1/*
2 * Copyright (c) 2008 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28/* trees.c -- output deflated data using Huffman coding
29 * Copyright (C) 1995-2005 Jean-loup Gailly
30 * For conditions of distribution and use, see copyright notice in zlib.h
31 */
32
33/*
34 *  ALGORITHM
35 *
36 *      The "deflation" process uses several Huffman trees. The more
37 *      common source values are represented by shorter bit sequences.
38 *
39 *      Each code tree is stored in a compressed form which is itself
40 * a Huffman encoding of the lengths of all the code strings (in
41 * ascending order by source values).  The actual code strings are
42 * reconstructed from the lengths in the inflate process, as described
43 * in the deflate specification.
44 *
45 *  REFERENCES
46 *
47 *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
48 *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
49 *
50 *      Storer, James A.
51 *          Data Compression:  Methods and Theory, pp. 49-50.
52 *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
53 *
54 *      Sedgewick, R.
55 *          Algorithms, p290.
56 *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
57 */
58
59/* @(#) $Id$ */
60
61/* #define GEN_TREES_H */
62
63#include "deflate.h"
64
65#ifdef DEBUG
66#  include <ctype.h>
67#endif
68
69/* ===========================================================================
70 * Constants
71 */
72
73#define MAX_BL_BITS 7
74/* Bit length codes must not exceed MAX_BL_BITS bits */
75
76#define END_BLOCK 256
77/* end of block literal code */
78
79#define REP_3_6      16
80/* repeat previous bit length 3-6 times (2 bits of repeat count) */
81
82#define REPZ_3_10    17
83/* repeat a zero length 3-10 times  (3 bits of repeat count) */
84
85#define REPZ_11_138  18
86/* repeat a zero length 11-138 times  (7 bits of repeat count) */
87
88local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
89   = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
90
91local const int extra_dbits[D_CODES] /* extra bits for each distance code */
92   = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
93
94local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
95   = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
96
97local const uch bl_order[BL_CODES]
98   = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
99/* The lengths of the bit length codes are sent in order of decreasing
100 * probability, to avoid transmitting the lengths for unused bit length codes.
101 */
102
103#define Buf_size (8 * 2*sizeof(char))
104/* Number of bits used within bi_buf. (bi_buf might be implemented on
105 * more than 16 bits on some systems.)
106 */
107
108/* ===========================================================================
109 * Local data. These are initialized only once.
110 */
111
112#define DIST_CODE_LEN  512 /* see definition of array dist_code below */
113
114#if defined(GEN_TREES_H) || !defined(STDC)
115/* non ANSI compilers may not accept trees.h */
116
117local ct_data static_ltree[L_CODES+2];
118/* The static literal tree. Since the bit lengths are imposed, there is no
119 * need for the L_CODES extra codes used during heap construction. However
120 * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
121 * below).
122 */
123
124local ct_data static_dtree[D_CODES];
125/* The static distance tree. (Actually a trivial tree since all codes use
126 * 5 bits.)
127 */
128
129uch _dist_code[DIST_CODE_LEN];
130/* Distance codes. The first 256 values correspond to the distances
131 * 3 .. 258, the last 256 values correspond to the top 8 bits of
132 * the 15 bit distances.
133 */
134
135uch _length_code[MAX_MATCH-MIN_MATCH+1];
136/* length code for each normalized match length (0 == MIN_MATCH) */
137
138local int base_length[LENGTH_CODES];
139/* First normalized length for each code (0 = MIN_MATCH) */
140
141local int base_dist[D_CODES];
142/* First normalized distance for each code (0 = distance of 1) */
143
144#else
145#  include "trees.h"
146#endif /* GEN_TREES_H */
147
148struct static_tree_desc_s {
149    const ct_data *static_tree;  /* static tree or NULL */
150    const intf *extra_bits;      /* extra bits for each code or NULL */
151    int     extra_base;          /* base index for extra_bits */
152    int     elems;               /* max number of elements in the tree */
153    int     max_length;          /* max bit length for the codes */
154};
155
156local static_tree_desc  static_l_desc =
157{static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
158
159local static_tree_desc  static_d_desc =
160{static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
161
162local static_tree_desc  static_bl_desc =
163{(const ct_data *)0, extra_blbits, 0,   BL_CODES, MAX_BL_BITS};
164
165/* ===========================================================================
166 * Local (static) routines in this file.
167 */
168
169local void tr_static_init OF((void));
170local void init_block     OF((deflate_state *s));
171local void pqdownheap     OF((deflate_state *s, ct_data *tree, int k));
172local void gen_bitlen     OF((deflate_state *s, tree_desc *desc));
173local void gen_codes      OF((ct_data *tree, int max_code, ushf *bl_count));
174local void build_tree     OF((deflate_state *s, tree_desc *desc));
175local void scan_tree      OF((deflate_state *s, ct_data *tree, int max_code));
176local void send_tree      OF((deflate_state *s, ct_data *tree, int max_code));
177local int  build_bl_tree  OF((deflate_state *s));
178local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
179                              int blcodes));
180local void compress_block OF((deflate_state *s, ct_data *ltree,
181                              ct_data *dtree));
182local void set_data_type  OF((deflate_state *s));
183local unsigned bi_reverse OF((unsigned value, int length));
184local void bi_windup      OF((deflate_state *s));
185local void bi_flush       OF((deflate_state *s));
186local void copy_block     OF((deflate_state *s, charf *buf, unsigned len,
187                              int header));
188
189#ifdef GEN_TREES_H
190local void gen_trees_header OF((void));
191#endif
192
193#ifndef DEBUG
194#  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
195   /* Send a code of the given tree. c and tree must not have side effects */
196
197#else /* DEBUG */
198#  define send_code(s, c, tree) \
199     { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
200       send_bits(s, tree[c].Code, tree[c].Len); }
201#endif
202
203/* ===========================================================================
204 * Output a short LSB first on the stream.
205 * IN assertion: there is enough room in pendingBuf.
206 */
207#define put_short(s, w) { \
208    put_byte(s, (uch)((w) & 0xff)); \
209    put_byte(s, (uch)((ush)(w) >> 8)); \
210}
211
212/* ===========================================================================
213 * Send a value on a given number of bits.
214 * IN assertion: length <= 16 and value fits in length bits.
215 */
216#ifdef DEBUG
217local void send_bits      OF((deflate_state *s, int value, int length));
218
219local void send_bits(s, value, length)
220    deflate_state *s;
221    int value;  /* value to send */
222    int length; /* number of bits */
223{
224    Tracevv((stderr," l %2d v %4x ", length, value));
225    Assert(length > 0 && length <= 15, "invalid length");
226    s->bits_sent += (ulg)length;
227
228    /* If not enough room in bi_buf, use (valid) bits from bi_buf and
229     * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
230     * unused bits in value.
231     */
232    if (s->bi_valid > (int)Buf_size - length) {
233        s->bi_buf |= (value << s->bi_valid);
234        put_short(s, s->bi_buf);
235        s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
236        s->bi_valid += length - Buf_size;
237    } else {
238        s->bi_buf |= value << s->bi_valid;
239        s->bi_valid += length;
240    }
241}
242#else /* !DEBUG */
243
244#define send_bits(s, value, length) \
245{ int len = length;\
246  if (s->bi_valid > (int)Buf_size - len) {\
247    int val = value;\
248    s->bi_buf |= (val << s->bi_valid);\
249    put_short(s, s->bi_buf);\
250    s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
251    s->bi_valid += len - Buf_size;\
252  } else {\
253    s->bi_buf |= (value) << s->bi_valid;\
254    s->bi_valid += len;\
255  }\
256}
257#endif /* DEBUG */
258
259
260/* the arguments must not have side effects */
261
262/* ===========================================================================
263 * Initialize the various 'constant' tables.
264 */
265local void tr_static_init()
266{
267#if defined(GEN_TREES_H) || !defined(STDC)
268    static int static_init_done = 0;
269    int n;        /* iterates over tree elements */
270    int bits;     /* bit counter */
271    int length;   /* length value */
272    int code;     /* code value */
273    int dist;     /* distance index */
274    ush bl_count[MAX_BITS+1];
275    /* number of codes at each bit length for an optimal tree */
276
277    if (static_init_done) return;
278
279    /* For some embedded targets, global variables are not initialized: */
280    static_l_desc.static_tree = static_ltree;
281    static_l_desc.extra_bits = extra_lbits;
282    static_d_desc.static_tree = static_dtree;
283    static_d_desc.extra_bits = extra_dbits;
284    static_bl_desc.extra_bits = extra_blbits;
285
286    /* Initialize the mapping length (0..255) -> length code (0..28) */
287    length = 0;
288    for (code = 0; code < LENGTH_CODES-1; code++) {
289        base_length[code] = length;
290        for (n = 0; n < (1<<extra_lbits[code]); n++) {
291            _length_code[length++] = (uch)code;
292        }
293    }
294    Assert (length == 256, "tr_static_init: length != 256");
295    /* Note that the length 255 (match length 258) can be represented
296     * in two different ways: code 284 + 5 bits or code 285, so we
297     * overwrite length_code[255] to use the best encoding:
298     */
299    _length_code[length-1] = (uch)code;
300
301    /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
302    dist = 0;
303    for (code = 0 ; code < 16; code++) {
304        base_dist[code] = dist;
305        for (n = 0; n < (1<<extra_dbits[code]); n++) {
306            _dist_code[dist++] = (uch)code;
307        }
308    }
309    Assert (dist == 256, "tr_static_init: dist != 256");
310    dist >>= 7; /* from now on, all distances are divided by 128 */
311    for ( ; code < D_CODES; code++) {
312        base_dist[code] = dist << 7;
313        for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
314            _dist_code[256 + dist++] = (uch)code;
315        }
316    }
317    Assert (dist == 256, "tr_static_init: 256+dist != 512");
318
319    /* Construct the codes of the static literal tree */
320    for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
321    n = 0;
322    while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
323    while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
324    while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
325    while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
326    /* Codes 286 and 287 do not exist, but we must include them in the
327     * tree construction to get a canonical Huffman tree (longest code
328     * all ones)
329     */
330    gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
331
332    /* The static distance tree is trivial: */
333    for (n = 0; n < D_CODES; n++) {
334        static_dtree[n].Len = 5;
335        static_dtree[n].Code = bi_reverse((unsigned)n, 5);
336    }
337    static_init_done = 1;
338
339#  ifdef GEN_TREES_H
340    gen_trees_header();
341#  endif
342#endif /* defined(GEN_TREES_H) || !defined(STDC) */
343}
344
345/* ===========================================================================
346 * Genererate the file trees.h describing the static trees.
347 */
348#ifdef GEN_TREES_H
349#  ifndef DEBUG
350#    include <stdio.h>
351#  endif
352
353#  define SEPARATOR(i, last, width) \
354      ((i) == (last)? "\n};\n\n" :    \
355       ((i) % (width) == (width)-1 ? ",\n" : ", "))
356
357void gen_trees_header()
358{
359    FILE *header = fopen("trees.h", "w");
360    int i;
361
362    Assert (header != NULL, "Can't open trees.h");
363    fprintf(header,
364            "/* header created automatically with -DGEN_TREES_H */\n\n");
365
366    fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
367    for (i = 0; i < L_CODES+2; i++) {
368        fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
369                static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
370    }
371
372    fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
373    for (i = 0; i < D_CODES; i++) {
374        fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
375                static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
376    }
377
378    fprintf(header, "const uch _dist_code[DIST_CODE_LEN] = {\n");
379    for (i = 0; i < DIST_CODE_LEN; i++) {
380        fprintf(header, "%2u%s", _dist_code[i],
381                SEPARATOR(i, DIST_CODE_LEN-1, 20));
382    }
383
384    fprintf(header, "const uch _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
385    for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
386        fprintf(header, "%2u%s", _length_code[i],
387                SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
388    }
389
390    fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
391    for (i = 0; i < LENGTH_CODES; i++) {
392        fprintf(header, "%1u%s", base_length[i],
393                SEPARATOR(i, LENGTH_CODES-1, 20));
394    }
395
396    fprintf(header, "local const int base_dist[D_CODES] = {\n");
397    for (i = 0; i < D_CODES; i++) {
398        fprintf(header, "%5u%s", base_dist[i],
399                SEPARATOR(i, D_CODES-1, 10));
400    }
401
402    fclose(header);
403}
404#endif /* GEN_TREES_H */
405
406/* ===========================================================================
407 * Initialize the tree data structures for a new zlib stream.
408 */
409void _tr_init(s)
410    deflate_state *s;
411{
412    tr_static_init();
413
414    s->l_desc.dyn_tree = s->dyn_ltree;
415    s->l_desc.stat_desc = &static_l_desc;
416
417    s->d_desc.dyn_tree = s->dyn_dtree;
418    s->d_desc.stat_desc = &static_d_desc;
419
420    s->bl_desc.dyn_tree = s->bl_tree;
421    s->bl_desc.stat_desc = &static_bl_desc;
422
423    s->bi_buf = 0;
424    s->bi_valid = 0;
425    s->last_eob_len = 8; /* enough lookahead for inflate */
426#ifdef DEBUG
427    s->compressed_len = 0L;
428    s->bits_sent = 0L;
429#endif
430
431    /* Initialize the first block of the first file: */
432    init_block(s);
433}
434
435/* ===========================================================================
436 * Initialize a new block.
437 */
438local void init_block(s)
439    deflate_state *s;
440{
441    int n; /* iterates over tree elements */
442
443    /* Initialize the trees. */
444    for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
445    for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
446    for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
447
448    s->dyn_ltree[END_BLOCK].Freq = 1;
449    s->opt_len = s->static_len = 0L;
450    s->last_lit = s->matches = 0;
451}
452
453#define SMALLEST 1
454/* Index within the heap array of least frequent node in the Huffman tree */
455
456
457/* ===========================================================================
458 * Remove the smallest element from the heap and recreate the heap with
459 * one less element. Updates heap and heap_len.
460 */
461#define pqremove(s, tree, top) \
462{\
463    top = s->heap[SMALLEST]; \
464    s->heap[SMALLEST] = s->heap[s->heap_len--]; \
465    pqdownheap(s, tree, SMALLEST); \
466}
467
468/* ===========================================================================
469 * Compares to subtrees, using the tree depth as tie breaker when
470 * the subtrees have equal frequency. This minimizes the worst case length.
471 */
472#define smaller(tree, n, m, depth) \
473   (tree[n].Freq < tree[m].Freq || \
474   (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
475
476/* ===========================================================================
477 * Restore the heap property by moving down the tree starting at node k,
478 * exchanging a node with the smallest of its two sons if necessary, stopping
479 * when the heap property is re-established (each father smaller than its
480 * two sons).
481 */
482local void pqdownheap(s, tree, k)
483    deflate_state *s;
484    ct_data *tree;  /* the tree to restore */
485    int k;               /* node to move down */
486{
487    int v = s->heap[k];
488    int j = k << 1;  /* left son of k */
489    while (j <= s->heap_len) {
490        /* Set j to the smallest of the two sons: */
491        if (j < s->heap_len &&
492            smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
493            j++;
494        }
495        /* Exit if v is smaller than both sons */
496        if (smaller(tree, v, s->heap[j], s->depth)) break;
497
498        /* Exchange v with the smallest son */
499        s->heap[k] = s->heap[j];  k = j;
500
501        /* And continue down the tree, setting j to the left son of k */
502        j <<= 1;
503    }
504    s->heap[k] = v;
505}
506
507/* ===========================================================================
508 * Compute the optimal bit lengths for a tree and update the total bit length
509 * for the current block.
510 * IN assertion: the fields freq and dad are set, heap[heap_max] and
511 *    above are the tree nodes sorted by increasing frequency.
512 * OUT assertions: the field len is set to the optimal bit length, the
513 *     array bl_count contains the frequencies for each bit length.
514 *     The length opt_len is updated; static_len is also updated if stree is
515 *     not null.
516 */
517local void gen_bitlen(s, desc)
518    deflate_state *s;
519    tree_desc *desc;    /* the tree descriptor */
520{
521    ct_data *tree        = desc->dyn_tree;
522    int max_code         = desc->max_code;
523    const ct_data *stree = desc->stat_desc->static_tree;
524    const intf *extra    = desc->stat_desc->extra_bits;
525    int base             = desc->stat_desc->extra_base;
526    int max_length       = desc->stat_desc->max_length;
527    int h;              /* heap index */
528    int n, m;           /* iterate over the tree elements */
529    int bits;           /* bit length */
530    int xbits;          /* extra bits */
531    ush f;              /* frequency */
532    int overflow = 0;   /* number of elements with bit length too large */
533
534    for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
535
536    /* In a first pass, compute the optimal bit lengths (which may
537     * overflow in the case of the bit length tree).
538     */
539    tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
540
541    for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
542        n = s->heap[h];
543        bits = tree[tree[n].Dad].Len + 1;
544        if (bits > max_length) bits = max_length, overflow++;
545        tree[n].Len = (ush)bits;
546        /* We overwrite tree[n].Dad which is no longer needed */
547
548        if (n > max_code) continue; /* not a leaf node */
549
550        s->bl_count[bits]++;
551        xbits = 0;
552        if (n >= base) xbits = extra[n-base];
553        f = tree[n].Freq;
554        s->opt_len += (ulg)f * (bits + xbits);
555        if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
556    }
557    if (overflow == 0) return;
558
559    Trace((stderr,"\nbit length overflow\n"));
560    /* This happens for example on obj2 and pic of the Calgary corpus */
561
562    /* Find the first bit length which could increase: */
563    do {
564        bits = max_length-1;
565        while (s->bl_count[bits] == 0) bits--;
566        s->bl_count[bits]--;      /* move one leaf down the tree */
567        s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
568        s->bl_count[max_length]--;
569        /* The brother of the overflow item also moves one step up,
570         * but this does not affect bl_count[max_length]
571         */
572        overflow -= 2;
573    } while (overflow > 0);
574
575    /* Now recompute all bit lengths, scanning in increasing frequency.
576     * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
577     * lengths instead of fixing only the wrong ones. This idea is taken
578     * from 'ar' written by Haruhiko Okumura.)
579     */
580    for (bits = max_length; bits != 0; bits--) {
581        n = s->bl_count[bits];
582        while (n != 0) {
583            m = s->heap[--h];
584            if (m > max_code) continue;
585            if ((unsigned) tree[m].Len != (unsigned) bits) {
586                Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
587                s->opt_len += ((long)bits - (long)tree[m].Len)
588                              *(long)tree[m].Freq;
589                tree[m].Len = (ush)bits;
590            }
591            n--;
592        }
593    }
594}
595
596/* ===========================================================================
597 * Generate the codes for a given tree and bit counts (which need not be
598 * optimal).
599 * IN assertion: the array bl_count contains the bit length statistics for
600 * the given tree and the field len is set for all tree elements.
601 * OUT assertion: the field code is set for all tree elements of non
602 *     zero code length.
603 */
604local void gen_codes (tree, max_code, bl_count)
605    ct_data *tree;             /* the tree to decorate */
606    int max_code;              /* largest code with non zero frequency */
607    ushf *bl_count;            /* number of codes at each bit length */
608{
609    ush next_code[MAX_BITS+1]; /* next code value for each bit length */
610    ush code = 0;              /* running code value */
611    int bits;                  /* bit index */
612    int n;                     /* code index */
613
614    /* The distribution counts are first used to generate the code values
615     * without bit reversal.
616     */
617    for (bits = 1; bits <= MAX_BITS; bits++) {
618        next_code[bits] = code = (code + bl_count[bits-1]) << 1;
619    }
620    /* Check that the bit counts in bl_count are consistent. The last code
621     * must be all ones.
622     */
623    Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
624            "inconsistent bit counts");
625    Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
626
627    for (n = 0;  n <= max_code; n++) {
628        int len = tree[n].Len;
629        if (len == 0) continue;
630        /* Now reverse the bits */
631        tree[n].Code = bi_reverse(next_code[len]++, len);
632
633        Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
634             n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
635    }
636}
637
638/* ===========================================================================
639 * Construct one Huffman tree and assigns the code bit strings and lengths.
640 * Update the total bit length for the current block.
641 * IN assertion: the field freq is set for all tree elements.
642 * OUT assertions: the fields len and code are set to the optimal bit length
643 *     and corresponding code. The length opt_len is updated; static_len is
644 *     also updated if stree is not null. The field max_code is set.
645 */
646local void build_tree(s, desc)
647    deflate_state *s;
648    tree_desc *desc; /* the tree descriptor */
649{
650    ct_data *tree         = desc->dyn_tree;
651    const ct_data *stree  = desc->stat_desc->static_tree;
652    int elems             = desc->stat_desc->elems;
653    int n, m;          /* iterate over heap elements */
654    int max_code = -1; /* largest code with non zero frequency */
655    int node;          /* new node being created */
656
657    /* Construct the initial heap, with least frequent element in
658     * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
659     * heap[0] is not used.
660     */
661    s->heap_len = 0, s->heap_max = HEAP_SIZE;
662
663    for (n = 0; n < elems; n++) {
664        if (tree[n].Freq != 0) {
665            s->heap[++(s->heap_len)] = max_code = n;
666            s->depth[n] = 0;
667        } else {
668            tree[n].Len = 0;
669        }
670    }
671
672    /* The pkzip format requires that at least one distance code exists,
673     * and that at least one bit should be sent even if there is only one
674     * possible code. So to avoid special checks later on we force at least
675     * two codes of non zero frequency.
676     */
677    while (s->heap_len < 2) {
678        node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
679        tree[node].Freq = 1;
680        s->depth[node] = 0;
681        s->opt_len--; if (stree) s->static_len -= stree[node].Len;
682        /* node is 0 or 1 so it does not have extra bits */
683    }
684    desc->max_code = max_code;
685
686    /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
687     * establish sub-heaps of increasing lengths:
688     */
689    for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
690
691    /* Construct the Huffman tree by repeatedly combining the least two
692     * frequent nodes.
693     */
694    node = elems;              /* next internal node of the tree */
695    do {
696        pqremove(s, tree, n);  /* n = node of least frequency */
697        m = s->heap[SMALLEST]; /* m = node of next least frequency */
698
699        s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
700        s->heap[--(s->heap_max)] = m;
701
702        /* Create a new node father of n and m */
703        tree[node].Freq = tree[n].Freq + tree[m].Freq;
704        s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ?
705                                s->depth[n] : s->depth[m]) + 1);
706        tree[n].Dad = tree[m].Dad = (ush)node;
707#ifdef DUMP_BL_TREE
708        if (tree == s->bl_tree) {
709            fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
710                    node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
711        }
712#endif
713        /* and insert the new node in the heap */
714        s->heap[SMALLEST] = node++;
715        pqdownheap(s, tree, SMALLEST);
716
717    } while (s->heap_len >= 2);
718
719    s->heap[--(s->heap_max)] = s->heap[SMALLEST];
720
721    /* At this point, the fields freq and dad are set. We can now
722     * generate the bit lengths.
723     */
724    gen_bitlen(s, (tree_desc *)desc);
725
726    /* The field len is now set, we can generate the bit codes */
727    gen_codes ((ct_data *)tree, max_code, s->bl_count);
728}
729
730/* ===========================================================================
731 * Scan a literal or distance tree to determine the frequencies of the codes
732 * in the bit length tree.
733 */
734local void scan_tree (s, tree, max_code)
735    deflate_state *s;
736    ct_data *tree;   /* the tree to be scanned */
737    int max_code;    /* and its largest code of non zero frequency */
738{
739    int n;                     /* iterates over all tree elements */
740    int prevlen = -1;          /* last emitted length */
741    int curlen;                /* length of current code */
742    int nextlen = tree[0].Len; /* length of next code */
743    int count = 0;             /* repeat count of the current code */
744    int max_count = 7;         /* max repeat count */
745    int min_count = 4;         /* min repeat count */
746
747    if (nextlen == 0) max_count = 138, min_count = 3;
748    tree[max_code+1].Len = (ush)0xffff; /* guard */
749
750    for (n = 0; n <= max_code; n++) {
751        curlen = nextlen; nextlen = tree[n+1].Len;
752        if (++count < max_count && curlen == nextlen) {
753            continue;
754        } else if (count < min_count) {
755            s->bl_tree[curlen].Freq += count;
756        } else if (curlen != 0) {
757            if (curlen != prevlen) s->bl_tree[curlen].Freq++;
758            s->bl_tree[REP_3_6].Freq++;
759        } else if (count <= 10) {
760            s->bl_tree[REPZ_3_10].Freq++;
761        } else {
762            s->bl_tree[REPZ_11_138].Freq++;
763        }
764        count = 0; prevlen = curlen;
765        if (nextlen == 0) {
766            max_count = 138, min_count = 3;
767        } else if (curlen == nextlen) {
768            max_count = 6, min_count = 3;
769        } else {
770            max_count = 7, min_count = 4;
771        }
772    }
773}
774
775/* ===========================================================================
776 * Send a literal or distance tree in compressed form, using the codes in
777 * bl_tree.
778 */
779local void send_tree (s, tree, max_code)
780    deflate_state *s;
781    ct_data *tree; /* the tree to be scanned */
782    int max_code;       /* and its largest code of non zero frequency */
783{
784    int n;                     /* iterates over all tree elements */
785    int prevlen = -1;          /* last emitted length */
786    int curlen;                /* length of current code */
787    int nextlen = tree[0].Len; /* length of next code */
788    int count = 0;             /* repeat count of the current code */
789    int max_count = 7;         /* max repeat count */
790    int min_count = 4;         /* min repeat count */
791
792    /* tree[max_code+1].Len = -1; */  /* guard already set */
793    if (nextlen == 0) max_count = 138, min_count = 3;
794
795    for (n = 0; n <= max_code; n++) {
796        curlen = nextlen; nextlen = tree[n+1].Len;
797        if (++count < max_count && curlen == nextlen) {
798            continue;
799        } else if (count < min_count) {
800            do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
801
802        } else if (curlen != 0) {
803            if (curlen != prevlen) {
804                send_code(s, curlen, s->bl_tree); count--;
805            }
806            Assert(count >= 3 && count <= 6, " 3_6?");
807            send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
808
809        } else if (count <= 10) {
810            send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
811
812        } else {
813            send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
814        }
815        count = 0; prevlen = curlen;
816        if (nextlen == 0) {
817            max_count = 138, min_count = 3;
818        } else if (curlen == nextlen) {
819            max_count = 6, min_count = 3;
820        } else {
821            max_count = 7, min_count = 4;
822        }
823    }
824}
825
826/* ===========================================================================
827 * Construct the Huffman tree for the bit lengths and return the index in
828 * bl_order of the last bit length code to send.
829 */
830local int build_bl_tree(s)
831    deflate_state *s;
832{
833    int max_blindex;  /* index of last bit length code of non zero freq */
834
835    /* Determine the bit length frequencies for literal and distance trees */
836    scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
837    scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
838
839    /* Build the bit length tree: */
840    build_tree(s, (tree_desc *)(&(s->bl_desc)));
841    /* opt_len now includes the length of the tree representations, except
842     * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
843     */
844
845    /* Determine the number of bit length codes to send. The pkzip format
846     * requires that at least 4 bit length codes be sent. (appnote.txt says
847     * 3 but the actual value used is 4.)
848     */
849    for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
850        if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
851    }
852    /* Update opt_len to include the bit length tree and counts */
853    s->opt_len += 3*(max_blindex+1) + 5+5+4;
854    Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
855            s->opt_len, s->static_len));
856
857    return max_blindex;
858}
859
860/* ===========================================================================
861 * Send the header for a block using dynamic Huffman trees: the counts, the
862 * lengths of the bit length codes, the literal tree and the distance tree.
863 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
864 */
865local void send_all_trees(s, lcodes, dcodes, blcodes)
866    deflate_state *s;
867    int lcodes, dcodes, blcodes; /* number of codes for each tree */
868{
869    int rank;                    /* index in bl_order */
870
871    Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
872    Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
873            "too many codes");
874    Tracev((stderr, "\nbl counts: "));
875    send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
876    send_bits(s, dcodes-1,   5);
877    send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */
878    for (rank = 0; rank < blcodes; rank++) {
879        Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
880        send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
881    }
882    Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
883
884    send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
885    Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
886
887    send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
888    Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
889}
890
891/* ===========================================================================
892 * Send a stored block
893 */
894void _tr_stored_block(s, buf, stored_len, eof)
895    deflate_state *s;
896    charf *buf;       /* input block */
897    ulg stored_len;   /* length of input block */
898    int eof;          /* true if this is the last block for a file */
899{
900    send_bits(s, (STORED_BLOCK<<1)+eof, 3);  /* send block type */
901#ifdef DEBUG
902    s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
903    s->compressed_len += (stored_len + 4) << 3;
904#endif
905    copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
906}
907
908/* ===========================================================================
909 * Send one empty static block to give enough lookahead for inflate.
910 * This takes 10 bits, of which 7 may remain in the bit buffer.
911 * The current inflate code requires 9 bits of lookahead. If the
912 * last two codes for the previous block (real code plus EOB) were coded
913 * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
914 * the last real code. In this case we send two empty static blocks instead
915 * of one. (There are no problems if the previous block is stored or fixed.)
916 * To simplify the code, we assume the worst case of last real code encoded
917 * on one bit only.
918 */
919void _tr_align(s)
920    deflate_state *s;
921{
922    send_bits(s, STATIC_TREES<<1, 3);
923    send_code(s, END_BLOCK, static_ltree);
924#ifdef DEBUG
925    s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
926#endif
927    bi_flush(s);
928    /* Of the 10 bits for the empty block, we have already sent
929     * (10 - bi_valid) bits. The lookahead for the last real code (before
930     * the EOB of the previous block) was thus at least one plus the length
931     * of the EOB plus what we have just sent of the empty static block.
932     */
933    if (1 + s->last_eob_len + 10 - s->bi_valid < 9) {
934        send_bits(s, STATIC_TREES<<1, 3);
935        send_code(s, END_BLOCK, static_ltree);
936#ifdef DEBUG
937        s->compressed_len += 10L;
938#endif
939        bi_flush(s);
940    }
941    s->last_eob_len = 7;
942}
943
944/* ===========================================================================
945 * Determine the best encoding for the current block: dynamic trees, static
946 * trees or store, and output the encoded block to the zip file.
947 */
948void _tr_flush_block(s, buf, stored_len, eof)
949    deflate_state *s;
950    charf *buf;       /* input block, or NULL if too old */
951    ulg stored_len;   /* length of input block */
952    int eof;          /* true if this is the last block for a file */
953{
954    ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
955    int max_blindex = 0;  /* index of last bit length code of non zero freq */
956
957    /* Build the Huffman trees unless a stored block is forced */
958    if (s->level > 0) {
959
960        /* Check if the file is binary or text */
961        if (stored_len > 0 && s->strm->data_type == Z_UNKNOWN)
962            set_data_type(s);
963
964        /* Construct the literal and distance trees */
965        build_tree(s, (tree_desc *)(&(s->l_desc)));
966        Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
967                s->static_len));
968
969        build_tree(s, (tree_desc *)(&(s->d_desc)));
970        Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
971                s->static_len));
972        /* At this point, opt_len and static_len are the total bit lengths of
973         * the compressed block data, excluding the tree representations.
974         */
975
976        /* Build the bit length tree for the above two trees, and get the index
977         * in bl_order of the last bit length code to send.
978         */
979        max_blindex = build_bl_tree(s);
980
981        /* Determine the best encoding. Compute the block lengths in bytes. */
982        opt_lenb = (s->opt_len+3+7)>>3;
983        static_lenb = (s->static_len+3+7)>>3;
984
985        Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
986                opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
987                s->last_lit));
988
989        if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
990
991    } else {
992        Assert(buf != (char*)0, "lost buf");
993        opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
994    }
995
996#ifdef FORCE_STORED
997    if (buf != (char*)0) { /* force stored block */
998#else
999    if (stored_len+4 <= opt_lenb && buf != (char*)0) {
1000                       /* 4: two words for the lengths */
1001#endif
1002        /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
1003         * Otherwise we can't have processed more than WSIZE input bytes since
1004         * the last block flush, because compression would have been
1005         * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
1006         * transform a block into a stored block.
1007         */
1008        _tr_stored_block(s, buf, stored_len, eof);
1009
1010#ifdef FORCE_STATIC
1011    } else if (static_lenb >= 0) { /* force static trees */
1012#else
1013    } else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) {
1014#endif
1015        send_bits(s, (STATIC_TREES<<1)+eof, 3);
1016        compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
1017#ifdef DEBUG
1018        s->compressed_len += 3 + s->static_len;
1019#endif
1020    } else {
1021        send_bits(s, (DYN_TREES<<1)+eof, 3);
1022        send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
1023                       max_blindex+1);
1024        compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
1025#ifdef DEBUG
1026        s->compressed_len += 3 + s->opt_len;
1027#endif
1028    }
1029    Assert (s->compressed_len == s->bits_sent, "bad compressed size");
1030    /* The above check is made mod 2^32, for files larger than 512 MB
1031     * and uLong implemented on 32 bits.
1032     */
1033    init_block(s);
1034
1035    if (eof) {
1036        bi_windup(s);
1037#ifdef DEBUG
1038        s->compressed_len += 7;  /* align on byte boundary */
1039#endif
1040    }
1041    Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
1042           s->compressed_len-7*eof));
1043}
1044
1045/* ===========================================================================
1046 * Save the match info and tally the frequency counts. Return true if
1047 * the current block must be flushed.
1048 */
1049int _tr_tally (s, dist, lc)
1050    deflate_state *s;
1051    unsigned dist;  /* distance of matched string */
1052    unsigned lc;    /* match length-MIN_MATCH or unmatched char (if dist==0) */
1053{
1054    s->d_buf[s->last_lit] = (ush)dist;
1055    s->l_buf[s->last_lit++] = (uch)lc;
1056    if (dist == 0) {
1057        /* lc is the unmatched char */
1058        s->dyn_ltree[lc].Freq++;
1059    } else {
1060        s->matches++;
1061        /* Here, lc is the match length - MIN_MATCH */
1062        dist--;             /* dist = match distance - 1 */
1063        Assert((ush)dist < (ush)MAX_DIST(s) &&
1064               (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
1065               (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");
1066
1067        s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++;
1068        s->dyn_dtree[d_code(dist)].Freq++;
1069    }
1070
1071#ifdef TRUNCATE_BLOCK
1072    /* Try to guess if it is profitable to stop the current block here */
1073    if ((s->last_lit & 0x1fff) == 0 && s->level > 2) {
1074        /* Compute an upper bound for the compressed length */
1075        ulg out_length = (ulg)s->last_lit*8L;
1076        ulg in_length = (ulg)((long)s->strstart - s->block_start);
1077        int dcode;
1078        for (dcode = 0; dcode < D_CODES; dcode++) {
1079            out_length += (ulg)s->dyn_dtree[dcode].Freq *
1080                (5L+extra_dbits[dcode]);
1081        }
1082        out_length >>= 3;
1083        Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
1084               s->last_lit, in_length, out_length,
1085               100L - out_length*100L/in_length));
1086        if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
1087    }
1088#endif
1089    return (s->last_lit == s->lit_bufsize-1);
1090    /* We avoid equality with lit_bufsize because of wraparound at 64K
1091     * on 16 bit machines and because stored blocks are restricted to
1092     * 64K-1 bytes.
1093     */
1094}
1095
1096/* ===========================================================================
1097 * Send the block data compressed using the given Huffman trees
1098 */
1099local void compress_block(s, ltree, dtree)
1100    deflate_state *s;
1101    ct_data *ltree; /* literal tree */
1102    ct_data *dtree; /* distance tree */
1103{
1104    unsigned dist;      /* distance of matched string */
1105    int lc;             /* match length or unmatched char (if dist == 0) */
1106    unsigned lx = 0;    /* running index in l_buf */
1107    unsigned code;      /* the code to send */
1108    int extra;          /* number of extra bits to send */
1109
1110    if (s->last_lit != 0) do {
1111        dist = s->d_buf[lx];
1112        lc = s->l_buf[lx++];
1113        if (dist == 0) {
1114            send_code(s, lc, ltree); /* send a literal byte */
1115            Tracecv(isgraph(lc), (stderr," '%c' ", lc));
1116        } else {
1117            /* Here, lc is the match length - MIN_MATCH */
1118            code = _length_code[lc];
1119            send_code(s, code+LITERALS+1, ltree); /* send the length code */
1120            extra = extra_lbits[code];
1121            if (extra != 0) {
1122                lc -= base_length[code];
1123                send_bits(s, lc, extra);       /* send the extra length bits */
1124            }
1125            dist--; /* dist is now the match distance - 1 */
1126            code = d_code(dist);
1127            Assert (code < D_CODES, "bad d_code");
1128
1129            send_code(s, code, dtree);       /* send the distance code */
1130            extra = extra_dbits[code];
1131            if (extra != 0) {
1132                dist -= base_dist[code];
1133                send_bits(s, dist, extra);   /* send the extra distance bits */
1134            }
1135        } /* literal or match pair ? */
1136
1137        /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
1138        Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx,
1139               "pendingBuf overflow");
1140
1141    } while (lx < s->last_lit);
1142
1143    send_code(s, END_BLOCK, ltree);
1144    s->last_eob_len = ltree[END_BLOCK].Len;
1145}
1146
1147/* ===========================================================================
1148 * Set the data type to BINARY or TEXT, using a crude approximation:
1149 * set it to Z_TEXT if all symbols are either printable characters (33 to 255)
1150 * or white spaces (9 to 13, or 32); or set it to Z_BINARY otherwise.
1151 * IN assertion: the fields Freq of dyn_ltree are set.
1152 */
1153local void set_data_type(s)
1154    deflate_state *s;
1155{
1156    int n;
1157
1158    for (n = 0; n < 9; n++)
1159        if (s->dyn_ltree[n].Freq != 0)
1160            break;
1161    if (n == 9)
1162        for (n = 14; n < 32; n++)
1163            if (s->dyn_ltree[n].Freq != 0)
1164                break;
1165    s->strm->data_type = (n == 32) ? Z_TEXT : Z_BINARY;
1166}
1167
1168/* ===========================================================================
1169 * Reverse the first len bits of a code, using straightforward code (a faster
1170 * method would use a table)
1171 * IN assertion: 1 <= len <= 15
1172 */
1173local unsigned bi_reverse(code, len)
1174    unsigned code; /* the value to invert */
1175    int len;       /* its bit length */
1176{
1177    register unsigned res = 0;
1178    do {
1179        res |= code & 1;
1180        code >>= 1, res <<= 1;
1181    } while (--len > 0);
1182    return res >> 1;
1183}
1184
1185/* ===========================================================================
1186 * Flush the bit buffer, keeping at most 7 bits in it.
1187 */
1188local void bi_flush(s)
1189    deflate_state *s;
1190{
1191    if (s->bi_valid == 16) {
1192        put_short(s, s->bi_buf);
1193        s->bi_buf = 0;
1194        s->bi_valid = 0;
1195    } else if (s->bi_valid >= 8) {
1196        put_byte(s, (Byte)s->bi_buf);
1197        s->bi_buf >>= 8;
1198        s->bi_valid -= 8;
1199    }
1200}
1201
1202/* ===========================================================================
1203 * Flush the bit buffer and align the output on a byte boundary
1204 */
1205local void bi_windup(s)
1206    deflate_state *s;
1207{
1208    if (s->bi_valid > 8) {
1209        put_short(s, s->bi_buf);
1210    } else if (s->bi_valid > 0) {
1211        put_byte(s, (Byte)s->bi_buf);
1212    }
1213    s->bi_buf = 0;
1214    s->bi_valid = 0;
1215#ifdef DEBUG
1216    s->bits_sent = (s->bits_sent+7) & ~7;
1217#endif
1218}
1219
1220/* ===========================================================================
1221 * Copy a stored block, storing first the length and its
1222 * one's complement if requested.
1223 */
1224local void copy_block(s, buf, len, header)
1225    deflate_state *s;
1226    charf    *buf;    /* the input data */
1227    unsigned len;     /* its length */
1228    int      header;  /* true if block header must be written */
1229{
1230    bi_windup(s);        /* align on byte boundary */
1231    s->last_eob_len = 8; /* enough lookahead for inflate */
1232
1233    if (header) {
1234        put_short(s, (ush)len);
1235        put_short(s, (ush)~len);
1236#ifdef DEBUG
1237        s->bits_sent += 2*16;
1238#endif
1239    }
1240#ifdef DEBUG
1241    s->bits_sent += (ulg)len<<3;
1242#endif
1243    while (len--) {
1244        put_byte(s, *buf++);
1245    }
1246}
1247