1/*
2 * Copyright (c) 2000-2013 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28/*
29 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
30 *	The Regents of the University of California.  All rights reserved.
31 *
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions
34 * are met:
35 * 1. Redistributions of source code must retain the above copyright
36 *    notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 *    notice, this list of conditions and the following disclaimer in the
39 *    documentation and/or other materials provided with the distribution.
40 * 3. All advertising materials mentioning features or use of this software
41 *    must display the following acknowledgement:
42 *	This product includes software developed by the University of
43 *	California, Berkeley and its contributors.
44 * 4. Neither the name of the University nor the names of its contributors
45 *    may be used to endorse or promote products derived from this software
46 *    without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
61 * $FreeBSD: src/sys/netinet/tcp_subr.c,v 1.73.2.22 2001/08/22 00:59:12 silby Exp $
62 */
63/*
64 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
65 * support for mandatory and extensible security protections.  This notice
66 * is included in support of clause 2.2 (b) of the Apple Public License,
67 * Version 2.0.
68 */
69
70#include <sys/param.h>
71#include <sys/systm.h>
72#include <sys/callout.h>
73#include <sys/kernel.h>
74#include <sys/sysctl.h>
75#include <sys/malloc.h>
76#include <sys/mbuf.h>
77#include <sys/domain.h>
78#include <sys/proc.h>
79#include <sys/kauth.h>
80#include <sys/socket.h>
81#include <sys/socketvar.h>
82#include <sys/protosw.h>
83#include <sys/random.h>
84#include <sys/syslog.h>
85#include <sys/mcache.h>
86#include <kern/locks.h>
87#include <kern/zalloc.h>
88
89#include <dev/random/randomdev.h>
90
91#include <net/route.h>
92#include <net/if.h>
93
94#define tcp_minmssoverload fring
95#define _IP_VHL
96#include <netinet/in.h>
97#include <netinet/in_systm.h>
98#include <netinet/ip.h>
99#include <netinet/ip_icmp.h>
100#if INET6
101#include <netinet/ip6.h>
102#endif
103#include <netinet/in_pcb.h>
104#if INET6
105#include <netinet6/in6_pcb.h>
106#endif
107#include <netinet/in_var.h>
108#include <netinet/ip_var.h>
109#include <netinet/icmp_var.h>
110#if INET6
111#include <netinet6/ip6_var.h>
112#endif
113#include <netinet/tcp.h>
114#include <netinet/tcp_fsm.h>
115#include <netinet/tcp_seq.h>
116#include <netinet/tcp_timer.h>
117#include <netinet/tcp_var.h>
118#include <netinet/tcp_cc.h>
119#include <kern/thread_call.h>
120
121#if INET6
122#include <netinet6/tcp6_var.h>
123#endif
124#include <netinet/tcpip.h>
125#if TCPDEBUG
126#include <netinet/tcp_debug.h>
127#endif
128#include <netinet6/ip6protosw.h>
129
130#if IPSEC
131#include <netinet6/ipsec.h>
132#if INET6
133#include <netinet6/ipsec6.h>
134#endif
135#endif /*IPSEC*/
136
137#undef tcp_minmssoverload
138
139#if CONFIG_MACF_NET
140#include <security/mac_framework.h>
141#endif /* MAC_NET */
142
143#include <libkern/crypto/md5.h>
144#include <sys/kdebug.h>
145#include <mach/sdt.h>
146
147#include <netinet/lro_ext.h>
148
149#define DBG_FNC_TCP_CLOSE	NETDBG_CODE(DBG_NETTCP, ((5 << 8) | 2))
150
151extern int tcp_lq_overflow;
152
153/* temporary: for testing */
154#if IPSEC
155extern int ipsec_bypass;
156#endif
157extern struct tcptimerlist tcp_timer_list;
158extern struct tcptailq tcp_tw_tailq;
159
160int 	tcp_mssdflt = TCP_MSS;
161SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW | CTLFLAG_LOCKED,
162    &tcp_mssdflt , 0, "Default TCP Maximum Segment Size");
163
164#if INET6
165int	tcp_v6mssdflt = TCP6_MSS;
166SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
167	CTLFLAG_RW | CTLFLAG_LOCKED, &tcp_v6mssdflt , 0,
168	"Default TCP Maximum Segment Size for IPv6");
169#endif
170
171extern int tcp_do_autorcvbuf;
172
173/*
174 * Minimum MSS we accept and use. This prevents DoS attacks where
175 * we are forced to a ridiculous low MSS like 20 and send hundreds
176 * of packets instead of one. The effect scales with the available
177 * bandwidth and quickly saturates the CPU and network interface
178 * with packet generation and sending. Set to zero to disable MINMSS
179 * checking. This setting prevents us from sending too small packets.
180 */
181int	tcp_minmss = TCP_MINMSS;
182SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW | CTLFLAG_LOCKED,
183    &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
184
185static int	tcp_do_rfc1323 = 1;
186SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW | CTLFLAG_LOCKED,
187    &tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions");
188
189// Not used
190static int	tcp_do_rfc1644 = 0;
191SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1644, rfc1644, CTLFLAG_RW | CTLFLAG_LOCKED,
192    &tcp_do_rfc1644 , 0, "Enable rfc1644 (TTCP) extensions");
193
194static int	do_tcpdrain = 0;
195SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW | CTLFLAG_LOCKED, &do_tcpdrain, 0,
196     "Enable tcp_drain routine for extra help when low on mbufs");
197
198SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD | CTLFLAG_LOCKED,
199    &tcbinfo.ipi_count, 0, "Number of active PCBs");
200
201SYSCTL_INT(_net_inet_tcp, OID_AUTO, tw_pcbcount,
202    CTLFLAG_RD | CTLFLAG_LOCKED,
203    &tcbinfo.ipi_twcount, 0, "Number of pcbs in time-wait state");
204
205static int	icmp_may_rst = 1;
206SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW | CTLFLAG_LOCKED, &icmp_may_rst, 0,
207    "Certain ICMP unreachable messages may abort connections in SYN_SENT");
208
209static int	tcp_strict_rfc1948 = 0;
210SYSCTL_INT(_net_inet_tcp, OID_AUTO, strict_rfc1948, CTLFLAG_RW | CTLFLAG_LOCKED,
211    &tcp_strict_rfc1948, 0, "Determines if RFC1948 is followed exactly");
212
213static int	tcp_isn_reseed_interval = 0;
214SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW | CTLFLAG_LOCKED,
215    &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
216static int 	tcp_background_io_enabled = 1;
217SYSCTL_INT(_net_inet_tcp, OID_AUTO, background_io_enabled, CTLFLAG_RW | CTLFLAG_LOCKED,
218    &tcp_background_io_enabled, 0, "Background IO Enabled");
219
220int 	tcp_TCPTV_MIN = 100;	/* 100ms minimum RTT */
221SYSCTL_INT(_net_inet_tcp, OID_AUTO, rtt_min, CTLFLAG_RW | CTLFLAG_LOCKED,
222    &tcp_TCPTV_MIN, 0, "min rtt value allowed");
223
224int tcp_rexmt_slop = TCPTV_REXMTSLOP;
225SYSCTL_INT(_net_inet_tcp, OID_AUTO, rexmt_slop, CTLFLAG_RW,
226	&tcp_rexmt_slop, 0, "Slop added to retransmit timeout");
227
228__private_extern__ int tcp_use_randomport = 0;
229SYSCTL_INT(_net_inet_tcp, OID_AUTO, randomize_ports, CTLFLAG_RW | CTLFLAG_LOCKED,
230    &tcp_use_randomport, 0, "Randomize TCP port numbers");
231
232extern struct tcp_cc_algo tcp_cc_newreno;
233SYSCTL_INT(_net_inet_tcp, OID_AUTO, newreno_sockets, CTLFLAG_RD | CTLFLAG_LOCKED,
234	&tcp_cc_newreno.num_sockets, 0, "Number of sockets using newreno");
235
236extern struct tcp_cc_algo tcp_cc_ledbat;
237SYSCTL_INT(_net_inet_tcp, OID_AUTO, background_sockets, CTLFLAG_RD | CTLFLAG_LOCKED,
238	&tcp_cc_ledbat.num_sockets, 0, "Number of sockets using background transport");
239
240__private_extern__ int	tcp_win_scale = 3;
241SYSCTL_INT(_net_inet_tcp, OID_AUTO, win_scale_factor, CTLFLAG_RW | CTLFLAG_LOCKED,
242    &tcp_win_scale, 0, "Window scaling factor");
243
244static void	tcp_cleartaocache(void);
245static void	tcp_notify(struct inpcb *, int);
246static void	tcp_cc_init(void);
247
248struct zone	*sack_hole_zone;
249struct zone	*tcp_reass_zone;
250struct zone	*tcp_bwmeas_zone;
251#if 0
252static unsigned int tcp_mptcp_dsnm_sz;
253struct zone *tcp_mptcp_dsnm_zone;
254#endif
255/* The array containing pointers to currently implemented TCP CC algorithms */
256struct tcp_cc_algo* tcp_cc_algo_list[TCP_CC_ALGO_COUNT];
257
258extern int slowlink_wsize;	/* window correction for slow links */
259extern int path_mtu_discovery;
260
261extern u_int32_t tcp_autorcvbuf_max;
262extern u_int32_t tcp_autorcvbuf_inc_shift;
263static void tcp_sbrcv_grow_rwin(struct tcpcb *tp, struct sockbuf *sb);
264
265#define TCP_BWMEAS_BURST_MINSIZE 6
266#define TCP_BWMEAS_BURST_MAXSIZE 25
267
268static uint32_t bwmeas_elm_size;
269
270/*
271 * Target size of TCP PCB hash tables. Must be a power of two.
272 *
273 * Note that this can be overridden by the kernel environment
274 * variable net.inet.tcp.tcbhashsize
275 */
276#ifndef TCBHASHSIZE
277#define TCBHASHSIZE	CONFIG_TCBHASHSIZE
278#endif
279
280__private_extern__ int	tcp_tcbhashsize = TCBHASHSIZE;
281SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD | CTLFLAG_LOCKED,
282     &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
283
284/*
285 * This is the actual shape of what we allocate using the zone
286 * allocator.  Doing it this way allows us to protect both structures
287 * using the same generation count, and also eliminates the overhead
288 * of allocating tcpcbs separately.  By hiding the structure here,
289 * we avoid changing most of the rest of the code (although it needs
290 * to be changed, eventually, for greater efficiency).
291 */
292#define	ALIGNMENT	32
293struct	inp_tp {
294	struct	inpcb	inp;
295	struct	tcpcb	tcb __attribute__((aligned(ALIGNMENT)));
296};
297#undef ALIGNMENT
298
299int  get_inpcb_str_size(void);
300int  get_tcp_str_size(void);
301
302static void tcpcb_to_otcpcb(struct tcpcb *, struct otcpcb *);
303
304static lck_attr_t *tcp_uptime_mtx_attr = NULL;		/* mutex attributes */
305static lck_grp_t *tcp_uptime_mtx_grp = NULL;		/* mutex group definition */
306static lck_grp_attr_t *tcp_uptime_mtx_grp_attr = NULL;	/* mutex group attributes */
307int tcp_notsent_lowat_check(struct socket *so);
308
309
310int  get_inpcb_str_size(void)
311{
312	return sizeof(struct inpcb);
313}
314
315
316int  get_tcp_str_size(void)
317{
318	return sizeof(struct tcpcb);
319}
320
321int	tcp_freeq(struct tcpcb *tp);
322
323/*
324 * Initialize TCP congestion control algorithms.
325 */
326
327void
328tcp_cc_init(void)
329{
330	bzero(&tcp_cc_algo_list, sizeof(tcp_cc_algo_list));
331	tcp_cc_algo_list[TCP_CC_ALGO_NEWRENO_INDEX] = &tcp_cc_newreno;
332	tcp_cc_algo_list[TCP_CC_ALGO_BACKGROUND_INDEX] = &tcp_cc_ledbat;
333}
334
335/*
336 * Tcp initialization
337 */
338void
339tcp_init(struct protosw *pp, struct domain *dp)
340{
341#pragma unused(dp)
342	static int tcp_initialized = 0;
343	vm_size_t       str_size;
344	struct inpcbinfo *pcbinfo;
345
346	VERIFY((pp->pr_flags & (PR_INITIALIZED|PR_ATTACHED)) == PR_ATTACHED);
347
348	if (tcp_initialized)
349		return;
350	tcp_initialized = 1;
351
352	tcp_ccgen = 1;
353	tcp_cleartaocache();
354
355	tcp_keepinit = TCPTV_KEEP_INIT;
356	tcp_keepidle = TCPTV_KEEP_IDLE;
357	tcp_keepintvl = TCPTV_KEEPINTVL;
358	tcp_keepcnt = TCPTV_KEEPCNT;
359	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
360	tcp_msl = TCPTV_MSL;
361
362	microuptime(&tcp_uptime);
363	read_random(&tcp_now, sizeof(tcp_now));
364	tcp_now = tcp_now & 0x3fffffff; /* Starts tcp internal clock at a random value */
365
366	LIST_INIT(&tcb);
367	tcbinfo.ipi_listhead = &tcb;
368
369	pcbinfo = &tcbinfo;
370	/*
371	 * allocate lock group attribute and group for tcp pcb mutexes
372	 */
373	pcbinfo->ipi_lock_grp_attr = lck_grp_attr_alloc_init();
374	pcbinfo->ipi_lock_grp = lck_grp_alloc_init("tcppcb", pcbinfo->ipi_lock_grp_attr);
375
376	/*
377	 * allocate the lock attribute for tcp pcb mutexes
378	 */
379	pcbinfo->ipi_lock_attr = lck_attr_alloc_init();
380
381	if ((pcbinfo->ipi_lock = lck_rw_alloc_init(pcbinfo->ipi_lock_grp,
382	    pcbinfo->ipi_lock_attr)) == NULL) {
383		panic("%s: unable to allocate PCB lock\n", __func__);
384		/* NOTREACHED */
385	}
386
387	if (!powerof2(tcp_tcbhashsize)) {
388		printf("WARNING: TCB hash size not a power of 2\n");
389		tcp_tcbhashsize = 512; /* safe default */
390	}
391	tcbinfo.ipi_hashbase = hashinit(tcp_tcbhashsize, M_PCB, &tcbinfo.ipi_hashmask);
392	tcbinfo.ipi_porthashbase = hashinit(tcp_tcbhashsize, M_PCB,
393					&tcbinfo.ipi_porthashmask);
394	str_size = P2ROUNDUP(sizeof(struct inp_tp), sizeof(u_int64_t));
395	tcbinfo.ipi_zone = zinit(str_size, 120000*str_size, 8192, "tcpcb");
396	zone_change(tcbinfo.ipi_zone, Z_CALLERACCT, FALSE);
397	zone_change(tcbinfo.ipi_zone, Z_EXPAND, TRUE);
398
399	tcbinfo.ipi_gc = tcp_gc;
400	in_pcbinfo_attach(&tcbinfo);
401
402	str_size = P2ROUNDUP(sizeof(struct sackhole), sizeof(u_int64_t));
403	sack_hole_zone = zinit(str_size, 120000*str_size, 8192, "sack_hole zone");
404	zone_change(sack_hole_zone, Z_CALLERACCT, FALSE);
405	zone_change(sack_hole_zone, Z_EXPAND, TRUE);
406
407	tcp_reass_maxseg = nmbclusters / 16;
408	str_size = P2ROUNDUP(sizeof(struct tseg_qent), sizeof(u_int64_t));
409	tcp_reass_zone = zinit(str_size, (tcp_reass_maxseg + 1) * str_size,
410		0, "tcp_reass_zone");
411	if (tcp_reass_zone == NULL) {
412		panic("%s: failed allocating tcp_reass_zone", __func__);
413		/* NOTREACHED */
414	}
415	zone_change(tcp_reass_zone, Z_CALLERACCT, FALSE);
416	zone_change(tcp_reass_zone, Z_EXPAND, TRUE);
417
418	bwmeas_elm_size = P2ROUNDUP(sizeof(struct bwmeas), sizeof(u_int64_t));
419	tcp_bwmeas_zone = zinit(bwmeas_elm_size, (100 * bwmeas_elm_size), 0, "tcp_bwmeas_zone");
420	if (tcp_bwmeas_zone == NULL) {
421		panic("%s: failed allocating tcp_bwmeas_zone", __func__);
422		/* NOTREACHED */
423	}
424	zone_change(tcp_bwmeas_zone, Z_CALLERACCT, FALSE);
425	zone_change(tcp_bwmeas_zone, Z_EXPAND, TRUE);
426
427#if INET6
428#define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
429#else /* INET6 */
430#define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
431#endif /* INET6 */
432	if (max_protohdr < TCP_MINPROTOHDR) {
433		_max_protohdr = TCP_MINPROTOHDR;
434		_max_protohdr = max_protohdr;	/* round it up */
435	}
436	if (max_linkhdr + max_protohdr > MCLBYTES)
437		panic("tcp_init");
438#undef TCP_MINPROTOHDR
439
440	/* Initialize time wait and timer lists */
441	TAILQ_INIT(&tcp_tw_tailq);
442
443	bzero(&tcp_timer_list, sizeof(tcp_timer_list));
444	LIST_INIT(&tcp_timer_list.lhead);
445	/*
446	 * allocate lock group attribute, group and attribute for the tcp timer list
447	 */
448	tcp_timer_list.mtx_grp_attr = lck_grp_attr_alloc_init();
449	tcp_timer_list.mtx_grp = lck_grp_alloc_init("tcptimerlist", tcp_timer_list.mtx_grp_attr);
450	tcp_timer_list.mtx_attr = lck_attr_alloc_init();
451	if ((tcp_timer_list.mtx = lck_mtx_alloc_init(tcp_timer_list.mtx_grp, tcp_timer_list.mtx_attr)) == NULL) {
452		panic("failed to allocate memory for tcp_timer_list.mtx\n");
453	};
454	tcp_timer_list.fast_quantum = TCP_FASTTIMER_QUANTUM;
455	tcp_timer_list.slow_quantum = TCP_SLOWTIMER_QUANTUM;
456	if ((tcp_timer_list.call = thread_call_allocate(tcp_run_timerlist, NULL)) == NULL) {
457		panic("failed to allocate call entry 1 in tcp_init\n");
458	}
459
460	/*
461	 * allocate lock group attribute, group and attribute for tcp_uptime_lock
462	 */
463	tcp_uptime_mtx_grp_attr = lck_grp_attr_alloc_init();
464	tcp_uptime_mtx_grp = lck_grp_alloc_init("tcpuptime", tcp_uptime_mtx_grp_attr);
465	tcp_uptime_mtx_attr = lck_attr_alloc_init();
466	tcp_uptime_lock = lck_spin_alloc_init(tcp_uptime_mtx_grp, tcp_uptime_mtx_attr);
467
468	/* Initialize TCP congestion control algorithms list */
469	tcp_cc_init();
470
471	/* Initialize TCP LRO data structures */
472	tcp_lro_init();
473}
474
475/*
476 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
477 * tcp_template used to store this data in mbufs, but we now recopy it out
478 * of the tcpcb each time to conserve mbufs.
479 */
480void
481tcp_fillheaders(tp, ip_ptr, tcp_ptr)
482	struct tcpcb *tp;
483	void *ip_ptr;
484	void *tcp_ptr;
485{
486	struct inpcb *inp = tp->t_inpcb;
487	struct tcphdr *tcp_hdr = (struct tcphdr *)tcp_ptr;
488
489#if INET6
490	if ((inp->inp_vflag & INP_IPV6) != 0) {
491		struct ip6_hdr *ip6;
492
493		ip6 = (struct ip6_hdr *)ip_ptr;
494		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
495			(inp->inp_flow & IPV6_FLOWINFO_MASK);
496		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
497			(IPV6_VERSION & IPV6_VERSION_MASK);
498		ip6->ip6_nxt = IPPROTO_TCP;
499		ip6->ip6_plen = sizeof(struct tcphdr);
500		ip6->ip6_src = inp->in6p_laddr;
501		ip6->ip6_dst = inp->in6p_faddr;
502		tcp_hdr->th_sum = in6_pseudo(&inp->in6p_laddr, &inp->in6p_faddr,
503		    htonl(sizeof (struct tcphdr) + IPPROTO_TCP));
504	} else
505#endif
506	{
507	struct ip *ip = (struct ip *) ip_ptr;
508
509	ip->ip_vhl = IP_VHL_BORING;
510	ip->ip_tos = 0;
511	ip->ip_len = 0;
512	ip->ip_id = 0;
513	ip->ip_off = 0;
514	ip->ip_ttl = 0;
515	ip->ip_sum = 0;
516	ip->ip_p = IPPROTO_TCP;
517	ip->ip_src = inp->inp_laddr;
518	ip->ip_dst = inp->inp_faddr;
519	tcp_hdr->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
520		htons(sizeof(struct tcphdr) + IPPROTO_TCP));
521	}
522
523	tcp_hdr->th_sport = inp->inp_lport;
524	tcp_hdr->th_dport = inp->inp_fport;
525	tcp_hdr->th_seq = 0;
526	tcp_hdr->th_ack = 0;
527	tcp_hdr->th_x2 = 0;
528	tcp_hdr->th_off = 5;
529	tcp_hdr->th_flags = 0;
530	tcp_hdr->th_win = 0;
531	tcp_hdr->th_urp = 0;
532}
533
534/*
535 * Create template to be used to send tcp packets on a connection.
536 * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
537 * use for this function is in keepalives, which use tcp_respond.
538 */
539struct tcptemp *
540tcp_maketemplate(tp)
541	struct tcpcb *tp;
542{
543	struct mbuf *m;
544	struct tcptemp *n;
545
546	m = m_get(M_DONTWAIT, MT_HEADER);
547	if (m == NULL)
548		return (0);
549	m->m_len = sizeof(struct tcptemp);
550	n = mtod(m, struct tcptemp *);
551
552	tcp_fillheaders(tp, (void *)&n->tt_ipgen, (void *)&n->tt_t);
553	return (n);
554}
555
556/*
557 * Send a single message to the TCP at address specified by
558 * the given TCP/IP header.  If m == 0, then we make a copy
559 * of the tcpiphdr at ti and send directly to the addressed host.
560 * This is used to force keep alive messages out using the TCP
561 * template for a connection.  If flags are given then we send
562 * a message back to the TCP which originated the * segment ti,
563 * and discard the mbuf containing it and any other attached mbufs.
564 *
565 * In any case the ack and sequence number of the transmitted
566 * segment are as specified by the parameters.
567 *
568 * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
569 */
570void
571tcp_respond(
572	struct tcpcb *tp,
573	void *ipgen,
574	register struct tcphdr *th,
575	register struct mbuf *m,
576	tcp_seq ack,
577	tcp_seq seq,
578	int flags,
579	unsigned int ifscope,
580	unsigned int nocell
581	)
582{
583	register int tlen;
584	int win = 0;
585	struct route *ro = 0;
586	struct route sro;
587	struct ip *ip;
588	struct tcphdr *nth;
589#if INET6
590	struct route_in6 *ro6 = 0;
591	struct route_in6 sro6;
592	struct ip6_hdr *ip6;
593	int isipv6;
594#endif /* INET6 */
595	struct ifnet *outif;
596
597#if INET6
598	isipv6 = IP_VHL_V(((struct ip *)ipgen)->ip_vhl) == 6;
599	ip6 = ipgen;
600#endif /* INET6 */
601	ip = ipgen;
602
603	if (tp) {
604		if (!(flags & TH_RST)) {
605			win = tcp_sbspace(tp);
606			if (win > (int32_t)TCP_MAXWIN << tp->rcv_scale)
607				win = (int32_t)TCP_MAXWIN << tp->rcv_scale;
608		}
609#if INET6
610		if (isipv6)
611			ro6 = &tp->t_inpcb->in6p_route;
612		else
613#endif /* INET6 */
614		ro = &tp->t_inpcb->inp_route;
615	} else {
616#if INET6
617		if (isipv6) {
618			ro6 = &sro6;
619			bzero(ro6, sizeof *ro6);
620		} else
621#endif /* INET6 */
622		{
623			ro = &sro;
624			bzero(ro, sizeof *ro);
625		}
626	}
627	if (m == 0) {
628		m = m_gethdr(M_DONTWAIT, MT_HEADER);	/* MAC-OK */
629		if (m == NULL)
630			return;
631		tlen = 0;
632		m->m_data += max_linkhdr;
633#if INET6
634		if (isipv6) {
635			VERIFY((MHLEN - max_linkhdr) >=
636			    (sizeof (*ip6) + sizeof (*nth)));
637			bcopy((caddr_t)ip6, mtod(m, caddr_t),
638			      sizeof(struct ip6_hdr));
639			ip6 = mtod(m, struct ip6_hdr *);
640			nth = (struct tcphdr *)(void *)(ip6 + 1);
641		} else
642#endif /* INET6 */
643		{
644			VERIFY((MHLEN - max_linkhdr) >=
645			    (sizeof (*ip) + sizeof (*nth)));
646			bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
647			ip = mtod(m, struct ip *);
648			nth = (struct tcphdr *)(void *)(ip + 1);
649		}
650		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
651#if MPTCP
652		if ((tp) && (tp->t_mpflags & TMPF_RESET))
653			flags = (TH_RST | TH_ACK);
654		else
655#endif
656		flags = TH_ACK;
657	} else {
658		m_freem(m->m_next);
659		m->m_next = 0;
660		m->m_data = (caddr_t)ipgen;
661		/* m_len is set later */
662		tlen = 0;
663#define xchg(a,b,type) { type t; t=a; a=b; b=t; }
664#if INET6
665		if (isipv6) {
666			/* Expect 32-bit aligned IP on strict-align platforms */
667			IP6_HDR_STRICT_ALIGNMENT_CHECK(ip6);
668			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
669			nth = (struct tcphdr *)(void *)(ip6 + 1);
670		} else
671#endif /* INET6 */
672	      {
673		/* Expect 32-bit aligned IP on strict-align platforms */
674		IP_HDR_STRICT_ALIGNMENT_CHECK(ip);
675		xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
676		nth = (struct tcphdr *)(void *)(ip + 1);
677	      }
678		if (th != nth) {
679			/*
680			 * this is usually a case when an extension header
681			 * exists between the IPv6 header and the
682			 * TCP header.
683			 */
684			nth->th_sport = th->th_sport;
685			nth->th_dport = th->th_dport;
686		}
687		xchg(nth->th_dport, nth->th_sport, n_short);
688#undef xchg
689	}
690#if INET6
691	if (isipv6) {
692		ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
693						tlen));
694		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
695	} else
696#endif
697      {
698	tlen += sizeof (struct tcpiphdr);
699	ip->ip_len = tlen;
700	ip->ip_ttl = ip_defttl;
701      }
702	m->m_len = tlen;
703	m->m_pkthdr.len = tlen;
704	m->m_pkthdr.rcvif = 0;
705#if CONFIG_MACF_NET
706	if (tp != NULL && tp->t_inpcb != NULL) {
707		/*
708		 * Packet is associated with a socket, so allow the
709		 * label of the response to reflect the socket label.
710		 */
711		mac_mbuf_label_associate_inpcb(tp->t_inpcb, m);
712	} else {
713		/*
714		 * Packet is not associated with a socket, so possibly
715		 * update the label in place.
716		 */
717		mac_netinet_tcp_reply(m);
718	}
719#endif
720
721	nth->th_seq = htonl(seq);
722	nth->th_ack = htonl(ack);
723	nth->th_x2 = 0;
724	nth->th_off = sizeof (struct tcphdr) >> 2;
725	nth->th_flags = flags;
726	if (tp)
727		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
728	else
729		nth->th_win = htons((u_short)win);
730	nth->th_urp = 0;
731#if INET6
732	if (isipv6) {
733		nth->th_sum = 0;
734		nth->th_sum = in6_pseudo(&ip6->ip6_src, &ip6->ip6_dst,
735		    htonl((tlen - sizeof (struct ip6_hdr)) + IPPROTO_TCP));
736		m->m_pkthdr.csum_flags = CSUM_TCPIPV6;
737		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
738		ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL,
739					       ro6 && ro6->ro_rt ?
740					       ro6->ro_rt->rt_ifp :
741					       NULL);
742	} else
743#endif /* INET6 */
744	{
745		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
746		htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
747		m->m_pkthdr.csum_flags = CSUM_TCP;
748		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
749	}
750#if TCPDEBUG
751	if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
752		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
753#endif
754#if IPSEC
755	if (ipsec_bypass == 0 && ipsec_setsocket(m, tp ? tp->t_inpcb->inp_socket : NULL) != 0) {
756		m_freem(m);
757		return;
758	}
759#endif
760
761	if (tp != NULL) {
762		u_int32_t svc_flags = 0;
763		if (isipv6) {
764			svc_flags |= PKT_SCF_IPV6;
765		}
766		set_packet_service_class(m, tp->t_inpcb->inp_socket,
767		    MBUF_SC_UNSPEC, svc_flags);
768
769		/* Embed flowhash and flow control flags */
770		m->m_pkthdr.pkt_flowsrc = FLOWSRC_INPCB;
771		m->m_pkthdr.pkt_flowid = tp->t_inpcb->inp_flowhash;
772		m->m_pkthdr.pkt_flags |= PKTF_FLOW_ID | PKTF_FLOW_LOCALSRC;
773#if MPTCP
774		/* Disable flow advisory when using MPTCP. */
775		if (!(tp->t_mpflags & TMPF_MPTCP_TRUE))
776#endif /* MPTCP */
777			m->m_pkthdr.pkt_flags |= PKTF_FLOW_ADV;
778		m->m_pkthdr.pkt_proto = IPPROTO_TCP;
779	}
780
781#if INET6
782	if (isipv6) {
783		struct ip6_out_args ip6oa = { ifscope, { 0 },
784		    IP6OAF_SELECT_SRCIF | IP6OAF_BOUND_SRCADDR, 0 };
785
786		if (ifscope != IFSCOPE_NONE)
787			ip6oa.ip6oa_flags |= IP6OAF_BOUND_IF;
788		if (nocell)
789			ip6oa.ip6oa_flags |= IP6OAF_NO_CELLULAR;
790
791		(void) ip6_output(m, NULL, ro6, IPV6_OUTARGS, NULL,
792		    NULL, &ip6oa);
793
794		if (tp != NULL && ro6 != NULL && ro6->ro_rt != NULL &&
795		    (outif = ro6->ro_rt->rt_ifp) !=
796		    tp->t_inpcb->in6p_last_outifp)
797			tp->t_inpcb->in6p_last_outifp = outif;
798
799		if (ro6 == &sro6)
800			ROUTE_RELEASE(ro6);
801	} else
802#endif /* INET6 */
803	{
804		struct ip_out_args ipoa = { ifscope, { 0 },
805		    IPOAF_SELECT_SRCIF | IPOAF_BOUND_SRCADDR, 0 };
806
807		if (ifscope != IFSCOPE_NONE)
808			ipoa.ipoa_flags |= IPOAF_BOUND_IF;
809		if (nocell)
810			ipoa.ipoa_flags |= IPOAF_NO_CELLULAR;
811
812		if (ro != &sro) {
813			/* Copy the cached route and take an extra reference */
814			inp_route_copyout(tp->t_inpcb, &sro);
815		}
816		/*
817		 * For consistency, pass a local route copy.
818		 */
819		(void) ip_output(m, NULL, &sro, IP_OUTARGS, NULL, &ipoa);
820
821		if (tp != NULL && sro.ro_rt != NULL &&
822		    (outif = sro.ro_rt->rt_ifp) !=
823		    tp->t_inpcb->inp_last_outifp)
824			tp->t_inpcb->inp_last_outifp = outif;
825
826		if (ro != &sro) {
827			/* Synchronize cached PCB route */
828			inp_route_copyin(tp->t_inpcb, &sro);
829		} else {
830			ROUTE_RELEASE(&sro);
831		}
832	}
833}
834
835/*
836 * Create a new TCP control block, making an
837 * empty reassembly queue and hooking it to the argument
838 * protocol control block.  The `inp' parameter must have
839 * come from the zone allocator set up in tcp_init().
840 */
841struct tcpcb *
842tcp_newtcpcb(inp)
843	struct inpcb *inp;
844{
845	struct inp_tp *it;
846	register struct tcpcb *tp;
847	register struct socket *so = inp->inp_socket;
848#if INET6
849	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
850#endif /* INET6 */
851
852	calculate_tcp_clock();
853
854	if (!so->cached_in_sock_layer) {
855	     it = (struct inp_tp *)(void *)inp;
856	     tp = &it->tcb;
857	} else {
858	     tp = (struct tcpcb *)(void *)inp->inp_saved_ppcb;
859	}
860
861	bzero((char *) tp, sizeof(struct tcpcb));
862	LIST_INIT(&tp->t_segq);
863	tp->t_maxseg = tp->t_maxopd =
864#if INET6
865		isipv6 ? tcp_v6mssdflt :
866#endif /* INET6 */
867		tcp_mssdflt;
868
869	if (tcp_do_rfc1323)
870		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
871	if (tcp_do_sack)
872		tp->t_flagsext |= TF_SACK_ENABLE;
873
874	TAILQ_INIT(&tp->snd_holes);
875	tp->t_inpcb = inp;	/* XXX */
876	/*
877	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
878	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
879	 * reasonable initial retransmit time.
880	 */
881	tp->t_srtt = TCPTV_SRTTBASE;
882	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
883	tp->t_rttmin = tcp_TCPTV_MIN;
884	tp->t_rxtcur = TCPTV_RTOBASE;
885
886	/* Initialize congestion control algorithm for this connection
887	 * to newreno by default
888	 */
889	tp->tcp_cc_index = TCP_CC_ALGO_NEWRENO_INDEX;
890	if (CC_ALGO(tp)->init != NULL) {
891		CC_ALGO(tp)->init(tp);
892	}
893
894	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
895	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
896	tp->snd_ssthresh_prev = TCP_MAXWIN << TCP_MAX_WINSHIFT;
897	tp->t_rcvtime = tcp_now;
898	tp->tentry.timer_start = tcp_now;
899	tp->t_persist_timeout = tcp_max_persist_timeout;
900	tp->t_persist_stop = 0;
901	tp->t_flagsext |= TF_RCVUNACK_WAITSS;
902	tp->t_rexmtthresh = tcprexmtthresh;
903
904	/* Clear time wait tailq entry */
905	tp->t_twentry.tqe_next = NULL;
906	tp->t_twentry.tqe_prev = NULL;
907
908	/*
909	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
910	 * because the socket may be bound to an IPv6 wildcard address,
911	 * which may match an IPv4-mapped IPv6 address.
912	 */
913	inp->inp_ip_ttl = ip_defttl;
914	inp->inp_ppcb = (caddr_t)tp;
915	return (tp);		/* XXX */
916}
917
918/*
919 * Drop a TCP connection, reporting
920 * the specified error.  If connection is synchronized,
921 * then send a RST to peer.
922 */
923struct tcpcb *
924tcp_drop(tp, errno)
925	register struct tcpcb *tp;
926	int errno;
927{
928	struct socket *so = tp->t_inpcb->inp_socket;
929#if CONFIG_DTRACE
930	struct inpcb *inp = tp->t_inpcb;
931#endif
932
933	if (TCPS_HAVERCVDSYN(tp->t_state)) {
934		DTRACE_TCP4(state__change, void, NULL, struct inpcb *, inp,
935			struct tcpcb *, tp, int32_t, TCPS_CLOSED);
936		tp->t_state = TCPS_CLOSED;
937		(void) tcp_output(tp);
938		tcpstat.tcps_drops++;
939	} else
940		tcpstat.tcps_conndrops++;
941	if (errno == ETIMEDOUT && tp->t_softerror)
942		errno = tp->t_softerror;
943	so->so_error = errno;
944	return (tcp_close(tp));
945}
946
947void
948tcp_getrt_rtt(struct tcpcb *tp, struct rtentry *rt)
949{
950	u_int32_t rtt = rt->rt_rmx.rmx_rtt;
951	int isnetlocal = (tp->t_flags & TF_LOCAL);
952
953	if (rtt != 0) {
954		/*
955		 * XXX the lock bit for RTT indicates that the value
956		 * is also a minimum value; this is subject to time.
957		 */
958		if (rt->rt_rmx.rmx_locks & RTV_RTT)
959			tp->t_rttmin = rtt / (RTM_RTTUNIT / TCP_RETRANSHZ);
960		else
961			tp->t_rttmin = isnetlocal ? tcp_TCPTV_MIN : TCPTV_REXMTMIN;
962		tp->t_srtt = rtt / (RTM_RTTUNIT / (TCP_RETRANSHZ * TCP_RTT_SCALE));
963		tcpstat.tcps_usedrtt++;
964		if (rt->rt_rmx.rmx_rttvar) {
965			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
966		    		(RTM_RTTUNIT / (TCP_RETRANSHZ * TCP_RTTVAR_SCALE));
967			tcpstat.tcps_usedrttvar++;
968		} else {
969			/* default variation is +- 1 rtt */
970			tp->t_rttvar =
971		    		tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
972		}
973		TCPT_RANGESET(tp->t_rxtcur,
974			((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
975			tp->t_rttmin, TCPTV_REXMTMAX,
976			TCP_ADD_REXMTSLOP(tp));
977	}
978}
979
980/*
981 * Close a TCP control block:
982 *	discard all space held by the tcp
983 *	discard internet protocol block
984 *	wake up any sleepers
985 */
986struct tcpcb *
987tcp_close(tp)
988	register struct tcpcb *tp;
989{
990	struct inpcb *inp = tp->t_inpcb;
991	struct socket *so = inp->inp_socket;
992#if INET6
993	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
994#endif /* INET6 */
995	struct route *ro;
996	struct rtentry *rt;
997	int dosavessthresh;
998
999	/* tcp_close was called previously, bail */
1000	if ( inp->inp_ppcb == NULL)
1001		return(NULL);
1002
1003	tcp_canceltimers(tp);
1004	KERNEL_DEBUG(DBG_FNC_TCP_CLOSE | DBG_FUNC_START, tp,0,0,0,0);
1005
1006	/*
1007	 * If another thread for this tcp is currently in ip (indicated by
1008	 * the TF_SENDINPROG flag), defer the cleanup until after it returns
1009	 * back to tcp.  This is done to serialize the close until after all
1010	 * pending output is finished, in order to avoid having the PCB be
1011	 * detached and the cached route cleaned, only for ip to cache the
1012	 * route back into the PCB again.  Note that we've cleared all the
1013	 * timers at this point.  Set TF_CLOSING to indicate to tcp_output()
1014	 * that is should call us again once it returns from ip; at that
1015	 * point both flags should be cleared and we can proceed further
1016	 * with the cleanup.
1017	 */
1018	if ((tp->t_flags & TF_CLOSING) ||
1019		inp->inp_sndinprog_cnt > 0) {
1020		tp->t_flags |= TF_CLOSING;
1021		return (NULL);
1022	}
1023
1024	DTRACE_TCP4(state__change, void, NULL, struct inpcb *, inp,
1025		struct tcpcb *, tp, int32_t, TCPS_CLOSED);
1026
1027	if (CC_ALGO(tp)->cleanup != NULL) {
1028		CC_ALGO(tp)->cleanup(tp);
1029	}
1030
1031#if INET6
1032	ro = (isipv6 ? (struct route *)&inp->in6p_route : &inp->inp_route);
1033#else
1034	ro = &inp->inp_route;
1035#endif
1036	rt = ro->ro_rt;
1037	if (rt != NULL)
1038		RT_LOCK_SPIN(rt);
1039
1040	/*
1041	 * If we got enough samples through the srtt filter,
1042	 * save the rtt and rttvar in the routing entry.
1043	 * 'Enough' is arbitrarily defined as the 16 samples.
1044	 * 16 samples is enough for the srtt filter to converge
1045	 * to within 5% of the correct value; fewer samples and
1046	 * we could save a very bogus rtt.
1047	 *
1048	 * Don't update the default route's characteristics and don't
1049	 * update anything that the user "locked".
1050	 */
1051	if (tp->t_rttupdated >= 16) {
1052		register u_int32_t i = 0;
1053
1054#if INET6
1055		if (isipv6) {
1056			struct sockaddr_in6 *sin6;
1057
1058			if (rt == NULL)
1059				goto no_valid_rt;
1060			sin6 = (struct sockaddr_in6 *)(void *)rt_key(rt);
1061			if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
1062				goto no_valid_rt;
1063		}
1064		else
1065#endif /* INET6 */
1066		if (ROUTE_UNUSABLE(ro) ||
1067		    SIN(rt_key(rt))->sin_addr.s_addr == INADDR_ANY) {
1068			if (tp->t_state >= TCPS_CLOSE_WAIT) {
1069				DTRACE_TCP4(state__change,
1070				    void, NULL, struct inpcb *, inp,
1071				    struct tcpcb *, tp, int32_t,
1072				    TCPS_CLOSING);
1073				tp->t_state = TCPS_CLOSING;
1074			}
1075			goto no_valid_rt;
1076		}
1077
1078		RT_LOCK_ASSERT_HELD(rt);
1079		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
1080			i = tp->t_srtt *
1081			    (RTM_RTTUNIT / (TCP_RETRANSHZ * TCP_RTT_SCALE));
1082			if (rt->rt_rmx.rmx_rtt && i)
1083				/*
1084				 * filter this update to half the old & half
1085				 * the new values, converting scale.
1086				 * See route.h and tcp_var.h for a
1087				 * description of the scaling constants.
1088				 */
1089				rt->rt_rmx.rmx_rtt =
1090				    (rt->rt_rmx.rmx_rtt + i) / 2;
1091			else
1092				rt->rt_rmx.rmx_rtt = i;
1093			tcpstat.tcps_cachedrtt++;
1094		}
1095		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
1096			i = tp->t_rttvar *
1097			    (RTM_RTTUNIT / (TCP_RETRANSHZ * TCP_RTTVAR_SCALE));
1098			if (rt->rt_rmx.rmx_rttvar && i)
1099				rt->rt_rmx.rmx_rttvar =
1100				    (rt->rt_rmx.rmx_rttvar + i) / 2;
1101			else
1102				rt->rt_rmx.rmx_rttvar = i;
1103			tcpstat.tcps_cachedrttvar++;
1104		}
1105		/*
1106		 * The old comment here said:
1107		 * update the pipelimit (ssthresh) if it has been updated
1108		 * already or if a pipesize was specified & the threshhold
1109		 * got below half the pipesize.  I.e., wait for bad news
1110		 * before we start updating, then update on both good
1111		 * and bad news.
1112		 *
1113		 * But we want to save the ssthresh even if no pipesize is
1114		 * specified explicitly in the route, because such
1115		 * connections still have an implicit pipesize specified
1116		 * by the global tcp_sendspace.  In the absence of a reliable
1117		 * way to calculate the pipesize, it will have to do.
1118		 */
1119		i = tp->snd_ssthresh;
1120		if (rt->rt_rmx.rmx_sendpipe != 0)
1121			dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe / 2);
1122		else
1123			dosavessthresh = (i < so->so_snd.sb_hiwat / 2);
1124		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
1125		     i != 0 && rt->rt_rmx.rmx_ssthresh != 0)
1126		    || dosavessthresh) {
1127			/*
1128			 * convert the limit from user data bytes to
1129			 * packets then to packet data bytes.
1130			 */
1131			i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
1132			if (i < 2)
1133				i = 2;
1134			i *= (u_int32_t)(tp->t_maxseg +
1135#if INET6
1136				      (isipv6 ? sizeof (struct ip6_hdr) +
1137					       sizeof (struct tcphdr) :
1138#endif
1139				       sizeof (struct tcpiphdr)
1140#if INET6
1141				       )
1142#endif
1143				      );
1144			if (rt->rt_rmx.rmx_ssthresh)
1145				rt->rt_rmx.rmx_ssthresh =
1146				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
1147			else
1148				rt->rt_rmx.rmx_ssthresh = i;
1149			tcpstat.tcps_cachedssthresh++;
1150		}
1151	}
1152
1153	/*
1154	 * Mark route for deletion if no information is cached.
1155	 */
1156	if (rt != NULL && (so->so_flags & SOF_OVERFLOW) && tcp_lq_overflow) {
1157		if (!(rt->rt_rmx.rmx_locks & RTV_RTT) &&
1158		    rt->rt_rmx.rmx_rtt == 0) {
1159			rt->rt_flags |= RTF_DELCLONE;
1160		}
1161	}
1162
1163no_valid_rt:
1164	if (rt != NULL)
1165		RT_UNLOCK(rt);
1166
1167	/* free the reassembly queue, if any */
1168	(void) tcp_freeq(tp);
1169
1170	tcp_free_sackholes(tp);
1171	if (tp->t_bwmeas != NULL) {
1172		tcp_bwmeas_free(tp);
1173	}
1174
1175	/* Free the packet list */
1176	if (tp->t_pktlist_head != NULL)
1177		m_freem_list(tp->t_pktlist_head);
1178	TCP_PKTLIST_CLEAR(tp);
1179
1180#if MPTCP
1181	/* Clear MPTCP state */
1182	tp->t_mpflags = 0;
1183#endif /* MPTCP */
1184
1185	if (so->cached_in_sock_layer)
1186	    inp->inp_saved_ppcb = (caddr_t) tp;
1187
1188	/* Issue a wakeup before detach so that we don't miss
1189	 * a wakeup
1190	 */
1191	sodisconnectwakeup(so);
1192
1193	/*
1194	 * Clean up any LRO state
1195	 */
1196	if (tp->t_flagsext & TF_LRO_OFFLOADED) {
1197		tcp_lro_remove_state(inp->inp_laddr, inp->inp_faddr,
1198			inp->inp_lport,
1199			inp->inp_fport);
1200		tp->t_flagsext &= ~TF_LRO_OFFLOADED;
1201	}
1202	tp->t_state = TCPS_CLOSED;
1203#if INET6
1204	if (SOCK_CHECK_DOM(so, PF_INET6))
1205		in6_pcbdetach(inp);
1206	else
1207#endif /* INET6 */
1208	in_pcbdetach(inp);
1209
1210	/* Call soisdisconnected after detach because it might unlock the socket */
1211	soisdisconnected(so);
1212	tcpstat.tcps_closed++;
1213	KERNEL_DEBUG(DBG_FNC_TCP_CLOSE | DBG_FUNC_END, tcpstat.tcps_closed,0,0,0,0);
1214	return(NULL);
1215}
1216
1217int
1218tcp_freeq(tp)
1219	struct tcpcb *tp;
1220{
1221
1222	register struct tseg_qent *q;
1223	int rv = 0;
1224
1225	while((q = LIST_FIRST(&tp->t_segq)) != NULL) {
1226		LIST_REMOVE(q, tqe_q);
1227		m_freem(q->tqe_m);
1228		zfree(tcp_reass_zone, q);
1229		tcp_reass_qsize--;
1230		rv = 1;
1231	}
1232	return (rv);
1233}
1234
1235void
1236tcp_drain()
1237{
1238	if (do_tcpdrain)
1239	{
1240		struct inpcb *inp;
1241		struct tcpcb *tp;
1242	/*
1243	 * Walk the tcpbs, if existing, and flush the reassembly queue,
1244	 * if there is one...
1245	 * Do it next time if the pcbinfo lock is in use
1246	 */
1247		if (!lck_rw_try_lock_exclusive(tcbinfo.ipi_lock))
1248			return;
1249
1250		LIST_FOREACH(inp, tcbinfo.ipi_listhead, inp_list) {
1251			if (in_pcb_checkstate(inp, WNT_ACQUIRE, 0) !=
1252				WNT_STOPUSING) {
1253				tcp_lock(inp->inp_socket, 1, 0);
1254				if (in_pcb_checkstate(inp, WNT_RELEASE, 1)
1255					== WNT_STOPUSING) {
1256					/* lost a race, try the next one */
1257					tcp_unlock(inp->inp_socket, 1, 0);
1258					continue;
1259				}
1260				tp = intotcpcb(inp);
1261				tcp_freeq(tp);
1262				tcp_unlock(inp->inp_socket, 1, 0);
1263			}
1264		}
1265		lck_rw_done(tcbinfo.ipi_lock);
1266
1267	}
1268}
1269
1270/*
1271 * Notify a tcp user of an asynchronous error;
1272 * store error as soft error, but wake up user
1273 * (for now, won't do anything until can select for soft error).
1274 *
1275 * Do not wake up user since there currently is no mechanism for
1276 * reporting soft errors (yet - a kqueue filter may be added).
1277 */
1278static void
1279tcp_notify(inp, error)
1280	struct inpcb *inp;
1281	int error;
1282{
1283	struct tcpcb *tp;
1284
1285	if (inp == NULL || (inp->inp_state == INPCB_STATE_DEAD))
1286		return; /* pcb is gone already */
1287
1288	tp = (struct tcpcb *)inp->inp_ppcb;
1289
1290	/*
1291	 * Ignore some errors if we are hooked up.
1292	 * If connection hasn't completed, has retransmitted several times,
1293	 * and receives a second error, give up now.  This is better
1294	 * than waiting a long time to establish a connection that
1295	 * can never complete.
1296	 */
1297	if (tp->t_state == TCPS_ESTABLISHED &&
1298	     (error == EHOSTUNREACH || error == ENETUNREACH ||
1299	      error == EHOSTDOWN)) {
1300		return;
1301	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
1302	    tp->t_softerror)
1303		tcp_drop(tp, error);
1304	else
1305		tp->t_softerror = error;
1306#if 0
1307	wakeup((caddr_t) &so->so_timeo);
1308	sorwakeup(so);
1309	sowwakeup(so);
1310#endif
1311}
1312
1313struct bwmeas*
1314tcp_bwmeas_alloc(struct tcpcb *tp)
1315{
1316	struct bwmeas *elm;
1317	elm = zalloc(tcp_bwmeas_zone);
1318	if (elm == NULL)
1319		return(elm);
1320
1321	bzero(elm, bwmeas_elm_size);
1322	elm->bw_minsizepkts = TCP_BWMEAS_BURST_MINSIZE;
1323	elm->bw_maxsizepkts = TCP_BWMEAS_BURST_MAXSIZE;
1324	elm->bw_minsize = elm->bw_minsizepkts * tp->t_maxseg;
1325	elm->bw_maxsize = elm->bw_maxsizepkts * tp->t_maxseg;
1326	return(elm);
1327}
1328
1329void
1330tcp_bwmeas_free(struct tcpcb* tp)
1331{
1332	zfree(tcp_bwmeas_zone, tp->t_bwmeas);
1333	tp->t_bwmeas = NULL;
1334	tp->t_flagsext &= ~(TF_MEASURESNDBW);
1335}
1336
1337/*
1338 * tcpcb_to_otcpcb copies specific bits of a tcpcb to a otcpcb format.
1339 * The otcpcb data structure is passed to user space and must not change.
1340 */
1341static void
1342tcpcb_to_otcpcb(struct tcpcb *tp, struct otcpcb *otp)
1343{
1344	int i;
1345
1346	otp->t_segq = (u_int32_t)(uintptr_t)tp->t_segq.lh_first;
1347	otp->t_dupacks = tp->t_dupacks;
1348	for (i = 0; i < TCPT_NTIMERS_EXT; i++)
1349		otp->t_timer[i] = tp->t_timer[i];
1350	otp->t_inpcb = (_TCPCB_PTR(struct inpcb *))(uintptr_t)tp->t_inpcb;
1351	otp->t_state = tp->t_state;
1352	otp->t_flags = tp->t_flags;
1353	otp->t_force = tp->t_force;
1354	otp->snd_una = tp->snd_una;
1355	otp->snd_max = tp->snd_max;
1356	otp->snd_nxt = tp->snd_nxt;
1357	otp->snd_up = tp->snd_up;
1358	otp->snd_wl1 = tp->snd_wl1;
1359	otp->snd_wl2 = tp->snd_wl2;
1360	otp->iss = tp->iss;
1361	otp->irs = tp->irs;
1362	otp->rcv_nxt = tp->rcv_nxt;
1363	otp->rcv_adv = tp->rcv_adv;
1364	otp->rcv_wnd = tp->rcv_wnd;
1365	otp->rcv_up = tp->rcv_up;
1366	otp->snd_wnd = tp->snd_wnd;
1367	otp->snd_cwnd = tp->snd_cwnd;
1368	otp->snd_ssthresh = tp->snd_ssthresh;
1369	otp->t_maxopd = tp->t_maxopd;
1370	otp->t_rcvtime = tp->t_rcvtime;
1371	otp->t_starttime = tp->t_starttime;
1372	otp->t_rtttime = tp->t_rtttime;
1373	otp->t_rtseq = tp->t_rtseq;
1374	otp->t_rxtcur = tp->t_rxtcur;
1375	otp->t_maxseg = tp->t_maxseg;
1376	otp->t_srtt = tp->t_srtt;
1377	otp->t_rttvar = tp->t_rttvar;
1378	otp->t_rxtshift = tp->t_rxtshift;
1379	otp->t_rttmin = tp->t_rttmin;
1380	otp->t_rttupdated = tp->t_rttupdated;
1381	otp->max_sndwnd = tp->max_sndwnd;
1382	otp->t_softerror = tp->t_softerror;
1383	otp->t_oobflags = tp->t_oobflags;
1384	otp->t_iobc = tp->t_iobc;
1385	otp->snd_scale = tp->snd_scale;
1386	otp->rcv_scale = tp->rcv_scale;
1387	otp->request_r_scale = tp->request_r_scale;
1388	otp->requested_s_scale = tp->requested_s_scale;
1389	otp->ts_recent = tp->ts_recent;
1390	otp->ts_recent_age = tp->ts_recent_age;
1391	otp->last_ack_sent = tp->last_ack_sent;
1392	otp->cc_send = tp->cc_send;
1393	otp->cc_recv = tp->cc_recv;
1394	otp->snd_recover = tp->snd_recover;
1395	otp->snd_cwnd_prev = tp->snd_cwnd_prev;
1396	otp->snd_ssthresh_prev = tp->snd_ssthresh_prev;
1397	otp->t_badrxtwin = 0;
1398}
1399
1400static int
1401tcp_pcblist SYSCTL_HANDLER_ARGS
1402{
1403#pragma unused(oidp, arg1, arg2)
1404	int error, i = 0, n;
1405	struct inpcb *inp, **inp_list;
1406	struct tcpcb *tp;
1407	inp_gen_t gencnt;
1408	struct xinpgen xig;
1409
1410	/*
1411	 * The process of preparing the TCB list is too time-consuming and
1412	 * resource-intensive to repeat twice on every request.
1413	 */
1414	lck_rw_lock_shared(tcbinfo.ipi_lock);
1415	if (req->oldptr == USER_ADDR_NULL) {
1416		n = tcbinfo.ipi_count;
1417		req->oldidx = 2 * (sizeof xig)
1418			+ (n + n/8) * sizeof(struct xtcpcb);
1419		lck_rw_done(tcbinfo.ipi_lock);
1420		return 0;
1421	}
1422
1423	if (req->newptr != USER_ADDR_NULL) {
1424		lck_rw_done(tcbinfo.ipi_lock);
1425		return EPERM;
1426	}
1427
1428	/*
1429	 * OK, now we're committed to doing something.
1430	 */
1431	gencnt = tcbinfo.ipi_gencnt;
1432	n = tcbinfo.ipi_count;
1433
1434	bzero(&xig, sizeof(xig));
1435	xig.xig_len = sizeof xig;
1436	xig.xig_count = n;
1437	xig.xig_gen = gencnt;
1438	xig.xig_sogen = so_gencnt;
1439	error = SYSCTL_OUT(req, &xig, sizeof xig);
1440	if (error) {
1441		lck_rw_done(tcbinfo.ipi_lock);
1442		return error;
1443	}
1444	/*
1445	 * We are done if there is no pcb
1446	 */
1447	if (n == 0) {
1448		lck_rw_done(tcbinfo.ipi_lock);
1449		return 0;
1450	}
1451
1452	inp_list = _MALLOC(n * sizeof *inp_list, M_TEMP, M_WAITOK);
1453	if (inp_list == 0) {
1454		lck_rw_done(tcbinfo.ipi_lock);
1455		return ENOMEM;
1456	}
1457
1458	LIST_FOREACH(inp, tcbinfo.ipi_listhead, inp_list) {
1459		if (inp->inp_gencnt <= gencnt &&
1460			inp->inp_state != INPCB_STATE_DEAD)
1461			inp_list[i++] = inp;
1462		if (i >= n) break;
1463	}
1464
1465	TAILQ_FOREACH(tp, &tcp_tw_tailq, t_twentry) {
1466		inp = tp->t_inpcb;
1467		if (inp->inp_gencnt <= gencnt &&
1468			inp->inp_state != INPCB_STATE_DEAD)
1469			inp_list[i++] = inp;
1470		if (i >= n) break;
1471	}
1472
1473	n = i;
1474
1475	error = 0;
1476	for (i = 0; i < n; i++) {
1477		inp = inp_list[i];
1478		if (inp->inp_gencnt <= gencnt &&
1479			inp->inp_state != INPCB_STATE_DEAD) {
1480			struct xtcpcb xt;
1481			caddr_t inp_ppcb;
1482
1483			bzero(&xt, sizeof(xt));
1484			xt.xt_len = sizeof xt;
1485			/* XXX should avoid extra copy */
1486			inpcb_to_compat(inp, &xt.xt_inp);
1487			inp_ppcb = inp->inp_ppcb;
1488			if (inp_ppcb != NULL) {
1489				tcpcb_to_otcpcb(
1490				    (struct tcpcb *)(void *)inp_ppcb,
1491				    &xt.xt_tp);
1492			} else {
1493				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1494			}
1495			if (inp->inp_socket)
1496				sotoxsocket(inp->inp_socket, &xt.xt_socket);
1497			error = SYSCTL_OUT(req, &xt, sizeof xt);
1498		}
1499	}
1500	if (!error) {
1501		/*
1502		 * Give the user an updated idea of our state.
1503		 * If the generation differs from what we told
1504		 * her before, she knows that something happened
1505		 * while we were processing this request, and it
1506		 * might be necessary to retry.
1507		 */
1508		bzero(&xig, sizeof(xig));
1509		xig.xig_len = sizeof xig;
1510		xig.xig_gen = tcbinfo.ipi_gencnt;
1511		xig.xig_sogen = so_gencnt;
1512		xig.xig_count = tcbinfo.ipi_count;
1513		error = SYSCTL_OUT(req, &xig, sizeof xig);
1514	}
1515	FREE(inp_list, M_TEMP);
1516	lck_rw_done(tcbinfo.ipi_lock);
1517	return error;
1518}
1519
1520SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0,
1521	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1522
1523
1524static void
1525tcpcb_to_xtcpcb64(struct tcpcb *tp, struct xtcpcb64 *otp)
1526{
1527        int i;
1528
1529        otp->t_segq = (u_int32_t)(uintptr_t)tp->t_segq.lh_first;
1530        otp->t_dupacks = tp->t_dupacks;
1531        for (i = 0; i < TCPT_NTIMERS_EXT; i++)
1532                otp->t_timer[i] = tp->t_timer[i];
1533        otp->t_state = tp->t_state;
1534        otp->t_flags = tp->t_flags;
1535        otp->t_force = tp->t_force;
1536        otp->snd_una = tp->snd_una;
1537        otp->snd_max = tp->snd_max;
1538        otp->snd_nxt = tp->snd_nxt;
1539        otp->snd_up = tp->snd_up;
1540        otp->snd_wl1 = tp->snd_wl1;
1541        otp->snd_wl2 = tp->snd_wl2;
1542        otp->iss = tp->iss;
1543        otp->irs = tp->irs;
1544        otp->rcv_nxt = tp->rcv_nxt;
1545        otp->rcv_adv = tp->rcv_adv;
1546        otp->rcv_wnd = tp->rcv_wnd;
1547        otp->rcv_up = tp->rcv_up;
1548        otp->snd_wnd = tp->snd_wnd;
1549        otp->snd_cwnd = tp->snd_cwnd;
1550        otp->snd_ssthresh = tp->snd_ssthresh;
1551        otp->t_maxopd = tp->t_maxopd;
1552        otp->t_rcvtime = tp->t_rcvtime;
1553        otp->t_starttime = tp->t_starttime;
1554        otp->t_rtttime = tp->t_rtttime;
1555        otp->t_rtseq = tp->t_rtseq;
1556        otp->t_rxtcur = tp->t_rxtcur;
1557        otp->t_maxseg = tp->t_maxseg;
1558        otp->t_srtt = tp->t_srtt;
1559        otp->t_rttvar = tp->t_rttvar;
1560        otp->t_rxtshift = tp->t_rxtshift;
1561        otp->t_rttmin = tp->t_rttmin;
1562        otp->t_rttupdated = tp->t_rttupdated;
1563        otp->max_sndwnd = tp->max_sndwnd;
1564        otp->t_softerror = tp->t_softerror;
1565        otp->t_oobflags = tp->t_oobflags;
1566        otp->t_iobc = tp->t_iobc;
1567        otp->snd_scale = tp->snd_scale;
1568        otp->rcv_scale = tp->rcv_scale;
1569        otp->request_r_scale = tp->request_r_scale;
1570        otp->requested_s_scale = tp->requested_s_scale;
1571        otp->ts_recent = tp->ts_recent;
1572        otp->ts_recent_age = tp->ts_recent_age;
1573        otp->last_ack_sent = tp->last_ack_sent;
1574        otp->cc_send = tp->cc_send;
1575        otp->cc_recv = tp->cc_recv;
1576        otp->snd_recover = tp->snd_recover;
1577        otp->snd_cwnd_prev = tp->snd_cwnd_prev;
1578        otp->snd_ssthresh_prev = tp->snd_ssthresh_prev;
1579        otp->t_badrxtwin = 0;
1580}
1581
1582
1583static int
1584tcp_pcblist64 SYSCTL_HANDLER_ARGS
1585{
1586#pragma unused(oidp, arg1, arg2)
1587        int error, i = 0, n;
1588        struct inpcb *inp, **inp_list;
1589	struct tcpcb *tp;
1590        inp_gen_t gencnt;
1591        struct xinpgen xig;
1592
1593        /*
1594         * The process of preparing the TCB list is too time-consuming and
1595         * resource-intensive to repeat twice on every request.
1596         */
1597        lck_rw_lock_shared(tcbinfo.ipi_lock);
1598        if (req->oldptr == USER_ADDR_NULL) {
1599                n = tcbinfo.ipi_count;
1600                req->oldidx = 2 * (sizeof xig)
1601                        + (n + n/8) * sizeof(struct xtcpcb64);
1602                lck_rw_done(tcbinfo.ipi_lock);
1603                return 0;
1604        }
1605
1606        if (req->newptr != USER_ADDR_NULL) {
1607                lck_rw_done(tcbinfo.ipi_lock);
1608                return EPERM;
1609        }
1610
1611        /*
1612         * OK, now we're committed to doing something.
1613         */
1614        gencnt = tcbinfo.ipi_gencnt;
1615        n = tcbinfo.ipi_count;
1616
1617        bzero(&xig, sizeof(xig));
1618        xig.xig_len = sizeof xig;
1619        xig.xig_count = n;
1620        xig.xig_gen = gencnt;
1621        xig.xig_sogen = so_gencnt;
1622        error = SYSCTL_OUT(req, &xig, sizeof xig);
1623        if (error) {
1624                lck_rw_done(tcbinfo.ipi_lock);
1625                return error;
1626        }
1627        /*
1628         * We are done if there is no pcb
1629         */
1630        if (n == 0) {
1631                lck_rw_done(tcbinfo.ipi_lock);
1632                return 0;
1633        }
1634
1635        inp_list = _MALLOC(n * sizeof *inp_list, M_TEMP, M_WAITOK);
1636        if (inp_list == 0) {
1637                lck_rw_done(tcbinfo.ipi_lock);
1638                return ENOMEM;
1639        }
1640
1641	LIST_FOREACH(inp, tcbinfo.ipi_listhead, inp_list) {
1642                if (inp->inp_gencnt <= gencnt &&
1643			inp->inp_state != INPCB_STATE_DEAD)
1644                        inp_list[i++] = inp;
1645		if (i >= n) break;
1646        }
1647
1648	TAILQ_FOREACH(tp, &tcp_tw_tailq, t_twentry) {
1649		inp = tp->t_inpcb;
1650		if (inp->inp_gencnt <= gencnt &&
1651			inp->inp_state != INPCB_STATE_DEAD)
1652			inp_list[i++] = inp;
1653		if (i >= n) break;
1654        }
1655
1656        n = i;
1657
1658        error = 0;
1659        for (i = 0; i < n; i++) {
1660                inp = inp_list[i];
1661                if (inp->inp_gencnt <= gencnt && inp->inp_state != INPCB_STATE_DEAD) {
1662					struct xtcpcb64 xt;
1663
1664					bzero(&xt, sizeof(xt));
1665					xt.xt_len = sizeof xt;
1666					inpcb_to_xinpcb64(inp, &xt.xt_inpcb);
1667					xt.xt_inpcb.inp_ppcb = (u_int64_t)(uintptr_t)inp->inp_ppcb;
1668					if (inp->inp_ppcb != NULL)
1669						tcpcb_to_xtcpcb64((struct tcpcb *)inp->inp_ppcb, &xt);
1670					if (inp->inp_socket)
1671						sotoxsocket64(inp->inp_socket, &xt.xt_inpcb.xi_socket);
1672					error = SYSCTL_OUT(req, &xt, sizeof xt);
1673                }
1674        }
1675        if (!error) {
1676			/*
1677			 * Give the user an updated idea of our state.
1678			 * If the generation differs from what we told
1679			 * her before, she knows that something happened
1680			 * while we were processing this request, and it
1681			 * might be necessary to retry.
1682			 */
1683			bzero(&xig, sizeof(xig));
1684			xig.xig_len = sizeof xig;
1685			xig.xig_gen = tcbinfo.ipi_gencnt;
1686			xig.xig_sogen = so_gencnt;
1687			xig.xig_count = tcbinfo.ipi_count;
1688			error = SYSCTL_OUT(req, &xig, sizeof xig);
1689        }
1690        FREE(inp_list, M_TEMP);
1691        lck_rw_done(tcbinfo.ipi_lock);
1692        return error;
1693}
1694
1695SYSCTL_PROC(_net_inet_tcp, OID_AUTO, pcblist64, CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0,
1696            tcp_pcblist64, "S,xtcpcb64", "List of active TCP connections");
1697
1698
1699static int
1700tcp_pcblist_n SYSCTL_HANDLER_ARGS
1701{
1702#pragma unused(oidp, arg1, arg2)
1703	int error = 0;
1704
1705	error = get_pcblist_n(IPPROTO_TCP, req, &tcbinfo);
1706
1707	return error;
1708}
1709
1710
1711SYSCTL_PROC(_net_inet_tcp, OID_AUTO, pcblist_n, CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0,
1712            tcp_pcblist_n, "S,xtcpcb_n", "List of active TCP connections");
1713
1714
1715__private_extern__ void
1716tcp_get_ports_used(uint32_t ifindex, int protocol, uint32_t wildcardok,
1717    bitstr_t *bitfield)
1718{
1719	inpcb_get_ports_used(ifindex, protocol, wildcardok, bitfield, &tcbinfo);
1720}
1721
1722__private_extern__ uint32_t
1723tcp_count_opportunistic(unsigned int ifindex, u_int32_t flags)
1724{
1725	return inpcb_count_opportunistic(ifindex, &tcbinfo, flags);
1726}
1727
1728__private_extern__ uint32_t
1729tcp_find_anypcb_byaddr(struct ifaddr *ifa)
1730{
1731	return inpcb_find_anypcb_byaddr(ifa, &tcbinfo);
1732}
1733
1734void
1735tcp_ctlinput(cmd, sa, vip)
1736	int cmd;
1737	struct sockaddr *sa;
1738	void *vip;
1739{
1740	tcp_seq icmp_tcp_seq;
1741	struct ip *ip = vip;
1742	struct in_addr faddr;
1743	struct inpcb *inp;
1744	struct tcpcb *tp;
1745
1746	void (*notify)(struct inpcb *, int) = tcp_notify;
1747
1748	faddr = ((struct sockaddr_in *)(void *)sa)->sin_addr;
1749	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1750		return;
1751
1752	if (cmd == PRC_MSGSIZE)
1753		notify = tcp_mtudisc;
1754	else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1755		cmd == PRC_UNREACH_PORT) && ip)
1756		notify = tcp_drop_syn_sent;
1757	else if (PRC_IS_REDIRECT(cmd)) {
1758		ip = 0;
1759		notify = in_rtchange;
1760	} else if (cmd == PRC_HOSTDEAD)
1761		ip = 0;
1762	/* Source quench is deprecated */
1763	else if (cmd == PRC_QUENCH)
1764		return;
1765	else if ((unsigned)cmd > PRC_NCMDS || inetctlerrmap[cmd] == 0)
1766		return;
1767	if (ip) {
1768		struct tcphdr th;
1769		struct icmp *icp;
1770
1771		icp = (struct icmp *)(void *)
1772		    ((caddr_t)ip - offsetof(struct icmp, icmp_ip));
1773		bcopy(((caddr_t)ip + (IP_VHL_HL(ip->ip_vhl) << 2)),
1774		    &th, sizeof (th));
1775		inp = in_pcblookup_hash(&tcbinfo, faddr, th.th_dport,
1776		    ip->ip_src, th.th_sport, 0, NULL);
1777		if (inp != NULL && inp->inp_socket != NULL) {
1778			tcp_lock(inp->inp_socket, 1, 0);
1779			if (in_pcb_checkstate(inp, WNT_RELEASE, 1) == WNT_STOPUSING) {
1780				tcp_unlock(inp->inp_socket, 1, 0);
1781				return;
1782			}
1783			icmp_tcp_seq = htonl(th.th_seq);
1784			tp = intotcpcb(inp);
1785			if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) &&
1786			    SEQ_LT(icmp_tcp_seq, tp->snd_max)) {
1787				if (cmd == PRC_MSGSIZE) {
1788
1789					/*
1790				  	 * MTU discovery:
1791				 	 * If we got a needfrag and there is a host route to the
1792				 	 * original destination, and the MTU is not locked, then
1793				 	 * set the MTU in the route to the suggested new value
1794				 	 * (if given) and then notify as usual.  The ULPs will
1795				 	 * notice that the MTU has changed and adapt accordingly.
1796				 	 * If no new MTU was suggested, then we guess a new one
1797				 	 * less than the current value.  If the new MTU is
1798				 	 * unreasonably small (defined by sysctl tcp_minmss), then
1799				 	 * we reset the MTU to the interface value and enable the
1800				 	 * lock bit, indicating that we are no longer doing MTU
1801				 	 * discovery.
1802				 	 */
1803					struct rtentry *rt;
1804					int mtu;
1805					struct sockaddr_in icmpsrc = { sizeof (struct sockaddr_in), AF_INET,
1806										0 , { 0 }, { 0,0,0,0,0,0,0,0 } };
1807					icmpsrc.sin_addr = icp->icmp_ip.ip_dst;
1808
1809					rt = rtalloc1((struct sockaddr *)&icmpsrc, 0,
1810					    RTF_CLONING | RTF_PRCLONING);
1811					if (rt != NULL) {
1812						RT_LOCK(rt);
1813						if ((rt->rt_flags & RTF_HOST) &&
1814						    !(rt->rt_rmx.rmx_locks & RTV_MTU)) {
1815							mtu = ntohs(icp->icmp_nextmtu);
1816							if (!mtu)
1817								mtu = ip_next_mtu(rt->rt_rmx.
1818								    rmx_mtu, 1);
1819#if DEBUG_MTUDISC
1820							printf("MTU for %s reduced to %d\n",
1821							    inet_ntop(AF_INET,
1822							    &icmpsrc.sin_addr, ipv4str,
1823							    sizeof (ipv4str)), mtu);
1824#endif
1825							if (mtu < max(296, (tcp_minmss +
1826							    sizeof (struct tcpiphdr)))) {
1827								/* rt->rt_rmx.rmx_mtu =
1828									rt->rt_ifp->if_mtu; */
1829								rt->rt_rmx.rmx_locks |= RTV_MTU;
1830							} else if (rt->rt_rmx.rmx_mtu > mtu) {
1831								rt->rt_rmx.rmx_mtu = mtu;
1832							}
1833						}
1834						RT_UNLOCK(rt);
1835						rtfree(rt);
1836					}
1837				}
1838
1839				(*notify)(inp, inetctlerrmap[cmd]);
1840			}
1841			tcp_unlock(inp->inp_socket, 1, 0);
1842		}
1843	} else
1844		in_pcbnotifyall(&tcbinfo, faddr, inetctlerrmap[cmd], notify);
1845}
1846
1847#if INET6
1848void
1849tcp6_ctlinput(cmd, sa, d)
1850	int cmd;
1851	struct sockaddr *sa;
1852	void *d;
1853{
1854	struct tcphdr th;
1855	void (*notify)(struct inpcb *, int) = tcp_notify;
1856	struct ip6_hdr *ip6;
1857	struct mbuf *m;
1858	struct ip6ctlparam *ip6cp = NULL;
1859	const struct sockaddr_in6 *sa6_src = NULL;
1860	int off;
1861	struct tcp_portonly {
1862		u_int16_t th_sport;
1863		u_int16_t th_dport;
1864	} *thp;
1865
1866	if (sa->sa_family != AF_INET6 ||
1867	    sa->sa_len != sizeof(struct sockaddr_in6))
1868		return;
1869
1870	if (cmd == PRC_MSGSIZE)
1871		notify = tcp_mtudisc;
1872	else if (!PRC_IS_REDIRECT(cmd) &&
1873		 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1874		return;
1875	/* Source quench is deprecated */
1876	else if (cmd == PRC_QUENCH)
1877		return;
1878
1879	/* if the parameter is from icmp6, decode it. */
1880	if (d != NULL) {
1881		ip6cp = (struct ip6ctlparam *)d;
1882		m = ip6cp->ip6c_m;
1883		ip6 = ip6cp->ip6c_ip6;
1884		off = ip6cp->ip6c_off;
1885		sa6_src = ip6cp->ip6c_src;
1886	} else {
1887		m = NULL;
1888		ip6 = NULL;
1889		off = 0;	/* fool gcc */
1890		sa6_src = &sa6_any;
1891	}
1892
1893	if (ip6) {
1894		/*
1895		 * XXX: We assume that when IPV6 is non NULL,
1896		 * M and OFF are valid.
1897		 */
1898
1899		/* check if we can safely examine src and dst ports */
1900		if (m->m_pkthdr.len < off + sizeof(*thp))
1901			return;
1902
1903		bzero(&th, sizeof(th));
1904		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1905
1906		in6_pcbnotify(&tcbinfo, sa, th.th_dport,
1907		    (struct sockaddr *)ip6cp->ip6c_src,
1908		    th.th_sport, cmd, NULL, notify);
1909	} else {
1910		in6_pcbnotify(&tcbinfo, sa, 0,
1911		    (struct sockaddr *)(size_t)sa6_src, 0, cmd, NULL, notify);
1912	}
1913}
1914#endif /* INET6 */
1915
1916
1917/*
1918 * Following is where TCP initial sequence number generation occurs.
1919 *
1920 * There are two places where we must use initial sequence numbers:
1921 * 1.  In SYN-ACK packets.
1922 * 2.  In SYN packets.
1923 *
1924 * The ISNs in SYN-ACK packets have no monotonicity requirement,
1925 * and should be as unpredictable as possible to avoid the possibility
1926 * of spoofing and/or connection hijacking.  To satisfy this
1927 * requirement, SYN-ACK ISNs are generated via the arc4random()
1928 * function.  If exact RFC 1948 compliance is requested via sysctl,
1929 * these ISNs will be generated just like those in SYN packets.
1930 *
1931 * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1932 * depends on this property.  In addition, these ISNs should be
1933 * unguessable so as to prevent connection hijacking.  To satisfy
1934 * the requirements of this situation, the algorithm outlined in
1935 * RFC 1948 is used to generate sequence numbers.
1936 *
1937 * For more information on the theory of operation, please see
1938 * RFC 1948.
1939 *
1940 * Implementation details:
1941 *
1942 * Time is based off the system timer, and is corrected so that it
1943 * increases by one megabyte per second.  This allows for proper
1944 * recycling on high speed LANs while still leaving over an hour
1945 * before rollover.
1946 *
1947 * Two sysctls control the generation of ISNs:
1948 *
1949 * net.inet.tcp.isn_reseed_interval controls the number of seconds
1950 * between seeding of isn_secret.  This is normally set to zero,
1951 * as reseeding should not be necessary.
1952 *
1953 * net.inet.tcp.strict_rfc1948 controls whether RFC 1948 is followed
1954 * strictly.  When strict compliance is requested, reseeding is
1955 * disabled and SYN-ACKs will be generated in the same manner as
1956 * SYNs.  Strict mode is disabled by default.
1957 *
1958 */
1959
1960#define ISN_BYTES_PER_SECOND 1048576
1961
1962tcp_seq
1963tcp_new_isn(tp)
1964	struct tcpcb *tp;
1965{
1966	u_int32_t md5_buffer[4];
1967	tcp_seq new_isn;
1968	struct timeval timenow;
1969	u_char isn_secret[32];
1970	int isn_last_reseed = 0;
1971	MD5_CTX isn_ctx;
1972
1973	/* Use arc4random for SYN-ACKs when not in exact RFC1948 mode. */
1974	if (((tp->t_state == TCPS_LISTEN) || (tp->t_state == TCPS_TIME_WAIT))
1975	   && tcp_strict_rfc1948 == 0)
1976#ifdef __APPLE__
1977		return RandomULong();
1978#else
1979		return arc4random();
1980#endif
1981	getmicrotime(&timenow);
1982
1983	/* Seed if this is the first use, reseed if requested. */
1984	if ((isn_last_reseed == 0) ||
1985	    ((tcp_strict_rfc1948 == 0) && (tcp_isn_reseed_interval > 0) &&
1986	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1987		< (u_int)timenow.tv_sec))) {
1988#ifdef __APPLE__
1989		read_random(&isn_secret, sizeof(isn_secret));
1990#else
1991		read_random_unlimited(&isn_secret, sizeof(isn_secret));
1992#endif
1993		isn_last_reseed = timenow.tv_sec;
1994	}
1995
1996	/* Compute the md5 hash and return the ISN. */
1997	MD5Init(&isn_ctx);
1998	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1999	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
2000#if INET6
2001	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
2002		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
2003			  sizeof(struct in6_addr));
2004		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
2005			  sizeof(struct in6_addr));
2006	} else
2007#endif
2008	{
2009		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
2010			  sizeof(struct in_addr));
2011		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
2012			  sizeof(struct in_addr));
2013	}
2014	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
2015	MD5Final((u_char *) &md5_buffer, &isn_ctx);
2016	new_isn = (tcp_seq) md5_buffer[0];
2017	new_isn += timenow.tv_sec * (ISN_BYTES_PER_SECOND / hz);
2018	return new_isn;
2019}
2020
2021
2022/*
2023 * When a specific ICMP unreachable message is received and the
2024 * connection state is SYN-SENT, drop the connection.  This behavior
2025 * is controlled by the icmp_may_rst sysctl.
2026 */
2027void
2028tcp_drop_syn_sent(inp, errno)
2029	struct inpcb *inp;
2030	int errno;
2031{
2032	struct tcpcb *tp = intotcpcb(inp);
2033
2034	if (tp && tp->t_state == TCPS_SYN_SENT)
2035		tcp_drop(tp, errno);
2036}
2037
2038/*
2039 * When `need fragmentation' ICMP is received, update our idea of the MSS
2040 * based on the new value in the route.  Also nudge TCP to send something,
2041 * since we know the packet we just sent was dropped.
2042 * This duplicates some code in the tcp_mss() function in tcp_input.c.
2043 */
2044void
2045tcp_mtudisc(
2046	struct inpcb *inp,
2047	__unused int errno
2048)
2049{
2050	struct tcpcb *tp = intotcpcb(inp);
2051	struct rtentry *rt;
2052	struct rmxp_tao *taop;
2053	struct socket *so = inp->inp_socket;
2054	int offered;
2055	int mss;
2056#if INET6
2057	int isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
2058#endif /* INET6 */
2059
2060	if (tp) {
2061#if INET6
2062		if (isipv6)
2063			rt = tcp_rtlookup6(inp, IFSCOPE_NONE);
2064		else
2065#endif /* INET6 */
2066		rt = tcp_rtlookup(inp, IFSCOPE_NONE);
2067		if (!rt || !rt->rt_rmx.rmx_mtu) {
2068			tp->t_maxopd = tp->t_maxseg =
2069#if INET6
2070				isipv6 ? tcp_v6mssdflt :
2071#endif /* INET6 */
2072				tcp_mssdflt;
2073
2074			/* Route locked during lookup above */
2075			if (rt != NULL)
2076				RT_UNLOCK(rt);
2077			return;
2078		}
2079		taop = rmx_taop(rt->rt_rmx);
2080		offered = taop->tao_mssopt;
2081		mss = rt->rt_rmx.rmx_mtu -
2082#if INET6
2083			(isipv6 ?
2084			 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
2085#endif /* INET6 */
2086			 sizeof(struct tcpiphdr)
2087#if INET6
2088			 )
2089#endif /* INET6 */
2090			;
2091
2092		/* Route locked during lookup above */
2093		RT_UNLOCK(rt);
2094
2095		if (offered)
2096			mss = min(mss, offered);
2097		/*
2098		 * XXX - The above conditional probably violates the TCP
2099		 * spec.  The problem is that, since we don't know the
2100		 * other end's MSS, we are supposed to use a conservative
2101		 * default.  But, if we do that, then MTU discovery will
2102		 * never actually take place, because the conservative
2103		 * default is much less than the MTUs typically seen
2104		 * on the Internet today.  For the moment, we'll sweep
2105		 * this under the carpet.
2106		 *
2107		 * The conservative default might not actually be a problem
2108		 * if the only case this occurs is when sending an initial
2109		 * SYN with options and data to a host we've never talked
2110		 * to before.  Then, they will reply with an MSS value which
2111		 * will get recorded and the new parameters should get
2112		 * recomputed.  For Further Study.
2113		 */
2114		if (tp->t_maxopd <= mss)
2115			return;
2116		tp->t_maxopd = mss;
2117
2118		if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
2119		    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
2120			mss -= TCPOLEN_TSTAMP_APPA;
2121
2122#if MPTCP
2123		mss -= mptcp_adj_mss(tp, TRUE);
2124#endif
2125		if (so->so_snd.sb_hiwat < mss)
2126			mss = so->so_snd.sb_hiwat;
2127
2128		tp->t_maxseg = mss;
2129
2130		/*
2131		 * Reset the slow-start flight size as it may depends on the new MSS
2132		 */
2133		if (CC_ALGO(tp)->cwnd_init != NULL)
2134			CC_ALGO(tp)->cwnd_init(tp);
2135		tcpstat.tcps_mturesent++;
2136		tp->t_rtttime = 0;
2137		tp->snd_nxt = tp->snd_una;
2138		tcp_output(tp);
2139	}
2140}
2141
2142/*
2143 * Look-up the routing entry to the peer of this inpcb.  If no route
2144 * is found and it cannot be allocated the return NULL.  This routine
2145 * is called by TCP routines that access the rmx structure and by tcp_mss
2146 * to get the interface MTU.  If a route is found, this routine will
2147 * hold the rtentry lock; the caller is responsible for unlocking.
2148 */
2149struct rtentry *
2150tcp_rtlookup(inp, input_ifscope)
2151	struct inpcb *inp;
2152	unsigned int input_ifscope;
2153{
2154	struct route *ro;
2155	struct rtentry *rt;
2156	struct tcpcb *tp;
2157
2158	lck_mtx_assert(rnh_lock, LCK_MTX_ASSERT_NOTOWNED);
2159
2160	ro = &inp->inp_route;
2161	if ((rt = ro->ro_rt) != NULL)
2162		RT_LOCK(rt);
2163
2164	if (ROUTE_UNUSABLE(ro)) {
2165		if (rt != NULL) {
2166			RT_UNLOCK(rt);
2167			rt = NULL;
2168		}
2169		ROUTE_RELEASE(ro);
2170		/* No route yet, so try to acquire one */
2171		if (inp->inp_faddr.s_addr != INADDR_ANY) {
2172			unsigned int ifscope;
2173
2174			ro->ro_dst.sa_family = AF_INET;
2175			ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
2176			((struct sockaddr_in *)(void *)&ro->ro_dst)->sin_addr =
2177				inp->inp_faddr;
2178
2179			/*
2180			 * If the socket was bound to an interface, then
2181			 * the bound-to-interface takes precedence over
2182			 * the inbound interface passed in by the caller
2183			 * (if we get here as part of the output path then
2184			 * input_ifscope is IFSCOPE_NONE).
2185			 */
2186			ifscope = (inp->inp_flags & INP_BOUND_IF) ?
2187			    inp->inp_boundifp->if_index : input_ifscope;
2188
2189			rtalloc_scoped(ro, ifscope);
2190			if ((rt = ro->ro_rt) != NULL)
2191				RT_LOCK(rt);
2192		}
2193	}
2194	if (rt != NULL)
2195		RT_LOCK_ASSERT_HELD(rt);
2196
2197	/*
2198	 * Update MTU discovery determination. Don't do it if:
2199	 *	1) it is disabled via the sysctl
2200	 *	2) the route isn't up
2201	 *	3) the MTU is locked (if it is, then discovery has been
2202	 *	   disabled)
2203	 */
2204
2205	 tp = intotcpcb(inp);
2206
2207	if (!path_mtu_discovery || ((rt != NULL) &&
2208	    (!(rt->rt_flags & RTF_UP) || (rt->rt_rmx.rmx_locks & RTV_MTU))))
2209		tp->t_flags &= ~TF_PMTUD;
2210	else
2211		tp->t_flags |= TF_PMTUD;
2212
2213#if CONFIG_IFEF_NOWINDOWSCALE
2214	if (tcp_obey_ifef_nowindowscale &&
2215	    tp->t_state == TCPS_SYN_SENT && rt != NULL && rt->rt_ifp != NULL &&
2216	    (rt->rt_ifp->if_eflags & IFEF_NOWINDOWSCALE)) {
2217		/* Window scaling is enabled on this interface */
2218		tp->t_flags &= ~TF_REQ_SCALE;
2219	}
2220#endif
2221
2222	if (rt != NULL && rt->rt_ifp != NULL) {
2223		somultipages(inp->inp_socket,
2224		    (rt->rt_ifp->if_hwassist & IFNET_MULTIPAGES));
2225		tcp_set_tso(tp, rt->rt_ifp);
2226	}
2227
2228	/* Note if the peer is local */
2229	if (rt != NULL &&
2230		(rt->rt_gateway->sa_family == AF_LINK ||
2231		rt->rt_ifp->if_flags & IFF_LOOPBACK ||
2232		in_localaddr(inp->inp_faddr))) {
2233		tp->t_flags |= TF_LOCAL;
2234	}
2235
2236	/*
2237	 * Caller needs to call RT_UNLOCK(rt).
2238	 */
2239	return rt;
2240}
2241
2242#if INET6
2243struct rtentry *
2244tcp_rtlookup6(inp, input_ifscope)
2245	struct inpcb *inp;
2246	unsigned int input_ifscope;
2247{
2248	struct route_in6 *ro6;
2249	struct rtentry *rt;
2250	struct tcpcb *tp;
2251
2252	lck_mtx_assert(rnh_lock, LCK_MTX_ASSERT_NOTOWNED);
2253
2254	ro6 = &inp->in6p_route;
2255	if ((rt = ro6->ro_rt) != NULL)
2256		RT_LOCK(rt);
2257
2258	if (ROUTE_UNUSABLE(ro6)) {
2259		if (rt != NULL) {
2260			RT_UNLOCK(rt);
2261			rt = NULL;
2262		}
2263		ROUTE_RELEASE(ro6);
2264		/* No route yet, so try to acquire one */
2265		if (!IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr)) {
2266			struct sockaddr_in6 *dst6;
2267			unsigned int ifscope;
2268
2269			dst6 = (struct sockaddr_in6 *)&ro6->ro_dst;
2270			dst6->sin6_family = AF_INET6;
2271			dst6->sin6_len = sizeof(*dst6);
2272			dst6->sin6_addr = inp->in6p_faddr;
2273
2274			/*
2275			 * If the socket was bound to an interface, then
2276			 * the bound-to-interface takes precedence over
2277			 * the inbound interface passed in by the caller
2278			 * (if we get here as part of the output path then
2279			 * input_ifscope is IFSCOPE_NONE).
2280			 */
2281			ifscope = (inp->inp_flags & INP_BOUND_IF) ?
2282			    inp->inp_boundifp->if_index : input_ifscope;
2283
2284			rtalloc_scoped((struct route *)ro6, ifscope);
2285			if ((rt = ro6->ro_rt) != NULL)
2286				RT_LOCK(rt);
2287		}
2288	}
2289	if (rt != NULL)
2290		RT_LOCK_ASSERT_HELD(rt);
2291
2292	/*
2293	 * Update path MTU Discovery determination
2294	 * while looking up the route:
2295	 *  1) we have a valid route to the destination
2296	 *  2) the MTU is not locked (if it is, then discovery has been
2297	 *    disabled)
2298	 */
2299
2300
2301	 tp = intotcpcb(inp);
2302
2303	/*
2304	 * Update MTU discovery determination. Don't do it if:
2305	 *	1) it is disabled via the sysctl
2306	 *	2) the route isn't up
2307	 *	3) the MTU is locked (if it is, then discovery has been
2308	 *	   disabled)
2309	 */
2310
2311	if (!path_mtu_discovery || ((rt != NULL) &&
2312	    (!(rt->rt_flags & RTF_UP) || (rt->rt_rmx.rmx_locks & RTV_MTU))))
2313		tp->t_flags &= ~TF_PMTUD;
2314	else
2315		tp->t_flags |= TF_PMTUD;
2316
2317#if CONFIG_IFEF_NOWINDOWSCALE
2318	if (tcp_obey_ifef_nowindowscale &&
2319	    tp->t_state == TCPS_SYN_SENT && rt != NULL && rt->rt_ifp != NULL &&
2320	    (rt->rt_ifp->if_eflags & IFEF_NOWINDOWSCALE)) {
2321		/* Window scaling is not enabled on this interface */
2322		tp->t_flags &= ~TF_REQ_SCALE;
2323	}
2324#endif
2325
2326	if (rt != NULL && rt->rt_ifp != NULL) {
2327		somultipages(inp->inp_socket,
2328		    (rt->rt_ifp->if_hwassist & IFNET_MULTIPAGES));
2329		tcp_set_tso(tp, rt->rt_ifp);
2330	}
2331
2332	/* Note if the peer is local */
2333	if (rt != NULL &&
2334		(IN6_IS_ADDR_LOOPBACK(&inp->in6p_faddr) ||
2335		IN6_IS_ADDR_LINKLOCAL(&inp->in6p_faddr) ||
2336		rt->rt_gateway->sa_family == AF_LINK ||
2337		in6_localaddr(&inp->in6p_faddr))) {
2338		tp->t_flags |= TF_LOCAL;
2339	}
2340
2341	/*
2342	 * Caller needs to call RT_UNLOCK(rt).
2343	 */
2344	return rt;
2345}
2346#endif /* INET6 */
2347
2348#if IPSEC
2349/* compute ESP/AH header size for TCP, including outer IP header. */
2350size_t
2351ipsec_hdrsiz_tcp(tp)
2352	struct tcpcb *tp;
2353{
2354	struct inpcb *inp;
2355	struct mbuf *m;
2356	size_t hdrsiz;
2357	struct ip *ip;
2358#if INET6
2359	struct ip6_hdr *ip6 = NULL;
2360#endif /* INET6 */
2361	struct tcphdr *th;
2362
2363	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
2364		return 0;
2365	MGETHDR(m, M_DONTWAIT, MT_DATA);	/* MAC-OK */
2366	if (!m)
2367		return 0;
2368
2369#if INET6
2370	if ((inp->inp_vflag & INP_IPV6) != 0) {
2371		ip6 = mtod(m, struct ip6_hdr *);
2372		th = (struct tcphdr *)(void *)(ip6 + 1);
2373		m->m_pkthdr.len = m->m_len =
2374			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
2375		tcp_fillheaders(tp, ip6, th);
2376		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
2377	} else
2378#endif /* INET6 */
2379      {
2380	ip = mtod(m, struct ip *);
2381	th = (struct tcphdr *)(ip + 1);
2382	m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
2383	tcp_fillheaders(tp, ip, th);
2384	hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
2385      }
2386	m_free(m);
2387	return hdrsiz;
2388}
2389#endif /*IPSEC*/
2390
2391/*
2392 * Return a pointer to the cached information about the remote host.
2393 * The cached information is stored in the protocol specific part of
2394 * the route metrics.
2395 */
2396struct rmxp_tao *
2397tcp_gettaocache(inp)
2398	struct inpcb *inp;
2399{
2400	struct rtentry *rt;
2401	struct rmxp_tao *taop;
2402
2403#if INET6
2404	if ((inp->inp_vflag & INP_IPV6) != 0)
2405		rt = tcp_rtlookup6(inp, IFSCOPE_NONE);
2406	else
2407#endif /* INET6 */
2408	rt = tcp_rtlookup(inp, IFSCOPE_NONE);
2409
2410	/* Make sure this is a host route and is up. */
2411	if (rt == NULL ||
2412	    (rt->rt_flags & (RTF_UP|RTF_HOST)) != (RTF_UP|RTF_HOST)) {
2413		/* Route locked during lookup above */
2414		if (rt != NULL)
2415			RT_UNLOCK(rt);
2416		return NULL;
2417	}
2418
2419	taop = rmx_taop(rt->rt_rmx);
2420	/* Route locked during lookup above */
2421	RT_UNLOCK(rt);
2422	return (taop);
2423}
2424
2425/*
2426 * Clear all the TAO cache entries, called from tcp_init.
2427 *
2428 * XXX
2429 * This routine is just an empty one, because we assume that the routing
2430 * routing tables are initialized at the same time when TCP, so there is
2431 * nothing in the cache left over.
2432 */
2433static void
2434tcp_cleartaocache()
2435{
2436}
2437
2438int
2439tcp_lock(struct socket *so, int refcount, void *lr)
2440{
2441	void *lr_saved;
2442
2443	if (lr == NULL)
2444		lr_saved = __builtin_return_address(0);
2445	else
2446		lr_saved = lr;
2447
2448	if (so->so_pcb != NULL) {
2449		lck_mtx_lock(&((struct inpcb *)so->so_pcb)->inpcb_mtx);
2450	} else  {
2451		panic("tcp_lock: so=%p NO PCB! lr=%p lrh= %s\n",
2452		    so, lr_saved, solockhistory_nr(so));
2453		/* NOTREACHED */
2454	}
2455
2456	if (so->so_usecount < 0) {
2457		panic("tcp_lock: so=%p so_pcb=%p lr=%p ref=%x lrh= %s\n",
2458		    so, so->so_pcb, lr_saved, so->so_usecount, solockhistory_nr(so));
2459		/* NOTREACHED */
2460	}
2461	if (refcount)
2462		so->so_usecount++;
2463	so->lock_lr[so->next_lock_lr] = lr_saved;
2464	so->next_lock_lr = (so->next_lock_lr+1) % SO_LCKDBG_MAX;
2465	return (0);
2466}
2467
2468int
2469tcp_unlock(struct socket *so, int refcount, void *lr)
2470{
2471	void *lr_saved;
2472
2473	if (lr == NULL)
2474		lr_saved = __builtin_return_address(0);
2475	else
2476		lr_saved = lr;
2477
2478#ifdef MORE_TCPLOCK_DEBUG
2479	printf("tcp_unlock: so=0x%llx sopcb=0x%llx lock=0x%llx ref=%x "
2480	    "lr=0x%llx\n", (uint64_t)VM_KERNEL_ADDRPERM(so),
2481	    (uint64_t)VM_KERNEL_ADDRPERM(so->so_pcb),
2482	    (uint64_t)VM_KERNEL_ADDRPERM(&(sotoinpcb(so)->inpcb_mtx)),
2483	    so->so_usecount, (uint64_t)VM_KERNEL_ADDRPERM(lr_saved));
2484#endif
2485	if (refcount)
2486		so->so_usecount--;
2487
2488	if (so->so_usecount < 0) {
2489		panic("tcp_unlock: so=%p usecount=%x lrh= %s\n",
2490		    so, so->so_usecount, solockhistory_nr(so));
2491		/* NOTREACHED */
2492	}
2493	if (so->so_pcb == NULL) {
2494		panic("tcp_unlock: so=%p NO PCB usecount=%x lr=%p lrh= %s\n",
2495		    so, so->so_usecount, lr_saved, solockhistory_nr(so));
2496		/* NOTREACHED */
2497	} else {
2498		lck_mtx_assert(&((struct inpcb *)so->so_pcb)->inpcb_mtx,
2499		    LCK_MTX_ASSERT_OWNED);
2500		so->unlock_lr[so->next_unlock_lr] = lr_saved;
2501		so->next_unlock_lr = (so->next_unlock_lr+1) % SO_LCKDBG_MAX;
2502		lck_mtx_unlock(&((struct inpcb *)so->so_pcb)->inpcb_mtx);
2503	}
2504	return (0);
2505}
2506
2507lck_mtx_t *
2508tcp_getlock(
2509	struct socket *so,
2510	__unused int locktype)
2511{
2512	struct inpcb *inp = sotoinpcb(so);
2513
2514	if (so->so_pcb)  {
2515		if (so->so_usecount < 0)
2516			panic("tcp_getlock: so=%p usecount=%x lrh= %s\n",
2517			    so, so->so_usecount, solockhistory_nr(so));
2518		return(&inp->inpcb_mtx);
2519	}
2520	else {
2521		panic("tcp_getlock: so=%p NULL so_pcb %s\n",
2522		    so, solockhistory_nr(so));
2523		return (so->so_proto->pr_domain->dom_mtx);
2524	}
2525}
2526
2527/* Determine if we can grow the recieve socket buffer to avoid sending
2528 * a zero window update to the peer. We allow even socket buffers that
2529 * have fixed size (set by the application) to grow if the resource
2530 * constraints are met. They will also be trimmed after the application
2531 * reads data.
2532 */
2533static void
2534tcp_sbrcv_grow_rwin(struct tcpcb *tp, struct sockbuf *sb) {
2535	u_int32_t rcvbufinc = tp->t_maxseg << tcp_autorcvbuf_inc_shift;
2536	u_int32_t rcvbuf = sb->sb_hiwat;
2537	struct socket *so = tp->t_inpcb->inp_socket;
2538
2539	/*
2540	 * If message delivery is enabled, do not count
2541	 * unordered bytes in receive buffer towards hiwat
2542	 */
2543	if (so->so_flags & SOF_ENABLE_MSGS)
2544		rcvbuf = rcvbuf - so->so_msg_state->msg_uno_bytes;
2545
2546	if (tcp_do_autorcvbuf == 1 &&
2547		tcp_cansbgrow(sb) &&
2548		(tp->t_flags & TF_SLOWLINK) == 0 &&
2549		(rcvbuf - sb->sb_cc) < rcvbufinc &&
2550		(rcvbuf < tcp_autorcvbuf_max)) {
2551		sbreserve(sb, (sb->sb_hiwat + rcvbufinc));
2552	}
2553}
2554
2555int32_t
2556tcp_sbspace(struct tcpcb *tp)
2557{
2558	struct sockbuf *sb = &tp->t_inpcb->inp_socket->so_rcv;
2559	u_int32_t rcvbuf = sb->sb_hiwat;
2560	int32_t space;
2561	struct socket *so = tp->t_inpcb->inp_socket;
2562
2563	/*
2564	 * If message delivery is enabled, do not count
2565	 * unordered bytes in receive buffer towards hiwat mark.
2566	 * This value is used to return correct rwnd that does
2567	 * not reflect the extra unordered bytes added to the
2568	 * receive socket buffer.
2569	 */
2570	if (so->so_flags & SOF_ENABLE_MSGS)
2571		rcvbuf = rcvbuf - so->so_msg_state->msg_uno_bytes;
2572
2573	tcp_sbrcv_grow_rwin(tp, sb);
2574
2575	space =  ((int32_t) imin((rcvbuf - sb->sb_cc),
2576		(sb->sb_mbmax - sb->sb_mbcnt)));
2577	if (space < 0)
2578		space = 0;
2579
2580	/* Avoid increasing window size if the current window
2581	 * is already very low, we could be in "persist" mode and
2582	 * we could break some apps (see rdar://5409343)
2583	 */
2584
2585	if (space < tp->t_maxseg)
2586		return space;
2587
2588	/* Clip window size for slower link */
2589
2590	if (((tp->t_flags & TF_SLOWLINK) != 0) && slowlink_wsize > 0 )
2591		return imin(space, slowlink_wsize);
2592
2593	return space;
2594}
2595/*
2596 * Checks TCP Segment Offloading capability for a given connection and interface pair.
2597 */
2598void
2599tcp_set_tso(struct tcpcb *tp, struct ifnet *ifp)
2600{
2601#if MPTCP
2602	/*
2603	 * We can't use TSO if this tcpcb belongs to an MPTCP session.
2604	 */
2605	if (tp->t_mpflags & TMPF_MPTCP_TRUE) {
2606		tp->t_flags &= ~TF_TSO;
2607		return;
2608	}
2609#endif
2610#if INET6
2611	struct inpcb *inp = tp->t_inpcb;
2612	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
2613
2614	if (isipv6) {
2615		if (ifp && (ifp->if_hwassist & IFNET_TSO_IPV6)) {
2616			tp->t_flags |= TF_TSO;
2617			if (ifp->if_tso_v6_mtu != 0)
2618				tp->tso_max_segment_size = ifp->if_tso_v6_mtu;
2619			else
2620				tp->tso_max_segment_size = TCP_MAXWIN;
2621		} else
2622				tp->t_flags &= ~TF_TSO;
2623
2624	} else
2625#endif /* INET6 */
2626
2627	{
2628		if (ifp && (ifp->if_hwassist & IFNET_TSO_IPV4)) {
2629			tp->t_flags |= TF_TSO;
2630			if (ifp->if_tso_v4_mtu != 0)
2631				tp->tso_max_segment_size = ifp->if_tso_v4_mtu;
2632			else
2633				tp->tso_max_segment_size = TCP_MAXWIN;
2634		} else
2635				tp->t_flags &= ~TF_TSO;
2636	}
2637}
2638
2639#define TIMEVAL_TO_TCPHZ(_tv_) ((_tv_).tv_sec * TCP_RETRANSHZ + (_tv_).tv_usec / TCP_RETRANSHZ_TO_USEC)
2640
2641/* Function to calculate the tcp clock. The tcp clock will get updated
2642 * at the boundaries of the tcp layer. This is done at 3 places:
2643 * 1. Right before processing an input tcp packet
2644 * 2. Whenever a connection wants to access the network using tcp_usrreqs
2645 * 3. When a tcp timer fires or before tcp slow timeout
2646 *
2647 */
2648
2649void
2650calculate_tcp_clock()
2651{
2652	struct timeval tv = tcp_uptime;
2653	struct timeval interval = {0, TCP_RETRANSHZ_TO_USEC};
2654	struct timeval now, hold_now;
2655	uint32_t incr = 0;
2656
2657	microuptime(&now);
2658
2659	/*
2660	 * Update coarse-grained networking timestamp (in sec.); the idea
2661	 * is to update the counter returnable via net_uptime() when
2662	 * we read time.
2663	 */
2664	net_update_uptime_secs(now.tv_sec);
2665
2666	timevaladd(&tv, &interval);
2667	if (timevalcmp(&now, &tv, >)) {
2668		/* time to update the clock */
2669		lck_spin_lock(tcp_uptime_lock);
2670		if (timevalcmp(&tcp_uptime, &now, >=)) {
2671			/* clock got updated while we were waiting for the lock */
2672			lck_spin_unlock(tcp_uptime_lock);
2673			return;
2674			}
2675
2676		microuptime(&now);
2677		hold_now = now;
2678		tv = tcp_uptime;
2679		timevalsub(&now, &tv);
2680
2681		incr = TIMEVAL_TO_TCPHZ(now);
2682		if (incr > 0) {
2683			tcp_uptime = hold_now;
2684			tcp_now += incr;
2685		}
2686
2687                lck_spin_unlock(tcp_uptime_lock);
2688        }
2689        return;
2690}
2691
2692/* Compute receive window scaling that we are going to request
2693 * for this connection based on  sb_hiwat. Try to leave some
2694 * room to potentially increase the window size upto a maximum
2695 * defined by the constant tcp_autorcvbuf_max.
2696 */
2697void
2698tcp_set_max_rwinscale(struct tcpcb *tp, struct socket *so) {
2699	u_int32_t maxsockbufsize;
2700
2701	tp->request_r_scale = max(tcp_win_scale, tp->request_r_scale);
2702	maxsockbufsize = ((so->so_rcv.sb_flags & SB_USRSIZE) != 0) ?
2703		so->so_rcv.sb_hiwat : tcp_autorcvbuf_max;
2704
2705	while (tp->request_r_scale < TCP_MAX_WINSHIFT &&
2706		(TCP_MAXWIN << tp->request_r_scale) < maxsockbufsize)
2707		tp->request_r_scale++;
2708	tp->request_r_scale = min(tp->request_r_scale, TCP_MAX_WINSHIFT);
2709
2710}
2711
2712int
2713tcp_notsent_lowat_check(struct socket *so) {
2714	struct inpcb *inp = sotoinpcb(so);
2715	struct tcpcb *tp = NULL;
2716	int notsent = 0;
2717	if (inp != NULL) {
2718		tp = intotcpcb(inp);
2719	}
2720
2721	notsent = so->so_snd.sb_cc -
2722		(tp->snd_nxt - tp->snd_una);
2723
2724	/* When we send a FIN or SYN, not_sent can be negative.
2725	 * In that case also we need to send a write event to the
2726	 * process if it is waiting. In the FIN case, it will
2727	 * get an error from send because cantsendmore will be set.
2728	 */
2729	if (notsent <= tp->t_notsent_lowat) {
2730		return(1);
2731	}
2732
2733	/* When Nagle's algorithm is not disabled, it is better
2734	 * to wakeup the client until there is atleast one
2735	 * maxseg of data to write.
2736	 */
2737	if ((tp->t_flags & TF_NODELAY) == 0 &&
2738		notsent > 0 && notsent < tp->t_maxseg) {
2739		return(1);
2740	}
2741	return(0);
2742}
2743
2744
2745/* DSEP Review Done pl-20051213-v02 @3253,@3391,@3400 */
2746