1/*
2 * Copyright (c) 2000-2007 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28/*
29 * Implementation of SVID semaphores
30 *
31 * Author:  Daniel Boulet
32 *
33 * This software is provided ``AS IS'' without any warranties of any kind.
34 */
35/*
36 * John Bellardo modified the implementation for Darwin. 12/2000
37 */
38/*
39 * NOTICE: This file was modified by McAfee Research in 2004 to introduce
40 * support for mandatory and extensible security protections.  This notice
41 * is included in support of clause 2.2 (b) of the Apple Public License,
42 * Version 2.0.
43 * Copyright (c) 2005-2006 SPARTA, Inc.
44 */
45
46#include <sys/param.h>
47#include <sys/systm.h>
48#include <sys/kernel.h>
49#include <sys/proc_internal.h>
50#include <sys/kauth.h>
51#include <sys/sem_internal.h>
52#include <sys/malloc.h>
53#include <mach/mach_types.h>
54
55#include <sys/filedesc.h>
56#include <sys/file_internal.h>
57#include <sys/sysctl.h>
58#include <sys/ipcs.h>
59#include <sys/sysent.h>
60#include <sys/sysproto.h>
61#if CONFIG_MACF
62#include <security/mac_framework.h>
63#endif
64
65#include <security/audit/audit.h>
66
67#if SYSV_SEM
68
69
70/* Uncomment this line to see the debugging output */
71/* #define SEM_DEBUG */
72
73/* Uncomment this line to see MAC debugging output. */
74/* #define	MAC_DEBUG */
75#if CONFIG_MACF_DEBUG
76#define	MPRINTF(a)	printf(a)
77#else
78#define	MPRINTF(a)
79#endif
80
81#define M_SYSVSEM	M_TEMP
82
83
84/* Hard system limits to avoid resource starvation / DOS attacks.
85 * These are not needed if we can make the semaphore pages swappable.
86 */
87static struct seminfo limitseminfo = {
88	SEMMAP,        /* # of entries in semaphore map */
89	SEMMNI,        /* # of semaphore identifiers */
90	SEMMNS,        /* # of semaphores in system */
91	SEMMNU,        /* # of undo structures in system */
92	SEMMSL,        /* max # of semaphores per id */
93	SEMOPM,        /* max # of operations per semop call */
94	SEMUME,        /* max # of undo entries per process */
95	SEMUSZ,        /* size in bytes of undo structure */
96	SEMVMX,        /* semaphore maximum value */
97	SEMAEM         /* adjust on exit max value */
98};
99
100/* Current system allocations.  We use this structure to track how many
101 * resources we have allocated so far.  This way we can set large hard limits
102 * and not allocate the memory for them up front.
103 */
104struct seminfo seminfo = {
105	SEMMAP,	/* Unused, # of entries in semaphore map */
106	0,	/* # of semaphore identifiers */
107	0,	/* # of semaphores in system */
108	0,	/* # of undo entries in system */
109	SEMMSL,	/* max # of semaphores per id */
110	SEMOPM,	/* max # of operations per semop call */
111	SEMUME,	/* max # of undo entries per process */
112	SEMUSZ,	/* size in bytes of undo structure */
113	SEMVMX,	/* semaphore maximum value */
114	SEMAEM	/* adjust on exit max value */
115};
116
117
118static int semu_alloc(struct proc *p);
119static int semundo_adjust(struct proc *p, int *supidx,
120		int semid, int semnum, int adjval);
121static void semundo_clear(int semid, int semnum);
122
123/* XXX casting to (sy_call_t *) is bogus, as usual. */
124static sy_call_t *semcalls[] = {
125	(sy_call_t *)semctl, (sy_call_t *)semget,
126	(sy_call_t *)semop
127};
128
129static int		semtot = 0;		/* # of used semaphores */
130struct semid_kernel	*sema = NULL;		/* semaphore id pool */
131struct sem		*sem_pool =  NULL;	/* semaphore pool */
132static int	 	semu_list_idx = -1;	/* active undo structures */
133struct sem_undo		*semu = NULL;		/* semaphore undo pool */
134
135
136void sysv_sem_lock_init(void);
137static lck_grp_t       *sysv_sem_subsys_lck_grp;
138static lck_grp_attr_t  *sysv_sem_subsys_lck_grp_attr;
139static lck_attr_t      *sysv_sem_subsys_lck_attr;
140static lck_mtx_t        sysv_sem_subsys_mutex;
141
142#define SYSV_SEM_SUBSYS_LOCK() lck_mtx_lock(&sysv_sem_subsys_mutex)
143#define SYSV_SEM_SUBSYS_UNLOCK() lck_mtx_unlock(&sysv_sem_subsys_mutex)
144
145
146__private_extern__ void
147sysv_sem_lock_init( void )
148{
149
150    sysv_sem_subsys_lck_grp_attr = lck_grp_attr_alloc_init();
151
152    sysv_sem_subsys_lck_grp = lck_grp_alloc_init("sysv_sem_subsys_lock", sysv_sem_subsys_lck_grp_attr);
153
154    sysv_sem_subsys_lck_attr = lck_attr_alloc_init();
155    lck_mtx_init(&sysv_sem_subsys_mutex, sysv_sem_subsys_lck_grp, sysv_sem_subsys_lck_attr);
156}
157
158static __inline__ user_time_t
159sysv_semtime(void)
160{
161	struct timeval	tv;
162	microtime(&tv);
163	return (tv.tv_sec);
164}
165
166/*
167 * XXX conversion of internal user_time_t to external tume_t loses
168 * XXX precision; not an issue for us now, since we are only ever
169 * XXX setting 32 bits worth of time into it.
170 *
171 * pad field contents are not moved correspondingly; contents will be lost
172 *
173 * NOTE: Source and target may *NOT* overlap! (target is smaller)
174 */
175static void
176semid_ds_kernelto32(struct user_semid_ds *in, struct user32_semid_ds *out)
177{
178	out->sem_perm = in->sem_perm;
179	out->sem_base = CAST_DOWN_EXPLICIT(__int32_t,in->sem_base);
180	out->sem_nsems = in->sem_nsems;
181	out->sem_otime = in->sem_otime;		/* XXX loses precision */
182	out->sem_ctime = in->sem_ctime;		/* XXX loses precision */
183}
184
185static void
186semid_ds_kernelto64(struct user_semid_ds *in, struct user64_semid_ds *out)
187{
188	out->sem_perm = in->sem_perm;
189	out->sem_base = CAST_DOWN_EXPLICIT(__int32_t,in->sem_base);
190	out->sem_nsems = in->sem_nsems;
191	out->sem_otime = in->sem_otime;		/* XXX loses precision */
192	out->sem_ctime = in->sem_ctime;		/* XXX loses precision */
193}
194
195/*
196 * pad field contents are not moved correspondingly; contents will be lost
197 *
198 * NOTE: Source and target may are permitted to overlap! (source is smaller);
199 * this works because we copy fields in order from the end of the struct to
200 * the beginning.
201 *
202 * XXX use CAST_USER_ADDR_T() for lack of a CAST_USER_TIME_T(); net effect
203 * XXX is the same.
204 */
205static void
206semid_ds_32tokernel(struct user32_semid_ds *in, struct user_semid_ds *out)
207{
208	out->sem_ctime = in->sem_ctime;
209	out->sem_otime = in->sem_otime;
210	out->sem_nsems = in->sem_nsems;
211	out->sem_base = (void *)(uintptr_t)in->sem_base;
212	out->sem_perm = in->sem_perm;
213}
214
215static void
216semid_ds_64tokernel(struct user64_semid_ds *in, struct user_semid_ds *out)
217{
218	out->sem_ctime = in->sem_ctime;
219	out->sem_otime = in->sem_otime;
220	out->sem_nsems = in->sem_nsems;
221	out->sem_base = (void *)(uintptr_t)in->sem_base;
222	out->sem_perm = in->sem_perm;
223}
224
225
226/*
227 * semsys
228 *
229 * Entry point for all SEM calls: semctl, semget, semop
230 *
231 * Parameters:	p	Process requesting the call
232 * 		uap	User argument descriptor (see below)
233 * 		retval	Return value of the selected sem call
234 *
235 * Indirect parameters:	uap->which	sem call to invoke (index in array of sem calls)
236 * 			uap->a2		User argument descriptor
237 *
238 * Returns:	0	Success
239 *		!0	Not success
240 *
241 * Implicit returns: retval	Return value of the selected sem call
242 *
243 * DEPRECATED:  This interface should not be used to call the other SEM
244 * 		functions (semctl, semget, semop). The correct usage is
245 * 		to call the other SEM functions directly.
246 *
247 */
248int
249semsys(struct proc *p, struct semsys_args *uap, int32_t *retval)
250{
251
252	/* The individual calls handling the locking now */
253
254	if (uap->which >= sizeof(semcalls)/sizeof(semcalls[0]))
255		return (EINVAL);
256	return ((*semcalls[uap->which])(p, &uap->a2, retval));
257}
258
259/*
260 * Expand the semu array to the given capacity.  If the expansion fails
261 * return 0, otherwise return 1.
262 *
263 * Assumes we already have the subsystem lock.
264 */
265static int
266grow_semu_array(int newSize)
267{
268	register int i;
269	register struct sem_undo *newSemu;
270
271	if (newSize <= seminfo.semmnu)
272		return 1;
273	if (newSize > limitseminfo.semmnu) /* enforce hard limit */
274	{
275#ifdef SEM_DEBUG
276		printf("undo structure hard limit of %d reached, requested %d\n",
277			limitseminfo.semmnu, newSize);
278#endif
279		return 0;
280	}
281	newSize = (newSize/SEMMNU_INC + 1) * SEMMNU_INC;
282	newSize = newSize > limitseminfo.semmnu ? limitseminfo.semmnu : newSize;
283
284#ifdef SEM_DEBUG
285	printf("growing semu[] from %d to %d\n", seminfo.semmnu, newSize);
286#endif
287	MALLOC(newSemu, struct sem_undo *, sizeof (struct sem_undo) * newSize,
288	       M_SYSVSEM, M_WAITOK | M_ZERO);
289	if (NULL == newSemu)
290	{
291#ifdef SEM_DEBUG
292		printf("allocation failed.  no changes made.\n");
293#endif
294		return 0;
295	}
296
297       	/* copy the old data to the new array */
298	for (i = 0; i < seminfo.semmnu; i++)
299	{
300		newSemu[i] = semu[i];
301	}
302	/*
303	 * The new elements (from newSemu[i] to newSemu[newSize-1]) have their
304	 * "un_proc" set to 0 (i.e. NULL) by the M_ZERO flag to MALLOC() above,
305	 * so they're already marked as "not in use".
306	 */
307
308	/* Clean up the old array */
309	if (semu)
310		FREE(semu, M_SYSVSEM);
311
312	semu = newSemu;
313	seminfo.semmnu = newSize;
314#ifdef SEM_DEBUG
315	printf("expansion successful\n");
316#endif
317	return 1;
318}
319
320/*
321 * Expand the sema array to the given capacity.  If the expansion fails
322 * we return 0, otherwise we return 1.
323 *
324 * Assumes we already have the subsystem lock.
325 */
326static int
327grow_sema_array(int newSize)
328{
329	register struct semid_kernel *newSema;
330	register int i;
331
332	if (newSize <= seminfo.semmni)
333		return 0;
334	if (newSize > limitseminfo.semmni) /* enforce hard limit */
335	{
336#ifdef SEM_DEBUG
337		printf("identifier hard limit of %d reached, requested %d\n",
338			limitseminfo.semmni, newSize);
339#endif
340		return 0;
341	}
342	newSize = (newSize/SEMMNI_INC + 1) * SEMMNI_INC;
343	newSize = newSize > limitseminfo.semmni ? limitseminfo.semmni : newSize;
344
345#ifdef SEM_DEBUG
346	printf("growing sema[] from %d to %d\n", seminfo.semmni, newSize);
347#endif
348	MALLOC(newSema, struct semid_kernel *,
349	       sizeof (struct semid_kernel) * newSize,
350	       M_SYSVSEM, M_WAITOK | M_ZERO);
351	if (NULL == newSema)
352	{
353#ifdef SEM_DEBUG
354		printf("allocation failed.  no changes made.\n");
355#endif
356		return 0;
357	}
358
359	/* copy over the old ids */
360	for (i = 0; i < seminfo.semmni; i++)
361	{
362		newSema[i] = sema[i];
363		/* This is a hack.  What we really want to be able to
364		 * do is change the value a process is waiting on
365		 * without waking it up, but I don't know how to do
366		 * this with the existing code, so we wake up the
367		 * process and let it do a lot of work to determine the
368		 * semaphore set is really not available yet, and then
369		 * sleep on the correct, reallocated semid_kernel pointer.
370		 */
371		if (sema[i].u.sem_perm.mode & SEM_ALLOC)
372			wakeup((caddr_t)&sema[i]);
373	}
374
375#if CONFIG_MACF
376	for (i = seminfo.semmni; i < newSize; i++)
377	{
378		mac_sysvsem_label_init(&newSema[i]);
379	}
380#endif
381
382	/*
383	 * The new elements (from newSema[i] to newSema[newSize-1]) have their
384	 * "sem_base" and "sem_perm.mode" set to 0 (i.e. NULL) by the M_ZERO
385	 * flag to MALLOC() above, so they're already marked as "not in use".
386	 */
387
388	/* Clean up the old array */
389	if (sema)
390		FREE(sema, M_SYSVSEM);
391
392	sema = newSema;
393	seminfo.semmni = newSize;
394#ifdef SEM_DEBUG
395	printf("expansion successful\n");
396#endif
397	return 1;
398}
399
400/*
401 * Expand the sem_pool array to the given capacity.  If the expansion fails
402 * we return 0 (fail), otherwise we return 1 (success).
403 *
404 * Assumes we already hold the subsystem lock.
405 */
406static int
407grow_sem_pool(int new_pool_size)
408{
409	struct sem *new_sem_pool = NULL;
410	struct sem *sem_free;
411	int i;
412
413	if (new_pool_size < semtot)
414		return 0;
415	/* enforce hard limit */
416	if (new_pool_size > limitseminfo.semmns) {
417#ifdef SEM_DEBUG
418		printf("semaphore hard limit of %d reached, requested %d\n",
419			limitseminfo.semmns, new_pool_size);
420#endif
421		return 0;
422	}
423
424	new_pool_size = (new_pool_size/SEMMNS_INC + 1) * SEMMNS_INC;
425	new_pool_size = new_pool_size > limitseminfo.semmns ? limitseminfo.semmns : new_pool_size;
426
427#ifdef SEM_DEBUG
428	printf("growing sem_pool array from %d to %d\n", seminfo.semmns, new_pool_size);
429#endif
430	MALLOC(new_sem_pool, struct sem *, sizeof (struct sem) * new_pool_size,
431	       M_SYSVSEM, M_WAITOK | M_ZERO);
432	if (NULL == new_sem_pool) {
433#ifdef SEM_DEBUG
434		printf("allocation failed.  no changes made.\n");
435#endif
436		return 0;
437	}
438
439	/* We have our new memory, now copy the old contents over */
440	if (sem_pool)
441		for(i = 0; i < seminfo.semmns; i++)
442			new_sem_pool[i] = sem_pool[i];
443
444	/* Update our id structures to point to the new semaphores */
445	for(i = 0; i < seminfo.semmni; i++) {
446		if (sema[i].u.sem_perm.mode & SEM_ALLOC)  /* ID in use */
447			sema[i].u.sem_base = new_sem_pool +
448				(sema[i].u.sem_base - sem_pool);
449	}
450
451	sem_free = sem_pool;
452	sem_pool = new_sem_pool;
453
454	/* clean up the old array */
455	if (sem_free != NULL)
456		FREE(sem_free, M_SYSVSEM);
457
458	seminfo.semmns = new_pool_size;
459#ifdef SEM_DEBUG
460	printf("expansion complete\n");
461#endif
462	return 1;
463}
464
465/*
466 * Allocate a new sem_undo structure for a process
467 * (returns ptr to structure or NULL if no more room)
468 *
469 * Assumes we already hold the subsystem lock.
470 */
471
472static int
473semu_alloc(struct proc *p)
474{
475	register int i;
476	register struct sem_undo *suptr;
477	int *supidx;
478	int attempt;
479
480	/*
481	 * Try twice to allocate something.
482	 * (we'll purge any empty structures after the first pass so
483	 * two passes are always enough)
484	 */
485
486	for (attempt = 0; attempt < 2; attempt++) {
487		/*
488		 * Look for a free structure.
489		 * Fill it in and return it if we find one.
490		 */
491
492		for (i = 0; i < seminfo.semmnu; i++) {
493			suptr = SEMU(i);
494			if (suptr->un_proc == NULL) {
495				suptr->un_next_idx = semu_list_idx;
496				semu_list_idx = i;
497				suptr->un_cnt = 0;
498				suptr->un_ent = NULL;
499				suptr->un_proc = p;
500				return i;
501			}
502		}
503
504		/*
505		 * We didn't find a free one, if this is the first attempt
506		 * then try to free some structures.
507		 */
508
509		if (attempt == 0) {
510			/* All the structures are in use - try to free some */
511			int did_something = 0;
512
513			supidx = &semu_list_idx;
514			while (*supidx != -1) {
515				suptr = SEMU(*supidx);
516				if (suptr->un_cnt == 0)  {
517					suptr->un_proc = NULL;
518					*supidx = suptr->un_next_idx;
519					did_something = 1;
520				} else
521					supidx = &(suptr->un_next_idx);
522			}
523
524			/* If we didn't free anything. Try expanding
525			 * the semu[] array.  If that doesn't work
526			 * then fail.  We expand last to get the
527			 * most reuse out of existing resources.
528			 */
529			if (!did_something)
530				if (!grow_semu_array(seminfo.semmnu + 1))
531					return -1;
532		} else {
533			/*
534			 * The second pass failed even though we freed
535			 * something after the first pass!
536			 * This is IMPOSSIBLE!
537			 */
538			panic("semu_alloc - second attempt failed");
539		}
540	}
541	return -1;
542}
543
544/*
545 * Adjust a particular entry for a particular proc
546 *
547 * Assumes we already hold the subsystem lock.
548 */
549static int
550semundo_adjust(struct proc *p, int *supidx, int semid,
551	int semnum, int adjval)
552{
553	register struct sem_undo *suptr;
554	int suidx;
555	register struct undo *sueptr, **suepptr, *new_sueptr;
556	int i;
557
558	/*
559	 * Look for and remember the sem_undo if the caller doesn't provide it
560	 */
561
562	suidx = *supidx;
563	if (suidx == -1) {
564		for (suidx = semu_list_idx; suidx != -1;
565		    suidx = suptr->un_next_idx) {
566			suptr = SEMU(suidx);
567			if (suptr->un_proc == p) {
568				*supidx = suidx;
569				break;
570			}
571		}
572		if (suidx == -1) {
573			if (adjval == 0)
574				return(0);
575			suidx = semu_alloc(p);
576			if (suidx == -1)
577				return(ENOSPC);
578			*supidx = suidx;
579		}
580	}
581
582	/*
583	 * Look for the requested entry and adjust it (delete if adjval becomes
584	 * 0).
585	 */
586	suptr = SEMU(suidx);
587	new_sueptr = NULL;
588	for (i = 0, suepptr = &suptr->un_ent, sueptr = suptr->un_ent;
589	     i < suptr->un_cnt;
590	     i++, suepptr = &sueptr->une_next, sueptr = sueptr->une_next) {
591		if (sueptr->une_id != semid || sueptr->une_num != semnum)
592			continue;
593		if (adjval == 0)
594			sueptr->une_adjval = 0;
595		else
596			sueptr->une_adjval += adjval;
597		if (sueptr->une_adjval == 0) {
598			suptr->un_cnt--;
599			*suepptr = sueptr->une_next;
600			FREE(sueptr, M_SYSVSEM);
601			sueptr = NULL;
602		}
603		return 0;
604	}
605
606	/* Didn't find the right entry - create it */
607	if (adjval == 0) {
608		/* no adjustment: no need for a new entry */
609		return 0;
610	}
611
612	if (suptr->un_cnt == limitseminfo.semume) {
613		/* reached the limit number of semaphore undo entries */
614		return EINVAL;
615	}
616
617	/* allocate a new semaphore undo entry */
618	MALLOC(new_sueptr, struct undo *, sizeof (struct undo),
619	       M_SYSVSEM, M_WAITOK);
620	if (new_sueptr == NULL) {
621		return ENOMEM;
622	}
623
624	/* fill in the new semaphore undo entry */
625	new_sueptr->une_next = suptr->un_ent;
626	suptr->un_ent = new_sueptr;
627	suptr->un_cnt++;
628	new_sueptr->une_adjval = adjval;
629	new_sueptr->une_id = semid;
630	new_sueptr->une_num = semnum;
631
632	return 0;
633}
634
635/* Assumes we already hold the subsystem lock.
636 */
637static void
638semundo_clear(int semid, int semnum)
639{
640	struct sem_undo *suptr;
641	int suidx;
642
643	for (suidx = semu_list_idx; suidx != -1; suidx = suptr->un_next_idx) {
644		struct undo *sueptr;
645		struct undo **suepptr;
646		int i = 0;
647
648		suptr = SEMU(suidx);
649		sueptr = suptr->un_ent;
650		suepptr = &suptr->un_ent;
651		while (i < suptr->un_cnt) {
652			if (sueptr->une_id == semid) {
653				if (semnum == -1 || sueptr->une_num == semnum) {
654					suptr->un_cnt--;
655					*suepptr = sueptr->une_next;
656					FREE(sueptr, M_SYSVSEM);
657					sueptr = *suepptr;
658					continue;
659				}
660				if (semnum != -1)
661					break;
662			}
663			i++;
664			suepptr = &sueptr->une_next;
665			sueptr = sueptr->une_next;
666		}
667	}
668}
669
670/*
671 * Note that the user-mode half of this passes a union coerced to a
672 * user_addr_t.  The union contains either an int or a pointer, and
673 * so we have to coerce it back, variant on whether the calling
674 * process is 64 bit or not.  The coercion works for the 'val' element
675 * because the alignment is the same in user and kernel space.
676 */
677int
678semctl(struct proc *p, struct semctl_args *uap, int32_t *retval)
679{
680	int semid = uap->semid;
681	int semnum = uap->semnum;
682	int cmd = uap->cmd;
683	user_semun_t user_arg = (user_semun_t)uap->arg;
684	kauth_cred_t cred = kauth_cred_get();
685	int i, rval, eval;
686	struct user_semid_ds sbuf;
687	struct semid_kernel *semakptr;
688
689
690	AUDIT_ARG(svipc_cmd, cmd);
691	AUDIT_ARG(svipc_id, semid);
692
693	SYSV_SEM_SUBSYS_LOCK();
694
695#ifdef SEM_DEBUG
696	printf("call to semctl(%d, %d, %d, 0x%qx)\n", semid, semnum, cmd, user_arg);
697#endif
698
699	semid = IPCID_TO_IX(semid);
700
701	if (semid < 0 || semid >= seminfo.semmni) {
702#ifdef SEM_DEBUG
703		printf("Invalid semid\n");
704#endif
705		eval = EINVAL;
706		goto semctlout;
707	}
708
709	semakptr = &sema[semid];
710	if ((semakptr->u.sem_perm.mode & SEM_ALLOC) == 0 ||
711	    semakptr->u.sem_perm._seq != IPCID_TO_SEQ(uap->semid)) {
712		eval = EINVAL;
713		goto semctlout;
714	}
715#if CONFIG_MACF
716	eval = mac_sysvsem_check_semctl(cred, semakptr, cmd);
717	if (eval)
718		goto semctlout;
719#endif
720
721	eval = 0;
722	rval = 0;
723
724	switch (cmd) {
725	case IPC_RMID:
726		if ((eval = ipcperm(cred, &semakptr->u.sem_perm, IPC_M)))
727			goto semctlout;
728
729		semakptr->u.sem_perm.cuid = kauth_cred_getuid(cred);
730		semakptr->u.sem_perm.uid = kauth_cred_getuid(cred);
731		semtot -= semakptr->u.sem_nsems;
732		for (i = semakptr->u.sem_base - sem_pool; i < semtot; i++)
733			sem_pool[i] = sem_pool[i + semakptr->u.sem_nsems];
734		for (i = 0; i < seminfo.semmni; i++) {
735			if ((sema[i].u.sem_perm.mode & SEM_ALLOC) &&
736			    sema[i].u.sem_base > semakptr->u.sem_base)
737				sema[i].u.sem_base -= semakptr->u.sem_nsems;
738		}
739		semakptr->u.sem_perm.mode = 0;
740#if CONFIG_MACF
741		mac_sysvsem_label_recycle(semakptr);
742#endif
743		semundo_clear(semid, -1);
744		wakeup((caddr_t)semakptr);
745		break;
746
747	case IPC_SET:
748		if ((eval = ipcperm(cred, &semakptr->u.sem_perm, IPC_M)))
749				goto semctlout;
750
751		if (IS_64BIT_PROCESS(p)) {
752			struct user64_semid_ds ds64;
753			eval = copyin(user_arg.buf, &ds64, sizeof(ds64));
754			semid_ds_64tokernel(&ds64, &sbuf);
755		} else {
756			struct user32_semid_ds ds32;
757			eval = copyin(user_arg.buf, &ds32, sizeof(ds32));
758			semid_ds_32tokernel(&ds32, &sbuf);
759		}
760
761		if (eval != 0) {
762			goto semctlout;
763		}
764
765		semakptr->u.sem_perm.uid = sbuf.sem_perm.uid;
766		semakptr->u.sem_perm.gid = sbuf.sem_perm.gid;
767		semakptr->u.sem_perm.mode = (semakptr->u.sem_perm.mode &
768		    ~0777) | (sbuf.sem_perm.mode & 0777);
769		semakptr->u.sem_ctime = sysv_semtime();
770		break;
771
772	case IPC_STAT:
773		if ((eval = ipcperm(cred, &semakptr->u.sem_perm, IPC_R)))
774				goto semctlout;
775
776		if (IS_64BIT_PROCESS(p)) {
777			struct user64_semid_ds semid_ds64;
778			bzero(&semid_ds64, sizeof(semid_ds64));
779			semid_ds_kernelto64(&semakptr->u, &semid_ds64);
780			eval = copyout(&semid_ds64, user_arg.buf, sizeof(semid_ds64));
781		} else {
782			struct user32_semid_ds semid_ds32;
783			bzero(&semid_ds32, sizeof(semid_ds32));
784			semid_ds_kernelto32(&semakptr->u, &semid_ds32);
785			eval = copyout(&semid_ds32, user_arg.buf, sizeof(semid_ds32));
786		}
787		break;
788
789	case GETNCNT:
790		if ((eval = ipcperm(cred, &semakptr->u.sem_perm, IPC_R)))
791				goto semctlout;
792		if (semnum < 0 || semnum >= semakptr->u.sem_nsems) {
793			eval = EINVAL;
794			goto semctlout;
795		}
796		rval = semakptr->u.sem_base[semnum].semncnt;
797		break;
798
799	case GETPID:
800		if ((eval = ipcperm(cred, &semakptr->u.sem_perm, IPC_R)))
801				goto semctlout;
802		if (semnum < 0 || semnum >= semakptr->u.sem_nsems) {
803			eval = EINVAL;
804			goto semctlout;
805		}
806		rval = semakptr->u.sem_base[semnum].sempid;
807		break;
808
809	case GETVAL:
810		if ((eval = ipcperm(cred, &semakptr->u.sem_perm, IPC_R)))
811				goto semctlout;
812		if (semnum < 0 || semnum >= semakptr->u.sem_nsems) {
813			eval = EINVAL;
814			goto semctlout;
815		}
816		rval = semakptr->u.sem_base[semnum].semval;
817		break;
818
819	case GETALL:
820		if ((eval = ipcperm(cred, &semakptr->u.sem_perm, IPC_R)))
821				goto semctlout;
822/* XXXXXXXXXXXXXXXX TBD XXXXXXXXXXXXXXXX */
823		for (i = 0; i < semakptr->u.sem_nsems; i++) {
824			/* XXX could be done in one go... */
825			eval = copyout((caddr_t)&semakptr->u.sem_base[i].semval,
826			    user_arg.array + (i * sizeof(unsigned short)),
827			    sizeof(unsigned short));
828			if (eval != 0)
829				break;
830		}
831		break;
832
833	case GETZCNT:
834		if ((eval = ipcperm(cred, &semakptr->u.sem_perm, IPC_R)))
835				goto semctlout;
836		if (semnum < 0 || semnum >= semakptr->u.sem_nsems) {
837			eval = EINVAL;
838			goto semctlout;
839		}
840		rval = semakptr->u.sem_base[semnum].semzcnt;
841		break;
842
843	case SETVAL:
844		if ((eval = ipcperm(cred, &semakptr->u.sem_perm, IPC_W)))
845                {
846#ifdef SEM_DEBUG
847			printf("Invalid credentials for write\n");
848#endif
849				goto semctlout;
850		}
851		if (semnum < 0 || semnum >= semakptr->u.sem_nsems)
852		{
853#ifdef SEM_DEBUG
854			printf("Invalid number out of range for set\n");
855#endif
856			eval = EINVAL;
857			goto semctlout;
858		}
859
860		/*
861		 * Cast down a pointer instead of using 'val' member directly
862		 * to avoid introducing endieness and a pad field into the
863		 * header file.  Ugly, but it works.
864		 */
865		u_int newsemval = CAST_DOWN_EXPLICIT(u_int, user_arg.buf);
866
867		/*
868		 * The check is being performed as unsigned values to match
869		 * eventual destination
870		 */
871		if (newsemval > (u_int)seminfo.semvmx)
872		{
873#ifdef SEM_DEBUG
874			printf("Out of range sem value for set\n");
875#endif
876			eval = ERANGE;
877			goto semctlout;
878		}
879		semakptr->u.sem_base[semnum].semval = newsemval;
880		semakptr->u.sem_base[semnum].sempid = p->p_pid;
881		/* XXX scottl Should there be a MAC call here? */
882		semundo_clear(semid, semnum);
883		wakeup((caddr_t)semakptr);
884		break;
885
886	case SETALL:
887		if ((eval = ipcperm(cred, &semakptr->u.sem_perm, IPC_W)))
888				goto semctlout;
889/*** XXXXXXXXXXXX TBD ********/
890		for (i = 0; i < semakptr->u.sem_nsems; i++) {
891			/* XXX could be done in one go... */
892			eval = copyin(user_arg.array + (i * sizeof(unsigned short)),
893			    (caddr_t)&semakptr->u.sem_base[i].semval,
894			    sizeof(unsigned short));
895			if (eval != 0)
896				break;
897			semakptr->u.sem_base[i].sempid = p->p_pid;
898		}
899		/* XXX scottl Should there be a MAC call here? */
900		semundo_clear(semid, -1);
901		wakeup((caddr_t)semakptr);
902		break;
903
904	default:
905			eval = EINVAL;
906			goto semctlout;
907	}
908
909	if (eval == 0)
910		*retval = rval;
911semctlout:
912	SYSV_SEM_SUBSYS_UNLOCK();
913	return(eval);
914}
915
916int
917semget(__unused struct proc *p, struct semget_args *uap, int32_t *retval)
918{
919	int semid, eval;
920	int key = uap->key;
921	int nsems = uap->nsems;
922	int semflg = uap->semflg;
923	kauth_cred_t cred = kauth_cred_get();
924
925#ifdef SEM_DEBUG
926	if (key != IPC_PRIVATE)
927		printf("semget(0x%x, %d, 0%o)\n", key, nsems, semflg);
928	else
929		printf("semget(IPC_PRIVATE, %d, 0%o)\n", nsems, semflg);
930#endif
931
932
933	SYSV_SEM_SUBSYS_LOCK();
934
935
936	if (key != IPC_PRIVATE) {
937		for (semid = 0; semid < seminfo.semmni; semid++) {
938			if ((sema[semid].u.sem_perm.mode & SEM_ALLOC) &&
939			    sema[semid].u.sem_perm._key == key)
940				break;
941		}
942		if (semid < seminfo.semmni) {
943#ifdef SEM_DEBUG
944			printf("found public key\n");
945#endif
946			if ((eval = ipcperm(cred, &sema[semid].u.sem_perm,
947			    semflg & 0700)))
948				goto semgetout;
949			if (nsems < 0 || sema[semid].u.sem_nsems < nsems) {
950#ifdef SEM_DEBUG
951				printf("too small\n");
952#endif
953				eval = EINVAL;
954				goto semgetout;
955			}
956			if ((semflg & IPC_CREAT) && (semflg & IPC_EXCL)) {
957#ifdef SEM_DEBUG
958				printf("not exclusive\n");
959#endif
960				eval = EEXIST;
961				goto semgetout;
962			}
963#if CONFIG_MACF
964			eval = mac_sysvsem_check_semget(cred, &sema[semid]);
965			if (eval)
966				goto semgetout;
967#endif
968			goto found;
969		}
970	}
971
972#ifdef SEM_DEBUG
973	printf("need to allocate an id for the request\n");
974#endif
975	if (key == IPC_PRIVATE || (semflg & IPC_CREAT)) {
976		if (nsems <= 0 || nsems > limitseminfo.semmsl) {
977#ifdef SEM_DEBUG
978			printf("nsems out of range (0<%d<=%d)\n", nsems,
979			    seminfo.semmsl);
980#endif
981			eval = EINVAL;
982			goto semgetout;
983		}
984		if (nsems > seminfo.semmns - semtot) {
985#ifdef SEM_DEBUG
986			printf("not enough semaphores left (need %d, got %d)\n",
987			    nsems, seminfo.semmns - semtot);
988#endif
989			if (!grow_sem_pool(semtot + nsems)) {
990#ifdef SEM_DEBUG
991				printf("failed to grow the sem array\n");
992#endif
993				eval = ENOSPC;
994				goto semgetout;
995			}
996		}
997		for (semid = 0; semid < seminfo.semmni; semid++) {
998			if ((sema[semid].u.sem_perm.mode & SEM_ALLOC) == 0)
999				break;
1000		}
1001		if (semid == seminfo.semmni) {
1002#ifdef SEM_DEBUG
1003			printf("no more id's available\n");
1004#endif
1005			if (!grow_sema_array(seminfo.semmni + 1))
1006			{
1007#ifdef SEM_DEBUG
1008				printf("failed to grow sema array\n");
1009#endif
1010				eval = ENOSPC;
1011				goto semgetout;
1012			}
1013		}
1014#ifdef SEM_DEBUG
1015		printf("semid %d is available\n", semid);
1016#endif
1017		sema[semid].u.sem_perm._key = key;
1018		sema[semid].u.sem_perm.cuid = kauth_cred_getuid(cred);
1019		sema[semid].u.sem_perm.uid = kauth_cred_getuid(cred);
1020		sema[semid].u.sem_perm.cgid = kauth_cred_getgid(cred);
1021		sema[semid].u.sem_perm.gid = kauth_cred_getgid(cred);
1022		sema[semid].u.sem_perm.mode = (semflg & 0777) | SEM_ALLOC;
1023		sema[semid].u.sem_perm._seq =
1024		    (sema[semid].u.sem_perm._seq + 1) & 0x7fff;
1025		sema[semid].u.sem_nsems = nsems;
1026		sema[semid].u.sem_otime = 0;
1027		sema[semid].u.sem_ctime = sysv_semtime();
1028		sema[semid].u.sem_base = &sem_pool[semtot];
1029		semtot += nsems;
1030		bzero(sema[semid].u.sem_base,
1031		    sizeof(sema[semid].u.sem_base[0])*nsems);
1032#if CONFIG_MACF
1033		mac_sysvsem_label_associate(cred, &sema[semid]);
1034#endif
1035#ifdef SEM_DEBUG
1036		printf("sembase = 0x%x, next = 0x%x\n", sema[semid].u.sem_base,
1037		    &sem_pool[semtot]);
1038#endif
1039	} else {
1040#ifdef SEM_DEBUG
1041		printf("didn't find it and wasn't asked to create it\n");
1042#endif
1043		eval = ENOENT;
1044		goto semgetout;
1045	}
1046
1047found:
1048	*retval = IXSEQ_TO_IPCID(semid, sema[semid].u.sem_perm);
1049	AUDIT_ARG(svipc_id, *retval);
1050#ifdef SEM_DEBUG
1051	printf("semget is done, returning %d\n", *retval);
1052#endif
1053	eval = 0;
1054
1055semgetout:
1056	SYSV_SEM_SUBSYS_UNLOCK();
1057	return(eval);
1058}
1059
1060int
1061semop(struct proc *p, struct semop_args *uap, int32_t *retval)
1062{
1063	int semid = uap->semid;
1064	int nsops = uap->nsops;
1065	struct sembuf sops[seminfo.semopm];
1066	register struct semid_kernel *semakptr;
1067	register struct sembuf *sopptr = NULL;	/* protected by 'semptr' */
1068	register struct sem *semptr = NULL;	/* protected by 'if' */
1069	int supidx = -1;
1070	int i, j, eval;
1071	int do_wakeup, do_undos;
1072
1073	AUDIT_ARG(svipc_id, uap->semid);
1074
1075	SYSV_SEM_SUBSYS_LOCK();
1076
1077#ifdef SEM_DEBUG
1078	printf("call to semop(%d, 0x%x, %d)\n", semid, sops, nsops);
1079#endif
1080
1081	semid = IPCID_TO_IX(semid);	/* Convert back to zero origin */
1082
1083	if (semid < 0 || semid >= seminfo.semmni) {
1084		eval = EINVAL;
1085		goto semopout;
1086	}
1087
1088	semakptr = &sema[semid];
1089	if ((semakptr->u.sem_perm.mode & SEM_ALLOC) == 0) {
1090		eval = EINVAL;
1091		goto semopout;
1092	}
1093	if (semakptr->u.sem_perm._seq != IPCID_TO_SEQ(uap->semid)) {
1094		eval = EINVAL;
1095		goto semopout;
1096	}
1097
1098	if ((eval = ipcperm(kauth_cred_get(), &semakptr->u.sem_perm, IPC_W))) {
1099#ifdef SEM_DEBUG
1100		printf("eval = %d from ipaccess\n", eval);
1101#endif
1102		goto semopout;
1103	}
1104
1105	if (nsops < 0 || nsops > seminfo.semopm) {
1106#ifdef SEM_DEBUG
1107		printf("too many sops (max=%d, nsops=%d)\n",
1108		    seminfo.semopm, nsops);
1109#endif
1110		eval = E2BIG;
1111		goto semopout;
1112	}
1113
1114	/*  OK for LP64, since sizeof(struct sembuf) is currently invariant */
1115	if ((eval = copyin(uap->sops, &sops, nsops * sizeof(struct sembuf))) != 0) {
1116#ifdef SEM_DEBUG
1117		printf("eval = %d from copyin(%08x, %08x, %ld)\n", eval,
1118		    uap->sops, &sops, nsops * sizeof(struct sembuf));
1119#endif
1120		goto semopout;
1121	}
1122
1123#if CONFIG_MACF
1124	/*
1125	 * Initial pass thru sops to see what permissions are needed.
1126	 */
1127	j = 0;		/* permission needed */
1128	for (i = 0; i < nsops; i++)
1129		j |= (sops[i].sem_op == 0) ? SEM_R : SEM_A;
1130
1131	/*
1132	 * The MAC hook checks whether the thread has read (and possibly
1133	 * write) permissions to the semaphore array based on the
1134	 * sopptr->sem_op value.
1135	 */
1136	eval = mac_sysvsem_check_semop(kauth_cred_get(), semakptr, j);
1137	if (eval)
1138		goto semopout;
1139#endif
1140
1141	/*
1142	 * Loop trying to satisfy the vector of requests.
1143	 * If we reach a point where we must wait, any requests already
1144	 * performed are rolled back and we go to sleep until some other
1145	 * process wakes us up.  At this point, we start all over again.
1146	 *
1147	 * This ensures that from the perspective of other tasks, a set
1148	 * of requests is atomic (never partially satisfied).
1149	 */
1150	do_undos = 0;
1151
1152	for (;;) {
1153		do_wakeup = 0;
1154
1155		for (i = 0; i < nsops; i++) {
1156			sopptr = &sops[i];
1157
1158			if (sopptr->sem_num >= semakptr->u.sem_nsems) {
1159				eval = EFBIG;
1160				goto semopout;
1161			}
1162
1163			semptr = &semakptr->u.sem_base[sopptr->sem_num];
1164
1165#ifdef SEM_DEBUG
1166			printf("semop:  semakptr=%x, sem_base=%x, semptr=%x, sem[%d]=%d : op=%d, flag=%s\n",
1167			    semakptr, semakptr->u.sem_base, semptr,
1168			    sopptr->sem_num, semptr->semval, sopptr->sem_op,
1169			    (sopptr->sem_flg & IPC_NOWAIT) ? "nowait" : "wait");
1170#endif
1171
1172			if (sopptr->sem_op < 0) {
1173				if (semptr->semval + sopptr->sem_op < 0) {
1174#ifdef SEM_DEBUG
1175					printf("semop:  can't do it now\n");
1176#endif
1177					break;
1178				} else {
1179					semptr->semval += sopptr->sem_op;
1180					if (semptr->semval == 0 &&
1181					    semptr->semzcnt > 0)
1182						do_wakeup = 1;
1183				}
1184				if (sopptr->sem_flg & SEM_UNDO)
1185					do_undos = 1;
1186			} else if (sopptr->sem_op == 0) {
1187				if (semptr->semval > 0) {
1188#ifdef SEM_DEBUG
1189					printf("semop:  not zero now\n");
1190#endif
1191					break;
1192				}
1193			} else {
1194				if (semptr->semncnt > 0)
1195					do_wakeup = 1;
1196				semptr->semval += sopptr->sem_op;
1197				if (sopptr->sem_flg & SEM_UNDO)
1198					do_undos = 1;
1199			}
1200		}
1201
1202		/*
1203		 * Did we get through the entire vector?
1204		 */
1205		if (i >= nsops)
1206			goto done;
1207
1208		/*
1209		 * No ... rollback anything that we've already done
1210		 */
1211#ifdef SEM_DEBUG
1212		printf("semop:  rollback 0 through %d\n", i-1);
1213#endif
1214		for (j = 0; j < i; j++)
1215			semakptr->u.sem_base[sops[j].sem_num].semval -=
1216			    sops[j].sem_op;
1217
1218		/*
1219		 * If the request that we couldn't satisfy has the
1220		 * NOWAIT flag set then return with EAGAIN.
1221		 */
1222		if (sopptr->sem_flg & IPC_NOWAIT) {
1223			eval = EAGAIN;
1224			goto semopout;
1225		}
1226
1227		if (sopptr->sem_op == 0)
1228			semptr->semzcnt++;
1229		else
1230			semptr->semncnt++;
1231
1232#ifdef SEM_DEBUG
1233		printf("semop:  good night!\n");
1234#endif
1235		/* Release our lock on the semaphore subsystem so
1236		 * another thread can get at the semaphore we are
1237		 * waiting for. We will get the lock back after we
1238		 * wake up.
1239		 */
1240		eval = msleep((caddr_t)semakptr, &sysv_sem_subsys_mutex , (PZERO - 4) | PCATCH,
1241		    "semwait", 0);
1242
1243#ifdef SEM_DEBUG
1244		printf("semop:  good morning (eval=%d)!\n", eval);
1245#endif
1246		if (eval != 0) {
1247			eval = EINTR;
1248		}
1249
1250		/*
1251		 * IMPORTANT: while we were asleep, the semaphore array might
1252		 * have been reallocated somewhere else (see grow_sema_array()).
1253		 * When we wake up, we have to re-lookup the semaphore
1254		 * structures and re-validate them.
1255		 */
1256
1257		semptr = NULL;
1258
1259		/*
1260		 * Make sure that the semaphore still exists
1261		 *
1262		 * XXX POSIX: Third test this 'if' and 'EINTR' precedence may
1263		 * fail testing; if so, we will need to revert this code.
1264		 */
1265	 	semakptr = &sema[semid];   /* sema may have been reallocated */
1266		if ((semakptr->u.sem_perm.mode & SEM_ALLOC) == 0 ||
1267		    semakptr->u.sem_perm._seq != IPCID_TO_SEQ(uap->semid) ||
1268		    sopptr->sem_num >= semakptr->u.sem_nsems) {
1269			/* The man page says to return EIDRM. */
1270			/* Unfortunately, BSD doesn't define that code! */
1271			if (eval == EINTR) {
1272				/*
1273				 * EINTR takes precedence over the fact that
1274				 * the semaphore disappeared while we were
1275				 * sleeping...
1276				 */
1277			} else {
1278#ifdef EIDRM
1279				eval = EIDRM;
1280#else
1281				eval = EINVAL;		/* Ancient past */
1282#endif
1283			}
1284			goto semopout;
1285		}
1286
1287		/*
1288		 * The semaphore is still alive.  Readjust the count of
1289		 * waiting processes. semptr needs to be recomputed
1290		 * because the sem[] may have been reallocated while
1291		 * we were sleeping, updating our sem_base pointer.
1292		 */
1293		semptr = &semakptr->u.sem_base[sopptr->sem_num];
1294		if (sopptr->sem_op == 0)
1295			semptr->semzcnt--;
1296		else
1297			semptr->semncnt--;
1298
1299		if (eval != 0) { /* EINTR */
1300			goto semopout;
1301		}
1302	}
1303
1304done:
1305	/*
1306	 * Process any SEM_UNDO requests.
1307	 */
1308	if (do_undos) {
1309		for (i = 0; i < nsops; i++) {
1310			/*
1311			 * We only need to deal with SEM_UNDO's for non-zero
1312			 * op's.
1313			 */
1314			int adjval;
1315
1316			if ((sops[i].sem_flg & SEM_UNDO) == 0)
1317				continue;
1318			adjval = sops[i].sem_op;
1319			if (adjval == 0)
1320				continue;
1321			eval = semundo_adjust(p, &supidx, semid,
1322			    sops[i].sem_num, -adjval);
1323			if (eval == 0)
1324				continue;
1325
1326			/*
1327			 * Oh-Oh!  We ran out of either sem_undo's or undo's.
1328			 * Rollback the adjustments to this point and then
1329			 * rollback the semaphore ups and down so we can return
1330			 * with an error with all structures restored.  We
1331			 * rollback the undo's in the exact reverse order that
1332			 * we applied them.  This guarantees that we won't run
1333			 * out of space as we roll things back out.
1334			 */
1335			for (j = i - 1; j >= 0; j--) {
1336				if ((sops[j].sem_flg & SEM_UNDO) == 0)
1337					continue;
1338				adjval = sops[j].sem_op;
1339				if (adjval == 0)
1340					continue;
1341				if (semundo_adjust(p, &supidx, semid,
1342				    sops[j].sem_num, adjval) != 0)
1343					panic("semop - can't undo undos");
1344			}
1345
1346			for (j = 0; j < nsops; j++)
1347				semakptr->u.sem_base[sops[j].sem_num].semval -=
1348				    sops[j].sem_op;
1349
1350#ifdef SEM_DEBUG
1351			printf("eval = %d from semundo_adjust\n", eval);
1352#endif
1353			goto semopout;
1354		} /* loop through the sops */
1355	} /* if (do_undos) */
1356
1357	/* We're definitely done - set the sempid's */
1358	for (i = 0; i < nsops; i++) {
1359		sopptr = &sops[i];
1360		semptr = &semakptr->u.sem_base[sopptr->sem_num];
1361		semptr->sempid = p->p_pid;
1362	}
1363	semakptr->u.sem_otime = sysv_semtime();
1364
1365	if (do_wakeup) {
1366#ifdef SEM_DEBUG
1367		printf("semop:  doing wakeup\n");
1368#ifdef SEM_WAKEUP
1369		sem_wakeup((caddr_t)semakptr);
1370#else
1371		wakeup((caddr_t)semakptr);
1372#endif
1373		printf("semop:  back from wakeup\n");
1374#else
1375		wakeup((caddr_t)semakptr);
1376#endif
1377	}
1378#ifdef SEM_DEBUG
1379	printf("semop:  done\n");
1380#endif
1381	*retval = 0;
1382	eval = 0;
1383semopout:
1384	SYSV_SEM_SUBSYS_UNLOCK();
1385	return(eval);
1386}
1387
1388/*
1389 * Go through the undo structures for this process and apply the adjustments to
1390 * semaphores.
1391 */
1392void
1393semexit(struct proc *p)
1394{
1395	register struct sem_undo *suptr = NULL;
1396	int suidx;
1397	int *supidx;
1398	int did_something;
1399
1400	/* If we have not allocated our semaphores yet there can't be
1401	 * anything to undo, but we need the lock to prevent
1402	 * dynamic memory race conditions.
1403	 */
1404	SYSV_SEM_SUBSYS_LOCK();
1405
1406	if (!sem_pool)
1407	{
1408		SYSV_SEM_SUBSYS_UNLOCK();
1409		return;
1410	}
1411	did_something = 0;
1412
1413	/*
1414	 * Go through the chain of undo vectors looking for one
1415	 * associated with this process.
1416	 */
1417
1418	for (supidx = &semu_list_idx; (suidx = *supidx) != -1;
1419	    supidx = &suptr->un_next_idx) {
1420		suptr = SEMU(suidx);
1421		if (suptr->un_proc == p)
1422			break;
1423	}
1424
1425	if (suidx == -1)
1426		goto unlock;
1427
1428#ifdef SEM_DEBUG
1429	printf("proc @%08x has undo structure with %d entries\n", p,
1430	    suptr->un_cnt);
1431#endif
1432
1433	/*
1434	 * If there are any active undo elements then process them.
1435	 */
1436	if (suptr->un_cnt > 0) {
1437		while (suptr->un_ent != NULL) {
1438			struct undo *sueptr;
1439			int semid;
1440			int semnum;
1441			int adjval;
1442			struct semid_kernel *semakptr;
1443
1444			sueptr = suptr->un_ent;
1445			semid = sueptr->une_id;
1446			semnum = sueptr->une_num;
1447			adjval = sueptr->une_adjval;
1448
1449			semakptr = &sema[semid];
1450			if ((semakptr->u.sem_perm.mode & SEM_ALLOC) == 0)
1451				panic("semexit - semid not allocated");
1452			if (semnum >= semakptr->u.sem_nsems)
1453				panic("semexit - semnum out of range");
1454
1455#ifdef SEM_DEBUG
1456			printf("semexit:  %08x id=%d num=%d(adj=%d) ; sem=%d\n",
1457			       suptr->un_proc,
1458			       semid,
1459			       semnum,
1460			       adjval,
1461			       semakptr->u.sem_base[semnum].semval);
1462#endif
1463
1464			if (adjval < 0) {
1465				if (semakptr->u.sem_base[semnum].semval < -adjval)
1466					semakptr->u.sem_base[semnum].semval = 0;
1467				else
1468					semakptr->u.sem_base[semnum].semval +=
1469					    adjval;
1470			} else
1471				semakptr->u.sem_base[semnum].semval += adjval;
1472
1473		/* Maybe we should build a list of semakptr's to wake
1474		 * up, finish all access to data structures, release the
1475		 * subsystem lock, and wake all the processes.  Something
1476		 * to think about.  It wouldn't buy us anything unless
1477		 * wakeup had the potential to block, or the syscall
1478		 * funnel state was changed to allow multiple threads
1479		 * in the BSD code at once.
1480		 */
1481#ifdef SEM_WAKEUP
1482			sem_wakeup((caddr_t)semakptr);
1483#else
1484			wakeup((caddr_t)semakptr);
1485#endif
1486#ifdef SEM_DEBUG
1487			printf("semexit:  back from wakeup\n");
1488#endif
1489			suptr->un_cnt--;
1490			suptr->un_ent = sueptr->une_next;
1491			FREE(sueptr, M_SYSVSEM);
1492			sueptr = NULL;
1493		}
1494	}
1495
1496	/*
1497	 * Deallocate the undo vector.
1498	 */
1499#ifdef SEM_DEBUG
1500	printf("removing vector\n");
1501#endif
1502	suptr->un_proc = NULL;
1503	*supidx = suptr->un_next_idx;
1504
1505unlock:
1506	/*
1507         * There is a semaphore leak (i.e. memory leak) in this code.
1508         * We should be deleting the IPC_PRIVATE semaphores when they are
1509         * no longer needed, and we dont. We would have to track which processes
1510         * know about which IPC_PRIVATE semaphores, updating the list after
1511         * every fork.  We can't just delete them semaphore when the process
1512         * that created it dies, because that process may well have forked
1513         * some children.  So we need to wait until all of it's children have
1514         * died, and so on.  Maybe we should tag each IPC_PRIVATE sempahore
1515         * with the creating group ID, count the number of processes left in
1516         * that group, and delete the semaphore when the group is gone.
1517         * Until that code gets implemented we will leak IPC_PRIVATE semaphores.
1518         * There is an upper bound on the size of our semaphore array, so
1519         * leaking the semaphores should not work as a DOS attack.
1520         *
1521         * Please note that the original BSD code this file is based on had the
1522         * same leaky semaphore problem.
1523         */
1524
1525	SYSV_SEM_SUBSYS_UNLOCK();
1526}
1527
1528
1529/* (struct sysctl_oid *oidp, void *arg1, int arg2, \
1530        struct sysctl_req *req) */
1531static int
1532sysctl_seminfo(__unused struct sysctl_oid *oidp, void *arg1,
1533	__unused int arg2, struct sysctl_req *req)
1534{
1535	int error = 0;
1536
1537	error = SYSCTL_OUT(req, arg1, sizeof(int));
1538	if (error || req->newptr == USER_ADDR_NULL)
1539		return(error);
1540
1541	SYSV_SEM_SUBSYS_LOCK();
1542
1543	/* Set the values only if shared memory is not initialised */
1544	if ((sem_pool == NULL) &&
1545		(sema == NULL) &&
1546		(semu == NULL) &&
1547		(semu_list_idx == -1)) {
1548			if ((error = SYSCTL_IN(req, arg1, sizeof(int)))) {
1549				goto out;
1550			}
1551	} else
1552		error = EINVAL;
1553out:
1554	SYSV_SEM_SUBSYS_UNLOCK();
1555	return(error);
1556
1557}
1558
1559/* SYSCTL_NODE(_kern, KERN_SYSV, sysv, CTLFLAG_RW, 0, "SYSV"); */
1560extern struct sysctl_oid_list sysctl__kern_sysv_children;
1561SYSCTL_PROC(_kern_sysv, OID_AUTO, semmni, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
1562    &limitseminfo.semmni, 0, &sysctl_seminfo ,"I","semmni");
1563
1564SYSCTL_PROC(_kern_sysv, OID_AUTO, semmns, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
1565    &limitseminfo.semmns, 0, &sysctl_seminfo ,"I","semmns");
1566
1567SYSCTL_PROC(_kern_sysv, OID_AUTO, semmnu, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
1568    &limitseminfo.semmnu, 0, &sysctl_seminfo ,"I","semmnu");
1569
1570SYSCTL_PROC(_kern_sysv, OID_AUTO, semmsl, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
1571    &limitseminfo.semmsl, 0, &sysctl_seminfo ,"I","semmsl");
1572
1573SYSCTL_PROC(_kern_sysv, OID_AUTO, semume, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
1574    &limitseminfo.semume, 0, &sysctl_seminfo ,"I","semume");
1575
1576
1577static int
1578IPCS_sem_sysctl(__unused struct sysctl_oid *oidp, __unused void *arg1,
1579	__unused int arg2, struct sysctl_req *req)
1580{
1581	int error;
1582	int cursor;
1583	union {
1584		struct user32_IPCS_command u32;
1585		struct user_IPCS_command u64;
1586	} ipcs;
1587	struct user32_semid_ds semid_ds32;	/* post conversion, 32 bit version */
1588	struct user64_semid_ds semid_ds64;	/* post conversion, 64 bit version */
1589	void *semid_dsp;
1590	size_t ipcs_sz;
1591	size_t semid_ds_sz;
1592	struct proc *p = current_proc();
1593
1594	if (IS_64BIT_PROCESS(p)) {
1595		ipcs_sz = sizeof(struct user_IPCS_command);
1596		semid_ds_sz = sizeof(struct user64_semid_ds);
1597	} else {
1598		ipcs_sz = sizeof(struct user32_IPCS_command);
1599		semid_ds_sz = sizeof(struct user32_semid_ds);
1600	}
1601
1602	/* Copy in the command structure */
1603	if ((error = SYSCTL_IN(req, &ipcs, ipcs_sz)) != 0) {
1604		return(error);
1605	}
1606
1607	if (!IS_64BIT_PROCESS(p)) /* convert in place */
1608		ipcs.u64.ipcs_data = CAST_USER_ADDR_T(ipcs.u32.ipcs_data);
1609
1610	/* Let us version this interface... */
1611	if (ipcs.u64.ipcs_magic != IPCS_MAGIC) {
1612		return(EINVAL);
1613	}
1614
1615	SYSV_SEM_SUBSYS_LOCK();
1616	switch(ipcs.u64.ipcs_op) {
1617	case IPCS_SEM_CONF:	/* Obtain global configuration data */
1618		if (ipcs.u64.ipcs_datalen != sizeof(struct seminfo)) {
1619			error = ERANGE;
1620			break;
1621		}
1622		if (ipcs.u64.ipcs_cursor != 0) {	/* fwd. compat. */
1623			error = EINVAL;
1624			break;
1625		}
1626		error = copyout(&seminfo, ipcs.u64.ipcs_data, ipcs.u64.ipcs_datalen);
1627		break;
1628
1629	case IPCS_SEM_ITER:	/* Iterate over existing segments */
1630		cursor = ipcs.u64.ipcs_cursor;
1631		if (cursor < 0 || cursor >= seminfo.semmni) {
1632			error = ERANGE;
1633			break;
1634		}
1635		if (ipcs.u64.ipcs_datalen != (int)semid_ds_sz ) {
1636			error = EINVAL;
1637			break;
1638		}
1639		for( ; cursor < seminfo.semmni; cursor++) {
1640			if (sema[cursor].u.sem_perm.mode & SEM_ALLOC)
1641				break;
1642			continue;
1643		}
1644		if (cursor == seminfo.semmni) {
1645			error = ENOENT;
1646			break;
1647		}
1648
1649		semid_dsp = &sema[cursor].u;	/* default: 64 bit */
1650
1651		/*
1652		 * If necessary, convert the 64 bit kernel segment
1653		 * descriptor to a 32 bit user one.
1654		 */
1655		if (!IS_64BIT_PROCESS(p)) {
1656			bzero(&semid_ds32, sizeof(semid_ds32));
1657			semid_ds_kernelto32(semid_dsp, &semid_ds32);
1658			semid_dsp = &semid_ds32;
1659		} else {
1660			bzero(&semid_ds64, sizeof(semid_ds64));
1661			semid_ds_kernelto64(semid_dsp, &semid_ds64);
1662			semid_dsp = &semid_ds64;
1663		}
1664
1665		error = copyout(semid_dsp, ipcs.u64.ipcs_data, ipcs.u64.ipcs_datalen);
1666		if (!error) {
1667			/* update cursor */
1668			ipcs.u64.ipcs_cursor = cursor + 1;
1669
1670			if (!IS_64BIT_PROCESS(p))       /* convert in place */
1671				ipcs.u32.ipcs_data = CAST_DOWN_EXPLICIT(user32_addr_t,ipcs.u64.ipcs_data);
1672
1673			error = SYSCTL_OUT(req, &ipcs, ipcs_sz);
1674		}
1675		break;
1676
1677	default:
1678		error = EINVAL;
1679		break;
1680	}
1681	SYSV_SEM_SUBSYS_UNLOCK();
1682	return(error);
1683}
1684
1685SYSCTL_DECL(_kern_sysv_ipcs);
1686SYSCTL_PROC(_kern_sysv_ipcs, OID_AUTO, sem, CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_LOCKED,
1687	0, 0, IPCS_sem_sysctl,
1688	"S,IPCS_sem_command",
1689	"ipcs sem command interface");
1690
1691#endif /* SYSV_SEM */
1692