1/*
2 * Copyright (c) 2000-2014 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28/*
29 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
30 *	The Regents of the University of California.  All rights reserved.
31 *
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions
34 * are met:
35 * 1. Redistributions of source code must retain the above copyright
36 *    notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 *    notice, this list of conditions and the following disclaimer in the
39 *    documentation and/or other materials provided with the distribution.
40 * 3. All advertising materials mentioning features or use of this software
41 *    must display the following acknowledgement:
42 *	This product includes software developed by the University of
43 *	California, Berkeley and its contributors.
44 * 4. Neither the name of the University nor the names of its contributors
45 *    may be used to endorse or promote products derived from this software
46 *    without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
61 * $FreeBSD: src/sys/netinet/tcp_input.c,v 1.107.2.16 2001/08/22 00:59:12 silby Exp $
62 */
63/*
64 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
65 * support for mandatory and extensible security protections.  This notice
66 * is included in support of clause 2.2 (b) of the Apple Public License,
67 * Version 2.0.
68 */
69
70#include <sys/param.h>
71#include <sys/systm.h>
72#include <sys/kernel.h>
73#include <sys/sysctl.h>
74#include <sys/malloc.h>
75#include <sys/mbuf.h>
76#include <sys/proc.h>		/* for proc0 declaration */
77#include <sys/protosw.h>
78#include <sys/socket.h>
79#include <sys/socketvar.h>
80#include <sys/syslog.h>
81#include <sys/mcache.h>
82#include <sys/kasl.h>
83#include <kern/cpu_number.h>	/* before tcp_seq.h, for tcp_random18() */
84
85#include <machine/endian.h>
86
87#include <net/if.h>
88#include <net/if_types.h>
89#include <net/route.h>
90#include <net/ntstat.h>
91#include <net/dlil.h>
92
93#include <netinet/in.h>
94#include <netinet/in_systm.h>
95#include <netinet/ip.h>
96#include <netinet/ip_icmp.h>    /* for ICMP_BANDLIM		*/
97#include <netinet/in_var.h>
98#include <netinet/icmp_var.h>	/* for ICMP_BANDLIM	*/
99#include <netinet/in_pcb.h>
100#include <netinet/ip_var.h>
101#include <mach/sdt.h>
102#if INET6
103#include <netinet/ip6.h>
104#include <netinet/icmp6.h>
105#include <netinet6/nd6.h>
106#include <netinet6/ip6_var.h>
107#include <netinet6/in6_pcb.h>
108#endif
109#include <netinet/tcp.h>
110#include <netinet/tcp_fsm.h>
111#include <netinet/tcp_seq.h>
112#include <netinet/tcp_timer.h>
113#include <netinet/tcp_var.h>
114#include <netinet/tcp_cc.h>
115#include <dev/random/randomdev.h>
116#include <kern/zalloc.h>
117#if INET6
118#include <netinet6/tcp6_var.h>
119#endif
120#include <netinet/tcpip.h>
121#if TCPDEBUG
122#include <netinet/tcp_debug.h>
123u_char tcp_saveipgen[40]; /* the size must be of max ip header, now IPv6 */
124struct tcphdr tcp_savetcp;
125#endif /* TCPDEBUG */
126
127#if IPSEC
128#include <netinet6/ipsec.h>
129#if INET6
130#include <netinet6/ipsec6.h>
131#endif
132#include <netkey/key.h>
133#endif /*IPSEC*/
134
135#if CONFIG_MACF_NET || CONFIG_MACF_SOCKET
136#include <security/mac_framework.h>
137#endif /* CONFIG_MACF_NET || CONFIG_MACF_SOCKET */
138
139#include <sys/kdebug.h>
140#include <netinet/lro_ext.h>
141#if MPTCP
142#include <netinet/mptcp_var.h>
143#include <netinet/mptcp.h>
144#include <netinet/mptcp_opt.h>
145#endif /* MPTCP */
146
147#define DBG_LAYER_BEG		NETDBG_CODE(DBG_NETTCP, 0)
148#define DBG_LAYER_END		NETDBG_CODE(DBG_NETTCP, 2)
149#define DBG_FNC_TCP_INPUT       NETDBG_CODE(DBG_NETTCP, (3 << 8))
150#define DBG_FNC_TCP_NEWCONN     NETDBG_CODE(DBG_NETTCP, (7 << 8))
151
152tcp_cc	tcp_ccgen;
153
154#if IPSEC
155extern int ipsec_bypass;
156#endif
157
158extern int32_t total_sbmb_cnt;
159
160struct	tcpstat tcpstat;
161
162static int log_in_vain = 0;
163SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW | CTLFLAG_LOCKED,
164    &log_in_vain, 0, "Log all incoming TCP connections");
165
166static int blackhole = 0;
167SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_RW | CTLFLAG_LOCKED,
168	&blackhole, 0, "Do not send RST when dropping refused connections");
169
170int tcp_delack_enabled = 3;
171SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_RW | CTLFLAG_LOCKED,
172    &tcp_delack_enabled, 0,
173    "Delay ACK to try and piggyback it onto a data packet");
174
175int tcp_lq_overflow = 1;
176SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcp_lq_overflow, CTLFLAG_RW | CTLFLAG_LOCKED,
177    &tcp_lq_overflow, 0,
178    "Listen Queue Overflow");
179
180int tcp_recv_bg = 0;
181SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbg, CTLFLAG_RW | CTLFLAG_LOCKED,
182    &tcp_recv_bg, 0,
183    "Receive background");
184
185#if TCP_DROP_SYNFIN
186static int drop_synfin = 1;
187SYSCTL_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_RW | CTLFLAG_LOCKED,
188    &drop_synfin, 0, "Drop TCP packets with SYN+FIN set");
189#endif
190
191SYSCTL_NODE(_net_inet_tcp, OID_AUTO, reass, CTLFLAG_RW|CTLFLAG_LOCKED, 0,
192    "TCP Segment Reassembly Queue");
193
194__private_extern__ int tcp_reass_maxseg = 0;
195SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, maxsegments, CTLFLAG_RW | CTLFLAG_LOCKED,
196    &tcp_reass_maxseg, 0,
197    "Global maximum number of TCP Segments in Reassembly Queue");
198
199__private_extern__ int tcp_reass_qsize = 0;
200SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, cursegments, CTLFLAG_RD | CTLFLAG_LOCKED,
201    &tcp_reass_qsize, 0,
202    "Global number of TCP Segments currently in Reassembly Queue");
203
204static int tcp_reass_overflows = 0;
205SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, overflows, CTLFLAG_RD | CTLFLAG_LOCKED,
206    &tcp_reass_overflows, 0,
207    "Global number of TCP Segment Reassembly Queue Overflows");
208
209
210__private_extern__ int slowlink_wsize = 8192;
211SYSCTL_INT(_net_inet_tcp, OID_AUTO, slowlink_wsize, CTLFLAG_RW | CTLFLAG_LOCKED,
212	&slowlink_wsize, 0, "Maximum advertised window size for slowlink");
213
214int maxseg_unacked = 8;
215SYSCTL_INT(_net_inet_tcp, OID_AUTO, maxseg_unacked, CTLFLAG_RW | CTLFLAG_LOCKED,
216	&maxseg_unacked, 0, "Maximum number of outstanding segments left unacked");
217
218int	tcp_do_rfc3465 = 1;
219SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3465, CTLFLAG_RW | CTLFLAG_LOCKED,
220	&tcp_do_rfc3465, 0, "");
221
222int	tcp_do_rfc3465_lim2 = 1;
223SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3465_lim2, CTLFLAG_RW | CTLFLAG_LOCKED,
224	&tcp_do_rfc3465_lim2, 0, "Appropriate bytes counting w/ L=2*SMSS");
225
226int	rtt_samples_per_slot = 20;
227SYSCTL_INT(_net_inet_tcp, OID_AUTO, rtt_samples_per_slot, CTLFLAG_RW | CTLFLAG_LOCKED,
228	&rtt_samples_per_slot, 0, "Number of RTT samples stored for rtt history");
229
230int	tcp_allowed_iaj = ALLOWED_IAJ;
231SYSCTL_INT(_net_inet_tcp, OID_AUTO, recv_allowed_iaj, CTLFLAG_RW | CTLFLAG_LOCKED,
232        &tcp_allowed_iaj, 0, "Allowed inter-packet arrival jiter");
233
234int	tcp_acc_iaj_high_thresh = ACC_IAJ_HIGH_THRESH;
235SYSCTL_INT(_net_inet_tcp, OID_AUTO, acc_iaj_high_thresh, CTLFLAG_RW | CTLFLAG_LOCKED,
236        &tcp_acc_iaj_high_thresh, 0, "Used in calculating maximum accumulated IAJ");
237
238u_int32_t tcp_do_autorcvbuf = 1;
239SYSCTL_INT(_net_inet_tcp, OID_AUTO, doautorcvbuf, CTLFLAG_RW | CTLFLAG_LOCKED,
240        &tcp_do_autorcvbuf, 0, "Enable automatic socket buffer tuning");
241
242u_int32_t tcp_autorcvbuf_inc_shift = 3;
243SYSCTL_INT(_net_inet_tcp, OID_AUTO, autorcvbufincshift, CTLFLAG_RW | CTLFLAG_LOCKED,
244        &tcp_autorcvbuf_inc_shift, 0, "Shift for increment in receive socket buffer size");
245
246u_int32_t tcp_autorcvbuf_max = 512 * 1024;
247SYSCTL_INT(_net_inet_tcp, OID_AUTO, autorcvbufmax, CTLFLAG_RW | CTLFLAG_LOCKED,
248        &tcp_autorcvbuf_max, 0, "Maximum receive socket buffer size");
249
250int sw_lro = 0;
251SYSCTL_INT(_net_inet_tcp, OID_AUTO, lro, CTLFLAG_RW | CTLFLAG_LOCKED,
252        &sw_lro, 0, "Used to coalesce TCP packets");
253
254int lrodebug = 0;
255SYSCTL_INT(_net_inet_tcp, OID_AUTO, lrodbg, CTLFLAG_RW | CTLFLAG_LOCKED,
256        &lrodebug, 0, "Used to debug SW LRO");
257
258int lro_start = 4;
259SYSCTL_INT(_net_inet_tcp, OID_AUTO, lro_startcnt, CTLFLAG_RW | CTLFLAG_LOCKED,
260	&lro_start, 0, "Segments for starting LRO computed as power of 2");
261
262extern int tcp_do_autosendbuf;
263
264int limited_txmt = 1;
265SYSCTL_INT(_net_inet_tcp, OID_AUTO, limited_transmit, CTLFLAG_RW | CTLFLAG_LOCKED,
266	&limited_txmt, 0, "Enable limited transmit");
267
268int early_rexmt = 1;
269SYSCTL_INT(_net_inet_tcp, OID_AUTO, early_rexmt, CTLFLAG_RW | CTLFLAG_LOCKED,
270	&early_rexmt, 0, "Enable Early Retransmit");
271
272int sack_ackadv = 1;
273SYSCTL_INT(_net_inet_tcp, OID_AUTO, sack_ackadv, CTLFLAG_RW | CTLFLAG_LOCKED,
274	&sack_ackadv, 0, "Use SACK with cumulative ack advancement as a dupack");
275
276#if CONFIG_IFEF_NOWINDOWSCALE
277int tcp_obey_ifef_nowindowscale = 0;
278SYSCTL_INT(_net_inet_tcp, OID_AUTO, obey_ifef_nowindowscale, CTLFLAG_RW | CTLFLAG_LOCKED,
279	&tcp_obey_ifef_nowindowscale, 0, "");
280#endif
281
282/* This limit will determine when the receive socket buffer tuning will
283 * kick in. Currently it will start when the bw*delay measured in
284 * last RTT is more than half of the current hiwat on the buffer.
285 */
286uint32_t tcp_rbuf_hiwat_shift = 1;
287
288/* This limit will determine when the socket buffer will be increased
289 * to accommodate an application reading slowly. When the amount of
290 * space left in the buffer is less than one forth of the bw*delay
291 * measured in last RTT.
292 */
293uint32_t tcp_rbuf_win_shift = 2;
294
295extern int tcp_TCPTV_MIN;
296extern int tcp_acc_iaj_high;
297extern int tcp_acc_iaj_react_limit;
298extern struct zone *tcp_reass_zone;
299
300int tcprexmtthresh = 3;
301
302u_int32_t tcp_now;
303struct timeval tcp_uptime;	/* uptime when tcp_now was last updated */
304lck_spin_t *tcp_uptime_lock;	/* Used to sychronize updates to tcp_now */
305
306struct inpcbhead tcb;
307#define	tcb6	tcb  /* for KAME src sync over BSD*'s */
308struct inpcbinfo tcbinfo;
309
310static void tcp_dooptions(struct tcpcb *, u_char *, int, struct tcphdr *,
311    struct tcpopt *, unsigned int);
312static void	 tcp_pulloutofband(struct socket *,
313	    struct tcphdr *, struct mbuf *, int);
314static int tcp_reass(struct tcpcb *, struct tcphdr *, int *, struct mbuf *,
315    struct ifnet *);
316static void	tcp_xmit_timer(struct tcpcb *, int, u_int32_t, tcp_seq);
317static inline unsigned int tcp_maxmtu(struct rtentry *);
318static inline int tcp_stretch_ack_enable(struct tcpcb *tp);
319static inline void tcp_adaptive_rwtimo_check(struct tcpcb *, int);
320
321#if TRAFFIC_MGT
322static inline void update_iaj_state(struct tcpcb *tp, uint32_t tlen, int reset_size);
323void compute_iaj(struct tcpcb *tp, int nlropkts, int lro_delay_factor);
324static void compute_iaj_meat(struct tcpcb *tp, uint32_t cur_iaj);
325#endif /* TRAFFIC_MGT */
326
327#if INET6
328static inline unsigned int tcp_maxmtu6(struct rtentry *);
329#endif
330
331static void tcp_sbrcv_grow(struct tcpcb *tp, struct sockbuf *sb,
332	struct tcpopt *to, u_int32_t tlen);
333
334void tcp_sbrcv_trim(struct tcpcb *tp, struct sockbuf *sb);
335static void tcp_sbsnd_trim(struct sockbuf *sbsnd);
336static inline void tcp_sbrcv_tstmp_check(struct tcpcb *tp);
337static inline void tcp_sbrcv_reserve(struct tcpcb *tp, struct sockbuf *sb,
338	u_int32_t newsize, u_int32_t idealsize);
339static void tcp_bad_rexmt_restore_state(struct tcpcb *tp, struct tcphdr *th);
340static int tcp_detect_bad_rexmt(struct tcpcb *tp, struct tcpopt *to);
341static void tcp_compute_rtt(struct tcpcb *tp, struct tcpopt *to,
342	struct tcphdr *th);
343
344/*
345 * Constants used for resizing receive socket buffer
346 * when timestamps are not supported
347 */
348#define TCPTV_RCVNOTS_QUANTUM 100
349#define TCP_RCVNOTS_BYTELEVEL 204800
350
351/*
352 * Constants used for limiting early retransmits
353 * to 10 per minute.
354 */
355#define TCP_EARLY_REXMT_WIN (60 * TCP_RETRANSHZ) /* 60 seconds */
356#define TCP_EARLY_REXMT_LIMIT 10
357
358extern void	add_to_time_wait(struct tcpcb *, uint32_t delay);
359extern void postevent(struct socket *, struct sockbuf *, int);
360
361extern  void    ipfwsyslog( int level, const char *format,...);
362extern int fw_verbose;
363
364#if IPFIREWALL
365extern void ipfw_stealth_stats_incr_tcp(void);
366
367#define log_in_vain_log( a ) {            \
368        if ( (log_in_vain == 3 ) && (fw_verbose == 2)) {        /* Apple logging, log to ipfw.log */ \
369                ipfwsyslog a ;  \
370        } else if ( (log_in_vain == 4 ) && (fw_verbose == 2)) {   \
371                ipfw_stealth_stats_incr_tcp();                    \
372        }                       \
373        else log a ;            \
374}
375#else
376#define log_in_vain_log( a ) { log a; }
377#endif
378
379int tcp_rcvunackwin = TCPTV_UNACKWIN;
380int tcp_maxrcvidle = TCPTV_MAXRCVIDLE;
381int tcp_rcvsspktcnt = TCP_RCV_SS_PKTCOUNT;
382SYSCTL_INT(_net_inet_tcp, OID_AUTO, rcvsspktcnt, CTLFLAG_RW | CTLFLAG_LOCKED,
383	&tcp_rcvsspktcnt, 0, "packets to be seen before receiver stretches acks");
384
385#define DELAY_ACK(tp, th) \
386	(CC_ALGO(tp)->delay_ack != NULL && CC_ALGO(tp)->delay_ack(tp, th))
387
388static int tcp_dropdropablreq(struct socket *head);
389static void tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th);
390
391static void update_base_rtt(struct tcpcb *tp, uint32_t rtt);
392uint32_t get_base_rtt(struct tcpcb *tp);
393void tcp_set_background_cc(struct socket *so);
394void tcp_set_foreground_cc(struct socket *so);
395static void tcp_set_new_cc(struct socket *so, uint16_t cc_index);
396static void tcp_bwmeas_check(struct tcpcb *tp);
397
398#if TRAFFIC_MGT
399void
400reset_acc_iaj(struct tcpcb *tp)
401{
402	tp->acc_iaj = 0;
403	tp->iaj_rwintop = 0;
404	CLEAR_IAJ_STATE(tp);
405}
406
407static inline void
408update_iaj_state(struct tcpcb *tp, uint32_t size, int rst_size)
409{
410	if (rst_size > 0)
411		tp->iaj_size = 0;
412	if (tp->iaj_size == 0 || size >= tp->iaj_size) {
413		tp->iaj_size = size;
414		tp->iaj_rcv_ts = tcp_now;
415		tp->iaj_small_pkt = 0;
416	}
417}
418
419/* For every 32 bit unsigned integer(v), this function will find the
420 * largest integer n such that (n*n <= v). This takes at most 16 iterations
421 * irrespective of the value of v and does not involve multiplications.
422 */
423static inline int
424isqrt(unsigned int val) {
425	unsigned int sqrt_cache[11] = {0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100};
426	unsigned int temp, g=0, b=0x8000, bshft=15;
427	if ( val <= 100) {
428		for (g = 0; g <= 10; ++g) {
429			if (sqrt_cache[g] > val) {
430				g--;
431				break;
432			} else if (sqrt_cache[g] == val) {
433				break;
434			}
435		}
436	} else {
437		do {
438			temp = (((g << 1) + b) << (bshft--));
439			if (val >= temp) {
440				g += b;
441				val -= temp;
442			}
443			b >>= 1;
444		} while ( b > 0 && val > 0);
445	}
446	return(g);
447}
448
449/*
450* With LRO, roughly estimate the inter arrival time between
451* each sub coalesced packet as an average. Count the delay
452* cur_iaj to be the delay between the last packet received
453* and the first packet of the LRO stream. Due to round off errors
454* cur_iaj may be the same as lro_delay_factor. Averaging has
455* round off errors too. lro_delay_factor may be close to 0
456* in steady state leading to lower values fed to compute_iaj_meat.
457*/
458void
459compute_iaj(struct tcpcb *tp, int nlropkts, int lro_delay_factor)
460{
461	uint32_t cur_iaj = tcp_now - tp->iaj_rcv_ts;
462	uint32_t timediff = 0;
463
464	if (cur_iaj >= lro_delay_factor) {
465		cur_iaj = cur_iaj - lro_delay_factor;
466	}
467
468	compute_iaj_meat(tp, cur_iaj);
469
470	if (nlropkts <= 1)
471		return;
472
473	nlropkts--;
474
475	timediff = lro_delay_factor/nlropkts;
476
477	while (nlropkts > 0)
478	{
479		compute_iaj_meat(tp, timediff);
480		nlropkts--;
481	}
482}
483
484static
485void compute_iaj_meat(struct tcpcb *tp, uint32_t cur_iaj)
486{
487	/* When accumulated IAJ reaches MAX_ACC_IAJ in milliseconds,
488	 * throttle the receive window to a minimum of MIN_IAJ_WIN packets
489	 */
490#define MAX_ACC_IAJ (tcp_acc_iaj_high_thresh + tcp_acc_iaj_react_limit)
491#define IAJ_DIV_SHIFT 4
492#define IAJ_ROUNDUP_CONST (1 << (IAJ_DIV_SHIFT - 1))
493
494	uint32_t allowed_iaj, acc_iaj = 0;
495
496	uint32_t mean, temp;
497	int32_t cur_iaj_dev;
498
499	cur_iaj_dev = (cur_iaj - tp->avg_iaj);
500
501	/* Allow a jitter of "allowed_iaj" milliseconds. Some connections
502	 * may have a constant jitter more than that. We detect this by
503	 * using standard deviation.
504	 */
505	allowed_iaj = tp->avg_iaj + tp->std_dev_iaj;
506	if (allowed_iaj < tcp_allowed_iaj)
507		allowed_iaj = tcp_allowed_iaj;
508
509	/* Initially when the connection starts, the senders congestion
510	 * window is small. During this period we avoid throttling a
511	 * connection because we do not have a good starting point for
512	 * allowed_iaj. IAJ_IGNORE_PKTCNT is used to quietly gloss over
513	 * the first few packets.
514	 */
515	if (tp->iaj_pktcnt > IAJ_IGNORE_PKTCNT) {
516		if ( cur_iaj <= allowed_iaj ) {
517			if (tp->acc_iaj >= 2)
518				acc_iaj = tp->acc_iaj - 2;
519			else
520				acc_iaj = 0;
521
522		} else {
523			acc_iaj = tp->acc_iaj + (cur_iaj - allowed_iaj);
524		}
525
526		if (acc_iaj > MAX_ACC_IAJ)
527			acc_iaj = MAX_ACC_IAJ;
528		tp->acc_iaj = acc_iaj;
529	}
530
531	/* Compute weighted average where the history has a weight of
532	 * 15 out of 16 and the current value has a weight of 1 out of 16.
533	 * This will make the short-term measurements have more weight.
534	 *
535	 * The addition of 8 will help to round-up the value
536	 * instead of round-down
537	 */
538	tp->avg_iaj = (((tp->avg_iaj << IAJ_DIV_SHIFT) - tp->avg_iaj)
539		+ cur_iaj + IAJ_ROUNDUP_CONST) >> IAJ_DIV_SHIFT;
540
541	/* Compute Root-mean-square of deviation where mean is a weighted
542	 * average as described above.
543	 */
544	temp = tp->std_dev_iaj * tp->std_dev_iaj;
545	mean = (((temp << IAJ_DIV_SHIFT) - temp)
546		+ (cur_iaj_dev * cur_iaj_dev)
547		+ IAJ_ROUNDUP_CONST) >> IAJ_DIV_SHIFT;
548
549	tp->std_dev_iaj = isqrt(mean);
550
551	DTRACE_TCP3(iaj, struct tcpcb *, tp, uint32_t, cur_iaj,
552		uint32_t, allowed_iaj);
553
554	return;
555}
556#endif /* TRAFFIC_MGT */
557
558/* Check if enough amount of data has been acknowledged since
559 * bw measurement was started
560 */
561static void
562tcp_bwmeas_check(struct tcpcb *tp)
563{
564	int32_t bw_meas_bytes;
565	uint32_t bw, bytes, elapsed_time;
566	bw_meas_bytes = tp->snd_una - tp->t_bwmeas->bw_start;
567	if ((tp->t_flagsext & TF_BWMEAS_INPROGRESS) != 0 &&
568	    bw_meas_bytes >= (int32_t)(tp->t_bwmeas->bw_size)) {
569		bytes = bw_meas_bytes;
570		elapsed_time = tcp_now - tp->t_bwmeas->bw_ts;
571		if (elapsed_time > 0) {
572			bw = bytes / elapsed_time;
573			if ( bw > 0) {
574				if (tp->t_bwmeas->bw_sndbw > 0) {
575					tp->t_bwmeas->bw_sndbw =
576					    (((tp->t_bwmeas->bw_sndbw << 3) - tp->t_bwmeas->bw_sndbw) + bw) >> 3;
577				} else {
578					tp->t_bwmeas->bw_sndbw = bw;
579				}
580			}
581		}
582		tp->t_flagsext &= ~(TF_BWMEAS_INPROGRESS);
583	}
584}
585
586static int
587tcp_reass(struct tcpcb *tp, struct tcphdr *th, int *tlenp, struct mbuf *m,
588    struct ifnet *ifp)
589{
590	struct tseg_qent *q;
591	struct tseg_qent *p = NULL;
592	struct tseg_qent *nq;
593	struct tseg_qent *te = NULL;
594	struct inpcb *inp = tp->t_inpcb;
595	struct socket *so = inp->inp_socket;
596	int flags = 0;
597	int dowakeup = 0;
598	struct mbuf *oodata = NULL;
599	int copy_oodata = 0;
600	boolean_t cell = IFNET_IS_CELLULAR(ifp);
601	boolean_t wifi = (!cell && IFNET_IS_WIFI(ifp));
602
603	/*
604	 * Call with th==0 after become established to
605	 * force pre-ESTABLISHED data up to user socket.
606	 */
607	if (th == NULL)
608		goto present;
609
610	/* If the reassembly queue already has entries or if we are going to add
611	 * a new one, then the connection has reached a loss state.
612	 * Reset the stretch-ack algorithm at this point.
613	 */
614	if ((tp->t_flags & TF_STRETCHACK) != 0)
615		tcp_reset_stretch_ack(tp);
616
617	/* When the connection reaches a loss state, we need to send more acks
618	 * for a period of time so that the sender's congestion window will
619	 * open. Wait until we see some packets on the connection before
620	 * stretching acks again.
621	 */
622	tp->t_flagsext |= TF_RCVUNACK_WAITSS;
623	tp->rcv_waitforss = 0;
624
625
626#if TRAFFIC_MGT
627	if (tp->acc_iaj > 0)
628		reset_acc_iaj(tp);
629#endif /* TRAFFIC_MGT */
630
631	/*
632	 * Limit the number of segments in the reassembly queue to prevent
633	 * holding on to too many segments (and thus running out of mbufs).
634	 * Make sure to let the missing segment through which caused this
635	 * queue.  Always keep one global queue entry spare to be able to
636	 * process the missing segment.
637	 */
638	if (th->th_seq != tp->rcv_nxt &&
639	    tcp_reass_qsize + 1 >= tcp_reass_maxseg) {
640		tcp_reass_overflows++;
641		tcpstat.tcps_rcvmemdrop++;
642		m_freem(m);
643		*tlenp = 0;
644		return (0);
645	}
646
647	/* Allocate a new queue entry. If we can't, just drop the pkt. XXX */
648	te = (struct tseg_qent *) zalloc_noblock(tcp_reass_zone);
649	if (te == NULL) {
650		tcpstat.tcps_rcvmemdrop++;
651		m_freem(m);
652		return (0);
653	}
654	tcp_reass_qsize++;
655
656	/*
657	 * Find a segment which begins after this one does.
658	 */
659	LIST_FOREACH(q, &tp->t_segq, tqe_q) {
660		if (SEQ_GT(q->tqe_th->th_seq, th->th_seq))
661			break;
662		p = q;
663	}
664
665	/*
666	 * If there is a preceding segment, it may provide some of
667	 * our data already.  If so, drop the data from the incoming
668	 * segment.  If it provides all of our data, drop us.
669	 */
670	if (p != NULL) {
671		register int i;
672		/* conversion to int (in i) handles seq wraparound */
673		i = p->tqe_th->th_seq + p->tqe_len - th->th_seq;
674		if (i > 0) {
675			if (i >= *tlenp) {
676				tcpstat.tcps_rcvduppack++;
677				tcpstat.tcps_rcvdupbyte += *tlenp;
678				if (nstat_collect) {
679					nstat_route_rx(inp->inp_route.ro_rt, 1, *tlenp, NSTAT_RX_FLAG_DUPLICATE);
680					INP_ADD_STAT(inp, cell, wifi, rxpackets, 1);
681					INP_ADD_STAT(inp, cell, wifi, rxbytes, *tlenp);
682					tp->t_stat.rxduplicatebytes += *tlenp;
683				}
684				m_freem(m);
685				zfree(tcp_reass_zone, te);
686				te = NULL;
687				tcp_reass_qsize--;
688				/*
689				 * Try to present any queued data
690				 * at the left window edge to the user.
691				 * This is needed after the 3-WHS
692				 * completes.
693				 */
694				goto present;
695			}
696			m_adj(m, i);
697			*tlenp -= i;
698			th->th_seq += i;
699		}
700	}
701	tcpstat.tcps_rcvoopack++;
702	tcpstat.tcps_rcvoobyte += *tlenp;
703	if (nstat_collect) {
704		nstat_route_rx(inp->inp_route.ro_rt, 1, *tlenp, NSTAT_RX_FLAG_OUT_OF_ORDER);
705		INP_ADD_STAT(inp, cell, wifi, rxpackets, 1);
706		INP_ADD_STAT(inp, cell, wifi, rxbytes, *tlenp);
707		tp->t_stat.rxoutoforderbytes += *tlenp;
708	}
709
710	/*
711	 * While we overlap succeeding segments trim them or,
712	 * if they are completely covered, dequeue them.
713	 */
714	while (q) {
715		register int i = (th->th_seq + *tlenp) - q->tqe_th->th_seq;
716		if (i <= 0)
717			break;
718		if (i < q->tqe_len) {
719			q->tqe_th->th_seq += i;
720			q->tqe_len -= i;
721			m_adj(q->tqe_m, i);
722			break;
723		}
724
725		nq = LIST_NEXT(q, tqe_q);
726		LIST_REMOVE(q, tqe_q);
727		m_freem(q->tqe_m);
728		zfree(tcp_reass_zone, q);
729		tcp_reass_qsize--;
730		q = nq;
731	}
732
733	/* Insert the new segment queue entry into place. */
734	te->tqe_m = m;
735	te->tqe_th = th;
736	te->tqe_len = *tlenp;
737
738	if (p == NULL) {
739		LIST_INSERT_HEAD(&tp->t_segq, te, tqe_q);
740	} else {
741		LIST_INSERT_AFTER(p, te, tqe_q);
742	}
743
744	/*
745	 * New out-of-order data exists, and is pointed to by
746	 * queue entry te. Set copy_oodata to 1 so out-of-order data
747	 * can be copied off to sockbuf after in-order data
748	 * is copied off.
749	 */
750	if (!(so->so_state & SS_CANTRCVMORE))
751		copy_oodata = 1;
752
753present:
754	/*
755	 * Present data to user, advancing rcv_nxt through
756	 * completed sequence space.
757	 */
758	if (!TCPS_HAVEESTABLISHED(tp->t_state))
759		return (0);
760	q = LIST_FIRST(&tp->t_segq);
761	if (!q || q->tqe_th->th_seq != tp->rcv_nxt) {
762		/* Stop using LRO once out of order packets arrive */
763		if (tp->t_flagsext & TF_LRO_OFFLOADED) {
764			tcp_lro_remove_state(inp->inp_laddr, inp->inp_faddr,
765				th->th_dport, th->th_sport);
766			tp->t_flagsext &= ~TF_LRO_OFFLOADED;
767		}
768
769		/*
770		 * continue processing if out-of-order data
771		 * can be delivered
772		 */
773		if (q && (so->so_flags & SOF_ENABLE_MSGS))
774			goto msg_unordered_delivery;
775
776		return (0);
777	}
778	do {
779		tp->rcv_nxt += q->tqe_len;
780		flags = q->tqe_th->th_flags & TH_FIN;
781		nq = LIST_NEXT(q, tqe_q);
782		LIST_REMOVE(q, tqe_q);
783		if (so->so_state & SS_CANTRCVMORE) {
784			m_freem(q->tqe_m);
785		} else {
786			so_recv_data_stat(so, q->tqe_m, 0); /* XXXX */
787			if (so->so_flags & SOF_ENABLE_MSGS) {
788				/*
789				 * Append the inorder data as a message to the
790				 * receive socket buffer. Also check to see if
791				 * the data we are about to deliver is the same
792				 * data that we wanted to pass up to the user
793				 * out of order. If so, reset copy_oodata --
794				 * the received data filled a gap, and
795				 * is now in order!
796				 */
797				if (q == te)
798					copy_oodata = 0;
799			}
800			if (sbappendstream_rcvdemux(so, q->tqe_m,
801			    q->tqe_th->th_seq - (tp->irs + 1), 0))
802				dowakeup = 1;
803			if (tp->t_flagsext & TF_LRO_OFFLOADED) {
804				tcp_update_lro_seq(tp->rcv_nxt,
805				 inp->inp_laddr, inp->inp_faddr,
806				 th->th_dport, th->th_sport);
807			}
808		}
809		zfree(tcp_reass_zone, q);
810		tcp_reass_qsize--;
811		q = nq;
812	} while (q && q->tqe_th->th_seq == tp->rcv_nxt);
813
814#if INET6
815	if ((inp->inp_vflag & INP_IPV6) != 0) {
816
817		KERNEL_DEBUG(DBG_LAYER_BEG,
818		     ((inp->inp_fport << 16) | inp->inp_lport),
819		     (((inp->in6p_laddr.s6_addr16[0] & 0xffff) << 16) |
820		      (inp->in6p_faddr.s6_addr16[0] & 0xffff)),
821		     0,0,0);
822	}
823	else
824#endif
825	{
826		KERNEL_DEBUG(DBG_LAYER_BEG,
827		     ((inp->inp_fport << 16) | inp->inp_lport),
828		     (((inp->inp_laddr.s_addr & 0xffff) << 16) |
829		      (inp->inp_faddr.s_addr & 0xffff)),
830		     0,0,0);
831	}
832
833msg_unordered_delivery:
834	/* Deliver out-of-order data as a message */
835	if (te && (so->so_flags & SOF_ENABLE_MSGS) && copy_oodata && te->tqe_len) {
836		/*
837		 * make a copy of the mbuf to be delivered up to
838		 * the user, and add it to the sockbuf
839		 */
840		oodata = m_copym(te->tqe_m, 0, M_COPYALL, M_DONTWAIT);
841		if (oodata != NULL) {
842			if (sbappendmsgstream_rcv(&so->so_rcv, oodata,
843				te->tqe_th->th_seq - (tp->irs + 1), 1)) {
844				dowakeup = 1;
845				tcpstat.tcps_msg_unopkts++;
846			} else {
847				tcpstat.tcps_msg_unoappendfail++;
848			}
849		}
850	}
851
852	if (dowakeup)
853		sorwakeup(so); /* done with socket lock held */
854	return (flags);
855}
856
857/*
858 * Reduce congestion window.
859 */
860static void
861tcp_reduce_congestion_window(
862	struct tcpcb	*tp)
863{
864	/*
865	 * If the current tcp cc module has
866	 * defined a hook for tasks to run
867	 * before entering FR, call it
868	 */
869	if (CC_ALGO(tp)->pre_fr != NULL)
870		CC_ALGO(tp)->pre_fr(tp);
871	ENTER_FASTRECOVERY(tp);
872	tp->snd_recover = tp->snd_max;
873	tp->t_timer[TCPT_REXMT] = 0;
874	tp->t_rtttime = 0;
875	tp->ecn_flags |= TE_SENDCWR;
876	tp->snd_cwnd = tp->snd_ssthresh +
877		 tp->t_maxseg * tcprexmtthresh;
878}
879
880/*
881 * The application wants to get an event if there
882 * is a stall during read. Set the initial keepalive
883 * timeout to be equal to twice RTO.
884 */
885static inline void
886tcp_adaptive_rwtimo_check(struct tcpcb *tp, int tlen)
887{
888	if (tp->t_adaptive_rtimo > 0 && tlen > 0 &&
889		tp->t_state == TCPS_ESTABLISHED) {
890		tp->t_timer[TCPT_KEEP] = OFFSET_FROM_START(tp,
891			(TCP_REXMTVAL(tp) << 1));
892		tp->t_flagsext |= TF_DETECT_READSTALL;
893		tp->t_rtimo_probes = 0;
894	}
895}
896
897inline void
898tcp_keepalive_reset(struct tcpcb *tp)
899{
900	tp->t_timer[TCPT_KEEP] = OFFSET_FROM_START(tp,
901		TCP_CONN_KEEPIDLE(tp));
902	tp->t_flagsext &= ~(TF_DETECT_READSTALL);
903	tp->t_rtimo_probes = 0;
904}
905
906/*
907 * TCP input routine, follows pages 65-76 of the
908 * protocol specification dated September, 1981 very closely.
909 */
910#if INET6
911int
912tcp6_input(struct mbuf **mp, int *offp, int proto)
913{
914#pragma unused(proto)
915	register struct mbuf *m = *mp;
916	uint32_t ia6_flags;
917	struct ifnet *ifp = m->m_pkthdr.rcvif;
918
919	IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), return IPPROTO_DONE);
920
921	/* Expect 32-bit aligned data pointer on strict-align platforms */
922	MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m);
923
924	/*
925	 * draft-itojun-ipv6-tcp-to-anycast
926	 * better place to put this in?
927	 */
928	if (ip6_getdstifaddr_info(m, NULL, &ia6_flags) == 0) {
929		if (ia6_flags & IN6_IFF_ANYCAST) {
930			struct ip6_hdr *ip6;
931
932			ip6 = mtod(m, struct ip6_hdr *);
933			icmp6_error(m, ICMP6_DST_UNREACH,
934			    ICMP6_DST_UNREACH_ADDR,
935			    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
936
937			IF_TCP_STATINC(ifp, icmp6unreach);
938
939			return (IPPROTO_DONE);
940		}
941	}
942
943	tcp_input(m, *offp);
944	return (IPPROTO_DONE);
945}
946#endif
947
948/* Depending on the usage of mbuf space in the system, this function
949 * will return true or false. This is used to determine if a socket
950 * buffer can take more memory from the system for auto-tuning or not.
951 */
952u_int8_t
953tcp_cansbgrow(struct sockbuf *sb)
954{
955	/* Calculate the host level space limit in terms of MSIZE buffers.
956	 * We can use a maximum of half of the available mbuf space for
957	 * socket buffers.
958	 */
959	u_int32_t mblim = ((nmbclusters >> 1) << (MCLSHIFT - MSIZESHIFT));
960
961	/* Calculate per sb limit in terms of bytes. We optimize this limit
962	 * for upto 16 socket buffers.
963	 */
964
965	u_int32_t sbspacelim = ((nmbclusters >> 4) << MCLSHIFT);
966
967	if ((total_sbmb_cnt < mblim) &&
968		(sb->sb_hiwat < sbspacelim)) {
969		return(1);
970	}
971	return(0);
972}
973
974static void
975tcp_sbrcv_reserve(struct tcpcb *tp, struct sockbuf *sbrcv,
976	u_int32_t newsize, u_int32_t idealsize)
977{
978
979	/* newsize should not exceed max */
980	newsize = min(newsize, tcp_autorcvbuf_max);
981
982	/* The receive window scale negotiated at the
983	 * beginning of the connection will also set a
984	 * limit on the socket buffer size
985	 */
986	newsize = min(newsize, TCP_MAXWIN << tp->rcv_scale);
987
988	/* Set new socket buffer size */
989	if (newsize > sbrcv->sb_hiwat &&
990		(sbreserve(sbrcv, newsize) == 1)) {
991		sbrcv->sb_idealsize = min(max(sbrcv->sb_idealsize,
992			(idealsize != 0) ? idealsize : newsize),
993			tcp_autorcvbuf_max);
994
995		/* Again check the limit set by the advertised
996		 * window scale
997		 */
998		sbrcv->sb_idealsize = min(sbrcv->sb_idealsize,
999			TCP_MAXWIN << tp->rcv_scale);
1000	}
1001}
1002
1003/*
1004 * This function is used to grow  a receive socket buffer. It
1005 * will take into account system-level memory usage and the
1006 * bandwidth available on the link to make a decision.
1007 */
1008static void
1009tcp_sbrcv_grow(struct tcpcb *tp, struct sockbuf *sbrcv,
1010	struct tcpopt *to, u_int32_t pktlen) {
1011
1012	/*
1013	 * Do not grow the receive socket buffer if
1014	 * - auto resizing is disabled, globally or on this socket
1015	 * - the high water mark has already reached the maximum
1016	 * - the stream is in background and receive side is being
1017	 * throttled
1018	 * - if there are segments in reassembly queue indicating loss,
1019	 * do not need to increase recv window during recovery as more
1020	 * data is not going to be sent.
1021	 */
1022	if (tcp_do_autorcvbuf == 0 ||
1023		(sbrcv->sb_flags & SB_AUTOSIZE) == 0 ||
1024		tcp_cansbgrow(sbrcv) == 0 ||
1025		sbrcv->sb_hiwat >= tcp_autorcvbuf_max ||
1026		(tp->t_flagsext & TF_RECV_THROTTLE) ||
1027		!LIST_EMPTY(&tp->t_segq)) {
1028		/* Can not resize the socket buffer, just return */
1029		goto out;
1030	}
1031
1032	if (TSTMP_GT(tcp_now,
1033		tp->rfbuf_ts + TCPTV_RCVBUFIDLE)) {
1034		/* If there has been an idle period in the
1035		 * connection, just restart the measurement
1036		 */
1037		goto out;
1038	}
1039
1040	if (!TSTMP_SUPPORTED(tp)) {
1041		/*
1042		 * Timestamp option is not supported on this connection.
1043		 * If the connection reached a state to indicate that
1044		 * the receive socket buffer needs to grow, increase
1045		 * the high water mark.
1046		 */
1047		if (TSTMP_GEQ(tcp_now,
1048			tp->rfbuf_ts + TCPTV_RCVNOTS_QUANTUM)) {
1049			if (tp->rfbuf_cnt >= TCP_RCVNOTS_BYTELEVEL) {
1050				tcp_sbrcv_reserve(tp, sbrcv,
1051					tcp_autorcvbuf_max, 0);
1052			}
1053			goto out;
1054		} else {
1055			tp->rfbuf_cnt += pktlen;
1056			return;
1057		}
1058	} else if (to->to_tsecr != 0) {
1059		/* If the timestamp shows that one RTT has
1060		 * completed, we can stop counting the
1061		 * bytes. Here we consider increasing
1062		 * the socket buffer if it fits the following
1063		 * criteria:
1064		 * 1. the bandwidth measured in last rtt, is more
1065		 * than half of sb_hiwat, this will help to scale the
1066		 * buffer according to the bandwidth on the link.
1067		 * 2. the space left in sbrcv is less than
1068		 * one forth of the bandwidth measured in last rtt, this
1069		 * will help to accommodate an application reading slowly.
1070		 */
1071		if (TSTMP_GEQ(to->to_tsecr, tp->rfbuf_ts)) {
1072			if ((tp->rfbuf_cnt > (sbrcv->sb_hiwat -
1073				(sbrcv->sb_hiwat >> tcp_rbuf_hiwat_shift)) ||
1074				(sbrcv->sb_hiwat - sbrcv->sb_cc) <
1075				(tp->rfbuf_cnt >> tcp_rbuf_win_shift))) {
1076				u_int32_t rcvbuf_inc;
1077				/*
1078				 * Increment the receive window by a multiple of
1079				 * maximum sized segments. This will prevent a
1080				 * connection from sending smaller segments on
1081				 * wire if it is limited by the receive window.
1082				 *
1083				 * Set the ideal size based on current bandwidth
1084				 * measurements. We set the ideal size on receive
1085				 * socket buffer to be twice the bandwidth delay
1086				 * product.
1087				 */
1088				rcvbuf_inc = tp->t_maxseg << tcp_autorcvbuf_inc_shift;
1089				tcp_sbrcv_reserve(tp, sbrcv,
1090					sbrcv->sb_hiwat + rcvbuf_inc,
1091					(tp->rfbuf_cnt * 2));
1092			}
1093			goto out;
1094		} else {
1095			tp->rfbuf_cnt += pktlen;
1096			return;
1097		}
1098	}
1099out:
1100	/* Restart the measurement */
1101	tp->rfbuf_ts = 0;
1102	tp->rfbuf_cnt = 0;
1103	return;
1104}
1105
1106/* This function will trim the excess space added to the socket buffer
1107 * to help a slow-reading app. The ideal-size of a socket buffer depends
1108 * on the link bandwidth or it is set by an application and we aim to
1109 * reach that size.
1110 */
1111void
1112tcp_sbrcv_trim(struct tcpcb *tp, struct sockbuf *sbrcv) {
1113	if (tcp_do_autorcvbuf == 1 && sbrcv->sb_idealsize > 0 &&
1114		sbrcv->sb_hiwat > sbrcv->sb_idealsize) {
1115		int32_t trim;
1116		/* compute the difference between ideal and current sizes */
1117		u_int32_t diff = sbrcv->sb_hiwat - sbrcv->sb_idealsize;
1118
1119		/* Compute the maximum advertised window for
1120		 * this connection.
1121		 */
1122		u_int32_t advwin = tp->rcv_adv - tp->rcv_nxt;
1123
1124		/* How much can we trim the receive socket buffer?
1125		 * 1. it can not be trimmed beyond the max rcv win advertised
1126		 * 2. if possible, leave 1/16 of bandwidth*delay to
1127		 * avoid closing the win completely
1128		 */
1129		u_int32_t leave = max(advwin, (sbrcv->sb_idealsize >> 4));
1130
1131		/* Sometimes leave can be zero, in that case leave at least
1132 		 * a few segments worth of space.
1133		 */
1134		if (leave == 0)
1135			leave = tp->t_maxseg << tcp_autorcvbuf_inc_shift;
1136
1137		trim = sbrcv->sb_hiwat - (sbrcv->sb_cc + leave);
1138		trim = imin(trim, (int32_t)diff);
1139
1140		if (trim > 0)
1141			sbreserve(sbrcv, (sbrcv->sb_hiwat - trim));
1142	}
1143}
1144
1145/* We may need to trim the send socket buffer size for two reasons:
1146 * 1. if the rtt seen on the connection is climbing up, we do not
1147 * want to fill the buffers any more.
1148 * 2. if the congestion win on the socket backed off, there is no need
1149 * to hold more mbufs for that connection than what the cwnd will allow.
1150 */
1151void
1152tcp_sbsnd_trim(struct sockbuf *sbsnd) {
1153	if (tcp_do_autosendbuf == 1 &&
1154		((sbsnd->sb_flags & (SB_AUTOSIZE | SB_TRIM)) ==
1155			(SB_AUTOSIZE | SB_TRIM)) &&
1156		(sbsnd->sb_idealsize > 0) &&
1157		(sbsnd->sb_hiwat > sbsnd->sb_idealsize)) {
1158		u_int32_t trim = 0;
1159		if (sbsnd->sb_cc <= sbsnd->sb_idealsize) {
1160			trim = sbsnd->sb_hiwat - sbsnd->sb_idealsize;
1161		} else {
1162			trim = sbsnd->sb_hiwat - sbsnd->sb_cc;
1163		}
1164		sbreserve(sbsnd, (sbsnd->sb_hiwat - trim));
1165	}
1166	if (sbsnd->sb_hiwat <= sbsnd->sb_idealsize)
1167		sbsnd->sb_flags &= ~(SB_TRIM);
1168}
1169
1170/*
1171 * If timestamp option was not negotiated on this connection
1172 * and this connection is on the receiving side of a stream
1173 * then we can not measure the delay on the link accurately.
1174 * Instead of enabling automatic receive socket buffer
1175 * resizing, just give more space to the receive socket buffer.
1176 */
1177static inline void
1178tcp_sbrcv_tstmp_check(struct tcpcb *tp) {
1179	struct socket *so = tp->t_inpcb->inp_socket;
1180	u_int32_t newsize = 2 * tcp_recvspace;
1181	struct sockbuf *sbrcv = &so->so_rcv;
1182
1183	if ((tp->t_flags & (TF_REQ_TSTMP | TF_RCVD_TSTMP)) !=
1184		(TF_REQ_TSTMP | TF_RCVD_TSTMP) &&
1185		(sbrcv->sb_flags & SB_AUTOSIZE) != 0) {
1186		tcp_sbrcv_reserve(tp, sbrcv, newsize, 0);
1187	}
1188}
1189
1190/* A receiver will evaluate the flow of packets on a connection
1191 * to see if it can reduce ack traffic. The receiver will start
1192 * stretching acks if all of the following conditions are met:
1193 * 1. tcp_delack_enabled is set to 3
1194 * 2. If the bytes received in the last 100ms is greater than a threshold
1195 *      defined by maxseg_unacked
1196 * 3. If the connection has not been idle for tcp_maxrcvidle period.
1197 * 4. If the connection has seen enough packets to let the slow-start
1198 *      finish after connection establishment or after some packet loss.
1199 *
1200 * The receiver will stop stretching acks if there is congestion/reordering
1201 * as indicated by packets on reassembly queue or an ECN. If the delayed-ack
1202 * timer fires while stretching acks, it means that the packet flow has gone
1203 * below the threshold defined by maxseg_unacked and the receiver will stop
1204 * stretching acks. The receiver gets no indication when slow-start is completed
1205 * or when the connection reaches an idle state. That is why we use
1206 * tcp_rcvsspktcnt to cover slow-start and tcp_maxrcvidle to identify idle
1207 * state.
1208 */
1209static inline int
1210tcp_stretch_ack_enable(struct tcpcb *tp)
1211{
1212 	if (!(tp->t_flagsext & TF_NOSTRETCHACK) &&
1213		tp->rcv_by_unackwin >= (maxseg_unacked * tp->t_maxseg) &&
1214		TSTMP_GT(tp->rcv_unackwin + tcp_maxrcvidle, tcp_now) &&
1215		(!(tp->t_flagsext & TF_RCVUNACK_WAITSS) ||
1216		(tp->rcv_waitforss >= tcp_rcvsspktcnt))) {
1217		return(1);
1218	}
1219
1220	return(0);
1221}
1222
1223/* Reset the state related to stretch-ack algorithm. This will make
1224 * the receiver generate an ack every other packet. The receiver
1225 * will start re-evaluating the rate at which packets come to decide
1226 * if it can benefit by lowering the ack traffic.
1227 */
1228void
1229tcp_reset_stretch_ack(struct tcpcb *tp)
1230{
1231	tp->t_flags &= ~(TF_STRETCHACK);
1232	tp->rcv_by_unackwin = 0;
1233	tp->rcv_unackwin = tcp_now + tcp_rcvunackwin;
1234}
1235
1236/*
1237 * The last packet was a retransmission, check if this ack
1238 * indicates that the retransmission was spurious.
1239 *
1240 * If the connection supports timestamps, we could use it to
1241 * detect if the last retransmit was not needed. Otherwise,
1242 * we check if the ACK arrived within RTT/2 window, then it
1243 * was a mistake to do the retransmit in the first place.
1244 *
1245 * This function will return 1 if it is a spurious retransmit,
1246 * 0 otherwise.
1247 */
1248static int
1249tcp_detect_bad_rexmt(struct tcpcb *tp, struct tcpopt *to)
1250{
1251	int32_t tdiff, bad_rexmt_win;
1252	tdiff = (int32_t)(tcp_now - tp->t_rxtstart);
1253	bad_rexmt_win = (tp->t_srtt >> (TCP_RTT_SHIFT + 1));
1254
1255	if (TSTMP_SUPPORTED(tp) && tp->t_rxtstart > 0 &&
1256		(to->to_flags & TOF_TS) != 0 &&
1257		to->to_tsecr != 0 &&
1258		TSTMP_LT(to->to_tsecr, tp->t_rxtstart)) {
1259		return (1);
1260	} else if (tp->t_rxtshift == 1 &&
1261		tdiff < bad_rexmt_win) {
1262		return(1);
1263	}
1264	return(0);
1265}
1266
1267
1268/*
1269 * Restore congestion window state if a spurious timeout
1270 * was detected.
1271 */
1272static void
1273tcp_bad_rexmt_restore_state(struct tcpcb *tp, struct tcphdr *th)
1274{
1275	if (TSTMP_SUPPORTED(tp)) {
1276		u_int32_t fsize, acked;
1277		fsize = tp->snd_max - th->th_ack;
1278		acked = BYTES_ACKED(th, tp);
1279
1280		/*
1281		 * Implement bad retransmit recovery as
1282		 * described in RFC 4015.
1283		 */
1284		tp->snd_ssthresh = tp->snd_ssthresh_prev;
1285
1286		/* Initialize cwnd to the initial window */
1287		if (CC_ALGO(tp)->cwnd_init != NULL)
1288			CC_ALGO(tp)->cwnd_init(tp);
1289
1290		tp->snd_cwnd = fsize + min(acked, tp->snd_cwnd);
1291
1292	} else {
1293		tp->snd_cwnd = tp->snd_cwnd_prev;
1294		tp->snd_ssthresh = tp->snd_ssthresh_prev;
1295		if (tp->t_flags & TF_WASFRECOVERY)
1296			ENTER_FASTRECOVERY(tp);
1297	}
1298	tp->snd_recover = tp->snd_recover_prev;
1299	tp->snd_nxt = tp->snd_max;
1300	tp->t_rxtshift = 0;
1301	tp->t_rxtstart = 0;
1302
1303	/* Fix send socket buffer to reflect the change in cwnd */
1304	tcp_bad_rexmt_fix_sndbuf(tp);
1305
1306	/*
1307	 * This RTT might reflect the extra delay induced
1308	 * by the network. Skip using this sample for RTO
1309	 * calculation and mark the connection so we can
1310	 * recompute RTT when the next eligible sample is
1311	 * found.
1312	 */
1313	tp->t_flagsext |= TF_RECOMPUTE_RTT;
1314	tp->t_badrexmt_time = tcp_now;
1315	tp->t_rtttime = 0;
1316}
1317
1318void
1319tcp_input(m, off0)
1320	struct mbuf *m;
1321	int off0;
1322{
1323	register struct tcphdr *th;
1324	register struct ip *ip = NULL;
1325	register struct inpcb *inp;
1326	u_char *optp = NULL;
1327	int optlen = 0;
1328	int tlen, off;
1329	int drop_hdrlen;
1330	register struct tcpcb *tp = 0;
1331	register int thflags;
1332	struct socket *so = 0;
1333	int todrop, acked, ourfinisacked, needoutput = 0;
1334	struct in_addr laddr;
1335#if INET6
1336	struct in6_addr laddr6;
1337#endif
1338	int dropsocket = 0;
1339	int iss = 0, nosock = 0;
1340	u_int32_t tiwin, sack_bytes_acked = 0;
1341	struct tcpopt to;		/* options in this segment */
1342	struct sockaddr_in *next_hop = NULL;
1343#if TCPDEBUG
1344	short ostate = 0;
1345#endif
1346	struct m_tag *fwd_tag;
1347	u_char ip_ecn = IPTOS_ECN_NOTECT;
1348	unsigned int ifscope, nocell = 0;
1349	uint8_t isconnected, isdisconnected;
1350	struct ifnet *ifp = m->m_pkthdr.rcvif;
1351	int pktf_sw_lro_pkt = (m->m_pkthdr.pkt_flags & PKTF_SW_LRO_PKT) ? 1 : 0;
1352	int nlropkts = (pktf_sw_lro_pkt == 1) ? m->m_pkthdr.lro_npkts : 1;
1353	int turnoff_lro = 0, win;
1354#if MPTCP
1355	struct mptcb *mp_tp = NULL;
1356	uint16_t mptcp_csum = 0;
1357#endif /* MPTCP */
1358	boolean_t cell = IFNET_IS_CELLULAR(ifp);
1359	boolean_t wifi = (!cell && IFNET_IS_WIFI(ifp));
1360
1361#define TCP_INC_VAR(stat, npkts) do {			\
1362		stat += npkts;				\
1363} while (0)
1364
1365	TCP_INC_VAR(tcpstat.tcps_rcvtotal, nlropkts);
1366
1367	/* Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain. */
1368	if (!SLIST_EMPTY(&m->m_pkthdr.tags)) {
1369		fwd_tag = m_tag_locate(m, KERNEL_MODULE_TAG_ID,
1370		    KERNEL_TAG_TYPE_IPFORWARD, NULL);
1371	} else {
1372		fwd_tag = NULL;
1373	}
1374	if (fwd_tag != NULL) {
1375		struct ip_fwd_tag *ipfwd_tag =
1376			(struct ip_fwd_tag *)(fwd_tag+1);
1377
1378		next_hop = ipfwd_tag->next_hop;
1379		m_tag_delete(m, fwd_tag);
1380	}
1381
1382#if INET6
1383	struct ip6_hdr *ip6 = NULL;
1384	int isipv6;
1385#endif /* INET6 */
1386	int rstreason; /* For badport_bandlim accounting purposes */
1387	struct proc *proc0=current_proc();
1388
1389	KERNEL_DEBUG(DBG_FNC_TCP_INPUT | DBG_FUNC_START,0,0,0,0,0);
1390
1391#if INET6
1392	isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
1393#endif
1394	bzero((char *)&to, sizeof(to));
1395
1396#if INET6
1397	if (isipv6) {
1398		/*
1399		 * Expect 32-bit aligned data pointer on
1400		 * strict-align platforms
1401		 */
1402		MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m);
1403
1404		/* IP6_EXTHDR_CHECK() is already done at tcp6_input() */
1405		ip6 = mtod(m, struct ip6_hdr *);
1406		tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0;
1407		th = (struct tcphdr *)(void *)((caddr_t)ip6 + off0);
1408
1409		if (tcp_input_checksum(AF_INET6, m, th, off0, tlen))
1410			goto dropnosock;
1411
1412		KERNEL_DEBUG(DBG_LAYER_BEG, ((th->th_dport << 16) | th->th_sport),
1413		     (((ip6->ip6_src.s6_addr16[0]) << 16) | (ip6->ip6_dst.s6_addr16[0])),
1414		     th->th_seq, th->th_ack, th->th_win);
1415		/*
1416		 * Be proactive about unspecified IPv6 address in source.
1417		 * As we use all-zero to indicate unbounded/unconnected pcb,
1418		 * unspecified IPv6 address can be used to confuse us.
1419		 *
1420		 * Note that packets with unspecified IPv6 destination is
1421		 * already dropped in ip6_input.
1422		 */
1423		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
1424			/* XXX stat */
1425			IF_TCP_STATINC(ifp, unspecv6);
1426			goto dropnosock;
1427		}
1428		DTRACE_TCP5(receive, struct mbuf *, m, struct inpcb *, NULL,
1429			struct ip6_hdr *, ip6, struct tcpcb *, NULL,
1430			struct tcphdr *, th);
1431
1432		ip_ecn = (ntohl(ip6->ip6_flow) >> 20) & IPTOS_ECN_MASK;
1433	} else
1434#endif /* INET6 */
1435	{
1436	/*
1437	 * Get IP and TCP header together in first mbuf.
1438	 * Note: IP leaves IP header in first mbuf.
1439	 */
1440	if (off0 > sizeof (struct ip)) {
1441		ip_stripoptions(m, (struct mbuf *)0);
1442		off0 = sizeof(struct ip);
1443	}
1444	if (m->m_len < sizeof (struct tcpiphdr)) {
1445		if ((m = m_pullup(m, sizeof (struct tcpiphdr))) == 0) {
1446			tcpstat.tcps_rcvshort++;
1447			return;
1448		}
1449	}
1450
1451	/* Expect 32-bit aligned data pointer on strict-align platforms */
1452	MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m);
1453
1454	ip = mtod(m, struct ip *);
1455	th = (struct tcphdr *)(void *)((caddr_t)ip + off0);
1456	tlen = ip->ip_len;
1457
1458	if (tcp_input_checksum(AF_INET, m, th, off0, tlen))
1459		goto dropnosock;
1460
1461#if INET6
1462	/* Re-initialization for later version check */
1463	ip->ip_v = IPVERSION;
1464#endif
1465	ip_ecn = (ip->ip_tos & IPTOS_ECN_MASK);
1466
1467	DTRACE_TCP5(receive, struct mbuf *, m, struct inpcb *, NULL,
1468		struct ip *, ip, struct tcpcb *, NULL, struct tcphdr *, th);
1469
1470	KERNEL_DEBUG(DBG_LAYER_BEG, ((th->th_dport << 16) | th->th_sport),
1471		(((ip->ip_src.s_addr & 0xffff) << 16) | (ip->ip_dst.s_addr & 0xffff)),
1472		  th->th_seq, th->th_ack, th->th_win);
1473
1474	}
1475
1476	/*
1477	 * Check that TCP offset makes sense,
1478	 * pull out TCP options and adjust length.		XXX
1479	 */
1480	off = th->th_off << 2;
1481	if (off < sizeof (struct tcphdr) || off > tlen) {
1482		tcpstat.tcps_rcvbadoff++;
1483		IF_TCP_STATINC(ifp, badformat);
1484		goto dropnosock;
1485	}
1486	tlen -= off;	/* tlen is used instead of ti->ti_len */
1487	if (off > sizeof (struct tcphdr)) {
1488#if INET6
1489		if (isipv6) {
1490			IP6_EXTHDR_CHECK(m, off0, off, return);
1491			ip6 = mtod(m, struct ip6_hdr *);
1492			th = (struct tcphdr *)(void *)((caddr_t)ip6 + off0);
1493		} else
1494#endif /* INET6 */
1495		{
1496			if (m->m_len < sizeof(struct ip) + off) {
1497				if ((m = m_pullup(m, sizeof (struct ip) + off)) == 0) {
1498					tcpstat.tcps_rcvshort++;
1499					return;
1500				}
1501				ip = mtod(m, struct ip *);
1502				th = (struct tcphdr *)(void *)((caddr_t)ip + off0);
1503			}
1504		}
1505		optlen = off - sizeof (struct tcphdr);
1506		optp = (u_char *)(th + 1);
1507		/*
1508		 * Do quick retrieval of timestamp options ("options
1509		 * prediction?").  If timestamp is the only option and it's
1510		 * formatted as recommended in RFC 1323 appendix A, we
1511		 * quickly get the values now and not bother calling
1512		 * tcp_dooptions(), etc.
1513		 */
1514		if ((optlen == TCPOLEN_TSTAMP_APPA ||
1515			(optlen > TCPOLEN_TSTAMP_APPA &&
1516			optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
1517			*(u_int32_t *)(void *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
1518			(th->th_flags & TH_SYN) == 0) {
1519			to.to_flags |= TOF_TS;
1520			to.to_tsval = ntohl(*(u_int32_t *)(void *)(optp + 4));
1521			to.to_tsecr = ntohl(*(u_int32_t *)(void *)(optp + 8));
1522			optp = NULL;	/* we've parsed the options */
1523		}
1524	}
1525	thflags = th->th_flags;
1526
1527#if TCP_DROP_SYNFIN
1528	/*
1529	 * If the drop_synfin option is enabled, drop all packets with
1530	 * both the SYN and FIN bits set. This prevents e.g. nmap from
1531	 * identifying the TCP/IP stack.
1532	 *
1533	 * This is a violation of the TCP specification.
1534	 */
1535	if (drop_synfin && (thflags & (TH_SYN|TH_FIN)) == (TH_SYN|TH_FIN)) {
1536		IF_TCP_STATINC(ifp, synfin);
1537		goto dropnosock;
1538	}
1539#endif
1540
1541	/*
1542	 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options,
1543	 * until after ip6_savecontrol() is called and before other functions
1544	 * which don't want those proto headers.
1545	 * Because ip6_savecontrol() is going to parse the mbuf to
1546	 * search for data to be passed up to user-land, it wants mbuf
1547	 * parameters to be unchanged.
1548	 */
1549	drop_hdrlen = off0 + off;
1550
1551	/* Since this is an entry point for input processing of tcp packets, we
1552	 * can update the tcp clock here.
1553	 */
1554	calculate_tcp_clock();
1555
1556	/*
1557	 * Record the interface where this segment arrived on; this does not
1558	 * affect normal data output (for non-detached TCP) as it provides a
1559	 * hint about which route and interface to use for sending in the
1560	 * absence of a PCB, when scoped routing (and thus source interface
1561	 * selection) are enabled.
1562	 */
1563	if ((m->m_pkthdr.pkt_flags & PKTF_LOOP) || m->m_pkthdr.rcvif == NULL)
1564		ifscope = IFSCOPE_NONE;
1565	else
1566		ifscope = m->m_pkthdr.rcvif->if_index;
1567
1568    	/*
1569    	 * Convert TCP protocol specific fields to host format.
1570    	 */
1571
1572#if BYTE_ORDER != BIG_ENDIAN
1573    	NTOHL(th->th_seq);
1574    	NTOHL(th->th_ack);
1575    	NTOHS(th->th_win);
1576    	NTOHS(th->th_urp);
1577#endif
1578
1579	/*
1580	 * Locate pcb for segment.
1581	 */
1582findpcb:
1583
1584	isconnected = FALSE;
1585	isdisconnected = FALSE;
1586
1587#if IPFIREWALL_FORWARD
1588	if (next_hop != NULL
1589#if INET6
1590	    && isipv6 == 0 /* IPv6 support is not yet */
1591#endif /* INET6 */
1592	    ) {
1593		/*
1594		 * Diverted. Pretend to be the destination.
1595		 * already got one like this?
1596		 */
1597		inp = in_pcblookup_hash(&tcbinfo, ip->ip_src, th->th_sport,
1598			ip->ip_dst, th->th_dport, 0, m->m_pkthdr.rcvif);
1599		if (!inp) {
1600			/*
1601			 * No, then it's new. Try find the ambushing socket
1602			 */
1603			if (!next_hop->sin_port) {
1604				inp = in_pcblookup_hash(&tcbinfo, ip->ip_src,
1605				    th->th_sport, next_hop->sin_addr,
1606				    th->th_dport, 1, m->m_pkthdr.rcvif);
1607			} else {
1608				inp = in_pcblookup_hash(&tcbinfo,
1609				    ip->ip_src, th->th_sport,
1610	    			    next_hop->sin_addr,
1611				    ntohs(next_hop->sin_port), 1,
1612				    m->m_pkthdr.rcvif);
1613			}
1614		}
1615	} else
1616#endif	/* IPFIREWALL_FORWARD */
1617      {
1618#if INET6
1619	if (isipv6)
1620		inp = in6_pcblookup_hash(&tcbinfo, &ip6->ip6_src, th->th_sport,
1621					 &ip6->ip6_dst, th->th_dport, 1,
1622					 m->m_pkthdr.rcvif);
1623	else
1624#endif /* INET6 */
1625	inp = in_pcblookup_hash(&tcbinfo, ip->ip_src, th->th_sport,
1626	    ip->ip_dst, th->th_dport, 1, m->m_pkthdr.rcvif);
1627      }
1628
1629	/*
1630	 * Use the interface scope information from the PCB for outbound
1631	 * segments.  If the PCB isn't present and if scoped routing is
1632	 * enabled, tcp_respond will use the scope of the interface where
1633	 * the segment arrived on.
1634	 */
1635	if (inp != NULL && (inp->inp_flags & INP_BOUND_IF))
1636		ifscope = inp->inp_boundifp->if_index;
1637
1638	/*
1639	 * If the PCB is present and the socket isn't allowed to use
1640	 * the cellular interface, indicate it as such for tcp_respond.
1641	 */
1642	if (inp != NULL && (inp->inp_flags & INP_NO_IFT_CELLULAR))
1643		nocell = 1;
1644
1645#if IPSEC
1646	if (ipsec_bypass == 0)  {
1647#if INET6
1648		if (isipv6) {
1649		       	if (inp != NULL && ipsec6_in_reject_so(m, inp->inp_socket)) {
1650				IPSEC_STAT_INCREMENT(ipsec6stat.in_polvio);
1651				if (in_pcb_checkstate(inp, WNT_RELEASE, 0) == WNT_STOPUSING)
1652					inp = NULL;	// pretend we didn't find it
1653
1654				IF_TCP_STATINC(ifp, badformatipsec);
1655
1656				goto dropnosock;
1657			}
1658		} else
1659#endif /* INET6 */
1660			if (inp != NULL && ipsec4_in_reject_so(m, inp->inp_socket)) {
1661			  	IPSEC_STAT_INCREMENT(ipsecstat.in_polvio);
1662				if (in_pcb_checkstate(inp, WNT_RELEASE, 0) == WNT_STOPUSING)
1663					inp = NULL;	// pretend we didn't find it
1664
1665				IF_TCP_STATINC(ifp, badformatipsec);
1666
1667				goto dropnosock;
1668			}
1669	}
1670#endif /*IPSEC*/
1671
1672	/*
1673	 * If the state is CLOSED (i.e., TCB does not exist) then
1674	 * all data in the incoming segment is discarded.
1675	 * If the TCB exists but is in CLOSED state, it is embryonic,
1676	 * but should either do a listen or a connect soon.
1677	 */
1678	if (inp == NULL) {
1679		if (log_in_vain) {
1680#if INET6
1681			char dbuf[MAX_IPv6_STR_LEN], sbuf[MAX_IPv6_STR_LEN];
1682#else /* INET6 */
1683			char dbuf[MAX_IPv4_STR_LEN], sbuf[MAX_IPv4_STR_LEN];
1684#endif /* INET6 */
1685
1686#if INET6
1687			if (isipv6) {
1688				inet_ntop(AF_INET6, &ip6->ip6_dst, dbuf, sizeof(dbuf));
1689				inet_ntop(AF_INET6, &ip6->ip6_src, sbuf, sizeof(sbuf));
1690			} else
1691#endif
1692			{
1693				inet_ntop(AF_INET, &ip->ip_dst, dbuf, sizeof(dbuf));
1694				inet_ntop(AF_INET, &ip->ip_src, sbuf, sizeof(sbuf));
1695			}
1696			switch (log_in_vain) {
1697			case 1:
1698				if(thflags & TH_SYN)
1699					log(LOG_INFO,
1700						"Connection attempt to TCP %s:%d from %s:%d\n",
1701						dbuf, ntohs(th->th_dport),
1702						sbuf,
1703						ntohs(th->th_sport));
1704				break;
1705			case 2:
1706				log(LOG_INFO,
1707					"Connection attempt to TCP %s:%d from %s:%d flags:0x%x\n",
1708					dbuf, ntohs(th->th_dport), sbuf,
1709					ntohs(th->th_sport), thflags);
1710				break;
1711			case 3:
1712			case 4:
1713				if ((thflags & TH_SYN) && !(thflags & TH_ACK) &&
1714					!(m->m_flags & (M_BCAST | M_MCAST)) &&
1715#if INET6
1716					((isipv6 && !IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &ip6->ip6_src)) ||
1717					 (!isipv6 && ip->ip_dst.s_addr != ip->ip_src.s_addr))
1718#else
1719					ip->ip_dst.s_addr != ip->ip_src.s_addr
1720#endif
1721					 )
1722					log_in_vain_log((LOG_INFO,
1723						"Stealth Mode connection attempt to TCP %s:%d from %s:%d\n",
1724						dbuf, ntohs(th->th_dport),
1725						sbuf,
1726						ntohs(th->th_sport)));
1727				break;
1728			default:
1729				break;
1730			}
1731		}
1732		if (blackhole) {
1733			if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type != IFT_LOOP)
1734
1735				switch (blackhole) {
1736				case 1:
1737					if (thflags & TH_SYN)
1738						goto dropnosock;
1739					break;
1740				case 2:
1741					goto dropnosock;
1742				default:
1743					goto dropnosock;
1744				}
1745		}
1746		rstreason = BANDLIM_RST_CLOSEDPORT;
1747		IF_TCP_STATINC(ifp, noconnnolist);
1748		goto dropwithresetnosock;
1749	}
1750	so = inp->inp_socket;
1751	if (so == NULL) {
1752		/* This case shouldn't happen  as the socket shouldn't be null
1753		 * if inp_state isn't set to INPCB_STATE_DEAD
1754		 * But just in case, we pretend we didn't find the socket if we hit this case
1755		 * as this isn't cause for a panic (the socket might be leaked however)...
1756		 */
1757		inp = NULL;
1758#if TEMPDEBUG
1759		printf("tcp_input: no more socket for inp=%x. This shouldn't happen\n", inp);
1760#endif
1761		goto dropnosock;
1762	}
1763
1764	tcp_lock(so, 1, 0);
1765	if (in_pcb_checkstate(inp, WNT_RELEASE, 1) == WNT_STOPUSING) {
1766		tcp_unlock(so, 1, (void *)2);
1767		inp = NULL;	// pretend we didn't find it
1768		goto dropnosock;
1769	}
1770
1771	tp = intotcpcb(inp);
1772	if (tp == 0) {
1773		rstreason = BANDLIM_RST_CLOSEDPORT;
1774		IF_TCP_STATINC(ifp, noconnlist);
1775		goto dropwithreset;
1776	}
1777	if (tp->t_state == TCPS_CLOSED)
1778		goto drop;
1779
1780	/* Unscale the window into a 32-bit value. */
1781	if ((thflags & TH_SYN) == 0)
1782		tiwin = th->th_win << tp->snd_scale;
1783	else
1784		tiwin = th->th_win;
1785
1786#if CONFIG_MACF_NET
1787	if (mac_inpcb_check_deliver(inp, m, AF_INET, SOCK_STREAM))
1788		goto drop;
1789#endif
1790
1791	/* Avoid processing packets while closing a listen socket */
1792	if (tp->t_state == TCPS_LISTEN &&
1793		(so->so_options & SO_ACCEPTCONN) == 0)
1794		goto drop;
1795
1796	if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
1797#if TCPDEBUG
1798		if (so->so_options & SO_DEBUG) {
1799			ostate = tp->t_state;
1800#if INET6
1801			if (isipv6)
1802				bcopy((char *)ip6, (char *)tcp_saveipgen,
1803				      sizeof(*ip6));
1804			else
1805#endif /* INET6 */
1806			bcopy((char *)ip, (char *)tcp_saveipgen, sizeof(*ip));
1807			tcp_savetcp = *th;
1808		}
1809#endif
1810		if (so->so_options & SO_ACCEPTCONN) {
1811		    register struct tcpcb *tp0 = tp;
1812			struct socket *so2;
1813			struct socket *oso;
1814			struct sockaddr_storage from;
1815#if INET6
1816			struct inpcb *oinp = sotoinpcb(so);
1817#endif /* INET6 */
1818			struct ifnet *head_ifscope;
1819			unsigned int head_nocell, head_recvanyif;
1820
1821			/* Get listener's bound-to-interface, if any */
1822			head_ifscope = (inp->inp_flags & INP_BOUND_IF) ?
1823			    inp->inp_boundifp : NULL;
1824			/* Get listener's no-cellular information, if any */
1825			head_nocell = (inp->inp_flags & INP_NO_IFT_CELLULAR) ? 1 : 0;
1826			/* Get listener's recv-any-interface, if any */
1827			head_recvanyif = (inp->inp_flags & INP_RECV_ANYIF);
1828
1829			/*
1830			 * If the state is LISTEN then ignore segment if it contains an RST.
1831			 * If the segment contains an ACK then it is bad and send a RST.
1832			 * If it does not contain a SYN then it is not interesting; drop it.
1833			 * If it is from this socket, drop it, it must be forged.
1834			 */
1835			if ((thflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1836				IF_TCP_STATINC(ifp, listbadsyn);
1837
1838				if (thflags & TH_RST) {
1839					goto drop;
1840				}
1841				if (thflags & TH_ACK) {
1842					tp = NULL;
1843					tcpstat.tcps_badsyn++;
1844					rstreason = BANDLIM_RST_OPENPORT;
1845					goto dropwithreset;
1846				}
1847
1848				/* We come here if there is no SYN set */
1849				tcpstat.tcps_badsyn++;
1850				goto drop;
1851			}
1852			KERNEL_DEBUG(DBG_FNC_TCP_NEWCONN | DBG_FUNC_START,0,0,0,0,0);
1853	                if (th->th_dport == th->th_sport) {
1854#if INET6
1855				if (isipv6) {
1856					if (IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
1857                                                       &ip6->ip6_src))
1858						goto drop;
1859				} else
1860#endif /* INET6 */
1861					if (ip->ip_dst.s_addr == ip->ip_src.s_addr)
1862						goto drop;
1863			}
1864			/*
1865			 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1866			 * in_broadcast() should never return true on a received
1867			 * packet with M_BCAST not set.
1868			 *
1869			 * Packets with a multicast source address should also
1870			 * be discarded.
1871			 */
1872			if (m->m_flags & (M_BCAST|M_MCAST))
1873				goto drop;
1874#if INET6
1875			if (isipv6) {
1876				if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
1877					IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
1878					goto drop;
1879			} else
1880#endif
1881			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
1882				IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
1883				ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
1884				in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
1885				goto drop;
1886
1887
1888#if INET6
1889			/*
1890			 * If deprecated address is forbidden,
1891			 * we do not accept SYN to deprecated interface
1892			 * address to prevent any new inbound connection from
1893			 * getting established.
1894			 * When we do not accept SYN, we send a TCP RST,
1895			 * with deprecated source address (instead of dropping
1896			 * it).  We compromise it as it is much better for peer
1897			 * to send a RST, and RST will be the final packet
1898			 * for the exchange.
1899			 *
1900			 * If we do not forbid deprecated addresses, we accept
1901			 * the SYN packet.  RFC 4862 forbids dropping SYN in
1902			 * this case.
1903			 */
1904			if (isipv6 && !ip6_use_deprecated) {
1905				uint32_t ia6_flags;
1906
1907				if (ip6_getdstifaddr_info(m, NULL,
1908				    &ia6_flags) == 0) {
1909					if (ia6_flags & IN6_IFF_DEPRECATED) {
1910						tp = NULL;
1911						rstreason = BANDLIM_RST_OPENPORT;
1912						IF_TCP_STATINC(ifp, deprecate6);
1913						goto dropwithreset;
1914					}
1915				}
1916			}
1917#endif
1918			if (so->so_filt) {
1919#if INET6
1920				if (isipv6) {
1921					struct sockaddr_in6	*sin6 = (struct sockaddr_in6*)&from;
1922
1923					sin6->sin6_len = sizeof(*sin6);
1924					sin6->sin6_family = AF_INET6;
1925					sin6->sin6_port = th->th_sport;
1926					sin6->sin6_flowinfo = 0;
1927					sin6->sin6_addr = ip6->ip6_src;
1928					sin6->sin6_scope_id = 0;
1929 				}
1930				else
1931#endif
1932				{
1933					struct sockaddr_in *sin = (struct sockaddr_in*)&from;
1934
1935					sin->sin_len = sizeof(*sin);
1936					sin->sin_family = AF_INET;
1937					sin->sin_port = th->th_sport;
1938					sin->sin_addr = ip->ip_src;
1939				}
1940				so2 = sonewconn(so, 0, (struct sockaddr*)&from);
1941			} else {
1942				so2 = sonewconn(so, 0, NULL);
1943			}
1944			if (so2 == 0) {
1945				tcpstat.tcps_listendrop++;
1946				if (tcp_dropdropablreq(so)) {
1947					if (so->so_filt)
1948						so2 = sonewconn(so, 0, (struct sockaddr*)&from);
1949					else
1950						so2 = sonewconn(so, 0, NULL);
1951				}
1952				if (!so2)
1953					goto drop;
1954			}
1955
1956			/* Point "inp" and "tp" in tandem to new socket */
1957			inp = (struct inpcb *)so2->so_pcb;
1958			tp = intotcpcb(inp);
1959
1960			oso = so;
1961			tcp_unlock(so, 0, 0); /* Unlock but keep a reference on listener for now */
1962
1963			so = so2;
1964			tcp_lock(so, 1, 0);
1965			/*
1966			 * Mark socket as temporary until we're
1967			 * committed to keeping it.  The code at
1968			 * ``drop'' and ``dropwithreset'' check the
1969			 * flag dropsocket to see if the temporary
1970			 * socket created here should be discarded.
1971			 * We mark the socket as discardable until
1972			 * we're committed to it below in TCPS_LISTEN.
1973			 * There are some error conditions in which we
1974			 * have to drop the temporary socket.
1975			 */
1976			dropsocket++;
1977			/*
1978			 * Inherit INP_BOUND_IF from listener; testing if
1979			 * head_ifscope is non-NULL is sufficient, since it
1980			 * can only be set to a non-zero value earlier if
1981			 * the listener has such a flag set.
1982			 */
1983			if (head_ifscope != NULL) {
1984				inp->inp_flags |= INP_BOUND_IF;
1985				inp->inp_boundifp = head_ifscope;
1986			} else {
1987				inp->inp_flags &= ~INP_BOUND_IF;
1988			}
1989			/*
1990			 * Inherit INP_NO_IFT_CELLULAR from listener.
1991			 */
1992			if (head_nocell) {
1993				inp->inp_flags |= INP_NO_IFT_CELLULAR;
1994			}
1995			/*
1996			 * Inherit {IN,IN6}_RECV_ANYIF from listener.
1997			 */
1998			if (head_recvanyif)
1999				inp->inp_flags |= INP_RECV_ANYIF;
2000			else
2001				inp->inp_flags &= ~INP_RECV_ANYIF;
2002#if INET6
2003			if (isipv6)
2004				inp->in6p_laddr = ip6->ip6_dst;
2005			else {
2006				inp->inp_vflag &= ~INP_IPV6;
2007				inp->inp_vflag |= INP_IPV4;
2008#endif /* INET6 */
2009				inp->inp_laddr = ip->ip_dst;
2010#if INET6
2011			}
2012#endif /* INET6 */
2013			inp->inp_lport = th->th_dport;
2014			if (in_pcbinshash(inp, 0) != 0) {
2015				/*
2016				 * Undo the assignments above if we failed to
2017				 * put the PCB on the hash lists.
2018				 */
2019#if INET6
2020				if (isipv6)
2021					inp->in6p_laddr = in6addr_any;
2022				else
2023#endif /* INET6 */
2024					inp->inp_laddr.s_addr = INADDR_ANY;
2025				inp->inp_lport = 0;
2026				tcp_lock(oso, 0, 0);	/* release ref on parent */
2027				tcp_unlock(oso, 1, 0);
2028				goto drop;
2029			}
2030#if INET6
2031			if (isipv6) {
2032  				/*
2033 				 * Inherit socket options from the listening
2034  				 * socket.
2035 				 * Note that in6p_inputopts are not (even
2036 				 * should not be) copied, since it stores
2037				 * previously received options and is used to
2038 				 * detect if each new option is different than
2039 				 * the previous one and hence should be passed
2040 				 * to a user.
2041 				 * If we copied in6p_inputopts, a user would
2042 				 * not be able to receive options just after
2043 				 * calling the accept system call.
2044 				 */
2045				inp->inp_flags |=
2046					oinp->inp_flags & INP_CONTROLOPTS;
2047 				if (oinp->in6p_outputopts)
2048 					inp->in6p_outputopts =
2049 						ip6_copypktopts(oinp->in6p_outputopts,
2050 								M_NOWAIT);
2051			} else
2052#endif /* INET6 */
2053				inp->inp_options = ip_srcroute();
2054			tcp_lock(oso, 0, 0);
2055#if IPSEC
2056			/* copy old policy into new socket's */
2057			if (sotoinpcb(oso)->inp_sp)
2058			{
2059				int error = 0;
2060				/* Is it a security hole here to silently fail to copy the policy? */
2061				if (inp->inp_sp != NULL)
2062					error = ipsec_init_policy(so, &inp->inp_sp);
2063				if (error != 0 || ipsec_copy_policy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
2064					printf("tcp_input: could not copy policy\n");
2065			}
2066#endif
2067			/* inherit states from the listener */
2068			DTRACE_TCP4(state__change, void, NULL, struct inpcb *, inp,
2069				struct tcpcb *, tp, int32_t, TCPS_LISTEN);
2070			tp->t_state = TCPS_LISTEN;
2071			tp->t_flags |= tp0->t_flags & (TF_NOPUSH|TF_NOOPT|TF_NODELAY);
2072			tp->t_flagsext |= (tp0->t_flagsext & TF_RXTFINDROP);
2073			tp->t_keepinit = tp0->t_keepinit;
2074			tp->t_keepcnt = tp0->t_keepcnt;
2075			tp->t_keepintvl = tp0->t_keepintvl;
2076			tp->t_adaptive_wtimo = tp0->t_adaptive_wtimo;
2077			tp->t_adaptive_rtimo = tp0->t_adaptive_rtimo;
2078			tp->t_inpcb->inp_ip_ttl = tp0->t_inpcb->inp_ip_ttl;
2079			if ((so->so_flags & SOF_NOTSENT_LOWAT) != 0)
2080				tp->t_notsent_lowat = tp0->t_notsent_lowat;
2081
2082			/* now drop the reference on the listener */
2083			tcp_unlock(oso, 1, 0);
2084
2085			tcp_set_max_rwinscale(tp, so);
2086
2087			KERNEL_DEBUG(DBG_FNC_TCP_NEWCONN | DBG_FUNC_END,0,0,0,0,0);
2088		}
2089	}
2090	lck_mtx_assert(&((struct inpcb *)so->so_pcb)->inpcb_mtx, LCK_MTX_ASSERT_OWNED);
2091
2092	if (tp->t_state == TCPS_ESTABLISHED && tlen > 0) {
2093		/*
2094		 * Evaluate the rate of arrival of packets to see if the
2095		 * receiver can reduce the ack traffic. The algorithm to
2096		 * stretch acks will be enabled if the connection meets
2097		 * certain criteria defined in tcp_stretch_ack_enable function.
2098		 */
2099		if ((tp->t_flagsext & TF_RCVUNACK_WAITSS) != 0) {
2100			TCP_INC_VAR(tp->rcv_waitforss, nlropkts);
2101		}
2102		if (tcp_stretch_ack_enable(tp)) {
2103			tp->t_flags |= TF_STRETCHACK;
2104			tp->t_flagsext &= ~(TF_RCVUNACK_WAITSS);
2105			tp->rcv_waitforss = 0;
2106		} else {
2107			tp->t_flags &= ~(TF_STRETCHACK);
2108		}
2109		if (TSTMP_GT(tp->rcv_unackwin, tcp_now)) {
2110			tp->rcv_by_unackwin += (tlen + off);
2111		} else {
2112			tp->rcv_unackwin = tcp_now + tcp_rcvunackwin;
2113			tp->rcv_by_unackwin = tlen + off;
2114		}
2115	}
2116
2117	/*
2118	 * Keep track of how many bytes were received in the LRO packet
2119	 */
2120	if ((pktf_sw_lro_pkt) && (nlropkts > 2))  {
2121		tp->t_lropktlen += tlen;
2122	}
2123	/*
2124	 * Explicit Congestion Notification - Flag that we need to send ECT if
2125	 * 	+ The IP Congestion experienced flag was set.
2126	 * 	+ Socket is in established state
2127	 * 	+ We negotiated ECN in the TCP setup
2128	 * 	+ This isn't a pure ack (tlen > 0)
2129	 * 	+ The data is in the valid window
2130	 *
2131	 * 	TE_SENDECE will be cleared when we receive a packet with TH_CWR set.
2132	 */
2133	if (ip_ecn == IPTOS_ECN_CE && tp->t_state == TCPS_ESTABLISHED &&
2134		((tp->ecn_flags & (TE_ECN_ON)) == (TE_ECN_ON)) && tlen > 0 &&
2135		SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
2136		SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
2137		tp->ecn_flags |= TE_SENDECE;
2138	}
2139
2140	/*
2141	 * Clear TE_SENDECE if TH_CWR is set. This is harmless, so we don't
2142	 * bother doing extensive checks for state and whatnot.
2143	 */
2144	if ((thflags & TH_CWR) == TH_CWR) {
2145		tp->ecn_flags &= ~TE_SENDECE;
2146	}
2147
2148	/*
2149	 * If we received an  explicit notification of congestion in
2150	 * ip tos ecn bits or by the CWR bit in TCP header flags, reset
2151	 * the ack-strteching state.
2152	 */
2153	if (tp->t_state == TCPS_ESTABLISHED &&
2154		(ip_ecn == IPTOS_ECN_CE ||
2155		(thflags & TH_CWR)))
2156		tcp_reset_stretch_ack(tp);
2157
2158	/*
2159	 * Try to determine if we are receiving a packet after a long time.
2160	 * Use our own approximation of idletime to roughly measure remote
2161	 * end's idle time. Since slowstart is used after an idle period
2162	 * we want to avoid doing LRO if the remote end is not up to date
2163	 * on initial window support and starts with 1 or 2 packets as its IW.
2164	 */
2165	 if (sw_lro && (tp->t_flagsext & TF_LRO_OFFLOADED) &&
2166	 	((tcp_now - tp->t_rcvtime) >= (TCP_IDLETIMEOUT(tp)))) {
2167		turnoff_lro = 1;
2168	 }
2169
2170	/* Update rcvtime as a new segment was received on the connection */
2171	tp->t_rcvtime = tcp_now;
2172
2173	/*
2174	 * Segment received on connection.
2175	 * Reset idle time and keep-alive timer.
2176	 */
2177	if (TCPS_HAVEESTABLISHED(tp->t_state))
2178		tcp_keepalive_reset(tp);
2179
2180	/*
2181	 * Process options if not in LISTEN state,
2182	 * else do it below (after getting remote address).
2183	 */
2184	if (tp->t_state != TCPS_LISTEN && optp) {
2185		tcp_dooptions(tp, optp, optlen, th, &to, ifscope);
2186#if MPTCP
2187		mptcp_csum = mptcp_input_csum(tp, m, drop_hdrlen);
2188		if (mptcp_csum) {
2189			tp->t_mpflags |= TMPF_SND_MPFAIL;
2190			tp->t_mpflags &= ~TMPF_EMBED_DSN;
2191			mptcp_notify_mpfail(so);
2192			m_freem(m);
2193			tcpstat.tcps_mp_badcsum++;
2194			tcp_check_timer_state(tp);
2195			tcp_unlock(so, 1, 0);
2196			KERNEL_DEBUG(DBG_FNC_TCP_INPUT |
2197			    DBG_FUNC_END,0,0,0,0,0);
2198			return;
2199		}
2200		mptcp_insert_rmap(tp, m);
2201#endif /* MPTCP */
2202	}
2203	if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
2204		if (to.to_flags & TOF_TS) {
2205			tp->t_flags |= TF_RCVD_TSTMP;
2206			tp->ts_recent = to.to_tsval;
2207			tp->ts_recent_age = tcp_now;
2208		}
2209		if (to.to_flags & TOF_MSS)
2210			tcp_mss(tp, to.to_mss, ifscope);
2211		if (SACK_ENABLED(tp)) {
2212			if (!(to.to_flags & TOF_SACK))
2213				tp->t_flagsext &= ~(TF_SACK_ENABLE);
2214			else
2215				tp->t_flags |= TF_SACK_PERMIT;
2216		}
2217	}
2218
2219#if TRAFFIC_MGT
2220	/* Compute inter-packet arrival jitter. According to RFC 3550, inter-packet
2221	 * arrival jitter is defined as the difference in packet spacing at the
2222	 * receiver compared to the sender for a pair of packets. When two packets
2223	 * of maximum segment size come one after the other with consecutive
2224	 * sequence numbers, we consider them as packets sent together at the
2225	 * sender and use them as a pair to compute inter-packet arrival jitter.
2226	 * This metric indicates the delay induced by the network components due
2227	 * to queuing in edge/access routers.
2228	 */
2229	if (tp->t_state == TCPS_ESTABLISHED &&
2230	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK|TH_ECE|TH_PUSH)) == TH_ACK &&
2231	    ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
2232	    ((to.to_flags & TOF_TS) == 0 ||
2233            TSTMP_GEQ(to.to_tsval, tp->ts_recent)) &&
2234	    th->th_seq == tp->rcv_nxt &&
2235	    LIST_EMPTY(&tp->t_segq)) {
2236		int seg_size = tlen;
2237		if (tp->iaj_pktcnt <= IAJ_IGNORE_PKTCNT) {
2238			TCP_INC_VAR(tp->iaj_pktcnt, nlropkts);
2239		}
2240
2241		if (m->m_pkthdr.pkt_flags & PKTF_SW_LRO_PKT) {
2242			seg_size = m->m_pkthdr.lro_pktlen;
2243		}
2244		if ( tp->iaj_size == 0 || seg_size > tp->iaj_size ||
2245			(seg_size == tp->iaj_size && tp->iaj_rcv_ts == 0)) {
2246			/* State related to inter-arrival jitter is uninitialized
2247			 * or we are trying to find a good first packet to start
2248			 * computing the metric
2249			 */
2250			update_iaj_state(tp, seg_size, 0);
2251		} else {
2252			if (seg_size == tp->iaj_size) {
2253				/* Compute inter-arrival jitter taking this packet
2254				 * as the second packet
2255				 */
2256				if (pktf_sw_lro_pkt)
2257					compute_iaj(tp, nlropkts,
2258					    m->m_pkthdr.lro_elapsed);
2259				else
2260					compute_iaj(tp, 1, 0);
2261			}
2262			if (seg_size  < tp->iaj_size) {
2263				/* There is a smaller packet in the stream.
2264				 * Some times the maximum size supported on a path can
2265				 * change if there is a new link with smaller MTU.
2266				 * The receiver will not know about this change.
2267				 * If there are too many packets smaller than iaj_size,
2268				 * we try to learn the iaj_size again.
2269				 */
2270				TCP_INC_VAR(tp->iaj_small_pkt, nlropkts);
2271				if (tp->iaj_small_pkt > RESET_IAJ_SIZE_THRESH) {
2272					update_iaj_state(tp, seg_size, 1);
2273				} else {
2274					CLEAR_IAJ_STATE(tp);
2275				}
2276			} else {
2277				update_iaj_state(tp, seg_size, 0);
2278			}
2279		}
2280	} else {
2281		CLEAR_IAJ_STATE(tp);
2282	}
2283#endif /* TRAFFIC_MGT */
2284
2285	/*
2286	 * Header prediction: check for the two common cases
2287	 * of a uni-directional data xfer.  If the packet has
2288	 * no control flags, is in-sequence, the window didn't
2289	 * change and we're not retransmitting, it's a
2290	 * candidate.  If the length is zero and the ack moved
2291	 * forward, we're the sender side of the xfer.  Just
2292	 * free the data acked & wake any higher level process
2293	 * that was blocked waiting for space.  If the length
2294	 * is non-zero and the ack didn't move, we're the
2295	 * receiver side.  If we're getting packets in-order
2296	 * (the reassembly queue is empty), add the data to
2297	 * the socket buffer and note that we need a delayed ack.
2298	 * Make sure that the hidden state-flags are also off.
2299	 * Since we check for TCPS_ESTABLISHED above, it can only
2300	 * be TH_NEEDSYN.
2301	 */
2302	if (tp->t_state == TCPS_ESTABLISHED &&
2303	    (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK|TH_ECE)) == TH_ACK &&
2304	    ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
2305	    ((to.to_flags & TOF_TS) == 0 ||
2306	     TSTMP_GEQ(to.to_tsval, tp->ts_recent)) &&
2307	    th->th_seq == tp->rcv_nxt &&
2308	    tiwin && tiwin == tp->snd_wnd &&
2309	    tp->snd_nxt == tp->snd_max) {
2310
2311		/*
2312		 * If last ACK falls within this segment's sequence numbers,
2313		 * record the timestamp.
2314		 * NOTE that the test is modified according to the latest
2315		 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
2316		 */
2317		if ((to.to_flags & TOF_TS) != 0 &&
2318		   SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
2319			tp->ts_recent_age = tcp_now;
2320			tp->ts_recent = to.to_tsval;
2321		}
2322
2323		/* Force acknowledgment if we received a FIN */
2324
2325		if (thflags & TH_FIN)
2326			tp->t_flags |= TF_ACKNOW;
2327
2328		if (tlen == 0) {
2329			if (SEQ_GT(th->th_ack, tp->snd_una) &&
2330			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
2331			    tp->snd_cwnd >= tp->snd_ssthresh &&
2332			    (!IN_FASTRECOVERY(tp) &&
2333			    ((!(SACK_ENABLED(tp)) && tp->t_dupacks < tp->t_rexmtthresh) ||
2334			     (SACK_ENABLED(tp) && to.to_nsacks == 0 &&
2335			      TAILQ_EMPTY(&tp->snd_holes))))) {
2336				/*
2337				 * this is a pure ack for outstanding data.
2338				 */
2339				++tcpstat.tcps_predack;
2340
2341				/*
2342				 * "bad retransmit" recovery
2343				 */
2344				if (tp->t_rxtshift > 0 &&
2345					tcp_detect_bad_rexmt(tp, &to)) {
2346					++tcpstat.tcps_sndrexmitbad;
2347					tcp_bad_rexmt_restore_state(tp, th);
2348
2349					DTRACE_TCP5(cc, void, NULL,
2350						struct inpcb *, tp->t_inpcb,
2351						struct tcpcb *, tp, struct tcphdr *, th,
2352						int32_t, TCP_CC_BAD_REXMT_RECOVERY);
2353				}
2354
2355				/* Recalculate the RTT */
2356				tcp_compute_rtt(tp, &to, th);
2357
2358				acked = BYTES_ACKED(th, tp);
2359				tcpstat.tcps_rcvackpack++;
2360				tcpstat.tcps_rcvackbyte += acked;
2361
2362				/* Handle an ack that is in sequence during congestion
2363				 * avoidance phase. The calculations in this function
2364				 * assume that snd_una is not updated yet.
2365				 */
2366				if (CC_ALGO(tp)->inseq_ack_rcvd != NULL)
2367					CC_ALGO(tp)->inseq_ack_rcvd(tp, th);
2368
2369				DTRACE_TCP5(cc, void, NULL, struct inpcb *, inp,
2370					struct tcpcb *, tp, struct tcphdr *, th,
2371					int32_t, TCP_CC_INSEQ_ACK_RCVD);
2372
2373				sbdrop(&so->so_snd, acked);
2374				if (so->so_flags & SOF_ENABLE_MSGS) {
2375					VERIFY(acked <= so->so_msg_state->msg_serial_bytes);
2376					so->so_msg_state->msg_serial_bytes -= acked;
2377				}
2378				tcp_sbsnd_trim(&so->so_snd);
2379
2380				if (SEQ_GT(tp->snd_una, tp->snd_recover) &&
2381				    SEQ_LEQ(th->th_ack, tp->snd_recover))
2382					tp->snd_recover = th->th_ack - 1;
2383				tp->snd_una = th->th_ack;
2384
2385				/*
2386				 * pull snd_wl2 up to prevent seq wrap relative
2387				 * to th_ack.
2388				 */
2389				tp->snd_wl2 = th->th_ack;
2390
2391				if (tp->t_dupacks > 0) {
2392					tp->t_dupacks = 0;
2393					tp->t_rexmtthresh = tcprexmtthresh;
2394				}
2395
2396				m_freem(m);
2397
2398				/*
2399				 * If all outstanding data are acked, stop
2400				 * retransmit timer, otherwise restart timer
2401				 * using current (possibly backed-off) value.
2402				 * If process is waiting for space,
2403				 * wakeup/selwakeup/signal.  If data
2404				 * are ready to send, let tcp_output
2405				 * decide between more output or persist.
2406				 */
2407				if (tp->snd_una == tp->snd_max)
2408					tp->t_timer[TCPT_REXMT] = 0;
2409				else if (tp->t_timer[TCPT_PERSIST] == 0)
2410					tp->t_timer[TCPT_REXMT] = OFFSET_FROM_START(tp, tp->t_rxtcur);
2411
2412				if ((tp->t_flagsext & TF_MEASURESNDBW) != 0 &&
2413					tp->t_bwmeas != NULL)
2414					tcp_bwmeas_check(tp);
2415				sowwakeup(so); /* has to be done with socket lock held */
2416				if ((so->so_snd.sb_cc) || (tp->t_flags & TF_ACKNOW)) {
2417					(void) tcp_output(tp);
2418				}
2419
2420				tcp_check_timer_state(tp);
2421				tcp_unlock(so, 1, 0);
2422				KERNEL_DEBUG(DBG_FNC_TCP_INPUT | DBG_FUNC_END,0,0,0,0,0);
2423				return;
2424			}
2425		} else if (th->th_ack == tp->snd_una &&
2426		    LIST_EMPTY(&tp->t_segq) &&
2427		    tlen <= tcp_sbspace(tp)) {
2428			/*
2429			 * this is a pure, in-sequence data packet
2430			 * with nothing on the reassembly queue and
2431			 * we have enough buffer space to take it.
2432			 */
2433
2434			/*
2435                 	 * If this is a connection in steady state, start
2436			 * coalescing packets belonging to this flow.
2437			 */
2438			if (turnoff_lro) {
2439				tcp_lro_remove_state(tp->t_inpcb->inp_laddr,
2440					tp->t_inpcb->inp_faddr,
2441					tp->t_inpcb->inp_lport,
2442					tp->t_inpcb->inp_fport);
2443				tp->t_flagsext &= ~TF_LRO_OFFLOADED;
2444				tp->t_idleat = tp->rcv_nxt;
2445			} else if (sw_lro && !pktf_sw_lro_pkt && !isipv6 &&
2446			    (so->so_flags & SOF_USELRO) &&
2447			    !IFNET_IS_CELLULAR(m->m_pkthdr.rcvif) &&
2448  			    (m->m_pkthdr.rcvif->if_type != IFT_LOOP) &&
2449			    ((th->th_seq - tp->irs) >
2450			    (tp->t_maxseg << lro_start)) &&
2451			    ((tp->t_idleat == 0) || ((th->th_seq -
2452			     tp->t_idleat) > (tp->t_maxseg << lro_start)))) {
2453				tp->t_flagsext |= TF_LRO_OFFLOADED;
2454				tcp_start_coalescing(ip, th, tlen);
2455				tp->t_idleat = 0;
2456			}
2457
2458			/* Clean receiver SACK report if present */
2459			if (SACK_ENABLED(tp) && tp->rcv_numsacks)
2460				tcp_clean_sackreport(tp);
2461			++tcpstat.tcps_preddat;
2462			tp->rcv_nxt += tlen;
2463			/*
2464			 * Pull snd_wl1 up to prevent seq wrap relative to
2465			 * th_seq.
2466			 */
2467			tp->snd_wl1 = th->th_seq;
2468			/*
2469			 * Pull rcv_up up to prevent seq wrap relative to
2470			 * rcv_nxt.
2471			 */
2472			tp->rcv_up = tp->rcv_nxt;
2473			TCP_INC_VAR(tcpstat.tcps_rcvpack, nlropkts);
2474			tcpstat.tcps_rcvbyte += tlen;
2475			if (nstat_collect) {
2476				if (m->m_pkthdr.pkt_flags & PKTF_SW_LRO_PKT) {
2477					INP_ADD_STAT(inp, cell, wifi, rxpackets,
2478					    m->m_pkthdr.lro_npkts);
2479				} else {
2480					INP_ADD_STAT(inp, cell, wifi, rxpackets, 1);
2481				}
2482				INP_ADD_STAT(inp, cell, wifi, rxbytes, tlen);
2483			}
2484
2485			/*
2486			 * Calculate the RTT on the receiver only if the
2487			 * connection is in streaming mode and the last
2488			 * packet was not an end-of-write
2489			 */
2490			if ((tp->t_flags & TF_STRETCHACK) &&
2491				!(tp->t_flagsext & TF_STREAMEOW))
2492				tcp_compute_rtt(tp, &to, th);
2493
2494			tcp_sbrcv_grow(tp, &so->so_rcv, &to, tlen);
2495
2496			/*
2497			 * Add data to socket buffer.
2498			 */
2499			so_recv_data_stat(so, m, 0);
2500			m_adj(m, drop_hdrlen);	/* delayed header drop */
2501
2502			/*
2503			 * If message delivery (SOF_ENABLE_MSGS) is enabled on
2504			 * this socket, deliver the packet received as an
2505			 * in-order message with sequence number attached to it.
2506			 */
2507			if (sbappendstream_rcvdemux(so, m,
2508			    th->th_seq - (tp->irs + 1), 0)) {
2509				sorwakeup(so);
2510			}
2511#if INET6
2512			if (isipv6) {
2513				KERNEL_DEBUG(DBG_LAYER_END, ((th->th_dport << 16) | th->th_sport),
2514		     			(((ip6->ip6_src.s6_addr16[0]) << 16) | (ip6->ip6_dst.s6_addr16[0])),
2515			     		th->th_seq, th->th_ack, th->th_win);
2516			}
2517			else
2518#endif
2519			{
2520				KERNEL_DEBUG(DBG_LAYER_END, ((th->th_dport << 16) | th->th_sport),
2521		     			(((ip->ip_src.s_addr & 0xffff) << 16) | (ip->ip_dst.s_addr & 0xffff)),
2522			     		th->th_seq, th->th_ack, th->th_win);
2523			}
2524			TCP_INC_VAR(tp->t_unacksegs, nlropkts);
2525			if (DELAY_ACK(tp, th))  {
2526				if ((tp->t_flags & TF_DELACK) == 0) {
2527			    		tp->t_flags |= TF_DELACK;
2528					tp->t_timer[TCPT_DELACK] = OFFSET_FROM_START(tp, tcp_delack);
2529				}
2530			} else {
2531				tp->t_flags |= TF_ACKNOW;
2532				tcp_output(tp);
2533			}
2534
2535			tcp_adaptive_rwtimo_check(tp, tlen);
2536
2537			tcp_check_timer_state(tp);
2538			tcp_unlock(so, 1, 0);
2539			KERNEL_DEBUG(DBG_FNC_TCP_INPUT | DBG_FUNC_END,0,0,0,0,0);
2540			return;
2541		}
2542	}
2543
2544	/*
2545	 * Calculate amount of space in receive window,
2546	 * and then do TCP input processing.
2547	 * Receive window is amount of space in rcv queue,
2548	 * but not less than advertised window.
2549	 */
2550	lck_mtx_assert(&((struct inpcb *)so->so_pcb)->inpcb_mtx, LCK_MTX_ASSERT_OWNED);
2551	win = tcp_sbspace(tp);
2552	if (win < 0)
2553		win = 0;
2554	else {	/* clip rcv window to 4K for modems */
2555		if (tp->t_flags & TF_SLOWLINK && slowlink_wsize > 0)
2556			win = min(win, slowlink_wsize);
2557	}
2558	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
2559#if MPTCP
2560	/*
2561	 * Ensure that the subflow receive window isn't greater
2562	 * than the connection level receive window.
2563	 */
2564	if ((tp->t_mpflags & TMPF_MPTCP_TRUE) &&
2565	    (mp_tp = tptomptp(tp))) {
2566		MPT_LOCK(mp_tp);
2567		if (tp->rcv_wnd > mp_tp->mpt_rcvwnd) {
2568			tp->rcv_wnd = mp_tp->mpt_rcvwnd;
2569			tcpstat.tcps_mp_reducedwin++;
2570		}
2571		MPT_UNLOCK(mp_tp);
2572	}
2573#endif /* MPTCP */
2574
2575	switch (tp->t_state) {
2576
2577	/*
2578	 * Initialize tp->rcv_nxt, and tp->irs, select an initial
2579	 * tp->iss, and send a segment:
2580	 *     <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
2581	 * Also initialize tp->snd_nxt to tp->iss+1 and tp->snd_una to tp->iss.
2582	 * Fill in remote peer address fields if not previously specified.
2583	 * Enter SYN_RECEIVED state, and process any other fields of this
2584	 * segment in this state.
2585	 */
2586	case TCPS_LISTEN: {
2587		register struct sockaddr_in *sin;
2588#if INET6
2589		register struct sockaddr_in6 *sin6;
2590#endif
2591
2592		lck_mtx_assert(&((struct inpcb *)so->so_pcb)->inpcb_mtx, LCK_MTX_ASSERT_OWNED);
2593#if INET6
2594		if (isipv6) {
2595			MALLOC(sin6, struct sockaddr_in6 *, sizeof *sin6,
2596			       M_SONAME, M_NOWAIT);
2597			if (sin6 == NULL)
2598				goto drop;
2599			bzero(sin6, sizeof(*sin6));
2600			sin6->sin6_family = AF_INET6;
2601			sin6->sin6_len = sizeof(*sin6);
2602			sin6->sin6_addr = ip6->ip6_src;
2603			sin6->sin6_port = th->th_sport;
2604			laddr6 = inp->in6p_laddr;
2605			if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
2606				inp->in6p_laddr = ip6->ip6_dst;
2607			if (in6_pcbconnect(inp, (struct sockaddr *)sin6,
2608					   proc0)) {
2609				inp->in6p_laddr = laddr6;
2610				FREE(sin6, M_SONAME);
2611				goto drop;
2612			}
2613			FREE(sin6, M_SONAME);
2614		} else
2615#endif
2616	    {
2617			lck_mtx_assert(&((struct inpcb *)so->so_pcb)->inpcb_mtx, LCK_MTX_ASSERT_OWNED);
2618			MALLOC(sin, struct sockaddr_in *, sizeof *sin, M_SONAME,
2619		       M_NOWAIT);
2620			if (sin == NULL)
2621				goto drop;
2622			sin->sin_family = AF_INET;
2623			sin->sin_len = sizeof(*sin);
2624			sin->sin_addr = ip->ip_src;
2625			sin->sin_port = th->th_sport;
2626			bzero((caddr_t)sin->sin_zero, sizeof(sin->sin_zero));
2627			laddr = inp->inp_laddr;
2628			if (inp->inp_laddr.s_addr == INADDR_ANY)
2629				inp->inp_laddr = ip->ip_dst;
2630			if (in_pcbconnect(inp, (struct sockaddr *)sin, proc0,
2631			    IFSCOPE_NONE, NULL)) {
2632				inp->inp_laddr = laddr;
2633				FREE(sin, M_SONAME);
2634				goto drop;
2635			}
2636			FREE(sin, M_SONAME);
2637		}
2638
2639		tcp_dooptions(tp, optp, optlen, th, &to, ifscope);
2640
2641		if (SACK_ENABLED(tp)) {
2642			if (!(to.to_flags & TOF_SACK))
2643				tp->t_flagsext &= ~(TF_SACK_ENABLE);
2644			else
2645				tp->t_flags |= TF_SACK_PERMIT;
2646		}
2647
2648		if (iss)
2649			tp->iss = iss;
2650		else {
2651			tp->iss = tcp_new_isn(tp);
2652 		}
2653		tp->irs = th->th_seq;
2654		tcp_sendseqinit(tp);
2655		tcp_rcvseqinit(tp);
2656		tp->snd_recover = tp->snd_una;
2657		/*
2658		 * Initialization of the tcpcb for transaction;
2659		 *   set SND.WND = SEG.WND,
2660		 *   initialize CCsend and CCrecv.
2661		 */
2662		tp->snd_wnd = tiwin;	/* initial send-window */
2663		tp->t_flags |= TF_ACKNOW;
2664		tp->t_unacksegs = 0;
2665		DTRACE_TCP4(state__change, void, NULL, struct inpcb *, inp,
2666			struct tcpcb *, tp, int32_t, TCPS_SYN_RECEIVED);
2667		tp->t_state = TCPS_SYN_RECEIVED;
2668		tp->t_timer[TCPT_KEEP] = OFFSET_FROM_START(tp,
2669			TCP_CONN_KEEPINIT(tp));
2670		dropsocket = 0;		/* committed to socket */
2671
2672		if (inp->inp_flowhash == 0)
2673			inp->inp_flowhash = inp_calc_flowhash(inp);
2674#if INET6
2675		/* update flowinfo - RFC 6437 */
2676		if (inp->inp_flow == 0 &&
2677		    inp->in6p_flags & IN6P_AUTOFLOWLABEL) {
2678			inp->inp_flow &= ~IPV6_FLOWLABEL_MASK;
2679			inp->inp_flow |=
2680			    (htonl(inp->inp_flowhash) & IPV6_FLOWLABEL_MASK);
2681		}
2682#endif /* INET6 */
2683
2684		/* reset the incomp processing flag */
2685		so->so_flags &= ~(SOF_INCOMP_INPROGRESS);
2686		tcpstat.tcps_accepts++;
2687		if ((thflags & (TH_ECE | TH_CWR)) == (TH_ECE | TH_CWR)) {
2688			/* ECN-setup SYN */
2689			tp->ecn_flags |= (TE_SETUPRECEIVED | TE_SENDIPECT);
2690		}
2691
2692#if CONFIG_IFEF_NOWINDOWSCALE
2693		if (tcp_obey_ifef_nowindowscale && m->m_pkthdr.rcvif != NULL &&
2694		    (m->m_pkthdr.rcvif->if_eflags & IFEF_NOWINDOWSCALE)) {
2695			/* Window scaling is not enabled on this interface */
2696			tp->t_flags &= ~TF_REQ_SCALE;
2697		}
2698#endif
2699		goto trimthenstep6;
2700		}
2701
2702	/*
2703	 * If the state is SYN_RECEIVED:
2704	 *	if seg contains an ACK, but not for our SYN/ACK, send a RST.
2705	 */
2706	case TCPS_SYN_RECEIVED:
2707		if ((thflags & TH_ACK) &&
2708		    (SEQ_LEQ(th->th_ack, tp->snd_una) ||
2709		     SEQ_GT(th->th_ack, tp->snd_max))) {
2710				rstreason = BANDLIM_RST_OPENPORT;
2711				IF_TCP_STATINC(ifp, ooopacket);
2712				goto dropwithreset;
2713		}
2714
2715		/*
2716		 * In SYN_RECEIVED state, if we recv some SYNS with
2717		 * window scale and others without, window scaling should
2718		 * be disabled. Otherwise the window advertised will be
2719		 * lower if we assume scaling and the other end does not.
2720		 */
2721		if ((thflags & TH_SYN) &&
2722		    !(to.to_flags & TOF_SCALE))
2723			tp->t_flags &= ~TF_RCVD_SCALE;
2724		break;
2725
2726	/*
2727	 * If the state is SYN_SENT:
2728	 *	if seg contains an ACK, but not for our SYN, drop the input.
2729	 *	if seg contains a RST, then drop the connection.
2730	 *	if seg does not contain SYN, then drop it.
2731	 * Otherwise this is an acceptable SYN segment
2732	 *	initialize tp->rcv_nxt and tp->irs
2733	 *	if seg contains ack then advance tp->snd_una
2734	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
2735	 *	arrange for segment to be acked (eventually)
2736	 *	continue processing rest of data/controls, beginning with URG
2737	 */
2738	case TCPS_SYN_SENT:
2739		if ((thflags & TH_ACK) &&
2740		    (SEQ_LEQ(th->th_ack, tp->iss) ||
2741		     SEQ_GT(th->th_ack, tp->snd_max))) {
2742			rstreason = BANDLIM_UNLIMITED;
2743			IF_TCP_STATINC(ifp, ooopacket);
2744			goto dropwithreset;
2745		}
2746		if (thflags & TH_RST) {
2747			if ((thflags & TH_ACK) != 0) {
2748				soevent(so,
2749				    (SO_FILT_HINT_LOCKED |
2750				    SO_FILT_HINT_CONNRESET));
2751				tp = tcp_drop(tp, ECONNREFUSED);
2752				postevent(so, 0, EV_RESET);
2753			}
2754			goto drop;
2755		}
2756		if ((thflags & TH_SYN) == 0)
2757			goto drop;
2758		tp->snd_wnd = th->th_win;	/* initial send window */
2759
2760		tp->irs = th->th_seq;
2761		tcp_rcvseqinit(tp);
2762		if (thflags & TH_ACK) {
2763			tcpstat.tcps_connects++;
2764
2765			if ((thflags & (TH_ECE | TH_CWR)) == (TH_ECE)) {
2766				/* ECN-setup SYN-ACK */
2767				tp->ecn_flags |= TE_SETUPRECEIVED;
2768			}
2769			else {
2770				/* non-ECN-setup SYN-ACK */
2771				tp->ecn_flags &= ~TE_SENDIPECT;
2772			}
2773
2774#if CONFIG_MACF_NET && CONFIG_MACF_SOCKET
2775			/* XXXMAC: recursive lock: SOCK_LOCK(so); */
2776			mac_socketpeer_label_associate_mbuf(m, so);
2777			/* XXXMAC: SOCK_UNLOCK(so); */
2778#endif
2779			/* Do window scaling on this connection? */
2780			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2781				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
2782				tp->snd_scale = tp->requested_s_scale;
2783				tp->rcv_scale = tp->request_r_scale;
2784			}
2785			tp->rcv_adv += min(tp->rcv_wnd, TCP_MAXWIN << tp->rcv_scale);
2786			tp->snd_una++;		/* SYN is acked */
2787			/*
2788			 * If there's data, delay ACK; if there's also a FIN
2789			 * ACKNOW will be turned on later.
2790			 */
2791			TCP_INC_VAR(tp->t_unacksegs, nlropkts);
2792			if (DELAY_ACK(tp, th) && tlen != 0 ) {
2793				if ((tp->t_flags & TF_DELACK) == 0) {
2794					tp->t_flags |= TF_DELACK;
2795					tp->t_timer[TCPT_DELACK] = OFFSET_FROM_START(tp, tcp_delack);
2796				}
2797			}
2798			else {
2799				tp->t_flags |= TF_ACKNOW;
2800			}
2801			/*
2802			 * Received <SYN,ACK> in SYN_SENT[*] state.
2803			 * Transitions:
2804			 *	SYN_SENT  --> ESTABLISHED
2805			 *	SYN_SENT* --> FIN_WAIT_1
2806			 */
2807			tp->t_starttime = tcp_now;
2808			tcp_sbrcv_tstmp_check(tp);
2809			if (tp->t_flags & TF_NEEDFIN) {
2810				DTRACE_TCP4(state__change, void, NULL, struct inpcb *, inp,
2811					struct tcpcb *, tp, int32_t, TCPS_FIN_WAIT_1);
2812				tp->t_state = TCPS_FIN_WAIT_1;
2813				tp->t_flags &= ~TF_NEEDFIN;
2814				thflags &= ~TH_SYN;
2815			} else {
2816				DTRACE_TCP4(state__change, void, NULL, struct inpcb *, inp,
2817					struct tcpcb *, tp, int32_t, TCPS_ESTABLISHED);
2818				tp->t_state = TCPS_ESTABLISHED;
2819				tp->t_timer[TCPT_KEEP] = OFFSET_FROM_START(tp,
2820					TCP_CONN_KEEPIDLE(tp));
2821				if (nstat_collect)
2822					nstat_route_connect_success(tp->t_inpcb->inp_route.ro_rt);
2823			}
2824#if MPTCP
2825			/*
2826			 * Do not send the connect notification for additional
2827			 * subflows until ACK for 3-way handshake arrives.
2828			 */
2829			if ((!(tp->t_mpflags & TMPF_MPTCP_TRUE)) &&
2830			    (tp->t_mpflags & TMPF_SENT_JOIN)) {
2831				isconnected = FALSE;
2832			} else
2833#endif /* MPTCP */
2834				isconnected = TRUE;
2835		} else {
2836			/*
2837			 *  Received initial SYN in SYN-SENT[*] state => simul-
2838		  	 *  taneous open.  If segment contains CC option and there is
2839			 *  a cached CC, apply TAO test; if it succeeds, connection is
2840			 *  half-synchronized.  Otherwise, do 3-way handshake:
2841			 *        SYN-SENT -> SYN-RECEIVED
2842			 *        SYN-SENT* -> SYN-RECEIVED*
2843			 */
2844			tp->t_flags |= TF_ACKNOW;
2845			tp->t_timer[TCPT_REXMT] = 0;
2846			DTRACE_TCP4(state__change, void, NULL, struct inpcb *, inp,
2847				struct tcpcb *, tp, int32_t, TCPS_SYN_RECEIVED);
2848			tp->t_state = TCPS_SYN_RECEIVED;
2849
2850		}
2851
2852trimthenstep6:
2853		/*
2854		 * Advance th->th_seq to correspond to first data byte.
2855		 * If data, trim to stay within window,
2856		 * dropping FIN if necessary.
2857		 */
2858		th->th_seq++;
2859		if (tlen > tp->rcv_wnd) {
2860			todrop = tlen - tp->rcv_wnd;
2861			m_adj(m, -todrop);
2862			tlen = tp->rcv_wnd;
2863			thflags &= ~TH_FIN;
2864			tcpstat.tcps_rcvpackafterwin++;
2865			tcpstat.tcps_rcvbyteafterwin += todrop;
2866		}
2867		tp->snd_wl1 = th->th_seq - 1;
2868		tp->rcv_up = th->th_seq;
2869		/*
2870		 *  Client side of transaction: already sent SYN and data.
2871		 *  If the remote host used T/TCP to validate the SYN,
2872		 *  our data will be ACK'd; if so, enter normal data segment
2873		 *  processing in the middle of step 5, ack processing.
2874		 *  Otherwise, goto step 6.
2875		 */
2876 		if (thflags & TH_ACK)
2877			goto process_ACK;
2878		goto step6;
2879	/*
2880	 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
2881	 *      do normal processing.
2882	 *
2883	 * NB: Leftover from RFC1644 T/TCP.  Cases to be reused later.
2884	 */
2885	case TCPS_LAST_ACK:
2886	case TCPS_CLOSING:
2887	case TCPS_TIME_WAIT:
2888 		break;  /* continue normal processing */
2889
2890	/* Received a SYN while connection is already established.
2891	 * This is a "half open connection and other anomalies" described
2892	 * in RFC793 page 34, send an ACK so the remote reset the connection
2893	 * or recovers by adjusting its sequence numberering
2894	 */
2895	case TCPS_ESTABLISHED:
2896		if (thflags & TH_SYN)
2897			goto dropafterack;
2898		break;
2899	}
2900
2901	/*
2902	 * States other than LISTEN or SYN_SENT.
2903	 * First check the RST flag and sequence number since reset segments
2904	 * are exempt from the timestamp and connection count tests.  This
2905	 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
2906	 * below which allowed reset segments in half the sequence space
2907	 * to fall though and be processed (which gives forged reset
2908	 * segments with a random sequence number a 50 percent chance of
2909	 * killing a connection).
2910	 * Then check timestamp, if present.
2911	 * Then check the connection count, if present.
2912	 * Then check that at least some bytes of segment are within
2913	 * receive window.  If segment begins before rcv_nxt,
2914	 * drop leading data (and SYN); if nothing left, just ack.
2915	 *
2916	 *
2917	 * If the RST bit is set, check the sequence number to see
2918	 * if this is a valid reset segment.
2919	 * RFC 793 page 37:
2920	 *   In all states except SYN-SENT, all reset (RST) segments
2921	 *   are validated by checking their SEQ-fields.  A reset is
2922	 *   valid if its sequence number is in the window.
2923	 * Note: this does not take into account delayed ACKs, so
2924	 *   we should test against last_ack_sent instead of rcv_nxt.
2925	 *   The sequence number in the reset segment is normally an
2926	 *   echo of our outgoing acknowlegement numbers, but some hosts
2927	 *   send a reset with the sequence number at the rightmost edge
2928	 *   of our receive window, and we have to handle this case.
2929	 * Note 2: Paul Watson's paper "Slipping in the Window" has shown
2930	 *   that brute force RST attacks are possible.  To combat this,
2931	 *   we use a much stricter check while in the ESTABLISHED state,
2932	 *   only accepting RSTs where the sequence number is equal to
2933	 *   last_ack_sent.  In all other states (the states in which a
2934	 *   RST is more likely), the more permissive check is used.
2935	 * If we have multiple segments in flight, the intial reset
2936	 * segment sequence numbers will be to the left of last_ack_sent,
2937	 * but they will eventually catch up.
2938	 * In any case, it never made sense to trim reset segments to
2939	 * fit the receive window since RFC 1122 says:
2940	 *   4.2.2.12  RST Segment: RFC-793 Section 3.4
2941	 *
2942	 *    A TCP SHOULD allow a received RST segment to include data.
2943	 *
2944	 *    DISCUSSION
2945	 *         It has been suggested that a RST segment could contain
2946	 *         ASCII text that encoded and explained the cause of the
2947	 *         RST.  No standard has yet been established for such
2948	 *         data.
2949	 *
2950	 * If the reset segment passes the sequence number test examine
2951	 * the state:
2952	 *    SYN_RECEIVED STATE:
2953	 *	If passive open, return to LISTEN state.
2954	 *	If active open, inform user that connection was refused.
2955	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT STATES:
2956	 *	Inform user that connection was reset, and close tcb.
2957	 *    CLOSING, LAST_ACK STATES:
2958	 *	Close the tcb.
2959	 *    TIME_WAIT STATE:
2960	 *	Drop the segment - see Stevens, vol. 2, p. 964 and
2961	 *      RFC 1337.
2962	 *
2963	 *      Radar 4803931: Allows for the case where we ACKed the FIN but
2964	 *                     there is already a RST in flight from the peer.
2965	 *                     In that case, accept the RST for non-established
2966	 *                     state if it's one off from last_ack_sent.
2967
2968	 */
2969	if (thflags & TH_RST) {
2970		if ((SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
2971		    SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) ||
2972		    (tp->rcv_wnd == 0 &&
2973		    ((tp->last_ack_sent == th->th_seq) ||
2974		    ((tp->last_ack_sent -1) == th->th_seq)))) {
2975			switch (tp->t_state) {
2976
2977			case TCPS_SYN_RECEIVED:
2978				IF_TCP_STATINC(ifp, rstinsynrcv);
2979				so->so_error = ECONNREFUSED;
2980				goto close;
2981
2982			case TCPS_ESTABLISHED:
2983				if (tp->last_ack_sent != th->th_seq) {
2984					tcpstat.tcps_badrst++;
2985					goto drop;
2986				}
2987			case TCPS_FIN_WAIT_1:
2988			case TCPS_CLOSE_WAIT:
2989				/*
2990				  Drop through ...
2991				*/
2992			case TCPS_FIN_WAIT_2:
2993				so->so_error = ECONNRESET;
2994			close:
2995				postevent(so, 0, EV_RESET);
2996				soevent(so,
2997				    (SO_FILT_HINT_LOCKED |
2998				    SO_FILT_HINT_CONNRESET));
2999
3000				tcpstat.tcps_drops++;
3001				tp = tcp_close(tp);
3002				break;
3003
3004			case TCPS_CLOSING:
3005			case TCPS_LAST_ACK:
3006				tp = tcp_close(tp);
3007				break;
3008
3009			case TCPS_TIME_WAIT:
3010				break;
3011			}
3012		}
3013		goto drop;
3014	}
3015
3016	/*
3017	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
3018	 * and it's less than ts_recent, drop it.
3019	 */
3020	if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
3021	    TSTMP_LT(to.to_tsval, tp->ts_recent)) {
3022
3023		/* Check to see if ts_recent is over 24 days old.  */
3024		if ((int)(tcp_now - tp->ts_recent_age) > TCP_PAWS_IDLE) {
3025			/*
3026			 * Invalidate ts_recent.  If this segment updates
3027			 * ts_recent, the age will be reset later and ts_recent
3028			 * will get a valid value.  If it does not, setting
3029			 * ts_recent to zero will at least satisfy the
3030			 * requirement that zero be placed in the timestamp
3031			 * echo reply when ts_recent isn't valid.  The
3032			 * age isn't reset until we get a valid ts_recent
3033			 * because we don't want out-of-order segments to be
3034			 * dropped when ts_recent is old.
3035			 */
3036			tp->ts_recent = 0;
3037		} else {
3038			tcpstat.tcps_rcvduppack++;
3039			tcpstat.tcps_rcvdupbyte += tlen;
3040			tcpstat.tcps_pawsdrop++;
3041			if (nstat_collect) {
3042				nstat_route_rx(tp->t_inpcb->inp_route.ro_rt,
3043					1, tlen, NSTAT_RX_FLAG_DUPLICATE);
3044				INP_ADD_STAT(inp, cell, wifi, rxpackets, 1);
3045				INP_ADD_STAT(inp, cell, wifi, rxbytes, tlen);
3046				tp->t_stat.rxduplicatebytes += tlen;
3047			}
3048			if (tlen)
3049				goto dropafterack;
3050			goto drop;
3051		}
3052	}
3053
3054	/*
3055	 * In the SYN-RECEIVED state, validate that the packet belongs to
3056	 * this connection before trimming the data to fit the receive
3057	 * window.  Check the sequence number versus IRS since we know
3058	 * the sequence numbers haven't wrapped.  This is a partial fix
3059	 * for the "LAND" DoS attack.
3060	 */
3061	if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
3062		rstreason = BANDLIM_RST_OPENPORT;
3063		IF_TCP_STATINC(ifp, dospacket);
3064		goto dropwithreset;
3065	}
3066
3067	todrop = tp->rcv_nxt - th->th_seq;
3068	if (todrop > 0) {
3069		if (thflags & TH_SYN) {
3070			thflags &= ~TH_SYN;
3071			th->th_seq++;
3072			if (th->th_urp > 1)
3073				th->th_urp--;
3074			else
3075				thflags &= ~TH_URG;
3076			todrop--;
3077		}
3078		/*
3079		 * Following if statement from Stevens, vol. 2, p. 960.
3080		 */
3081		if (todrop > tlen
3082		    || (todrop == tlen && (thflags & TH_FIN) == 0)) {
3083			/*
3084			 * Any valid FIN must be to the left of the window.
3085			 * At this point the FIN must be a duplicate or out
3086			 * of sequence; drop it.
3087			 */
3088			thflags &= ~TH_FIN;
3089
3090			/*
3091			 * Send an ACK to resynchronize and drop any data.
3092			 * But keep on processing for RST or ACK.
3093			 */
3094			tp->t_flags |= TF_ACKNOW;
3095			if (todrop == 1) {
3096				/* This could be a keepalive */
3097				soevent(so, SO_FILT_HINT_LOCKED |
3098					SO_FILT_HINT_KEEPALIVE);
3099			}
3100			todrop = tlen;
3101			tcpstat.tcps_rcvduppack++;
3102			tcpstat.tcps_rcvdupbyte += todrop;
3103		} else {
3104			tcpstat.tcps_rcvpartduppack++;
3105			tcpstat.tcps_rcvpartdupbyte += todrop;
3106		}
3107		if (nstat_collect) {
3108			nstat_route_rx(tp->t_inpcb->inp_route.ro_rt, 1,
3109				todrop, NSTAT_RX_FLAG_DUPLICATE);
3110			INP_ADD_STAT(inp, cell, wifi, rxpackets, 1);
3111			INP_ADD_STAT(inp, cell, wifi, rxbytes, todrop);
3112			tp->t_stat.rxduplicatebytes += todrop;
3113		}
3114		drop_hdrlen += todrop;	/* drop from the top afterwards */
3115		th->th_seq += todrop;
3116		tlen -= todrop;
3117		if (th->th_urp > todrop)
3118			th->th_urp -= todrop;
3119		else {
3120			thflags &= ~TH_URG;
3121			th->th_urp = 0;
3122		}
3123	}
3124
3125	/*
3126	 * If new data are received on a connection after the user processes
3127	 * are gone, then RST the other end.  Note that an MPTCP subflow socket
3128	 * would have SS_NOFDREF set by default, so check to make sure that
3129	 * we test for SOF_MP_SUBFLOW socket flag (which would be cleared when
3130	 * the socket is closed.)
3131	 */
3132	if (!(so->so_flags & SOF_MP_SUBFLOW) &&
3133	    (so->so_state & SS_NOFDREF) &&
3134	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
3135		tp = tcp_close(tp);
3136		tcpstat.tcps_rcvafterclose++;
3137		rstreason = BANDLIM_UNLIMITED;
3138		IF_TCP_STATINC(ifp, cleanup);
3139		goto dropwithreset;
3140	}
3141
3142	/*
3143	 * If segment ends after window, drop trailing data
3144	 * (and PUSH and FIN); if nothing left, just ACK.
3145	 */
3146	todrop = (th->th_seq+tlen) - (tp->rcv_nxt+tp->rcv_wnd);
3147	if (todrop > 0) {
3148		tcpstat.tcps_rcvpackafterwin++;
3149		if (todrop >= tlen) {
3150			tcpstat.tcps_rcvbyteafterwin += tlen;
3151			/*
3152			 * If a new connection request is received
3153			 * while in TIME_WAIT, drop the old connection
3154			 * and start over if the sequence numbers
3155			 * are above the previous ones.
3156			 */
3157			if (thflags & TH_SYN &&
3158			    tp->t_state == TCPS_TIME_WAIT &&
3159			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
3160				iss = tcp_new_isn(tp);
3161				tp = tcp_close(tp);
3162				tcp_unlock(so, 1, 0);
3163				goto findpcb;
3164			}
3165			/*
3166			 * If window is closed can only take segments at
3167			 * window edge, and have to drop data and PUSH from
3168			 * incoming segments.  Continue processing, but
3169			 * remember to ack.  Otherwise, drop segment
3170			 * and ack.
3171			 */
3172			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
3173				tp->t_flags |= TF_ACKNOW;
3174				tcpstat.tcps_rcvwinprobe++;
3175			} else
3176				goto dropafterack;
3177		} else
3178			tcpstat.tcps_rcvbyteafterwin += todrop;
3179		m_adj(m, -todrop);
3180		tlen -= todrop;
3181		thflags &= ~(TH_PUSH|TH_FIN);
3182	}
3183
3184	/*
3185	 * If last ACK falls within this segment's sequence numbers,
3186	 * record its timestamp.
3187	 * NOTE:
3188	 * 1) That the test incorporates suggestions from the latest
3189	 *    proposal of the tcplw@cray.com list (Braden 1993/04/26).
3190	 * 2) That updating only on newer timestamps interferes with
3191	 *    our earlier PAWS tests, so this check should be solely
3192	 *    predicated on the sequence space of this segment.
3193	 * 3) That we modify the segment boundary check to be
3194	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
3195	 *    instead of RFC1323's
3196	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
3197	 *    This modified check allows us to overcome RFC1323's
3198	 *    limitations as described in Stevens TCP/IP Illustrated
3199	 *    Vol. 2 p.869. In such cases, we can still calculate the
3200	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
3201	 */
3202	if ((to.to_flags & TOF_TS) != 0 &&
3203	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
3204	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
3205		((thflags & (TH_SYN|TH_FIN)) != 0))) {
3206		tp->ts_recent_age = tcp_now;
3207		tp->ts_recent = to.to_tsval;
3208	}
3209
3210	/*
3211	 * If a SYN is in the window, then this is an
3212	 * error and we send an RST and drop the connection.
3213	 */
3214	if (thflags & TH_SYN) {
3215		tp = tcp_drop(tp, ECONNRESET);
3216		rstreason = BANDLIM_UNLIMITED;
3217		postevent(so, 0, EV_RESET);
3218		IF_TCP_STATINC(ifp, synwindow);
3219		goto dropwithreset;
3220	}
3221
3222	/*
3223	 * If the ACK bit is off:  if in SYN-RECEIVED state or SENDSYN
3224	 * flag is on (half-synchronized state), then queue data for
3225	 * later processing; else drop segment and return.
3226	 */
3227	if ((thflags & TH_ACK) == 0) {
3228		if (tp->t_state == TCPS_SYN_RECEIVED ||
3229		    (tp->t_flags & TF_NEEDSYN))
3230			goto step6;
3231		else if (tp->t_flags & TF_ACKNOW)
3232			goto dropafterack;
3233		else
3234			goto drop;
3235	}
3236
3237	/*
3238	 * Ack processing.
3239	 */
3240
3241	switch (tp->t_state) {
3242
3243	/*
3244	 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
3245	 * ESTABLISHED state and continue processing.
3246	 * The ACK was checked above.
3247	 */
3248	case TCPS_SYN_RECEIVED:
3249
3250		tcpstat.tcps_connects++;
3251
3252		/* Do window scaling? */
3253		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
3254			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
3255			tp->snd_scale = tp->requested_s_scale;
3256			tp->rcv_scale = tp->request_r_scale;
3257			tp->snd_wnd = th->th_win << tp->snd_scale;
3258			tiwin = tp->snd_wnd;
3259		}
3260		/*
3261		 * Make transitions:
3262		 *      SYN-RECEIVED  -> ESTABLISHED
3263		 *      SYN-RECEIVED* -> FIN-WAIT-1
3264		 */
3265		tp->t_starttime = tcp_now;
3266		tcp_sbrcv_tstmp_check(tp);
3267		if (tp->t_flags & TF_NEEDFIN) {
3268			DTRACE_TCP4(state__change, void, NULL, struct inpcb *, inp,
3269				struct tcpcb *, tp, int32_t, TCPS_FIN_WAIT_1);
3270			tp->t_state = TCPS_FIN_WAIT_1;
3271			tp->t_flags &= ~TF_NEEDFIN;
3272		} else {
3273			DTRACE_TCP4(state__change, void, NULL, struct inpcb *, inp,
3274				struct tcpcb *, tp, int32_t, TCPS_ESTABLISHED);
3275			tp->t_state = TCPS_ESTABLISHED;
3276			tp->t_timer[TCPT_KEEP] = OFFSET_FROM_START(tp,
3277				TCP_CONN_KEEPIDLE(tp));
3278			if (nstat_collect)
3279				nstat_route_connect_success(tp->t_inpcb->inp_route.ro_rt);
3280		}
3281		/*
3282		 * If segment contains data or ACK, will call tcp_reass()
3283		 * later; if not, do so now to pass queued data to user.
3284		 */
3285		if (tlen == 0 && (thflags & TH_FIN) == 0)
3286			(void) tcp_reass(tp, (struct tcphdr *)0, &tlen,
3287			    NULL, ifp);
3288		tp->snd_wl1 = th->th_seq - 1;
3289
3290		/* FALLTHROUGH */
3291#if MPTCP
3292		/*
3293		 * Do not send the connect notification for additional subflows
3294		 * until ACK for 3-way handshake arrives.
3295		 */
3296		if ((!(tp->t_mpflags & TMPF_MPTCP_TRUE)) &&
3297		    (tp->t_mpflags & TMPF_SENT_JOIN)) {
3298			isconnected = FALSE;
3299		} else
3300#endif /* MPTCP */
3301			isconnected = TRUE;
3302
3303	/*
3304	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
3305	 * ACKs.  If the ack is in the range
3306	 *	tp->snd_una < th->th_ack <= tp->snd_max
3307	 * then advance tp->snd_una to th->th_ack and drop
3308	 * data from the retransmission queue.  If this ACK reflects
3309	 * more up to date window information we update our window information.
3310	 */
3311	case TCPS_ESTABLISHED:
3312	case TCPS_FIN_WAIT_1:
3313	case TCPS_FIN_WAIT_2:
3314	case TCPS_CLOSE_WAIT:
3315	case TCPS_CLOSING:
3316	case TCPS_LAST_ACK:
3317	case TCPS_TIME_WAIT:
3318		if (SEQ_GT(th->th_ack, tp->snd_max)) {
3319			tcpstat.tcps_rcvacktoomuch++;
3320			goto dropafterack;
3321		}
3322		if (SACK_ENABLED(tp) &&
3323		    (to.to_nsacks > 0 || !TAILQ_EMPTY(&tp->snd_holes)))
3324			tcp_sack_doack(tp, &to, th->th_ack, &sack_bytes_acked);
3325#if MPTCP
3326		if ((tp->t_mpuna) && (SEQ_GEQ(th->th_ack, tp->t_mpuna))) {
3327#if 0
3328			if ((tp->t_mpflags & TMPF_MPTCP_TRUE) &&
3329			    !(tp->t_mpflags & TMPF_MPTCP_READY)) {
3330				printf("%s: fallback? %x %x \n", __func__,
3331				    th->th_ack, tp->t_mpuna);
3332				tp->t_mpuna = 0;
3333			}
3334#endif
3335			if (tp->t_mpflags & TMPF_PREESTABLISHED) {
3336				/* MP TCP establishment succeeded */
3337				tp->t_mpuna = 0;
3338				if (tp->t_mpflags & TMPF_JOINED_FLOW) {
3339					if (tp->t_mpflags & TMPF_SENT_JOIN) {
3340						tp->t_mpflags &=
3341						    ~TMPF_PREESTABLISHED;
3342						tp->t_mpflags |=
3343						    TMPF_MPTCP_TRUE;
3344						so->so_flags |= SOF_MPTCP_TRUE;
3345						if (mptcp_dbg >= MP_ERR_DEBUG)
3346							printf("MPTCP SUCCESS"
3347							    "%s \n",__func__);
3348						tp->t_timer[TCPT_JACK_RXMT] = 0;
3349						tp->t_mprxtshift = 0;
3350						isconnected = TRUE;
3351					} else {
3352						isconnected = FALSE;
3353					}
3354				} else {
3355					isconnected = TRUE;
3356					tp->t_mpflags &= ~TMPF_SENT_KEYS;
3357
3358				}
3359			}
3360		}
3361#endif /* MPTCP */
3362		/*
3363		 * If we have outstanding data (other than
3364		 * a window probe), this is a completely
3365		 * duplicate ack (ie, window info didn't
3366		 * change) and the ack is the biggest we've seen.
3367		 */
3368		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
3369			if (tlen == 0 && tiwin == tp->snd_wnd) {
3370				/*
3371				 * If both ends send FIN at the same time,
3372				 * then the ack will be a duplicate ack
3373				 * but we have to process the FIN. Check
3374				 * for this condition and process the FIN
3375				 * instead of the dupack
3376				 */
3377				if ((thflags & TH_FIN) &&
3378					(tp->t_flags & TF_SENTFIN) &&
3379					!TCPS_HAVERCVDFIN(tp->t_state) &&
3380					(th->th_ack + 1) == tp->snd_max) {
3381					break;
3382				}
3383process_dupack:
3384#if MPTCP
3385				/*
3386				 * MPTCP options that are ignored must
3387				 * not be treated as duplicate ACKs.
3388				 */
3389				if (to.to_flags & TOF_MPTCP) {
3390					goto drop;
3391				}
3392#endif /* MPTCP */
3393				tcpstat.tcps_rcvdupack++;
3394				++tp->t_dupacks;
3395				/*
3396				 * Check if we need to reset the limit on early
3397				 * retransmit
3398				 */
3399				if (TSTMP_GEQ(tcp_now,
3400					(tp->t_early_rexmt_win + TCP_EARLY_REXMT_WIN)))
3401					tp->t_early_rexmt_count = 0;
3402
3403				/*
3404				 * Is early retransmit needed? We check for
3405				 * this when the connection is waiting for
3406				 * more duplicate acks to enter fast recovery.
3407				 */
3408				if (early_rexmt &&
3409					tp->t_early_rexmt_count < TCP_EARLY_REXMT_LIMIT &&
3410					!IN_FASTRECOVERY(tp) &&
3411					SEQ_GT(tp->snd_max, tp->snd_una) &&
3412					(tp->t_dupacks == 1 ||
3413					(SACK_ENABLED(tp) &&
3414					!TAILQ_EMPTY(&tp->snd_holes)))) {
3415					/*
3416					 * If there are only a few outstanding
3417					 * segments on the connection, we might need
3418					 * to lower the retransmit threshold. This
3419					 * will allow us to do Early Retransmit as
3420					 * described in RFC 5827.
3421					 */
3422					u_int32_t obytes, snd_off;
3423					int32_t snd_len;
3424					if (SACK_ENABLED(tp) &&
3425						!TAILQ_EMPTY(&tp->snd_holes)) {
3426						obytes = (tp->snd_max - tp->snd_fack) +
3427							tp->sackhint.sack_bytes_rexmit;
3428					} else {
3429						obytes = (tp->snd_max - tp->snd_una);
3430					}
3431
3432					/* In order to lower retransmit threshold the
3433					 * following two conditions must be met.
3434					 * 1. the amount of outstanding data is less
3435					 * than 4*SMSS bytes
3436					 * 2. there is no unsent data ready for
3437					 * transmission or the advertised window
3438					 * will limit sending new segments.
3439					 */
3440					snd_off = tp->snd_max - tp->snd_una;
3441					snd_len = min(so->so_snd.sb_cc, tp->snd_wnd) - snd_off;
3442					if (obytes < (tp->t_maxseg << 2) &&
3443						snd_len <= 0) {
3444						u_int32_t osegs;
3445
3446
3447						osegs = obytes / tp->t_maxseg;
3448						if ((osegs * tp->t_maxseg) < obytes)
3449							osegs++;
3450
3451						/*
3452						 * Since the connection might have already
3453						 * received some dupacks, we add them to
3454						 * to the outstanding segments count to get
3455						 * the correct retransmit threshold.
3456						 *
3457						 * By checking for early retransmit after
3458						 * receiving some duplicate acks when SACK
3459						 * is supported, the connection will be able
3460						 * to enter fast recovery even if multiple
3461						 * segments are lost in the same window.
3462						 */
3463						osegs += tp->t_dupacks;
3464						if (osegs < 4) {
3465							tcpstat.tcps_early_rexmt++;
3466							tp->t_rexmtthresh = ((osegs - 1) > 1) ?
3467								(osegs - 1) : 1;
3468							tp->t_rexmtthresh = min(tp->t_rexmtthresh,
3469								tcprexmtthresh);
3470							tp->t_rexmtthresh = max(tp->t_rexmtthresh,
3471								tp->t_dupacks);
3472							DTRACE_TCP5(cc, void, NULL, struct inpcb *, inp,
3473								struct tcpcb *, tp, struct tcphdr *, th,
3474								int32_t, TCP_CC_EARLY_RETRANSMIT);
3475							if (tp->t_early_rexmt_count == 0)
3476								tp->t_early_rexmt_win = tcp_now;
3477							tp->t_early_rexmt_count++;
3478						}
3479					}
3480				}
3481				/*
3482				 * If we've seen exactly our rexmt threshold
3483				 * of duplicate acks, assume a packet
3484				 * has been dropped and retransmit it.
3485				 * Kludge snd_nxt & the congestion
3486				 * window so we send only this one
3487				 * packet.
3488				 *
3489				 * We know we're losing at the current
3490				 * window size so do congestion avoidance
3491				 * (set ssthresh to half the current window
3492				 * and pull our congestion window back to
3493				 * the new ssthresh).
3494				 *
3495				 * Dup acks mean that packets have left the
3496				 * network (they're now cached at the receiver)
3497				 * so bump cwnd by the amount in the receiver
3498				 * to keep a constant cwnd packets in the
3499				 * network.
3500				 */
3501				if (tp->t_timer[TCPT_REXMT] == 0 ||
3502				    (th->th_ack != tp->snd_una && sack_bytes_acked == 0)) {
3503					tp->t_dupacks = 0;
3504					tp->t_rexmtthresh = tcprexmtthresh;
3505				} else if (tp->t_dupacks > tp->t_rexmtthresh ||
3506					  IN_FASTRECOVERY(tp)) {
3507					if (SACK_ENABLED(tp) && IN_FASTRECOVERY(tp)) {
3508						int awnd;
3509
3510						/*
3511						 * Compute the amount of data in flight first.
3512						 * We can inject new data into the pipe iff
3513						 * we have less than 1/2 the original window's
3514						 * worth of data in flight.
3515						 */
3516						awnd = (tp->snd_nxt - tp->snd_fack) +
3517							tp->sackhint.sack_bytes_rexmit;
3518						if (awnd < tp->snd_ssthresh) {
3519							tp->snd_cwnd += tp->t_maxseg;
3520							if (tp->snd_cwnd > tp->snd_ssthresh)
3521								tp->snd_cwnd = tp->snd_ssthresh;
3522						}
3523					} else
3524						tp->snd_cwnd += tp->t_maxseg;
3525
3526					DTRACE_TCP5(cc, void, NULL, struct inpcb *, inp,
3527						struct tcpcb *, tp, struct tcphdr *, th,
3528						int32_t, TCP_CC_IN_FASTRECOVERY);
3529
3530					(void) tcp_output(tp);
3531					goto drop;
3532				} else if (tp->t_dupacks == tp->t_rexmtthresh) {
3533					tcp_seq onxt = tp->snd_nxt;
3534
3535					/*
3536					 * If we're doing sack, check to
3537					 * see if we're already in sack
3538					 * recovery. If we're not doing sack,
3539					 * check to see if we're in newreno
3540					 * recovery.
3541					 */
3542					if (SACK_ENABLED(tp)) {
3543						if (IN_FASTRECOVERY(tp)) {
3544							tp->t_dupacks = 0;
3545							break;
3546						}
3547					} else {
3548						if (SEQ_LEQ(th->th_ack,
3549						    tp->snd_recover)) {
3550							tp->t_dupacks = 0;
3551							break;
3552						}
3553					}
3554
3555					/*
3556					 * If the current tcp cc module has
3557					 * defined a hook for tasks to run
3558					 * before entering FR, call it
3559					 */
3560					if (CC_ALGO(tp)->pre_fr != NULL)
3561						CC_ALGO(tp)->pre_fr(tp);
3562					ENTER_FASTRECOVERY(tp);
3563					tp->snd_recover = tp->snd_max;
3564					tp->t_timer[TCPT_REXMT] = 0;
3565					tp->t_rtttime = 0;
3566					if ((tp->ecn_flags & TE_ECN_ON) == TE_ECN_ON) {
3567						tp->ecn_flags |= TE_SENDCWR;
3568					}
3569					if (SACK_ENABLED(tp)) {
3570						tcpstat.tcps_sack_recovery_episode++;
3571						tp->sack_newdata = tp->snd_nxt;
3572						tp->snd_cwnd = tp->t_maxseg;
3573
3574						DTRACE_TCP5(cc, void, NULL, struct inpcb *, inp,
3575							struct tcpcb *, tp, struct tcphdr *, th,
3576							int32_t, TCP_CC_ENTER_FASTRECOVERY);
3577
3578						(void) tcp_output(tp);
3579						goto drop;
3580					}
3581					tp->snd_nxt = th->th_ack;
3582					tp->snd_cwnd = tp->t_maxseg;
3583					(void) tcp_output(tp);
3584					tp->snd_cwnd = tp->snd_ssthresh +
3585					     tp->t_maxseg * tp->t_dupacks;
3586					if (SEQ_GT(onxt, tp->snd_nxt))
3587						tp->snd_nxt = onxt;
3588					DTRACE_TCP5(cc, void, NULL, struct inpcb *, inp,
3589						struct tcpcb *, tp, struct tcphdr *, th,
3590						int32_t, TCP_CC_ENTER_FASTRECOVERY);
3591					goto drop;
3592				} else if (limited_txmt &&
3593					ALLOW_LIMITED_TRANSMIT(tp) &&
3594					(!(SACK_ENABLED(tp)) || sack_bytes_acked > 0) &&
3595					(so->so_snd.sb_cc - (tp->snd_max - tp->snd_una)) > 0) {
3596					u_int32_t incr = (tp->t_maxseg * tp->t_dupacks);
3597
3598					/* Use Limited Transmit algorithm on the first two
3599					 * duplicate acks when there is new data to transmit
3600					 */
3601					tp->snd_cwnd += incr;
3602					tcpstat.tcps_limited_txt++;
3603					(void) tcp_output(tp);
3604
3605					DTRACE_TCP5(cc, void, NULL, struct inpcb *, inp,
3606						struct tcpcb *, tp, struct tcphdr *, th,
3607						int32_t, TCP_CC_LIMITED_TRANSMIT);
3608
3609					/* Reset snd_cwnd back to normal */
3610					tp->snd_cwnd -= incr;
3611				}
3612			} else {
3613				tp->t_dupacks = 0;
3614				tp->t_rexmtthresh = tcprexmtthresh;
3615			}
3616			break;
3617		}
3618		/*
3619		 * If the congestion window was inflated to account
3620		 * for the other side's cached packets, retract it.
3621		 */
3622		if (IN_FASTRECOVERY(tp)) {
3623			if (SEQ_LT(th->th_ack, tp->snd_recover)) {
3624				if (SACK_ENABLED(tp))
3625					tcp_sack_partialack(tp, th);
3626				else
3627					tcp_newreno_partial_ack(tp, th);
3628
3629				DTRACE_TCP5(cc, void, NULL, struct inpcb *, inp,
3630					struct tcpcb *, tp, struct tcphdr *, th,
3631					int32_t, TCP_CC_PARTIAL_ACK);
3632			} else {
3633				EXIT_FASTRECOVERY(tp);
3634				if (CC_ALGO(tp)->post_fr != NULL)
3635					CC_ALGO(tp)->post_fr(tp, th);
3636				DTRACE_TCP5(cc, void, NULL, struct inpcb *, inp,
3637					struct tcpcb *, tp, struct tcphdr *, th,
3638					int32_t, TCP_CC_EXIT_FASTRECOVERY);
3639			}
3640		} else {
3641			/*
3642			 * We were not in fast recovery. Reset the duplicate ack
3643			 * counter.
3644			 */
3645			tp->t_dupacks = 0;
3646			tp->t_rexmtthresh = tcprexmtthresh;
3647		}
3648
3649
3650		/*
3651		 * If we reach this point, ACK is not a duplicate,
3652		 *     i.e., it ACKs something we sent.
3653		 */
3654		if (tp->t_flags & TF_NEEDSYN) {
3655			/*
3656			 * T/TCP: Connection was half-synchronized, and our
3657			 * SYN has been ACK'd (so connection is now fully
3658			 * synchronized).  Go to non-starred state,
3659			 * increment snd_una for ACK of SYN, and check if
3660			 * we can do window scaling.
3661			 */
3662			tp->t_flags &= ~TF_NEEDSYN;
3663			tp->snd_una++;
3664			/* Do window scaling? */
3665			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
3666				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
3667				tp->snd_scale = tp->requested_s_scale;
3668				tp->rcv_scale = tp->request_r_scale;
3669			}
3670		}
3671
3672process_ACK:
3673		acked = BYTES_ACKED(th, tp);
3674		tcpstat.tcps_rcvackpack++;
3675		tcpstat.tcps_rcvackbyte += acked;
3676
3677		/*
3678		 * If the last packet was a retransmit, make sure
3679		 * it was not spurious.
3680		 *
3681		 * If the ack has ECE bit set, skip bad
3682		 * retransmit recovery.
3683		 */
3684		if (tp->t_rxtshift > 0 &&
3685			(thflags & TH_ECE) == 0 &&
3686			tcp_detect_bad_rexmt(tp, &to)) {
3687			++tcpstat.tcps_sndrexmitbad;
3688			tcp_bad_rexmt_restore_state(tp, th);
3689
3690			DTRACE_TCP5(cc, void, NULL, struct inpcb *, inp,
3691				struct tcpcb *, tp, struct tcphdr *, th,
3692				int32_t, TCP_CC_BAD_REXMT_RECOVERY);
3693		}
3694
3695		/* Recalculate the RTT */
3696		tcp_compute_rtt(tp, &to, th);
3697
3698		/*
3699		 * If all outstanding data is acked, stop retransmit
3700		 * timer and remember to restart (more output or persist).
3701		 * If there is more data to be acked, restart retransmit
3702		 * timer, using current (possibly backed-off) value.
3703		 */
3704		if (th->th_ack == tp->snd_max) {
3705			tp->t_timer[TCPT_REXMT] = 0;
3706			needoutput = 1;
3707		} else if (tp->t_timer[TCPT_PERSIST] == 0)
3708			tp->t_timer[TCPT_REXMT] = OFFSET_FROM_START(tp, tp->t_rxtcur);
3709
3710		/*
3711		 * If no data (only SYN) was ACK'd,
3712		 *    skip rest of ACK processing.
3713		 */
3714		if (acked == 0)
3715			goto step6;
3716
3717		if ((thflags & TH_ECE) != 0 &&
3718			((tp->ecn_flags & TE_ECN_ON) == TE_ECN_ON)) {
3719			/*
3720			 * Reduce the congestion window if we haven't done so.
3721			 */
3722			if (!SACK_ENABLED(tp) && !IN_FASTRECOVERY(tp) &&
3723				SEQ_GEQ(th->th_ack, tp->snd_recover)) {
3724				tcp_reduce_congestion_window(tp);
3725				DTRACE_TCP5(cc, void, NULL, struct inpcb *, inp,
3726					struct tcpcb *, tp, struct tcphdr *, th,
3727					int32_t, TCP_CC_ECN_RCVD);
3728			}
3729		}
3730
3731		/*
3732		 * When new data is acked, open the congestion window.
3733		 * The specifics of how this is achieved are up to the
3734		 * congestion control algorithm in use for this connection.
3735		 *
3736		 * The calculations in this function assume that snd_una is
3737		 * not updated yet.
3738		 */
3739		if (!IN_FASTRECOVERY(tp)) {
3740			if (CC_ALGO(tp)->ack_rcvd != NULL)
3741				CC_ALGO(tp)->ack_rcvd(tp, th);
3742
3743			DTRACE_TCP5(cc, void, NULL, struct inpcb *, inp,
3744				struct tcpcb *, tp, struct tcphdr *, th,
3745				int32_t, TCP_CC_ACK_RCVD);
3746		}
3747		if (acked > so->so_snd.sb_cc) {
3748			tp->snd_wnd -= so->so_snd.sb_cc;
3749			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
3750			if (so->so_flags & SOF_ENABLE_MSGS) {
3751				so->so_msg_state->msg_serial_bytes -=
3752					(int)so->so_snd.sb_cc;
3753			}
3754			ourfinisacked = 1;
3755		} else {
3756			sbdrop(&so->so_snd, acked);
3757			if (so->so_flags & SOF_ENABLE_MSGS) {
3758				so->so_msg_state->msg_serial_bytes -=
3759					acked;
3760			}
3761			tcp_sbsnd_trim(&so->so_snd);
3762			tp->snd_wnd -= acked;
3763			ourfinisacked = 0;
3764		}
3765		/* detect una wraparound */
3766		if ( !IN_FASTRECOVERY(tp) &&
3767		    SEQ_GT(tp->snd_una, tp->snd_recover) &&
3768		    SEQ_LEQ(th->th_ack, tp->snd_recover))
3769			tp->snd_recover = th->th_ack - 1;
3770
3771		if (IN_FASTRECOVERY(tp) &&
3772		    SEQ_GEQ(th->th_ack, tp->snd_recover))
3773			EXIT_FASTRECOVERY(tp);
3774
3775		tp->snd_una = th->th_ack;
3776		if (SACK_ENABLED(tp)) {
3777			if (SEQ_GT(tp->snd_una, tp->snd_recover))
3778				tp->snd_recover = tp->snd_una;
3779		}
3780		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
3781			tp->snd_nxt = tp->snd_una;
3782		if ((tp->t_flagsext & TF_MEASURESNDBW) != 0 &&
3783			tp->t_bwmeas != NULL)
3784			tcp_bwmeas_check(tp);
3785
3786		/*
3787		 * sowwakeup must happen after snd_una, et al. are updated so that
3788		 * the sequence numbers are in sync with so_snd
3789		 */
3790		sowwakeup(so);
3791
3792		switch (tp->t_state) {
3793
3794		/*
3795		 * In FIN_WAIT_1 STATE in addition to the processing
3796		 * for the ESTABLISHED state if our FIN is now acknowledged
3797		 * then enter FIN_WAIT_2.
3798		 */
3799		case TCPS_FIN_WAIT_1:
3800			if (ourfinisacked) {
3801				/*
3802				 * If we can't receive any more
3803				 * data, then closing user can proceed.
3804				 * Starting the TCPT_2MSL timer is contrary to the
3805				 * specification, but if we don't get a FIN
3806				 * we'll hang forever.
3807				 */
3808				if (so->so_state & SS_CANTRCVMORE) {
3809					tp->t_timer[TCPT_2MSL] = OFFSET_FROM_START(tp,
3810						TCP_CONN_MAXIDLE(tp));
3811					isconnected = FALSE;
3812					isdisconnected = TRUE;
3813				}
3814				DTRACE_TCP4(state__change, void, NULL,
3815					struct inpcb *, inp,
3816					struct tcpcb *, tp,
3817					int32_t, TCPS_FIN_WAIT_2);
3818				tp->t_state = TCPS_FIN_WAIT_2;
3819				/* fall through and make sure we also recognize
3820				 * data ACKed with the FIN
3821				 */
3822			}
3823			tp->t_flags |= TF_ACKNOW;
3824			break;
3825
3826	 	/*
3827		 * In CLOSING STATE in addition to the processing for
3828		 * the ESTABLISHED state if the ACK acknowledges our FIN
3829		 * then enter the TIME-WAIT state, otherwise ignore
3830		 * the segment.
3831		 */
3832		case TCPS_CLOSING:
3833			if (ourfinisacked) {
3834				DTRACE_TCP4(state__change, void, NULL,
3835					struct inpcb *, inp,
3836					struct tcpcb *, tp,
3837					int32_t, TCPS_TIME_WAIT);
3838				tp->t_state = TCPS_TIME_WAIT;
3839				tcp_canceltimers(tp);
3840				add_to_time_wait(tp, 2 * tcp_msl);
3841				isconnected = FALSE;
3842				isdisconnected = TRUE;
3843			}
3844			tp->t_flags |= TF_ACKNOW;
3845			break;
3846
3847		/*
3848		 * In LAST_ACK, we may still be waiting for data to drain
3849		 * and/or to be acked, as well as for the ack of our FIN.
3850		 * If our FIN is now acknowledged, delete the TCB,
3851		 * enter the closed state and return.
3852		 */
3853		case TCPS_LAST_ACK:
3854			if (ourfinisacked) {
3855				tp = tcp_close(tp);
3856				goto drop;
3857			}
3858			break;
3859
3860		/*
3861		 * In TIME_WAIT state the only thing that should arrive
3862		 * is a retransmission of the remote FIN.  Acknowledge
3863		 * it and restart the finack timer.
3864		 */
3865		case TCPS_TIME_WAIT:
3866			add_to_time_wait(tp, 2 * tcp_msl);
3867			goto dropafterack;
3868		}
3869
3870		/*
3871		 * If there is a SACK option on the ACK and we
3872		 * haven't seen any duplicate acks before, count
3873		 * it as a duplicate ack even if the cumulative
3874		 * ack is advanced. If the receiver delayed an
3875		 * ack and detected loss afterwards, then the ack
3876		 * will advance cumulative ack and will also have
3877		 * a SACK option. So counting it as one duplicate
3878		 * ack is ok.
3879		 */
3880		if (sack_ackadv == 1 &&
3881			tp->t_state == TCPS_ESTABLISHED &&
3882			SACK_ENABLED(tp) &&
3883			sack_bytes_acked > 0 &&
3884			tp->t_dupacks == 0 &&
3885			SEQ_LEQ(th->th_ack, tp->snd_una) && tlen == 0) {
3886			tcpstat.tcps_sack_ackadv++;
3887			goto process_dupack;
3888		}
3889	}
3890
3891step6:
3892	/*
3893	 * Update window information.
3894	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
3895	 */
3896	if ((thflags & TH_ACK) &&
3897	    (SEQ_LT(tp->snd_wl1, th->th_seq) ||
3898	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
3899	     (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
3900		/* keep track of pure window updates */
3901		if (tlen == 0 &&
3902		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
3903			tcpstat.tcps_rcvwinupd++;
3904		tp->snd_wnd = tiwin;
3905		tp->snd_wl1 = th->th_seq;
3906		tp->snd_wl2 = th->th_ack;
3907		if (tp->snd_wnd > tp->max_sndwnd)
3908			tp->max_sndwnd = tp->snd_wnd;
3909		needoutput = 1;
3910	}
3911
3912	/*
3913	 * Process segments with URG.
3914	 */
3915	if ((thflags & TH_URG) && th->th_urp &&
3916	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
3917		/*
3918		 * This is a kludge, but if we receive and accept
3919		 * random urgent pointers, we'll crash in
3920		 * soreceive.  It's hard to imagine someone
3921		 * actually wanting to send this much urgent data.
3922		 */
3923		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
3924			th->th_urp = 0;			/* XXX */
3925			thflags &= ~TH_URG;		/* XXX */
3926			goto dodata;			/* XXX */
3927		}
3928		/*
3929		 * If this segment advances the known urgent pointer,
3930		 * then mark the data stream.  This should not happen
3931		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
3932		 * a FIN has been received from the remote side.
3933		 * In these states we ignore the URG.
3934		 *
3935		 * According to RFC961 (Assigned Protocols),
3936		 * the urgent pointer points to the last octet
3937		 * of urgent data.  We continue, however,
3938		 * to consider it to indicate the first octet
3939		 * of data past the urgent section as the original
3940		 * spec states (in one of two places).
3941		 */
3942		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
3943			tp->rcv_up = th->th_seq + th->th_urp;
3944			so->so_oobmark = so->so_rcv.sb_cc +
3945			    (tp->rcv_up - tp->rcv_nxt) - 1;
3946			if (so->so_oobmark == 0) {
3947				so->so_state |= SS_RCVATMARK;
3948				postevent(so, 0, EV_OOB);
3949			}
3950			sohasoutofband(so);
3951			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
3952		}
3953		/*
3954		 * Remove out of band data so doesn't get presented to user.
3955		 * This can happen independent of advancing the URG pointer,
3956		 * but if two URG's are pending at once, some out-of-band
3957		 * data may creep in... ick.
3958		 */
3959		if (th->th_urp <= (u_int32_t)tlen
3960#if SO_OOBINLINE
3961		     && (so->so_options & SO_OOBINLINE) == 0
3962#endif
3963		     )
3964			tcp_pulloutofband(so, th, m,
3965				drop_hdrlen);	/* hdr drop is delayed */
3966	} else {
3967		/*
3968		 * If no out of band data is expected,
3969		 * pull receive urgent pointer along
3970		 * with the receive window.
3971		 */
3972		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
3973			tp->rcv_up = tp->rcv_nxt;
3974	}
3975dodata:
3976
3977	/* Set socket's connect or disconnect state correcly before doing data.
3978	 * The following might unlock the socket if there is an upcall or a socket
3979	 * filter.
3980	 */
3981	if (isconnected) {
3982		soisconnected(so);
3983	} else if (isdisconnected) {
3984		soisdisconnected(so);
3985	}
3986
3987	/* Let's check the state of pcb just to make sure that it did not get closed
3988	 * when we unlocked above
3989	 */
3990	if (inp->inp_state == INPCB_STATE_DEAD) {
3991		/* Just drop the packet that we are processing and return */
3992		goto drop;
3993	}
3994
3995	/*
3996	 * Process the segment text, merging it into the TCP sequencing queue,
3997	 * and arranging for acknowledgment of receipt if necessary.
3998	 * This process logically involves adjusting tp->rcv_wnd as data
3999	 * is presented to the user (this happens in tcp_usrreq.c,
4000	 * case PRU_RCVD).  If a FIN has already been received on this
4001	 * connection then we just ignore the text.
4002	 */
4003	if ((tlen || (thflags & TH_FIN)) &&
4004	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
4005		tcp_seq save_start = th->th_seq;
4006		tcp_seq save_end = th->th_seq + tlen;
4007		m_adj(m, drop_hdrlen);	/* delayed header drop */
4008		/*
4009		 * Insert segment which includes th into TCP reassembly queue
4010		 * with control block tp.  Set thflags to whether reassembly now
4011		 * includes a segment with FIN.  This handles the common case
4012		 * inline (segment is the next to be received on an established
4013		 * connection, and the queue is empty), avoiding linkage into
4014		 * and removal from the queue and repetition of various
4015		 * conversions.
4016		 * Set DELACK for segments received in order, but ack
4017		 * immediately when segments are out of order (so
4018		 * fast retransmit can work).
4019		 */
4020		if (th->th_seq == tp->rcv_nxt &&
4021		    LIST_EMPTY(&tp->t_segq) &&
4022		    TCPS_HAVEESTABLISHED(tp->t_state)) {
4023			TCP_INC_VAR(tp->t_unacksegs, nlropkts);
4024			/*
4025			 * Calculate the RTT on the receiver only if the
4026			 * connection is in streaming mode and the last
4027			 * packet was not an end-of-write
4028			 */
4029			if ((tp->t_flags & TF_STRETCHACK) &&
4030				!(tp->t_flagsext & TF_STREAMEOW))
4031				tcp_compute_rtt(tp, &to, th);
4032
4033			if (DELAY_ACK(tp, th) &&
4034				((tp->t_flags & TF_ACKNOW) == 0) ) {
4035				if ((tp->t_flags & TF_DELACK) == 0) {
4036					tp->t_flags |= TF_DELACK;
4037					tp->t_timer[TCPT_DELACK] =
4038						OFFSET_FROM_START(tp, tcp_delack);
4039				}
4040			}
4041			else {
4042				tp->t_flags |= TF_ACKNOW;
4043			}
4044			tp->rcv_nxt += tlen;
4045			thflags = th->th_flags & TH_FIN;
4046			TCP_INC_VAR(tcpstat.tcps_rcvpack, nlropkts);
4047			tcpstat.tcps_rcvbyte += tlen;
4048			if (nstat_collect) {
4049				if (m->m_pkthdr.pkt_flags & PKTF_SW_LRO_PKT) {
4050					INP_ADD_STAT(inp, cell, wifi, rxpackets,
4051					    m->m_pkthdr.lro_npkts);
4052				} else {
4053					INP_ADD_STAT(inp, cell, wifi, rxpackets, 1);
4054				}
4055				INP_ADD_STAT(inp, cell, wifi, rxbytes, tlen);
4056			}
4057			tcp_sbrcv_grow(tp, &so->so_rcv, &to, tlen);
4058			so_recv_data_stat(so, m, drop_hdrlen);
4059
4060			if (sbappendstream_rcvdemux(so, m,
4061			    th->th_seq - (tp->irs + 1), 0)) {
4062				sorwakeup(so);
4063			}
4064		} else {
4065			thflags = tcp_reass(tp, th, &tlen, m, ifp);
4066			tp->t_flags |= TF_ACKNOW;
4067		}
4068
4069		if (tlen > 0 && SACK_ENABLED(tp))
4070			tcp_update_sack_list(tp, save_start, save_end);
4071
4072		tcp_adaptive_rwtimo_check(tp, tlen);
4073
4074		if (tp->t_flags & TF_DELACK)
4075		{
4076#if INET6
4077			if (isipv6) {
4078				KERNEL_DEBUG(DBG_LAYER_END, ((th->th_dport << 16) | th->th_sport),
4079		     			(((ip6->ip6_src.s6_addr16[0]) << 16) | (ip6->ip6_dst.s6_addr16[0])),
4080			     		th->th_seq, th->th_ack, th->th_win);
4081			}
4082			else
4083#endif
4084			{
4085				KERNEL_DEBUG(DBG_LAYER_END, ((th->th_dport << 16) | th->th_sport),
4086		     			(((ip->ip_src.s_addr & 0xffff) << 16) | (ip->ip_dst.s_addr & 0xffff)),
4087			     		th->th_seq, th->th_ack, th->th_win);
4088			}
4089
4090		}
4091	} else {
4092		m_freem(m);
4093		thflags &= ~TH_FIN;
4094	}
4095
4096	/*
4097	 * If FIN is received ACK the FIN and let the user know
4098	 * that the connection is closing.
4099	 */
4100	if (thflags & TH_FIN) {
4101		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
4102			socantrcvmore(so);
4103			postevent(so, 0, EV_FIN);
4104			/*
4105			 * If connection is half-synchronized
4106			 * (ie NEEDSYN flag on) then delay ACK,
4107			 * so it may be piggybacked when SYN is sent.
4108			 * Otherwise, since we received a FIN then no
4109			 * more input can be expected, send ACK now.
4110			 */
4111			TCP_INC_VAR(tp->t_unacksegs, nlropkts);
4112			if (DELAY_ACK(tp, th) && (tp->t_flags & TF_NEEDSYN)) {
4113				if ((tp->t_flags & TF_DELACK) == 0) {
4114					tp->t_flags |= TF_DELACK;
4115					tp->t_timer[TCPT_DELACK] = OFFSET_FROM_START(tp, tcp_delack);
4116				}
4117			}
4118			else {
4119				tp->t_flags |= TF_ACKNOW;
4120			}
4121			tp->rcv_nxt++;
4122		}
4123		switch (tp->t_state) {
4124
4125	 	/*
4126		 * In SYN_RECEIVED and ESTABLISHED STATES
4127		 * enter the CLOSE_WAIT state.
4128		 */
4129		case TCPS_SYN_RECEIVED:
4130			tp->t_starttime = tcp_now;
4131		case TCPS_ESTABLISHED:
4132			DTRACE_TCP4(state__change, void, NULL, struct inpcb *, inp,
4133				struct tcpcb *, tp, int32_t, TCPS_CLOSE_WAIT);
4134			tp->t_state = TCPS_CLOSE_WAIT;
4135			break;
4136
4137	 	/*
4138		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
4139		 * enter the CLOSING state.
4140		 */
4141		case TCPS_FIN_WAIT_1:
4142			DTRACE_TCP4(state__change, void, NULL, struct inpcb *, inp,
4143				struct tcpcb *, tp, int32_t, TCPS_CLOSING);
4144			tp->t_state = TCPS_CLOSING;
4145			break;
4146
4147	 	/*
4148		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
4149		 * starting the time-wait timer, turning off the other
4150		 * standard timers.
4151		 */
4152		case TCPS_FIN_WAIT_2:
4153			DTRACE_TCP4(state__change, void, NULL,
4154				struct inpcb *, inp,
4155				struct tcpcb *, tp,
4156				int32_t, TCPS_TIME_WAIT);
4157			tp->t_state = TCPS_TIME_WAIT;
4158			tcp_canceltimers(tp);
4159			if (tp->cc_recv != 0 &&
4160				((int)(tcp_now - tp->t_starttime)) < tcp_msl) {
4161				/* For transaction client, force ACK now. */
4162				tp->t_flags |= TF_ACKNOW;
4163			    	tp->t_unacksegs = 0;
4164			}
4165			add_to_time_wait(tp, 2 * tcp_msl);
4166			soisdisconnected(so);
4167			break;
4168
4169		/*
4170		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
4171		 */
4172		case TCPS_TIME_WAIT:
4173			add_to_time_wait(tp, 2 * tcp_msl);
4174			break;
4175		}
4176	}
4177#if TCPDEBUG
4178	if (so->so_options & SO_DEBUG)
4179		tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen,
4180			  &tcp_savetcp, 0);
4181#endif
4182
4183	/*
4184	 * Return any desired output.
4185	 */
4186	if (needoutput || (tp->t_flags & TF_ACKNOW)) {
4187		(void) tcp_output(tp);
4188	}
4189
4190	tcp_check_timer_state(tp);
4191
4192
4193	tcp_unlock(so, 1, 0);
4194	KERNEL_DEBUG(DBG_FNC_TCP_INPUT | DBG_FUNC_END,0,0,0,0,0);
4195	return;
4196
4197dropafterack:
4198	/*
4199	 * Generate an ACK dropping incoming segment if it occupies
4200	 * sequence space, where the ACK reflects our state.
4201	 *
4202	 * We can now skip the test for the RST flag since all
4203	 * paths to this code happen after packets containing
4204	 * RST have been dropped.
4205	 *
4206	 * In the SYN-RECEIVED state, don't send an ACK unless the
4207	 * segment we received passes the SYN-RECEIVED ACK test.
4208	 * If it fails send a RST.  This breaks the loop in the
4209	 * "LAND" DoS attack, and also prevents an ACK storm
4210	 * between two listening ports that have been sent forged
4211	 * SYN segments, each with the source address of the other.
4212	 */
4213	if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
4214	    (SEQ_GT(tp->snd_una, th->th_ack) ||
4215	     SEQ_GT(th->th_ack, tp->snd_max)) ) {
4216		rstreason = BANDLIM_RST_OPENPORT;
4217		IF_TCP_STATINC(ifp, dospacket);
4218		goto dropwithreset;
4219	}
4220#if TCPDEBUG
4221	if (so->so_options & SO_DEBUG)
4222		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
4223			  &tcp_savetcp, 0);
4224#endif
4225	m_freem(m);
4226	tp->t_flags |= TF_ACKNOW;
4227	(void) tcp_output(tp);
4228
4229	/* Don't need to check timer state as we should have done it during tcp_output */
4230	tcp_unlock(so, 1, 0);
4231	KERNEL_DEBUG(DBG_FNC_TCP_INPUT | DBG_FUNC_END,0,0,0,0,0);
4232	return;
4233dropwithresetnosock:
4234	nosock = 1;
4235dropwithreset:
4236	/*
4237	 * Generate a RST, dropping incoming segment.
4238	 * Make ACK acceptable to originator of segment.
4239	 * Don't bother to respond if destination was broadcast/multicast.
4240	 */
4241	if ((thflags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
4242		goto drop;
4243#if INET6
4244	if (isipv6) {
4245		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
4246		    IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
4247			goto drop;
4248	} else
4249#endif /* INET6 */
4250	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
4251	    IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
4252	    ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
4253	    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
4254		goto drop;
4255	/* IPv6 anycast check is done at tcp6_input() */
4256
4257	/*
4258	 * Perform bandwidth limiting.
4259	 */
4260#if ICMP_BANDLIM
4261	if (badport_bandlim(rstreason) < 0)
4262		goto drop;
4263#endif
4264
4265#if TCPDEBUG
4266	if (tp == 0 || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
4267		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
4268			  &tcp_savetcp, 0);
4269#endif
4270	if (thflags & TH_ACK)
4271		/* mtod() below is safe as long as hdr dropping is delayed */
4272		tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0, th->th_ack,
4273		    TH_RST, ifscope, nocell);
4274	else {
4275		if (thflags & TH_SYN)
4276			tlen++;
4277		/* mtod() below is safe as long as hdr dropping is delayed */
4278		tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen,
4279		    (tcp_seq)0, TH_RST|TH_ACK, ifscope, nocell);
4280	}
4281	/* destroy temporarily created socket */
4282	if (dropsocket) {
4283		(void) soabort(so);
4284		tcp_unlock(so, 1, 0);
4285	} else if ((inp != NULL) && (nosock == 0)) {
4286		tcp_unlock(so, 1, 0);
4287	}
4288	KERNEL_DEBUG(DBG_FNC_TCP_INPUT | DBG_FUNC_END,0,0,0,0,0);
4289	return;
4290dropnosock:
4291	nosock = 1;
4292drop:
4293	/*
4294	 * Drop space held by incoming segment and return.
4295	 */
4296#if TCPDEBUG
4297	if (tp == 0 || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
4298		tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
4299			  &tcp_savetcp, 0);
4300#endif
4301	m_freem(m);
4302	/* destroy temporarily created socket */
4303	if (dropsocket) {
4304		(void) soabort(so);
4305		tcp_unlock(so, 1, 0);
4306	}
4307	else if (nosock == 0) {
4308		tcp_unlock(so, 1, 0);
4309	}
4310	KERNEL_DEBUG(DBG_FNC_TCP_INPUT | DBG_FUNC_END,0,0,0,0,0);
4311	return;
4312}
4313
4314static void
4315tcp_dooptions(tp, cp, cnt, th, to, input_ifscope)
4316/*
4317 * Parse TCP options and place in tcpopt.
4318 */
4319	struct tcpcb *tp;
4320	u_char *cp;
4321	int cnt;
4322	struct tcphdr *th;
4323	struct tcpopt *to;
4324	unsigned int input_ifscope;
4325{
4326	u_short mss = 0;
4327	int opt, optlen;
4328
4329	for (; cnt > 0; cnt -= optlen, cp += optlen) {
4330		opt = cp[0];
4331		if (opt == TCPOPT_EOL)
4332			break;
4333		if (opt == TCPOPT_NOP)
4334			optlen = 1;
4335		else {
4336			if (cnt < 2)
4337				break;
4338			optlen = cp[1];
4339			if (optlen < 2 || optlen > cnt)
4340				break;
4341		}
4342		switch (opt) {
4343
4344		default:
4345			continue;
4346
4347		case TCPOPT_MAXSEG:
4348			if (optlen != TCPOLEN_MAXSEG)
4349				continue;
4350			if (!(th->th_flags & TH_SYN))
4351				continue;
4352			bcopy((char *) cp + 2, (char *) &mss, sizeof(mss));
4353			NTOHS(mss);
4354			break;
4355
4356		case TCPOPT_WINDOW:
4357			if (optlen != TCPOLEN_WINDOW)
4358				continue;
4359			if (!(th->th_flags & TH_SYN))
4360				continue;
4361			to->to_flags |= TOF_SCALE;
4362			tp->t_flags |= TF_RCVD_SCALE;
4363			tp->requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
4364			break;
4365
4366		case TCPOPT_TIMESTAMP:
4367			if (optlen != TCPOLEN_TIMESTAMP)
4368				continue;
4369			to->to_flags |= TOF_TS;
4370			bcopy((char *)cp + 2,
4371			    (char *)&to->to_tsval, sizeof(to->to_tsval));
4372			NTOHL(to->to_tsval);
4373			bcopy((char *)cp + 6,
4374			    (char *)&to->to_tsecr, sizeof(to->to_tsecr));
4375			NTOHL(to->to_tsecr);
4376			/*
4377			 * A timestamp received in a SYN makes
4378			 * it ok to send timestamp requests and replies.
4379			 */
4380			if (th->th_flags & TH_SYN) {
4381				tp->t_flags |= TF_RCVD_TSTMP;
4382				tp->ts_recent = to->to_tsval;
4383				tp->ts_recent_age = tcp_now;
4384			}
4385			break;
4386		case TCPOPT_SACK_PERMITTED:
4387			if (!tcp_do_sack ||
4388			    optlen != TCPOLEN_SACK_PERMITTED)
4389				continue;
4390			if (th->th_flags & TH_SYN)
4391				to->to_flags |= TOF_SACK;
4392			break;
4393		case TCPOPT_SACK:
4394			if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0)
4395				continue;
4396			to->to_nsacks = (optlen - 2) / TCPOLEN_SACK;
4397			to->to_sacks = cp + 2;
4398			tcpstat.tcps_sack_rcv_blocks++;
4399
4400			break;
4401
4402#if MPTCP
4403		case TCPOPT_MULTIPATH:
4404			tcp_do_mptcp_options(tp, cp, th, to, optlen);
4405			break;
4406#endif /* MPTCP */
4407		}
4408	}
4409	if (th->th_flags & TH_SYN)
4410		tcp_mss(tp, mss, input_ifscope);	/* sets t_maxseg */
4411}
4412
4413/*
4414 * Pull out of band byte out of a segment so
4415 * it doesn't appear in the user's data queue.
4416 * It is still reflected in the segment length for
4417 * sequencing purposes.
4418 */
4419static void
4420tcp_pulloutofband(so, th, m, off)
4421	struct socket *so;
4422	struct tcphdr *th;
4423	register struct mbuf *m;
4424	int off;		/* delayed to be droped hdrlen */
4425{
4426	int cnt = off + th->th_urp - 1;
4427
4428	while (cnt >= 0) {
4429		if (m->m_len > cnt) {
4430			char *cp = mtod(m, caddr_t) + cnt;
4431			struct tcpcb *tp = sototcpcb(so);
4432
4433			tp->t_iobc = *cp;
4434			tp->t_oobflags |= TCPOOB_HAVEDATA;
4435			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
4436			m->m_len--;
4437			if (m->m_flags & M_PKTHDR)
4438				m->m_pkthdr.len--;
4439			return;
4440		}
4441		cnt -= m->m_len;
4442		m = m->m_next;
4443		if (m == 0)
4444			break;
4445	}
4446	panic("tcp_pulloutofband");
4447}
4448
4449uint32_t
4450get_base_rtt(struct tcpcb *tp)
4451{
4452	uint32_t base_rtt = 0, i;
4453	for (i = 0; i < N_RTT_BASE; ++i) {
4454		if (tp->rtt_hist[i] != 0 &&
4455			(base_rtt == 0 || tp->rtt_hist[i] < base_rtt))
4456			base_rtt = tp->rtt_hist[i];
4457	}
4458	return base_rtt;
4459}
4460
4461/* Each value of RTT base represents the minimum RTT seen in a minute.
4462 * We keep upto N_RTT_BASE minutes worth of history.
4463 */
4464void
4465update_base_rtt(struct tcpcb *tp, uint32_t rtt)
4466{
4467	int32_t i, qdelay;
4468	u_int32_t base_rtt;
4469
4470	if (++tp->rtt_count >= rtt_samples_per_slot) {
4471#if TRAFFIC_MGT
4472		/*
4473		 * If the recv side is being throttled, check if the
4474		 * current RTT is closer to the base RTT seen in
4475		 * first (recent) two slots. If so, unthrottle the stream.
4476		 */
4477		if (tp->t_flagsext & TF_RECV_THROTTLE) {
4478			base_rtt = min(tp->rtt_hist[0], tp->rtt_hist[1]);
4479			qdelay = tp->t_rttcur - base_rtt;
4480			if (qdelay < target_qdelay)
4481				tp->t_flagsext &= ~(TF_RECV_THROTTLE);
4482		}
4483#endif /* TRAFFIC_MGT */
4484
4485		for (i = (N_RTT_BASE-1); i > 0; --i) {
4486			tp->rtt_hist[i] = tp->rtt_hist[i-1];
4487		}
4488		tp->rtt_hist[0] = rtt;
4489		tp->rtt_count = 0;
4490	} else {
4491		tp->rtt_hist[0] = min(tp->rtt_hist[0], rtt);
4492	}
4493}
4494
4495/*
4496 * If we have a timestamp reply, update smoothed RTT. If no timestamp is
4497 * present but transmit timer is running and timed sequence number was
4498 * acked, update smoothed RTT.
4499 *
4500 * If timestamps are supported, a receiver can update RTT even if
4501 * there is no outstanding data.
4502 *
4503 * Some boxes send broken timestamp replies during the SYN+ACK phase,
4504 * ignore timestamps of 0or we could calculate a huge RTT and blow up
4505 * the retransmit timer.
4506 */
4507static void
4508tcp_compute_rtt(struct tcpcb *tp, struct tcpopt *to, struct tcphdr *th)
4509{
4510	VERIFY(to != NULL && th != NULL);
4511	if (((to->to_flags & TOF_TS) != 0) &&
4512		(to->to_tsecr != 0) &&
4513		TSTMP_GEQ(tcp_now, to->to_tsecr)) {
4514		tcp_xmit_timer(tp, tcp_now - to->to_tsecr,
4515			to->to_tsecr, th->th_ack);
4516	} else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) {
4517		tcp_xmit_timer(tp, tcp_now - tp->t_rtttime, 0,
4518			th->th_ack);
4519	}
4520}
4521
4522/*
4523 * Collect new round-trip time estimate
4524 * and update averages and current timeout.
4525 */
4526static void
4527tcp_xmit_timer(register struct tcpcb *tp, int rtt,
4528	u_int32_t tsecr, tcp_seq th_ack)
4529{
4530	register int delta;
4531
4532	if (tp->t_flagsext & TF_RECOMPUTE_RTT) {
4533		if (SEQ_GT(th_ack, tp->snd_una) &&
4534		    SEQ_LEQ(th_ack, tp->snd_max) &&
4535		    (tsecr == 0 ||
4536		    TSTMP_GEQ(tsecr, tp->t_badrexmt_time))) {
4537			/*
4538			 * We received a new ACk after a
4539			 * spurious timeout. Adapt retransmission
4540			 * timer as described in rfc 4015.
4541			 */
4542			tp->t_flagsext &= ~(TF_RECOMPUTE_RTT);
4543			tp->t_badrexmt_time = 0;
4544			tp->t_srtt = max(tp->t_srtt_prev, rtt);
4545			tp->t_srtt = tp->t_srtt << TCP_RTT_SHIFT;
4546			tp->t_rttvar = max(tp->t_rttvar_prev, (rtt >> 1));
4547			tp->t_rttvar = tp->t_rttvar << TCP_RTTVAR_SHIFT;
4548
4549			if (tp->t_rttbest > (tp->t_srtt + tp->t_rttvar))
4550				tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
4551
4552			goto compute_rto;
4553		} else {
4554			return;
4555		}
4556	}
4557
4558	tcpstat.tcps_rttupdated++;
4559	tp->t_rttupdated++;
4560
4561	if (rtt > 0) {
4562		tp->t_rttcur = rtt;
4563		update_base_rtt(tp, rtt);
4564	}
4565
4566	if (tp->t_srtt != 0) {
4567		/*
4568		 * srtt is stored as fixed point with 5 bits after the
4569		 * binary point (i.e., scaled by 32).  The following magic
4570		 * is equivalent to the smoothing algorithm in rfc793 with
4571		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
4572		 * point).
4573		 *
4574		 * Freebsd adjusts rtt to origin 0 by subtracting 1
4575		 * from the provided rtt value. This was required because
4576		 * of the way t_rtttime was initiailised to 1 before.
4577		 * Since we changed t_rtttime to be based on
4578		 * tcp_now, this extra adjustment is not needed.
4579		 */
4580		delta = (rtt << TCP_DELTA_SHIFT)
4581			- (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
4582
4583		if ((tp->t_srtt += delta) <= 0)
4584			tp->t_srtt = 1;
4585
4586		/*
4587		 * We accumulate a smoothed rtt variance (actually, a
4588		 * smoothed mean difference), then set the retransmit
4589		 * timer to smoothed rtt + 4 times the smoothed variance.
4590		 * rttvar is stored as fixed point with 4 bits after the
4591		 * binary point (scaled by 16).  The following is
4592		 * equivalent to rfc793 smoothing with an alpha of .75
4593		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
4594		 * rfc793's wired-in beta.
4595		 */
4596		if (delta < 0)
4597			delta = -delta;
4598		delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
4599		if ((tp->t_rttvar += delta) <= 0)
4600			tp->t_rttvar = 1;
4601		if (tp->t_rttbest == 0  ||
4602			tp->t_rttbest > (tp->t_srtt + tp->t_rttvar))
4603			tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
4604	} else {
4605		/*
4606		 * No rtt measurement yet - use the unsmoothed rtt.
4607		 * Set the variance to half the rtt (so our first
4608		 * retransmit happens at 3*rtt).
4609		 */
4610		tp->t_srtt = rtt << TCP_RTT_SHIFT;
4611		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
4612	}
4613
4614compute_rto:
4615	nstat_route_rtt(tp->t_inpcb->inp_route.ro_rt, tp->t_srtt,
4616		tp->t_rttvar);
4617	tp->t_rtttime = 0;
4618	tp->t_rxtshift = 0;
4619	tp->t_rxtstart = 0;
4620
4621	/*
4622	 * the retransmit should happen at rtt + 4 * rttvar.
4623	 * Because of the way we do the smoothing, srtt and rttvar
4624	 * will each average +1/2 tick of bias.  When we compute
4625	 * the retransmit timer, we want 1/2 tick of rounding and
4626	 * 1 extra tick because of +-1/2 tick uncertainty in the
4627	 * firing of the timer.  The bias will give us exactly the
4628	 * 1.5 tick we need.  But, because the bias is
4629	 * statistical, we have to test that we don't drop below
4630	 * the minimum feasible timer (which is 2 ticks).
4631	 */
4632	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
4633		max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX,
4634		TCP_ADD_REXMTSLOP(tp));
4635
4636	/*
4637	 * We received an ack for a packet that wasn't retransmitted;
4638	 * it is probably safe to discard any error indications we've
4639	 * received recently.  This isn't quite right, but close enough
4640	 * for now (a route might have failed after we sent a segment,
4641	 * and the return path might not be symmetrical).
4642	 */
4643	tp->t_softerror = 0;
4644}
4645
4646static inline unsigned int
4647tcp_maxmtu(struct rtentry *rt)
4648{
4649	unsigned int maxmtu;
4650
4651	RT_LOCK_ASSERT_HELD(rt);
4652	if (rt->rt_rmx.rmx_mtu == 0)
4653		maxmtu = rt->rt_ifp->if_mtu;
4654	else
4655		maxmtu = MIN(rt->rt_rmx.rmx_mtu, rt->rt_ifp->if_mtu);
4656
4657	return (maxmtu);
4658}
4659
4660#if INET6
4661static inline unsigned int
4662tcp_maxmtu6(struct rtentry *rt)
4663{
4664	unsigned int maxmtu;
4665	struct nd_ifinfo *ndi;
4666
4667	RT_LOCK_ASSERT_HELD(rt);
4668	lck_rw_lock_shared(nd_if_rwlock);
4669	if ((ndi = ND_IFINFO(rt->rt_ifp)) != NULL && !ndi->initialized)
4670		ndi = NULL;
4671	if (ndi != NULL)
4672		lck_mtx_lock(&ndi->lock);
4673	if (rt->rt_rmx.rmx_mtu == 0)
4674		maxmtu = IN6_LINKMTU(rt->rt_ifp);
4675	else
4676		maxmtu = MIN(rt->rt_rmx.rmx_mtu, IN6_LINKMTU(rt->rt_ifp));
4677	if (ndi != NULL)
4678		lck_mtx_unlock(&ndi->lock);
4679	lck_rw_done(nd_if_rwlock);
4680
4681	return (maxmtu);
4682}
4683#endif
4684
4685/*
4686 * Determine a reasonable value for maxseg size.
4687 * If the route is known, check route for mtu.
4688 * If none, use an mss that can be handled on the outgoing
4689 * interface without forcing IP to fragment; if bigger than
4690 * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
4691 * to utilize large mbufs.  If no route is found, route has no mtu,
4692 * or the destination isn't local, use a default, hopefully conservative
4693 * size (usually 512 or the default IP max size, but no more than the mtu
4694 * of the interface), as we can't discover anything about intervening
4695 * gateways or networks.  We also initialize the congestion/slow start
4696 * window to be a single segment if the destination isn't local.
4697 * While looking at the routing entry, we also initialize other path-dependent
4698 * parameters from pre-set or cached values in the routing entry.
4699 *
4700 * Also take into account the space needed for options that we
4701 * send regularly.  Make maxseg shorter by that amount to assure
4702 * that we can send maxseg amount of data even when the options
4703 * are present.  Store the upper limit of the length of options plus
4704 * data in maxopd.
4705 *
4706 * NOTE that this routine is only called when we process an incoming
4707 * segment, for outgoing segments only tcp_mssopt is called.
4708 *
4709 */
4710void
4711tcp_mss(tp, offer, input_ifscope)
4712	struct tcpcb *tp;
4713	int offer;
4714	unsigned int input_ifscope;
4715{
4716	register struct rtentry *rt;
4717	struct ifnet *ifp;
4718	register int rtt, mss;
4719	u_int32_t bufsize;
4720	struct inpcb *inp;
4721	struct socket *so;
4722	struct rmxp_tao *taop;
4723	int origoffer = offer;
4724	u_int32_t sb_max_corrected;
4725	int isnetlocal = 0;
4726#if INET6
4727	int isipv6;
4728	int min_protoh;
4729#endif
4730
4731	inp = tp->t_inpcb;
4732#if INET6
4733	isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
4734	min_protoh = isipv6 ? sizeof (struct ip6_hdr) + sizeof (struct tcphdr)
4735			    : sizeof (struct tcpiphdr);
4736#else
4737#define min_protoh  (sizeof (struct tcpiphdr))
4738#endif
4739
4740#if INET6
4741	if (isipv6) {
4742		rt = tcp_rtlookup6(inp, input_ifscope);
4743	}
4744	else
4745#endif /* INET6 */
4746	{
4747		rt = tcp_rtlookup(inp, input_ifscope);
4748	}
4749	isnetlocal = (tp->t_flags & TF_LOCAL);
4750
4751	if (rt == NULL) {
4752		tp->t_maxopd = tp->t_maxseg =
4753#if INET6
4754		isipv6 ? tcp_v6mssdflt :
4755#endif /* INET6 */
4756		tcp_mssdflt;
4757		return;
4758	}
4759	ifp = rt->rt_ifp;
4760	/*
4761	 * Slower link window correction:
4762	 * If a value is specificied for slowlink_wsize use it for PPP links
4763	 * believed to be on a serial modem (speed <128Kbps). Excludes 9600bps as
4764	 * it is the default value adversized by pseudo-devices over ppp.
4765	 */
4766	if (ifp->if_type == IFT_PPP && slowlink_wsize > 0 &&
4767	    ifp->if_baudrate > 9600 && ifp->if_baudrate <= 128000) {
4768		tp->t_flags |= TF_SLOWLINK;
4769	}
4770	so = inp->inp_socket;
4771
4772	taop = rmx_taop(rt->rt_rmx);
4773	/*
4774	 * Offer == -1 means that we didn't receive SYN yet,
4775	 * use cached value in that case;
4776	 */
4777	if (offer == -1)
4778		offer = taop->tao_mssopt;
4779	/*
4780	 * Offer == 0 means that there was no MSS on the SYN segment,
4781	 * in this case we use tcp_mssdflt.
4782	 */
4783	if (offer == 0)
4784		offer =
4785#if INET6
4786			isipv6 ? tcp_v6mssdflt :
4787#endif /* INET6 */
4788			tcp_mssdflt;
4789	else {
4790		/*
4791		 * Prevent DoS attack with too small MSS. Round up
4792		 * to at least minmss.
4793		 */
4794		offer = max(offer, tcp_minmss);
4795		/*
4796		 * Sanity check: make sure that maxopd will be large
4797		 * enough to allow some data on segments even is the
4798		 * all the option space is used (40bytes).  Otherwise
4799		 * funny things may happen in tcp_output.
4800		 */
4801		offer = max(offer, 64);
4802	}
4803	taop->tao_mssopt = offer;
4804
4805	/*
4806	 * While we're here, check if there's an initial rtt
4807	 * or rttvar.  Convert from the route-table units
4808	 * to scaled multiples of the slow timeout timer.
4809	 */
4810	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt) != 0) {
4811		tcp_getrt_rtt(tp, rt);
4812	} else {
4813		tp->t_rttmin = isnetlocal ? tcp_TCPTV_MIN : TCPTV_REXMTMIN;
4814	}
4815
4816#if INET6
4817	mss = (isipv6 ? tcp_maxmtu6(rt) : tcp_maxmtu(rt));
4818#else
4819	mss = tcp_maxmtu(rt);
4820#endif
4821	mss -= min_protoh;
4822
4823	if (rt->rt_rmx.rmx_mtu == 0) {
4824#if INET6
4825		if (isipv6) {
4826			if (!isnetlocal)
4827				mss = min(mss, tcp_v6mssdflt);
4828		} else
4829#endif /* INET6 */
4830		if (!isnetlocal)
4831			mss = min(mss, tcp_mssdflt);
4832	}
4833
4834	mss = min(mss, offer);
4835	/*
4836	 * maxopd stores the maximum length of data AND options
4837	 * in a segment; maxseg is the amount of data in a normal
4838	 * segment.  We need to store this value (maxopd) apart
4839	 * from maxseg, because now every segment carries options
4840	 * and thus we normally have somewhat less data in segments.
4841	 */
4842	tp->t_maxopd = mss;
4843
4844	/*
4845	 * origoffer==-1 indicates, that no segments were received yet.
4846	 * In this case we just guess.
4847	 */
4848	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
4849	    (origoffer == -1 ||
4850	     (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP))
4851		mss -= TCPOLEN_TSTAMP_APPA;
4852
4853#if MPTCP
4854	mss -= mptcp_adj_mss(tp, FALSE);
4855#endif /* MPTCP */
4856	tp->t_maxseg = mss;
4857
4858	/*
4859	 * Calculate corrected value for sb_max; ensure to upgrade the
4860	 * numerator for large sb_max values else it will overflow.
4861	 */
4862	sb_max_corrected = (sb_max * (u_int64_t)MCLBYTES) / (MSIZE + MCLBYTES);
4863
4864	/*
4865	 * If there's a pipesize (ie loopback), change the socket
4866	 * buffer to that size only if it's bigger than the current
4867	 * sockbuf size.  Make the socket buffers an integral
4868	 * number of mss units; if the mss is larger than
4869	 * the socket buffer, decrease the mss.
4870	 */
4871#if RTV_SPIPE
4872	bufsize = rt->rt_rmx.rmx_sendpipe;
4873	if (bufsize < so->so_snd.sb_hiwat)
4874#endif
4875		bufsize = so->so_snd.sb_hiwat;
4876	if (bufsize < mss)
4877		mss = bufsize;
4878	else {
4879		bufsize = (((bufsize + (u_int64_t)mss - 1) / (u_int64_t)mss) * (u_int64_t)mss);
4880		if (bufsize > sb_max_corrected)
4881			bufsize = sb_max_corrected;
4882		(void)sbreserve(&so->so_snd, bufsize);
4883	}
4884	tp->t_maxseg = mss;
4885
4886#if RTV_RPIPE
4887	bufsize = rt->rt_rmx.rmx_recvpipe;
4888	if (bufsize < so->so_rcv.sb_hiwat)
4889#endif
4890		bufsize = so->so_rcv.sb_hiwat;
4891	if (bufsize > mss) {
4892		bufsize = (((bufsize + (u_int64_t)mss - 1) / (u_int64_t)mss) * (u_int64_t)mss);
4893		if (bufsize > sb_max_corrected)
4894			bufsize = sb_max_corrected;
4895		(void)sbreserve(&so->so_rcv, bufsize);
4896	}
4897
4898	set_tcp_stream_priority(so);
4899
4900	if (rt->rt_rmx.rmx_ssthresh) {
4901		/*
4902		 * There's some sort of gateway or interface
4903		 * buffer limit on the path.  Use this to set
4904		 * the slow start threshhold, but set the
4905		 * threshold to no less than 2*mss.
4906		 */
4907		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
4908		tcpstat.tcps_usedssthresh++;
4909	} else {
4910		tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
4911	}
4912
4913
4914	/*
4915	 * Set the slow-start flight size depending on whether this
4916	 * is a local network or not.
4917	 */
4918	if (CC_ALGO(tp)->cwnd_init != NULL)
4919		CC_ALGO(tp)->cwnd_init(tp);
4920
4921	DTRACE_TCP5(cc, void, NULL, struct inpcb *, tp->t_inpcb, struct tcpcb *, tp,
4922		struct tcphdr *, NULL, int32_t, TCP_CC_CWND_INIT);
4923
4924	/* Route locked during lookup above */
4925	RT_UNLOCK(rt);
4926}
4927
4928/*
4929 * Determine the MSS option to send on an outgoing SYN.
4930 */
4931int
4932tcp_mssopt(tp)
4933	struct tcpcb *tp;
4934{
4935	struct rtentry *rt;
4936	int mss;
4937#if INET6
4938	int isipv6;
4939	int min_protoh;
4940#endif
4941
4942#if INET6
4943	isipv6 = ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
4944	min_protoh = isipv6 ? sizeof (struct ip6_hdr) + sizeof (struct tcphdr)
4945			    : sizeof (struct tcpiphdr);
4946#else
4947#define min_protoh  (sizeof (struct tcpiphdr))
4948#endif
4949
4950#if INET6
4951	if (isipv6)
4952		rt = tcp_rtlookup6(tp->t_inpcb, IFSCOPE_NONE);
4953	else
4954#endif /* INET6 */
4955	rt = tcp_rtlookup(tp->t_inpcb, IFSCOPE_NONE);
4956	if (rt == NULL) {
4957		return (
4958#if INET6
4959			isipv6 ? tcp_v6mssdflt :
4960#endif /* INET6 */
4961			tcp_mssdflt);
4962	}
4963	/*
4964	 * Slower link window correction:
4965	 * If a value is specificied for slowlink_wsize use it for PPP links
4966	 * believed to be on a serial modem (speed <128Kbps). Excludes 9600bps as
4967	 * it is the default value adversized by pseudo-devices over ppp.
4968	 */
4969	if (rt->rt_ifp->if_type == IFT_PPP && slowlink_wsize > 0 &&
4970	    rt->rt_ifp->if_baudrate > 9600 && rt->rt_ifp->if_baudrate <= 128000) {
4971		tp->t_flags |= TF_SLOWLINK;
4972	}
4973
4974#if INET6
4975	mss = (isipv6 ? tcp_maxmtu6(rt) : tcp_maxmtu(rt));
4976#else
4977	mss = tcp_maxmtu(rt);
4978#endif
4979	/* Route locked during lookup above */
4980	RT_UNLOCK(rt);
4981	return (mss - min_protoh);
4982}
4983
4984/*
4985 * On a partial ack arrives, force the retransmission of the
4986 * next unacknowledged segment.  Do not clear tp->t_dupacks.
4987 * By setting snd_nxt to th_ack, this forces retransmission timer to
4988 * be started again.
4989 */
4990static void
4991tcp_newreno_partial_ack(tp, th)
4992	struct tcpcb *tp;
4993	struct tcphdr *th;
4994{
4995		tcp_seq onxt = tp->snd_nxt;
4996		u_int32_t  ocwnd = tp->snd_cwnd;
4997		tp->t_timer[TCPT_REXMT] = 0;
4998		tp->t_rtttime = 0;
4999		tp->snd_nxt = th->th_ack;
5000		/*
5001		 * Set snd_cwnd to one segment beyond acknowledged offset
5002		 * (tp->snd_una has not yet been updated when this function
5003		 *  is called)
5004		 */
5005		tp->snd_cwnd = tp->t_maxseg + BYTES_ACKED(th, tp);
5006		tp->t_flags |= TF_ACKNOW;
5007		(void) tcp_output(tp);
5008		tp->snd_cwnd = ocwnd;
5009		if (SEQ_GT(onxt, tp->snd_nxt))
5010			tp->snd_nxt = onxt;
5011		/*
5012		 * Partial window deflation.  Relies on fact that tp->snd_una
5013		 * not updated yet.
5014		 */
5015		if (tp->snd_cwnd > BYTES_ACKED(th, tp))
5016			tp->snd_cwnd -= BYTES_ACKED(th, tp);
5017		else
5018			tp->snd_cwnd = 0;
5019		tp->snd_cwnd += tp->t_maxseg;
5020
5021}
5022
5023/*
5024 * Drop a random TCP connection that hasn't been serviced yet and
5025 * is eligible for discard.  There is a one in qlen chance that
5026 * we will return a null, saying that there are no dropable
5027 * requests.  In this case, the protocol specific code should drop
5028 * the new request.  This insures fairness.
5029 *
5030 * The listening TCP socket "head" must be locked
5031 */
5032static int
5033tcp_dropdropablreq(struct socket *head)
5034{
5035	struct socket *so, *sonext;
5036	unsigned int i, j, qlen;
5037	static u_int32_t rnd = 0;
5038	static u_int64_t old_runtime;
5039	static unsigned int cur_cnt, old_cnt;
5040	u_int64_t now_sec;
5041	struct inpcb *inp = NULL;
5042	struct tcpcb *tp;
5043
5044	if ((head->so_options & SO_ACCEPTCONN) == 0)
5045		return (0);
5046
5047	if (TAILQ_EMPTY(&head->so_incomp))
5048		return (0);
5049
5050	/*
5051	 * Check if there is any socket in the incomp queue
5052	 * that is closed because of a reset from the peer and is
5053	 * waiting to be garbage collected. If so, pick that as
5054	 * the victim
5055	 */
5056	TAILQ_FOREACH_SAFE(so, &head->so_incomp, so_list, sonext) {
5057		inp = sotoinpcb(so);
5058		tp = intotcpcb(inp);
5059		if (tp != NULL && tp->t_state == TCPS_CLOSED &&
5060		    so->so_head != NULL &&
5061		    (so->so_state & (SS_INCOMP|SS_CANTSENDMORE|SS_CANTRCVMORE)) ==
5062		    (SS_INCOMP|SS_CANTSENDMORE|SS_CANTRCVMORE)) {
5063			/*
5064			 * The listen socket is already locked but we
5065			 * can lock this socket here without lock ordering
5066			 * issues because it is in the incomp queue and
5067			 * is not visible to others.
5068			 */
5069			if (lck_mtx_try_lock(&inp->inpcb_mtx)) {
5070				so->so_usecount++;
5071				goto found_victim;
5072			} else {
5073				continue;
5074			}
5075		}
5076	}
5077
5078	so = TAILQ_FIRST(&head->so_incomp);
5079
5080	now_sec = net_uptime();
5081	if ((i = (now_sec - old_runtime)) != 0) {
5082		old_runtime = now_sec;
5083		old_cnt = cur_cnt / i;
5084		cur_cnt = 0;
5085	}
5086
5087
5088	qlen = head->so_incqlen;
5089	if (rnd == 0)
5090		rnd = RandomULong();
5091
5092	if (++cur_cnt > qlen || old_cnt > qlen) {
5093		rnd = (314159 * rnd + 66329) & 0xffff;
5094		j = ((qlen + 1) * rnd) >> 16;
5095
5096		while (j-- && so)
5097			so = TAILQ_NEXT(so, so_list);
5098	}
5099	/* Find a connection that is not already closing (or being served) */
5100	while (so) {
5101		inp = (struct inpcb *)so->so_pcb;
5102
5103		sonext = TAILQ_NEXT(so, so_list);
5104
5105		if (in_pcb_checkstate(inp, WNT_ACQUIRE, 0)
5106			!= WNT_STOPUSING) {
5107			/*
5108			 * Avoid the issue of a socket being accepted
5109			 * by one input thread and being dropped by
5110			 * another input thread. If we can't get a hold
5111			 * on this mutex, then grab the next socket in
5112			 * line.
5113			 */
5114			if (lck_mtx_try_lock(&inp->inpcb_mtx)) {
5115				so->so_usecount++;
5116				if ((so->so_usecount == 2) &&
5117				    (so->so_state & SS_INCOMP) &&
5118				    !(so->so_flags & SOF_INCOMP_INPROGRESS))  {
5119					break;
5120				} else {
5121					/*
5122					 * don't use if being accepted or
5123					 * used in any other way
5124					 */
5125					in_pcb_checkstate(inp, WNT_RELEASE, 1);
5126					tcp_unlock(so, 1, 0);
5127				}
5128			} else {
5129				/*
5130				 * do not try to lock the inp in
5131				 * in_pcb_checkstate because the lock
5132				 * is already held in some other thread.
5133				 * Only drop the inp_wntcnt reference.
5134				 */
5135				in_pcb_checkstate(inp, WNT_RELEASE, 1);
5136			}
5137		}
5138		so = sonext;
5139
5140	}
5141	if (so == NULL) {
5142		return (0);
5143	}
5144
5145	/* Makes sure socket is still in the right state to be discarded */
5146
5147	if (in_pcb_checkstate(inp, WNT_RELEASE, 1) == WNT_STOPUSING) {
5148		tcp_unlock(so, 1, 0);
5149		return (0);
5150	}
5151
5152found_victim:
5153	if (so->so_usecount != 2 || !(so->so_state & SS_INCOMP)) {
5154		/* do not discard: that socket is being accepted */
5155		tcp_unlock(so, 1, 0);
5156		return (0);
5157	}
5158
5159	TAILQ_REMOVE(&head->so_incomp, so, so_list);
5160	tcp_unlock(head, 0, 0);
5161
5162	lck_mtx_assert(&inp->inpcb_mtx, LCK_MTX_ASSERT_OWNED);
5163	tp = sototcpcb(so);
5164	so->so_flags |= SOF_OVERFLOW;
5165	so->so_head = NULL;
5166
5167	tcp_close(tp);
5168	if (inp->inp_wantcnt > 0 && inp->inp_wantcnt != WNT_STOPUSING) {
5169		/*
5170		 * Some one has a wantcnt on this pcb. Since WNT_ACQUIRE
5171		 * doesn't require a lock, it could have happened while
5172		 * we are holding the lock. This pcb will have to
5173		 * be garbage collected later.
5174		 * Release the reference held for so_incomp queue
5175		 */
5176		so->so_usecount--;
5177		tcp_unlock(so, 1, 0);
5178	} else {
5179		/*
5180		 * Unlock this socket and leave the reference on.
5181		 * We need to acquire the pcbinfo lock in order to
5182		 * fully dispose it off
5183		 */
5184		tcp_unlock(so, 0, 0);
5185
5186		lck_rw_lock_exclusive(tcbinfo.ipi_lock);
5187
5188		tcp_lock(so, 0, 0);
5189		/* Release the reference held for so_incomp queue */
5190		so->so_usecount--;
5191
5192		if (so->so_usecount != 1 ||
5193		    (inp->inp_wantcnt > 0 &&
5194		    inp->inp_wantcnt != WNT_STOPUSING)) {
5195			/*
5196			 * There is an extra wantcount or usecount
5197			 * that must have been added when the socket
5198			 * was unlocked. This socket will have to be
5199			 * garbage collected later
5200			 */
5201			tcp_unlock(so, 1, 0);
5202		} else {
5203
5204			/* Drop the reference held for this function */
5205			so->so_usecount--;
5206
5207			in_pcbdispose(inp);
5208		}
5209		lck_rw_done(tcbinfo.ipi_lock);
5210	}
5211	tcpstat.tcps_drops++;
5212
5213	tcp_lock(head, 0, 0);
5214	head->so_incqlen--;
5215	head->so_qlen--;
5216	return(1);
5217}
5218
5219/* Set background congestion control on a socket */
5220void
5221tcp_set_background_cc(struct socket *so)
5222{
5223	tcp_set_new_cc(so, TCP_CC_ALGO_BACKGROUND_INDEX);
5224}
5225
5226/* Set foreground congestion control on a socket */
5227void
5228tcp_set_foreground_cc(struct socket *so)
5229{
5230	tcp_set_new_cc(so, TCP_CC_ALGO_NEWRENO_INDEX);
5231}
5232
5233static void
5234tcp_set_new_cc(struct socket *so, uint16_t cc_index)
5235{
5236	struct inpcb *inp = sotoinpcb(so);
5237	struct tcpcb *tp = intotcpcb(inp);
5238	u_char old_cc_index = 0;
5239	if (tp->tcp_cc_index != cc_index) {
5240
5241		old_cc_index = tp->tcp_cc_index;
5242
5243		if (CC_ALGO(tp)->cleanup != NULL)
5244			CC_ALGO(tp)->cleanup(tp);
5245		tp->tcp_cc_index = cc_index;
5246
5247		/* Decide if the connection is just starting or if
5248		 * we have sent some packets on it.
5249		 */
5250		if (tp->snd_nxt > tp->iss) {
5251			/* Already sent some packets */
5252			if (CC_ALGO(tp)->switch_to != NULL)
5253				CC_ALGO(tp)->switch_to(tp, old_cc_index);
5254		} else {
5255			if (CC_ALGO(tp)->init != NULL)
5256				CC_ALGO(tp)->init(tp);
5257		}
5258		DTRACE_TCP5(cc, void, NULL, struct inpcb *, inp,
5259			struct tcpcb *, tp, struct tcphdr *, NULL,
5260			int32_t, TCP_CC_CHANGE_ALGO);
5261	}
5262}
5263
5264void
5265tcp_set_recv_bg(struct socket *so)
5266{
5267	if (!IS_TCP_RECV_BG(so))
5268		so->so_traffic_mgt_flags |= TRAFFIC_MGT_TCP_RECVBG;
5269
5270	/* Unset Large Receive Offload on background sockets */
5271	so_set_lro(so, SO_TC_BK);
5272}
5273
5274void
5275tcp_clear_recv_bg(struct socket *so)
5276{
5277	if (IS_TCP_RECV_BG(so))
5278		so->so_traffic_mgt_flags &= ~(TRAFFIC_MGT_TCP_RECVBG);
5279
5280	/*
5281	 * Set/unset use of Large Receive Offload depending on
5282	 * the traffic class
5283	 */
5284	so_set_lro(so, so->so_traffic_class);
5285}
5286
5287void
5288inp_fc_unthrottle_tcp(struct inpcb *inp)
5289{
5290	struct tcpcb *tp = inp->inp_ppcb;
5291	/*
5292	 * Back off the slow-start threshold and enter
5293	 * congestion avoidance phase
5294	 */
5295	if (CC_ALGO(tp)->pre_fr != NULL)
5296		CC_ALGO(tp)->pre_fr(tp);
5297
5298	tp->snd_cwnd = tp->snd_ssthresh;
5299
5300	/*
5301	 * Restart counting for ABC as we changed the
5302	 * congestion window just now.
5303	 */
5304	tp->t_bytes_acked = 0;
5305
5306	/* Reset retransmit shift as we know that the reason
5307	 * for delay in sending a packet is due to flow
5308	 * control on the outgoing interface. There is no need
5309	 * to backoff retransmit timer.
5310	 */
5311	tp->t_rxtshift = 0;
5312
5313	/*
5314	 * Start the output stream again. Since we are
5315	 * not retransmitting data, do not reset the
5316	 * retransmit timer or rtt calculation.
5317	 */
5318	tcp_output(tp);
5319}
5320
5321static int
5322tcp_getstat SYSCTL_HANDLER_ARGS
5323{
5324#pragma unused(oidp, arg1, arg2)
5325
5326	int error;
5327
5328	proc_t caller = PROC_NULL;
5329	proc_t caller_parent = PROC_NULL;
5330	char command_name[MAXCOMLEN + 1] = "";
5331	char parent_name[MAXCOMLEN + 1] = "";
5332
5333	if ((caller = proc_self()) != PROC_NULL) {
5334		/* get process name */
5335		strlcpy(command_name, caller->p_comm, sizeof(command_name));
5336
5337		/* get parent process name if possible */
5338		if ((caller_parent = proc_find(caller->p_ppid)) != PROC_NULL) {
5339			strlcpy(parent_name, caller_parent->p_comm,
5340			    sizeof(parent_name));
5341			proc_rele(caller_parent);
5342		}
5343
5344		if ((escape_str(command_name, strlen(command_name),
5345		    sizeof(command_name)) == 0) &&
5346		    (escape_str(parent_name, strlen(parent_name),
5347		    sizeof(parent_name)) == 0)) {
5348			kern_asl_msg(LOG_DEBUG, "messagetracer",
5349			    5,
5350			    "com.apple.message.domain",
5351			    "com.apple.kernel.tcpstat", /* 1 */
5352			    "com.apple.message.signature",
5353			    "tcpstat", /* 2 */
5354			    "com.apple.message.signature2", command_name, /* 3 */
5355			    "com.apple.message.signature3", parent_name, /* 4 */
5356			    "com.apple.message.summarize", "YES", /* 5 */
5357			    NULL);
5358		}
5359	}
5360	if (caller != PROC_NULL)
5361		proc_rele(caller);
5362
5363	if (req->oldptr == 0) {
5364		req->oldlen= (size_t)sizeof(struct tcpstat);
5365	}
5366
5367	error = SYSCTL_OUT(req, &tcpstat, MIN(sizeof (tcpstat), req->oldlen));
5368
5369        return (error);
5370
5371}
5372
5373/*
5374 * Checksum extended TCP header and data.
5375 */
5376int
5377tcp_input_checksum(int af, struct mbuf *m, struct tcphdr *th, int off, int tlen)
5378{
5379	struct ifnet *ifp = m->m_pkthdr.rcvif;
5380
5381	switch (af) {
5382	case AF_INET: {
5383		struct ip *ip = mtod(m, struct ip *);
5384		struct ipovly *ipov = (struct ipovly *)ip;
5385
5386		if (m->m_pkthdr.pkt_flags & PKTF_SW_LRO_DID_CSUM)
5387			return (0);
5388
5389		if ((hwcksum_rx || (ifp->if_flags & IFF_LOOPBACK) ||
5390		    (m->m_pkthdr.pkt_flags & PKTF_LOOP)) &&
5391		    (m->m_pkthdr.csum_flags & CSUM_DATA_VALID)) {
5392			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) {
5393				th->th_sum = m->m_pkthdr.csum_rx_val;
5394			} else {
5395				uint16_t sum = m->m_pkthdr.csum_rx_val;
5396				uint16_t start = m->m_pkthdr.csum_rx_start;
5397
5398				/*
5399				 * Perform 1's complement adjustment of octets
5400				 * that got included/excluded in the hardware-
5401				 * calculated checksum value.  Ignore cases
5402				 * where the value includes or excludes the IP
5403				 * header span, as the sum for those octets
5404				 * would already be 0xffff and thus no-op.
5405				 */
5406				if ((m->m_pkthdr.csum_flags & CSUM_PARTIAL) &&
5407				    start != 0 && (off - start) != off) {
5408#if BYTE_ORDER != BIG_ENDIAN
5409					if (start < off) {
5410						HTONS(ip->ip_len);
5411						HTONS(ip->ip_off);
5412					}
5413#endif
5414					/* callee folds in sum */
5415					sum = m_adj_sum16(m, start, off, sum);
5416#if BYTE_ORDER != BIG_ENDIAN
5417					if (start < off) {
5418						NTOHS(ip->ip_off);
5419						NTOHS(ip->ip_len);
5420					}
5421#endif
5422				}
5423
5424				/* callee folds in sum */
5425				th->th_sum = in_pseudo(ip->ip_src.s_addr,
5426				    ip->ip_dst.s_addr,
5427				    sum + htonl(tlen + IPPROTO_TCP));
5428			}
5429			th->th_sum ^= 0xffff;
5430		} else {
5431			uint16_t ip_sum;
5432			int len;
5433			char b[9];
5434
5435			bcopy(ipov->ih_x1, b, sizeof (ipov->ih_x1));
5436			bzero(ipov->ih_x1, sizeof (ipov->ih_x1));
5437			ip_sum = ipov->ih_len;
5438			ipov->ih_len = (u_short)tlen;
5439#if BYTE_ORDER != BIG_ENDIAN
5440			HTONS(ipov->ih_len);
5441#endif
5442			len = sizeof (struct ip) + tlen;
5443			th->th_sum = in_cksum(m, len);
5444			bcopy(b, ipov->ih_x1, sizeof (ipov->ih_x1));
5445			ipov->ih_len = ip_sum;
5446
5447			tcp_in_cksum_stats(len);
5448		}
5449		break;
5450	}
5451#if INET6
5452	case AF_INET6: {
5453		struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
5454
5455		if (m->m_pkthdr.pkt_flags & PKTF_SW_LRO_DID_CSUM)
5456			return (0);
5457
5458		if ((hwcksum_rx || (ifp->if_flags & IFF_LOOPBACK) ||
5459		    (m->m_pkthdr.pkt_flags & PKTF_LOOP)) &&
5460		    (m->m_pkthdr.csum_flags & CSUM_DATA_VALID)) {
5461			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) {
5462				th->th_sum = m->m_pkthdr.csum_rx_val;
5463			} else {
5464				uint16_t sum = m->m_pkthdr.csum_rx_val;
5465				uint16_t start = m->m_pkthdr.csum_rx_start;
5466
5467				/*
5468				 * Perform 1's complement adjustment of octets
5469				 * that got included/excluded in the hardware-
5470				 * calculated checksum value.
5471				 */
5472				if ((m->m_pkthdr.csum_flags & CSUM_PARTIAL) &&
5473				    start != off) {
5474					uint16_t s, d;
5475
5476					if (IN6_IS_SCOPE_EMBED(&ip6->ip6_src)) {
5477						s = ip6->ip6_src.s6_addr16[1];
5478						ip6->ip6_src.s6_addr16[1] = 0 ;
5479					}
5480					if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst)) {
5481						d = ip6->ip6_dst.s6_addr16[1];
5482						ip6->ip6_dst.s6_addr16[1] = 0;
5483					}
5484
5485					/* callee folds in sum */
5486					sum = m_adj_sum16(m, start, off, sum);
5487
5488					if (IN6_IS_SCOPE_EMBED(&ip6->ip6_src))
5489						ip6->ip6_src.s6_addr16[1] = s;
5490					if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst))
5491						ip6->ip6_dst.s6_addr16[1] = d;
5492				}
5493
5494				th->th_sum = in6_pseudo(
5495				    &ip6->ip6_src, &ip6->ip6_dst,
5496				    sum + htonl(tlen + IPPROTO_TCP));
5497			}
5498			th->th_sum ^= 0xffff;
5499		} else {
5500			tcp_in6_cksum_stats(tlen);
5501			th->th_sum = in6_cksum(m, IPPROTO_TCP, off, tlen);
5502		}
5503		break;
5504	}
5505#endif /* INET6 */
5506	default:
5507		VERIFY(0);
5508		/* NOTREACHED */
5509	}
5510
5511	if (th->th_sum != 0) {
5512		tcpstat.tcps_rcvbadsum++;
5513		IF_TCP_STATINC(ifp, badformat);
5514		return (-1);
5515	}
5516
5517	return (0);
5518}
5519
5520SYSCTL_PROC(_net_inet_tcp, TCPCTL_STATS, stats, CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0,
5521    tcp_getstat, "S,tcpstat", "TCP statistics (struct tcpstat, netinet/tcp_var.h)");
5522
5523static int
5524sysctl_rexmtthresh SYSCTL_HANDLER_ARGS
5525{
5526#pragma unused(arg1, arg2)
5527
5528	int error, val = tcprexmtthresh;
5529
5530	error = sysctl_handle_int(oidp, &val, 0, req);
5531	if (error || !req->newptr)
5532                return (error);
5533
5534	/*
5535	 * Constrain the number of duplicate ACKs
5536	 * to consider for TCP fast retransmit
5537	 * to either 2 or 3
5538	 */
5539
5540        if (val < 2 || val > 3)
5541		return (EINVAL);
5542
5543	 tcprexmtthresh = val;
5544
5545	return (0);
5546}
5547
5548SYSCTL_PROC(_net_inet_tcp, OID_AUTO, rexmt_thresh, CTLTYPE_INT|CTLFLAG_RW | CTLFLAG_LOCKED,
5549	&tcprexmtthresh, 0, &sysctl_rexmtthresh, "I", "Duplicate ACK Threshold for Fast Retransmit");
5550