptr->Type != kEfiBootServicesData &&
585                    mptr->Type != kEfiConventionalMemory) {
586                efi_start = (addr64_t)mptr->PhysicalStart;
587                efi_end = efi_start + ((vm_offset_t)mptr->NumberOfPages << I386_PGSHIFT) - 1;
588                if ((efi_start >= region_start && efi_start <= region_end) ||
589                    (efi_end >= region_start && efi_end <= region_end)) {
590                    kprintf(" *** Overlapping region with EFI runtime region %d\n", i);
591                }
592              }
593            }
594          }
595	}
596#endif
597
598	avail_start = first_avail;
599	mem_actual = sane_size;
600
601	/*
602	 * For user visible memory size, round up to 128 Mb - accounting for the various stolen memory
603	 * not reported by EFI.
604	 */
605
606	sane_size = (sane_size + 128 * MB - 1) & ~((uint64_t)(128 * MB - 1));
607
608	/*
609	 * We cap at KERNEL_MAXMEM bytes (currently 32GB for K32, 96GB for K64).
610	 * Unless overriden by the maxmem= boot-arg
611	 * -- which is a non-zero maxmem argument to this function.
612	 */
613	if (maxmem == 0 && sane_size > KERNEL_MAXMEM) {
614		maxmem = KERNEL_MAXMEM;
615		printf("Physical memory %lld bytes capped at %dGB\n",
616			sane_size, (uint32_t) (KERNEL_MAXMEM/GB));
617	}
618
619	/*
620	 * if user set maxmem, reduce memory sizes
621	 */
622	if ( (maxmem > (uint64_t)first_avail) && (maxmem < sane_size)) {
623		ppnum_t discarded_pages  = (ppnum_t)((sane_size - maxmem) >> I386_PGSHIFT);
624		ppnum_t	highest_pn = 0;
625		ppnum_t	cur_end  = 0;
626		uint64_t	pages_to_use;
627		unsigned	cur_region = 0;
628
629		sane_size = maxmem;
630
631		if (avail_remaining > discarded_pages)
632			avail_remaining -= discarded_pages;
633		else
634			avail_remaining = 0;
635
636		pages_to_use = avail_remaining;
637
638		while (cur_region < pmap_memory_region_count && pages_to_use) {
639		        for (cur_end = pmap_memory_regions[cur_region].base;
640			     cur_end < pmap_memory_regions[cur_region].end && pages_to_use;
641			     cur_end++) {
642			        if (cur_end > highest_pn)
643				        highest_pn = cur_end;
644				pages_to_use--;
645			}
646			if (pages_to_use == 0) {
647			        pmap_memory_regions[cur_region].end = cur_end;
648			        pmap_memory_regions[cur_region].alloc_down = cur_end;
649			}
650
651			cur_region++;
652		}
653		pmap_memory_region_count = cur_region;
654
655		avail_end = i386_ptob(highest_pn + 1);
656	}
657
658	/*
659	 * mem_size is only a 32 bit container... follow the PPC route
660	 * and pin it to a 2 Gbyte maximum
661	 */
662	if (sane_size > (FOURGIG >> 1))
663	        mem_size = (vm_size_t)(FOURGIG >> 1);
664	else
665	        mem_size = (vm_size_t)sane_size;
666	max_mem = sane_size;
667
668	kprintf("Physical memory %llu MB\n", sane_size/MB);
669
670	max_valid_low_ppnum = (2 * GB) / PAGE_SIZE;
671
672	if (!PE_parse_boot_argn("max_valid_dma_addr", &maxdmaaddr, sizeof (maxdmaaddr))) {
673	        max_valid_dma_address = (uint64_t)4 * (uint64_t)GB;
674	} else {
675	        max_valid_dma_address = ((uint64_t) maxdmaaddr) * MB;
676
677		if ((max_valid_dma_address / PAGE_SIZE) < max_valid_low_ppnum)
678			max_valid_low_ppnum = (ppnum_t)(max_valid_dma_address / PAGE_SIZE);
679	}
680	if (avail_end >= max_valid_dma_address) {
681
682		if (!PE_parse_boot_argn("maxloreserve", &maxloreserve, sizeof (maxloreserve))) {
683
684			if (sane_size >= (ONEGIG * 15))
685				maxloreserve = (MAXLORESERVE / PAGE_SIZE) * 4;
686			else if (sane_size >= (ONEGIG * 7))
687				maxloreserve = (MAXLORESERVE / PAGE_SIZE) * 2;
688			else
689				maxloreserve = MAXLORESERVE / PAGE_SIZE;
690
691#if SOCKETS
692			mbuf_reserve = bsd_mbuf_cluster_reserve(&mbuf_override) / PAGE_SIZE;
693#endif
694		} else
695			maxloreserve = (maxloreserve * (1024 * 1024)) / PAGE_SIZE;
696
697		if (maxloreserve) {
698		        vm_lopage_free_limit = maxloreserve;
699
700			if (mbuf_override == TRUE) {
701				vm_lopage_free_limit += mbuf_reserve;
702				vm_lopage_lowater = 0;
703			} else
704				vm_lopage_lowater = vm_lopage_free_limit / 16;
705
706			vm_lopage_refill = TRUE;
707			vm_lopage_needed = TRUE;
708		}
709	}
710
711	/*
712	 *	Initialize kernel physical map.
713	 *	Kernel virtual address starts at VM_KERNEL_MIN_ADDRESS.
714	 */
715	kprintf("avail_remaining = 0x%lx\n", (unsigned long)avail_remaining);
716	pmap_bootstrap(0, IA32e);
717}
718
719
720unsigned int
721pmap_free_pages(void)
722{
723	return (unsigned int)avail_remaining;
724}
725
726
727boolean_t pmap_next_page_reserved(ppnum_t *);
728
729/*
730 * Pick a page from a "kernel private" reserved range; works around
731 * errata on some hardware.
732 */
733boolean_t
734pmap_next_page_reserved(ppnum_t *pn) {
735	if (pmap_reserved_ranges) {
736		uint32_t n;
737		pmap_memory_region_t *region;
738		for (n = 0; n < pmap_last_reserved_range_index; n++) {
739			uint32_t reserved_index = pmap_reserved_range_indices[n];
740			region = &pmap_memory_regions[reserved_index];
741			if (region->alloc_up <= region->alloc_down) {
742				*pn = region->alloc_up++;
743				avail_remaining--;
744
745				if (*pn > max_ppnum)
746					max_ppnum = *pn;
747
748				if (lowest_lo == 0 || *pn < lowest_lo)
749					lowest_lo = *pn;
750
751				pmap_reserved_pages_allocated++;
752#if DEBUG
753				if (region->alloc_up > region->alloc_down) {
754					kprintf("Exhausted reserved range index: %u, base: 0x%x end: 0x%x, type: 0x%x, attribute: 0x%llx\n", reserved_index, region->base, region->end, region->type, region->attribute);
755				}
756#endif
757				return TRUE;
758			}
759		}
760	}
761	return FALSE;
762}
763
764
765boolean_t
766pmap_next_page_hi(
767	          ppnum_t *pn)
768{
769	pmap_memory_region_t *region;
770	int	n;
771
772	if (pmap_next_page_reserved(pn))
773		return TRUE;
774
775	if (avail_remaining) {
776		for (n = pmap_memory_region_count - 1; n >= 0; n--) {
777			region = &pmap_memory_regions[n];
778
779			if (region->alloc_down >= region->alloc_up) {
780				*pn = region->alloc_down--;
781				avail_remaining--;
782
783				if (*pn > max_ppnum)
784					max_ppnum = *pn;
785
786                                if (lowest_lo == 0 || *pn < lowest_lo)
787                                        lowest_lo = *pn;
788
789                                if (lowest_hi == 0 || *pn < lowest_hi)
790                                        lowest_hi = *pn;
791
792                                if (*pn > highest_hi)
793                                        highest_hi = *pn;
794
795				return TRUE;
796			}
797		}
798	}
799	return FALSE;
800}
801
802
803boolean_t
804pmap_next_page(
805	       ppnum_t *pn)
806{
807	if (avail_remaining) while (pmap_memory_region_current < pmap_memory_region_count) {
808		if (pmap_memory_regions[pmap_memory_region_current].alloc_up >
809		    pmap_memory_regions[pmap_memory_region_current].alloc_down) {
810			pmap_memory_region_current++;
811			continue;
812		}
813		*pn = pmap_memory_regions[pmap_memory_region_current].alloc_up++;
814		avail_remaining--;
815
816		if (*pn > max_ppnum)
817			max_ppnum = *pn;
818
819		if (lowest_lo == 0 || *pn < lowest_lo)
820			lowest_lo = *pn;
821
822		return TRUE;
823	}
824	return FALSE;
825}
826
827
828boolean_t
829pmap_valid_page(
830	ppnum_t pn)
831{
832        unsigned int i;
833	pmap_memory_region_t *pmptr = pmap_memory_regions;
834
835	for (i = 0; i < pmap_memory_region_count; i++, pmptr++) {
836	        if ( (pn >= pmptr->base) && (pn <= pmptr->end) )
837	                return TRUE;
838	}
839	return FALSE;
840}
841
842