1/*
2 * Copyright (c) 2000-2007 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28/* Copyright (c) 1995, 1997 Apple Computer, Inc. All Rights Reserved */
29/*
30 * Copyright (c) 1982, 1986, 1989, 1991, 1993
31 *	The Regents of the University of California.  All rights reserved.
32 * (c) UNIX System Laboratories, Inc.
33 * All or some portions of this file are derived from material licensed
34 * to the University of California by American Telephone and Telegraph
35 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
36 * the permission of UNIX System Laboratories, Inc.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 *    notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 *    notice, this list of conditions and the following disclaimer in the
45 *    documentation and/or other materials provided with the distribution.
46 * 3. All advertising materials mentioning features or use of this software
47 *    must display the following acknowledgement:
48 *	This product includes software developed by the University of
49 *	California, Berkeley and its contributors.
50 * 4. Neither the name of the University nor the names of its contributors
51 *    may be used to endorse or promote products derived from this software
52 *    without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 *	@(#)kern_fork.c	8.8 (Berkeley) 2/14/95
67 */
68/*
69 * NOTICE: This file was modified by McAfee Research in 2004 to introduce
70 * support for mandatory and extensible security protections.  This notice
71 * is included in support of clause 2.2 (b) of the Apple Public License,
72 * Version 2.0.
73 */
74/*
75 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
76 * support for mandatory and extensible security protections.  This notice
77 * is included in support of clause 2.2 (b) of the Apple Public License,
78 * Version 2.0.
79 */
80
81#include <kern/assert.h>
82#include <sys/param.h>
83#include <sys/systm.h>
84#include <sys/filedesc.h>
85#include <sys/kernel.h>
86#include <sys/malloc.h>
87#include <sys/proc_internal.h>
88#include <sys/kauth.h>
89#include <sys/user.h>
90#include <sys/resourcevar.h>
91#include <sys/vnode_internal.h>
92#include <sys/file_internal.h>
93#include <sys/acct.h>
94#include <sys/codesign.h>
95#include <sys/sysproto.h>
96#if CONFIG_DTRACE
97/* Do not include dtrace.h, it redefines kmem_[alloc/free] */
98extern void dtrace_fasttrap_fork(proc_t, proc_t);
99extern void (*dtrace_helpers_fork)(proc_t, proc_t);
100extern void dtrace_lazy_dofs_duplicate(proc_t, proc_t);
101
102#include <sys/dtrace_ptss.h>
103#endif
104
105#include <security/audit/audit.h>
106
107#include <mach/mach_types.h>
108#include <kern/kern_types.h>
109#include <kern/kalloc.h>
110#include <kern/mach_param.h>
111#include <kern/task.h>
112#include <kern/thread.h>
113#include <kern/thread_call.h>
114#include <kern/zalloc.h>
115
116#include <machine/spl.h>
117
118#if CONFIG_MACF
119#include <security/mac.h>
120#include <security/mac_mach_internal.h>
121#endif
122
123#include <vm/vm_map.h>
124#include <vm/vm_protos.h>
125#include <vm/vm_shared_region.h>
126
127#include <sys/shm_internal.h>	/* for shmfork() */
128#include <mach/task.h>		/* for thread_create() */
129#include <mach/thread_act.h>	/* for thread_resume() */
130
131#include <sys/sdt.h>
132
133#if CONFIG_MEMORYSTATUS
134#include <sys/kern_memorystatus.h>
135#endif
136
137/* XXX routines which should have Mach prototypes, but don't */
138void thread_set_parent(thread_t parent, int pid);
139extern void act_thread_catt(void *ctx);
140void thread_set_child(thread_t child, int pid);
141void *act_thread_csave(void);
142
143
144thread_t cloneproc(task_t, proc_t, int, int);
145proc_t forkproc(proc_t);
146void forkproc_free(proc_t);
147thread_t fork_create_child(task_t parent_task, proc_t child, int inherit_memory, int is64bit);
148void proc_vfork_begin(proc_t parent_proc);
149void proc_vfork_end(proc_t parent_proc);
150
151#define	DOFORK	0x1	/* fork() system call */
152#define	DOVFORK	0x2	/* vfork() system call */
153
154/*
155 * proc_vfork_begin
156 *
157 * Description:	start a vfork on a process
158 *
159 * Parameters:	parent_proc		process (re)entering vfork state
160 *
161 * Returns:	(void)
162 *
163 * Notes:	Although this function increments a count, a count in
164 *		excess of 1 is not currently supported.  According to the
165 *		POSIX standard, calling anything other than execve() or
166 *		_exit() following a vfork(), including calling vfork()
167 *		itself again, will result in undefined behaviour
168 */
169void
170proc_vfork_begin(proc_t parent_proc)
171{
172	proc_lock(parent_proc);
173	parent_proc->p_lflag  |= P_LVFORK;
174	parent_proc->p_vforkcnt++;
175	proc_unlock(parent_proc);
176}
177
178/*
179 * proc_vfork_end
180 *
181 * Description:	stop a vfork on a process
182 *
183 * Parameters:	parent_proc		process leaving vfork state
184 *
185 * Returns:	(void)
186 *
187 * Notes:	Decrements the count; currently, reentrancy of vfork()
188 *		is unsupported on the current process
189 */
190void
191proc_vfork_end(proc_t parent_proc)
192{
193	proc_lock(parent_proc);
194	parent_proc->p_vforkcnt--;
195	if (parent_proc->p_vforkcnt < 0)
196		panic("vfork cnt is -ve");
197	if (parent_proc->p_vforkcnt == 0)
198		parent_proc->p_lflag  &= ~P_LVFORK;
199	proc_unlock(parent_proc);
200}
201
202
203/*
204 * vfork
205 *
206 * Description:	vfork system call
207 *
208 * Parameters:	void			[no arguments]
209 *
210 * Retval:	0			(to child process)
211 *		!0			pid of child (to parent process)
212 *		-1			error (see "Returns:")
213 *
214 * Returns:	EAGAIN			Administrative limit reached
215 *		EINVAL			vfork() called during vfork()
216 *		ENOMEM			Failed to allocate new process
217 *
218 * Note:	After a successful call to this function, the parent process
219 *		has its task, thread, and uthread lent to the child process,
220 *		and control is returned to the caller; if this function is
221 *		invoked as a system call, the return is to user space, and
222 *		is effectively running on the child process.
223 *
224 *		Subsequent calls that operate on process state are permitted,
225 *		though discouraged, and will operate on the child process; any
226 *		operations on the task, thread, or uthread will result in
227 *		changes in the parent state, and, if inheritable, the child
228 *		state, when a task, thread, and uthread are realized for the
229 *		child process at execve() time, will also be effected.  Given
230 *		this, it's recemmended that people use the posix_spawn() call
231 *		instead.
232 *
233 * BLOCK DIAGRAM OF VFORK
234 *
235 * Before:
236 *
237 *     ,----------------.         ,-------------.
238 *     |                |   task  |             |
239 *     | parent_thread  | ------> | parent_task |
240 *     |                | <.list. |             |
241 *     `----------------'         `-------------'
242 *    uthread |  ^             bsd_info |  ^
243 *            v  | vc_thread            v  | task
244 *     ,----------------.         ,-------------.
245 *     |                |         |             |
246 *     | parent_uthread | <.list. | parent_proc | <-- current_proc()
247 *     |                |         |             |
248 *     `----------------'         `-------------'
249 *    uu_proc |
250 *            v
251 *           NULL
252 *
253 * After:
254 *
255 *                 ,----------------.         ,-------------.
256 *                 |                |   task  |             |
257 *          ,----> | parent_thread  | ------> | parent_task |
258 *          |      |                | <.list. |             |
259 *          |      `----------------'         `-------------'
260 *          |     uthread |  ^             bsd_info |  ^
261 *          |             v  | vc_thread            v  | task
262 *          |      ,----------------.         ,-------------.
263 *          |      |                |         |             |
264 *          |      | parent_uthread | <.list. | parent_proc |
265 *          |      |                |         |             |
266 *          |      `----------------'         `-------------'
267 *          |     uu_proc |  . list
268 *          |             v  v
269 *          |      ,----------------.
270 *          `----- |                |
271 *      p_vforkact | child_proc     | <-- current_proc()
272 *                 |                |
273 *                 `----------------'
274 */
275int
276vfork(proc_t parent_proc, __unused struct vfork_args *uap, int32_t *retval)
277{
278	thread_t child_thread;
279	int err;
280
281	if ((err = fork1(parent_proc, &child_thread, PROC_CREATE_VFORK)) != 0) {
282		retval[1] = 0;
283	} else {
284		uthread_t ut = get_bsdthread_info(current_thread());
285		proc_t child_proc = ut->uu_proc;
286
287		retval[0] = child_proc->p_pid;
288		retval[1] = 1;		/* flag child return for user space */
289
290		/*
291		 * Drop the signal lock on the child which was taken on our
292		 * behalf by forkproc()/cloneproc() to prevent signals being
293		 * received by the child in a partially constructed state.
294		 */
295		proc_signalend(child_proc, 0);
296		proc_transend(child_proc, 0);
297
298		proc_knote(parent_proc, NOTE_FORK | child_proc->p_pid);
299		DTRACE_PROC1(create, proc_t, child_proc);
300		ut->uu_flag &= ~UT_VFORKING;
301	}
302
303	return (err);
304}
305
306
307/*
308 * fork1
309 *
310 * Description:	common code used by all new process creation other than the
311 *		bootstrap of the initial process on the system
312 *
313 * Parameters: parent_proc		parent process of the process being
314 *		child_threadp		pointer to location to receive the
315 *					Mach thread_t of the child process
316 *					breated
317 *		kind			kind of creation being requested
318 *
319 * Notes:	Permissable values for 'kind':
320 *
321 *		PROC_CREATE_FORK	Create a complete process which will
322 *					return actively running in both the
323 *					parent and the child; the child copies
324 *					the parent address space.
325 *		PROC_CREATE_SPAWN	Create a complete process which will
326 *					return actively running in the parent
327 *					only after returning actively running
328 *					in the child; the child address space
329 *					is newly created by an image activator,
330 *					after which the child is run.
331 *		PROC_CREATE_VFORK	Creates a partial process which will
332 *					borrow the parent task, thread, and
333 *					uthread to return running in the child;
334 *					the child address space and other parts
335 *					are lazily created at execve() time, or
336 *					the child is terminated, and the parent
337 *					does not actively run until that
338 *					happens.
339 *
340 *		At first it may seem strange that we return the child thread
341 *		address rather than process structure, since the process is
342 *		the only part guaranteed to be "new"; however, since we do
343 *		not actualy adjust other references between Mach and BSD (see
344 *		the block diagram above the implementation of vfork()), this
345 *		is the only method which guarantees us the ability to get
346 *		back to the other information.
347 */
348int
349fork1(proc_t parent_proc, thread_t *child_threadp, int kind)
350{
351	thread_t parent_thread = (thread_t)current_thread();
352	uthread_t parent_uthread = (uthread_t)get_bsdthread_info(parent_thread);
353	proc_t child_proc = NULL;	/* set in switch, but compiler... */
354	thread_t child_thread = NULL;
355	uid_t uid;
356	int count;
357	int err = 0;
358	int spawn = 0;
359
360	/*
361	 * Although process entries are dynamically created, we still keep
362	 * a global limit on the maximum number we will create.  Don't allow
363	 * a nonprivileged user to use the last process; don't let root
364	 * exceed the limit. The variable nprocs is the current number of
365	 * processes, maxproc is the limit.
366	 */
367	uid = kauth_getruid();
368	proc_list_lock();
369	if ((nprocs >= maxproc - 1 && uid != 0) || nprocs >= maxproc) {
370		proc_list_unlock();
371		tablefull("proc");
372		return (EAGAIN);
373	}
374	proc_list_unlock();
375
376	/*
377	 * Increment the count of procs running with this uid. Don't allow
378	 * a nonprivileged user to exceed their current limit, which is
379	 * always less than what an rlim_t can hold.
380	 * (locking protection is provided by list lock held in chgproccnt)
381	 */
382	count = chgproccnt(uid, 1);
383	if (uid != 0 &&
384	    (rlim_t)count > parent_proc->p_rlimit[RLIMIT_NPROC].rlim_cur) {
385	    	err = EAGAIN;
386		goto bad;
387	}
388
389#if CONFIG_MACF
390	/*
391	 * Determine if MAC policies applied to the process will allow
392	 * it to fork.  This is an advisory-only check.
393	 */
394	err = mac_proc_check_fork(parent_proc);
395	if (err  != 0) {
396		goto bad;
397	}
398#endif
399
400	switch(kind) {
401	case PROC_CREATE_VFORK:
402		/*
403		 * Prevent a vfork while we are in vfork(); we should
404		 * also likely preventing a fork here as well, and this
405		 * check should then be outside the switch statement,
406		 * since the proc struct contents will copy from the
407		 * child and the tash/thread/uthread from the parent in
408		 * that case.  We do not support vfork() in vfork()
409		 * because we don't have to; the same non-requirement
410		 * is true of both fork() and posix_spawn() and any
411		 * call  other than execve() amd _exit(), but we've
412		 * been historically lenient, so we continue to be so
413		 * (for now).
414		 *
415		 * <rdar://6640521> Probably a source of random panics
416		 */
417		if (parent_uthread->uu_flag & UT_VFORK) {
418			printf("fork1 called within vfork by %s\n", parent_proc->p_comm);
419			err = EINVAL;
420			goto bad;
421		}
422
423		/*
424		 * Flag us in progress; if we chose to support vfork() in
425		 * vfork(), we would chain our parent at this point (in
426		 * effect, a stack push).  We don't, since we actually want
427		 * to disallow everything not specified in the standard
428		 */
429		proc_vfork_begin(parent_proc);
430
431		/* The newly created process comes with signal lock held */
432		if ((child_proc = forkproc(parent_proc)) == NULL) {
433			/* Failed to allocate new process */
434			proc_vfork_end(parent_proc);
435			err = ENOMEM;
436			goto bad;
437		}
438
439// XXX BEGIN: wants to move to be common code (and safe)
440#if CONFIG_MACF
441		/*
442		 * allow policies to associate the credential/label that
443		 * we referenced from the parent ... with the child
444		 * JMM - this really isn't safe, as we can drop that
445		 *       association without informing the policy in other
446		 *       situations (keep long enough to get policies changed)
447		 */
448		mac_cred_label_associate_fork(child_proc->p_ucred, child_proc);
449#endif
450
451		/*
452		 * Propogate change of PID - may get new cred if auditing.
453		 *
454		 * NOTE: This has no effect in the vfork case, since
455		 *	child_proc->task != current_task(), but we duplicate it
456		 *	because this is probably, ultimately, wrong, since we
457		 *	will be running in the "child" which is the parent task
458		 *	with the wrong token until we get to the execve() or
459		 *	_exit() call; a lot of "undefined" can happen before
460		 *	that.
461		 *
462		 * <rdar://6640530> disallow everything but exeve()/_exit()?
463		 */
464		set_security_token(child_proc);
465
466		AUDIT_ARG(pid, child_proc->p_pid);
467
468// XXX END: wants to move to be common code (and safe)
469
470		/*
471		 * BORROW PARENT TASK, THREAD, UTHREAD FOR CHILD
472		 *
473		 * Note: this is where we would "push" state instead of setting
474		 * it for nested vfork() support (see proc_vfork_end() for
475		 * description if issues here).
476		 */
477		child_proc->task = parent_proc->task;
478
479		child_proc->p_lflag  |= P_LINVFORK;
480		child_proc->p_vforkact = parent_thread;
481		child_proc->p_stat = SRUN;
482
483		/*
484		 * Until UT_VFORKING is cleared at the end of the vfork
485		 * syscall, the process identity of this thread is slightly
486		 * murky.
487		 *
488		 * As long as UT_VFORK and it's associated field (uu_proc)
489		 * is set, current_proc() will always return the child process.
490		 *
491		 * However dtrace_proc_selfpid() returns the parent pid to
492		 * ensure that e.g. the proc:::create probe actions accrue
493		 * to the parent.  (Otherwise the child magically seems to
494		 * have created itself!)
495		 */
496		parent_uthread->uu_flag |= UT_VFORK | UT_VFORKING;
497		parent_uthread->uu_proc = child_proc;
498		parent_uthread->uu_userstate = (void *)act_thread_csave();
499		parent_uthread->uu_vforkmask = parent_uthread->uu_sigmask;
500
501		/* temporarily drop thread-set-id state */
502		if (parent_uthread->uu_flag & UT_SETUID) {
503			parent_uthread->uu_flag |= UT_WASSETUID;
504			parent_uthread->uu_flag &= ~UT_SETUID;
505		}
506
507		/* blow thread state information */
508		/* XXX is this actually necessary, given syscall return? */
509		thread_set_child(parent_thread, child_proc->p_pid);
510
511		child_proc->p_acflag = AFORK;	/* forked but not exec'ed */
512
513		/*
514		 * Preserve synchronization semantics of vfork.  If
515		 * waiting for child to exec or exit, set P_PPWAIT
516		 * on child, and sleep on our proc (in case of exit).
517		 */
518		child_proc->p_lflag |= P_LPPWAIT;
519		pinsertchild(parent_proc, child_proc);	/* set visible */
520
521		break;
522
523	case PROC_CREATE_SPAWN:
524		/*
525		 * A spawned process differs from a forked process in that
526		 * the spawned process does not carry around the parents
527		 * baggage with regard to address space copying, dtrace,
528		 * and so on.
529		 */
530		spawn = 1;
531
532		/* FALLSTHROUGH */
533
534	case PROC_CREATE_FORK:
535		/*
536		 * When we clone the parent process, we are going to inherit
537		 * its task attributes and memory, since when we fork, we
538		 * will, in effect, create a duplicate of it, with only minor
539		 * differences.  Contrarily, spawned processes do not inherit.
540		 */
541		if ((child_thread = cloneproc(parent_proc->task, parent_proc, spawn ? FALSE : TRUE, FALSE)) == NULL) {
542			/* Failed to create thread */
543			err = EAGAIN;
544			goto bad;
545		}
546
547		/* copy current thread state into the child thread (only for fork) */
548		if (!spawn) {
549			thread_dup(child_thread);
550		}
551
552		/* child_proc = child_thread->task->proc; */
553		child_proc = (proc_t)(get_bsdtask_info(get_threadtask(child_thread)));
554
555// XXX BEGIN: wants to move to be common code (and safe)
556#if CONFIG_MACF
557		/*
558		 * allow policies to associate the credential/label that
559		 * we referenced from the parent ... with the child
560		 * JMM - this really isn't safe, as we can drop that
561		 *       association without informing the policy in other
562		 *       situations (keep long enough to get policies changed)
563		 */
564		mac_cred_label_associate_fork(child_proc->p_ucred, child_proc);
565#endif
566
567		/*
568		 * Propogate change of PID - may get new cred if auditing.
569		 *
570		 * NOTE: This has no effect in the vfork case, since
571		 *	child_proc->task != current_task(), but we duplicate it
572		 *	because this is probably, ultimately, wrong, since we
573		 *	will be running in the "child" which is the parent task
574		 *	with the wrong token until we get to the execve() or
575		 *	_exit() call; a lot of "undefined" can happen before
576		 *	that.
577		 *
578		 * <rdar://6640530> disallow everything but exeve()/_exit()?
579		 */
580		set_security_token(child_proc);
581
582		AUDIT_ARG(pid, child_proc->p_pid);
583
584// XXX END: wants to move to be common code (and safe)
585
586		/*
587		 * Blow thread state information; this is what gives the child
588		 * process its "return" value from a fork() call.
589		 *
590		 * Note: this should probably move to fork() proper, since it
591		 * is not relevent to spawn, and the value won't matter
592		 * until we resume the child there.  If you are in here
593		 * refactoring code, consider doing this at the same time.
594		 */
595		thread_set_child(child_thread, child_proc->p_pid);
596
597		child_proc->p_acflag = AFORK;	/* forked but not exec'ed */
598
599// <rdar://6598155> dtrace code cleanup needed
600#if CONFIG_DTRACE
601		/*
602		 * This code applies to new processes who are copying the task
603		 * and thread state and address spaces of their parent process.
604		 */
605		if (!spawn) {
606// <rdar://6598155> call dtrace specific function here instead of all this...
607		/*
608		 * APPLE NOTE: Solaris does a sprlock() and drops the
609		 * proc_lock here. We're cheating a bit and only taking
610		 * the p_dtrace_sprlock lock. A full sprlock would
611		 * task_suspend the parent.
612		 */
613		lck_mtx_lock(&parent_proc->p_dtrace_sprlock);
614
615		/*
616		 * Remove all DTrace tracepoints from the child process. We
617		 * need to do this _before_ duplicating USDT providers since
618		 * any associated probes may be immediately enabled.
619		 */
620		if (parent_proc->p_dtrace_count > 0) {
621			dtrace_fasttrap_fork(parent_proc, child_proc);
622		}
623
624		lck_mtx_unlock(&parent_proc->p_dtrace_sprlock);
625
626		/*
627		 * Duplicate any lazy dof(s). This must be done while NOT
628		 * holding the parent sprlock! Lock ordering is
629		 * dtrace_dof_mode_lock, then sprlock.  It is imperative we
630		 * always call dtrace_lazy_dofs_duplicate, rather than null
631		 * check and call if !NULL. If we NULL test, during lazy dof
632		 * faulting we can race with the faulting code and proceed
633		 * from here to beyond the helpers copy. The lazy dof
634		 * faulting will then fail to copy the helpers to the child
635		 * process.
636		 */
637		dtrace_lazy_dofs_duplicate(parent_proc, child_proc);
638
639		/*
640		 * Duplicate any helper actions and providers. The SFORKING
641		 * we set above informs the code to enable USDT probes that
642		 * sprlock() may fail because the child is being forked.
643		 */
644		/*
645		 * APPLE NOTE: As best I can tell, Apple's sprlock() equivalent
646		 * never fails to find the child. We do not set SFORKING.
647		 */
648		if (parent_proc->p_dtrace_helpers != NULL && dtrace_helpers_fork) {
649			(*dtrace_helpers_fork)(parent_proc, child_proc);
650		}
651
652		}
653#endif	/* CONFIG_DTRACE */
654
655		break;
656
657	default:
658		panic("fork1 called with unknown kind %d", kind);
659		break;
660	}
661
662
663	/* return the thread pointer to the caller */
664	*child_threadp = child_thread;
665
666bad:
667	/*
668	 * In the error case, we return a 0 value for the returned pid (but
669	 * it is ignored in the trampoline due to the error return); this
670	 * is probably not necessary.
671	 */
672	if (err) {
673		(void)chgproccnt(uid, -1);
674	}
675
676	return (err);
677}
678
679
680/*
681 * vfork_return
682 *
683 * Description:	"Return" to parent vfork thread() following execve/_exit;
684 *		this is done by reassociating the parent process structure
685 *		with the task, thread, and uthread.
686 *
687 *		Refer to the ASCII art above vfork() to figure out the
688 *		state we're undoing.
689 *
690 * Parameters:	child_proc		Child process
691 *		retval			System call return value array
692 *		rval			Return value to present to parent
693 *
694 * Returns:	void
695 *
696 * Notes:	The caller resumes or exits the parent, as appropriate, after
697 *		calling this function.
698 */
699void
700vfork_return(proc_t child_proc, int32_t *retval, int rval)
701{
702	task_t parent_task = get_threadtask(child_proc->p_vforkact);
703	proc_t parent_proc = get_bsdtask_info(parent_task);
704	thread_t th = current_thread();
705	uthread_t uth = get_bsdthread_info(th);
706
707	act_thread_catt(uth->uu_userstate);
708
709	/* clear vfork state in parent proc structure */
710	proc_vfork_end(parent_proc);
711
712	/* REPATRIATE PARENT TASK, THREAD, UTHREAD */
713	uth->uu_userstate = 0;
714	uth->uu_flag &= ~UT_VFORK;
715	/* restore thread-set-id state */
716	if (uth->uu_flag & UT_WASSETUID) {
717		uth->uu_flag |= UT_SETUID;
718		uth->uu_flag &= UT_WASSETUID;
719	}
720	uth->uu_proc = 0;
721	uth->uu_sigmask = uth->uu_vforkmask;
722
723	proc_lock(child_proc);
724	child_proc->p_lflag &= ~P_LINVFORK;
725	child_proc->p_vforkact = 0;
726	proc_unlock(child_proc);
727
728	thread_set_parent(th, rval);
729
730	if (retval) {
731		retval[0] = rval;
732		retval[1] = 0;			/* mark parent */
733	}
734}
735
736
737/*
738 * fork_create_child
739 *
740 * Description:	Common operations associated with the creation of a child
741 *		process
742 *
743 * Parameters:	parent_task		parent task
744 *		child_proc		child process
745 *		inherit_memory		TRUE, if the parents address space is
746 *					to be inherited by the child
747 *		is64bit			TRUE, if the child being created will
748 *					be associated with a 64 bit process
749 *					rather than a 32 bit process
750 *
751 * Note:	This code is called in the fork() case, from the execve() call
752 *		graph, if implementing an execve() following a vfork(), from
753 *		the posix_spawn() call graph (which implicitly includes a
754 *		vfork() equivalent call, and in the system bootstrap case.
755 *
756 *		It creates a new task and thread (and as a side effect of the
757 *		thread creation, a uthread), which is then associated with the
758 *		process 'child'.  If the parent process address space is to
759 *		be inherited, then a flag indicates that the newly created
760 *		task should inherit this from the child task.
761 *
762 *		As a special concession to bootstrapping the initial process
763 *		in the system, it's possible for 'parent_task' to be TASK_NULL;
764 *		in this case, 'inherit_memory' MUST be FALSE.
765 */
766thread_t
767fork_create_child(task_t parent_task, proc_t child_proc, int inherit_memory, int is64bit)
768{
769	thread_t	child_thread = NULL;
770	task_t		child_task;
771	kern_return_t	result;
772
773	/* Create a new task for the child process */
774	result = task_create_internal(parent_task,
775					inherit_memory,
776					is64bit,
777					&child_task);
778	if (result != KERN_SUCCESS) {
779		printf("%s: task_create_internal failed.  Code: %d\n",
780		    __func__, result);
781		goto bad;
782	}
783
784	/* Set the child process task to the new task */
785	child_proc->task = child_task;
786
787	/* Set child task process to child proc */
788	set_bsdtask_info(child_task, child_proc);
789
790	/* Propagate CPU limit timer from parent */
791	if (timerisset(&child_proc->p_rlim_cpu))
792		task_vtimer_set(child_task, TASK_VTIMER_RLIM);
793
794	/* Set/clear 64 bit vm_map flag */
795	if (is64bit)
796		vm_map_set_64bit(get_task_map(child_task));
797	else
798		vm_map_set_32bit(get_task_map(child_task));
799
800#if CONFIG_MACF
801	/* Update task for MAC framework */
802	/* valid to use p_ucred as child is still not running ... */
803	mac_task_label_update_cred(child_proc->p_ucred, child_task);
804#endif
805
806	/*
807	 * Set child process BSD visible scheduler priority if nice value
808	 * inherited from parent
809	 */
810	if (child_proc->p_nice != 0)
811		resetpriority(child_proc);
812
813	/* Create a new thread for the child process */
814	result = thread_create(child_task, &child_thread);
815	if (result != KERN_SUCCESS) {
816		printf("%s: thread_create failed. Code: %d\n",
817		    __func__, result);
818		task_deallocate(child_task);
819		child_task = NULL;
820	}
821
822	/*
823         * Tag thread as being the first thread in its task.
824         */
825	thread_set_tag(child_thread, THREAD_TAG_MAINTHREAD);
826
827bad:
828	thread_yield_internal(1);
829
830	return(child_thread);
831}
832
833
834/*
835 * fork
836 *
837 * Description:	fork system call.
838 *
839 * Parameters:	parent			Parent process to fork
840 *		uap (void)		[unused]
841 *		retval			Return value
842 *
843 * Returns:	0			Success
844 *		EAGAIN			Resource unavailable, try again
845 *
846 * Notes:	Attempts to create a new child process which inherits state
847 *		from the parent process.  If successful, the call returns
848 *		having created an initially suspended child process with an
849 *		extra Mach task and thread reference, for which the thread
850 *		is initially suspended.  Until we resume the child process,
851 *		it is not yet running.
852 *
853 *		The return information to the child is contained in the
854 *		thread state structure of the new child, and does not
855 *		become visible to the child through a normal return process,
856 *		since it never made the call into the kernel itself in the
857 *		first place.
858 *
859 *		After resuming the thread, this function returns directly to
860 *		the parent process which invoked the fork() system call.
861 *
862 * Important:	The child thread_resume occurs before the parent returns;
863 *		depending on scheduling latency, this means that it is not
864 *		deterministic as to whether the parent or child is scheduled
865 *		to run first.  It is entirely possible that the child could
866 *		run to completion prior to the parent running.
867 */
868int
869fork(proc_t parent_proc, __unused struct fork_args *uap, int32_t *retval)
870{
871	thread_t child_thread;
872	int err;
873
874	retval[1] = 0;		/* flag parent return for user space */
875
876	if ((err = fork1(parent_proc, &child_thread, PROC_CREATE_FORK)) == 0) {
877		task_t child_task;
878		proc_t child_proc;
879
880		/* Return to the parent */
881		child_proc = (proc_t)get_bsdthreadtask_info(child_thread);
882		retval[0] = child_proc->p_pid;
883
884		/*
885		 * Drop the signal lock on the child which was taken on our
886		 * behalf by forkproc()/cloneproc() to prevent signals being
887		 * received by the child in a partially constructed state.
888		 */
889		proc_signalend(child_proc, 0);
890		proc_transend(child_proc, 0);
891
892		/* flag the fork has occurred */
893		proc_knote(parent_proc, NOTE_FORK | child_proc->p_pid);
894		DTRACE_PROC1(create, proc_t, child_proc);
895
896		/* "Return" to the child */
897		(void)thread_resume(child_thread);
898
899		/* drop the extra references we got during the creation */
900		if ((child_task = (task_t)get_threadtask(child_thread)) != NULL) {
901			task_deallocate(child_task);
902		}
903		thread_deallocate(child_thread);
904	}
905
906	return(err);
907}
908
909
910/*
911 * cloneproc
912 *
913 * Description: Create a new process from a specified process.
914 *
915 * Parameters:	parent_task		The parent task to be cloned, or
916 *					TASK_NULL is task characteristics
917 *					are not to be inherited
918 *					be cloned, or TASK_NULL if the new
919 *					task is not to inherit the VM
920 *					characteristics of the parent
921 *		parent_proc		The parent process to be cloned
922 *		inherit_memory		True if the child is to inherit
923 *					memory from the parent; if this is
924 *					non-NULL, then the parent_task must
925 *					also be non-NULL
926 *		memstat_internal	Whether to track the process in the
927 *					jetsam priority list (if configured)
928 *
929 * Returns:	!NULL			pointer to new child thread
930 *		NULL			Failure (unspecified)
931 *
932 * Note:	On return newly created child process has signal lock held
933 *		to block delivery of signal to it if called with lock set.
934 *		fork() code needs to explicity remove this lock before
935 *		signals can be delivered
936 *
937 *		In the case of bootstrap, this function can be called from
938 *		bsd_utaskbootstrap() in order to bootstrap the first process;
939 *		the net effect is to provide a uthread structure for the
940 *		kernel process associated with the kernel task.
941 *
942 * XXX:		Tristating using the value parent_task as the major key
943 *		and inherit_memory as the minor key is something we should
944 *		refactor later; we owe the current semantics, ultimately,
945 *		to the semantics of task_create_internal.  For now, we will
946 *		live with this being somewhat awkward.
947 */
948thread_t
949cloneproc(task_t parent_task, proc_t parent_proc, int inherit_memory, int memstat_internal)
950{
951#if !CONFIG_MEMORYSTATUS
952#pragma unused(memstat_internal)
953#endif
954	task_t child_task;
955	proc_t child_proc;
956	thread_t child_thread = NULL;
957
958	if ((child_proc = forkproc(parent_proc)) == NULL) {
959		/* Failed to allocate new process */
960		goto bad;
961	}
962
963	child_thread = fork_create_child(parent_task, child_proc, inherit_memory, (parent_task == TASK_NULL) ? FALSE : (parent_proc->p_flag & P_LP64));
964
965	if (child_thread == NULL) {
966		/*
967		 * Failed to create thread; now we must deconstruct the new
968		 * process previously obtained from forkproc().
969		 */
970		forkproc_free(child_proc);
971		goto bad;
972	}
973
974	child_task = get_threadtask(child_thread);
975	if (parent_proc->p_flag & P_LP64) {
976		task_set_64bit(child_task, TRUE);
977		OSBitOrAtomic(P_LP64, (UInt32 *)&child_proc->p_flag);
978	} else {
979		task_set_64bit(child_task, FALSE);
980		OSBitAndAtomic(~((uint32_t)P_LP64), (UInt32 *)&child_proc->p_flag);
981	}
982
983#if CONFIG_MEMORYSTATUS
984	if (memstat_internal) {
985		proc_list_lock();
986		child_proc->p_memstat_state |= P_MEMSTAT_INTERNAL;
987		proc_list_unlock();
988	}
989#endif
990
991	/* make child visible */
992	pinsertchild(parent_proc, child_proc);
993
994	/*
995	 * Make child runnable, set start time.
996	 */
997	child_proc->p_stat = SRUN;
998bad:
999	return(child_thread);
1000}
1001
1002
1003/*
1004 * Destroy a process structure that resulted from a call to forkproc(), but
1005 * which must be returned to the system because of a subsequent failure
1006 * preventing it from becoming active.
1007 *
1008 * Parameters:	p			The incomplete process from forkproc()
1009 *
1010 * Returns:	(void)
1011 *
1012 * Note:	This function should only be used in an error handler following
1013 *		a call to forkproc().
1014 *
1015 *		Operations occur in reverse order of those in forkproc().
1016 */
1017void
1018forkproc_free(proc_t p)
1019{
1020
1021	/* We held signal and a transition locks; drop them */
1022	proc_signalend(p, 0);
1023	proc_transend(p, 0);
1024
1025	/*
1026	 * If we have our own copy of the resource limits structure, we
1027	 * need to free it.  If it's a shared copy, we need to drop our
1028	 * reference on it.
1029	 */
1030	proc_limitdrop(p, 0);
1031	p->p_limit = NULL;
1032
1033#if SYSV_SHM
1034	/* Need to drop references to the shared memory segment(s), if any */
1035	if (p->vm_shm) {
1036		/*
1037		 * Use shmexec(): we have no address space, so no mappings
1038		 *
1039		 * XXX Yes, the routine is badly named.
1040		 */
1041		shmexec(p);
1042	}
1043#endif
1044
1045	/* Need to undo the effects of the fdcopy(), if any */
1046	fdfree(p);
1047
1048	/*
1049	 * Drop the reference on a text vnode pointer, if any
1050	 * XXX This code is broken in forkproc(); see <rdar://4256419>;
1051	 * XXX if anyone ever uses this field, we will be extremely unhappy.
1052	 */
1053	if (p->p_textvp) {
1054		vnode_rele(p->p_textvp);
1055		p->p_textvp = NULL;
1056	}
1057
1058	/* Stop the profiling clock */
1059	stopprofclock(p);
1060
1061	/* Update the audit session proc count */
1062	AUDIT_SESSION_PROCEXIT(p);
1063
1064	/* Release the credential reference */
1065	kauth_cred_unref(&p->p_ucred);
1066
1067	proc_list_lock();
1068	/* Decrement the count of processes in the system */
1069	nprocs--;
1070	proc_list_unlock();
1071
1072	thread_call_free(p->p_rcall);
1073
1074	/* Free allocated memory */
1075	FREE_ZONE(p->p_sigacts, sizeof *p->p_sigacts, M_SIGACTS);
1076	FREE_ZONE(p->p_stats, sizeof *p->p_stats, M_PSTATS);
1077	proc_checkdeadrefs(p);
1078	FREE_ZONE(p, sizeof *p, M_PROC);
1079}
1080
1081
1082/*
1083 * forkproc
1084 *
1085 * Description:	Create a new process structure, given a parent process
1086 *		structure.
1087 *
1088 * Parameters:	parent_proc		The parent process
1089 *
1090 * Returns:	!NULL			The new process structure
1091 *		NULL			Error (insufficient free memory)
1092 *
1093 * Note:	When successful, the newly created process structure is
1094 *		partially initialized; if a caller needs to deconstruct the
1095 *		returned structure, they must call forkproc_free() to do so.
1096 */
1097proc_t
1098forkproc(proc_t parent_proc)
1099{
1100	proc_t child_proc;	/* Our new process */
1101	static int nextpid = 0, pidwrap = 0, nextpidversion = 0;
1102	static uint64_t nextuniqueid = 0;
1103	int error = 0;
1104	struct session *sessp;
1105	uthread_t parent_uthread = (uthread_t)get_bsdthread_info(current_thread());
1106
1107	MALLOC_ZONE(child_proc, proc_t , sizeof *child_proc, M_PROC, M_WAITOK);
1108	if (child_proc == NULL) {
1109		printf("forkproc: M_PROC zone exhausted\n");
1110		goto bad;
1111	}
1112	/* zero it out as we need to insert in hash */
1113	bzero(child_proc, sizeof *child_proc);
1114
1115	MALLOC_ZONE(child_proc->p_stats, struct pstats *,
1116			sizeof *child_proc->p_stats, M_PSTATS, M_WAITOK);
1117	if (child_proc->p_stats == NULL) {
1118		printf("forkproc: M_SUBPROC zone exhausted (p_stats)\n");
1119		FREE_ZONE(child_proc, sizeof *child_proc, M_PROC);
1120		child_proc = NULL;
1121		goto bad;
1122	}
1123	MALLOC_ZONE(child_proc->p_sigacts, struct sigacts *,
1124			sizeof *child_proc->p_sigacts, M_SIGACTS, M_WAITOK);
1125	if (child_proc->p_sigacts == NULL) {
1126		printf("forkproc: M_SUBPROC zone exhausted (p_sigacts)\n");
1127		FREE_ZONE(child_proc->p_stats, sizeof *child_proc->p_stats, M_PSTATS);
1128		FREE_ZONE(child_proc, sizeof *child_proc, M_PROC);
1129		child_proc = NULL;
1130		goto bad;
1131	}
1132
1133	/* allocate a callout for use by interval timers */
1134	child_proc->p_rcall = thread_call_allocate((thread_call_func_t)realitexpire, child_proc);
1135	if (child_proc->p_rcall == NULL) {
1136		FREE_ZONE(child_proc->p_sigacts, sizeof *child_proc->p_sigacts, M_SIGACTS);
1137		FREE_ZONE(child_proc->p_stats, sizeof *child_proc->p_stats, M_PSTATS);
1138		FREE_ZONE(child_proc, sizeof *child_proc, M_PROC);
1139		child_proc = NULL;
1140		goto bad;
1141	}
1142
1143
1144	/*
1145	 * Find an unused PID.
1146	 */
1147
1148	proc_list_lock();
1149
1150	nextpid++;
1151retry:
1152	/*
1153	 * If the process ID prototype has wrapped around,
1154	 * restart somewhat above 0, as the low-numbered procs
1155	 * tend to include daemons that don't exit.
1156	 */
1157	if (nextpid >= PID_MAX) {
1158		nextpid = 100;
1159		pidwrap = 1;
1160	}
1161	if (pidwrap != 0) {
1162
1163		/* if the pid stays in hash both for zombie and runniing state */
1164		if  (pfind_locked(nextpid) != PROC_NULL) {
1165			nextpid++;
1166			goto retry;
1167		}
1168
1169		if (pgfind_internal(nextpid) != PGRP_NULL) {
1170			nextpid++;
1171			goto retry;
1172		}
1173		if (session_find_internal(nextpid) != SESSION_NULL) {
1174			nextpid++;
1175			goto retry;
1176		}
1177	}
1178	nprocs++;
1179	child_proc->p_pid = nextpid;
1180	child_proc->p_idversion = nextpidversion++;
1181	/* kernel process is handcrafted and not from fork, so start from 1 */
1182	child_proc->p_uniqueid = ++nextuniqueid;
1183#if 1
1184	if (child_proc->p_pid != 0) {
1185		if (pfind_locked(child_proc->p_pid) != PROC_NULL)
1186			panic("proc in the list already\n");
1187	}
1188#endif
1189	/* Insert in the hash */
1190	child_proc->p_listflag |= (P_LIST_INHASH | P_LIST_INCREATE);
1191	LIST_INSERT_HEAD(PIDHASH(child_proc->p_pid), child_proc, p_hash);
1192	proc_list_unlock();
1193
1194
1195	/*
1196	 * We've identified the PID we are going to use; initialize the new
1197	 * process structure.
1198	 */
1199	child_proc->p_stat = SIDL;
1200	child_proc->p_pgrpid = PGRPID_DEAD;
1201
1202	/*
1203	 * The zero'ing of the proc was at the allocation time due to need
1204	 * for insertion to hash.  Copy the section that is to be copied
1205	 * directly from the parent.
1206	 */
1207	bcopy(&parent_proc->p_startcopy, &child_proc->p_startcopy,
1208	    (unsigned) ((caddr_t)&child_proc->p_endcopy - (caddr_t)&child_proc->p_startcopy));
1209
1210	/*
1211	 * Some flags are inherited from the parent.
1212	 * Duplicate sub-structures as needed.
1213	 * Increase reference counts on shared objects.
1214	 * The p_stats and p_sigacts substructs are set in vm_fork.
1215	 */
1216	child_proc->p_flag = (parent_proc->p_flag & (P_LP64 | P_TRANSLATED | P_AFFINITY | P_DISABLE_ASLR | P_DELAYIDLESLEEP));
1217	if (parent_proc->p_flag & P_PROFIL)
1218		startprofclock(child_proc);
1219
1220	child_proc->p_vfs_iopolicy = (parent_proc->p_vfs_iopolicy & (P_VFS_IOPOLICY_FORCE_HFS_CASE_SENSITIVITY));
1221
1222	/*
1223	 * Note that if the current thread has an assumed identity, this
1224	 * credential will be granted to the new process.
1225	 */
1226	child_proc->p_ucred = kauth_cred_get_with_ref();
1227	/* update cred on proc */
1228	PROC_UPDATE_CREDS_ONPROC(child_proc);
1229	/* update audit session proc count */
1230	AUDIT_SESSION_PROCNEW(child_proc);
1231
1232#if CONFIG_FINE_LOCK_GROUPS
1233	lck_mtx_init(&child_proc->p_mlock, proc_mlock_grp, proc_lck_attr);
1234	lck_mtx_init(&child_proc->p_fdmlock, proc_fdmlock_grp, proc_lck_attr);
1235#if CONFIG_DTRACE
1236	lck_mtx_init(&child_proc->p_dtrace_sprlock, proc_lck_grp, proc_lck_attr);
1237#endif
1238	lck_spin_init(&child_proc->p_slock, proc_slock_grp, proc_lck_attr);
1239#else /* !CONFIG_FINE_LOCK_GROUPS */
1240	lck_mtx_init(&child_proc->p_mlock, proc_lck_grp, proc_lck_attr);
1241	lck_mtx_init(&child_proc->p_fdmlock, proc_lck_grp, proc_lck_attr);
1242#if CONFIG_DTRACE
1243	lck_mtx_init(&child_proc->p_dtrace_sprlock, proc_lck_grp, proc_lck_attr);
1244#endif
1245	lck_spin_init(&child_proc->p_slock, proc_lck_grp, proc_lck_attr);
1246#endif /* !CONFIG_FINE_LOCK_GROUPS */
1247	klist_init(&child_proc->p_klist);
1248
1249	if (child_proc->p_textvp != NULLVP) {
1250		/* bump references to the text vnode */
1251		/* Need to hold iocount across the ref call */
1252		if (vnode_getwithref(child_proc->p_textvp) == 0) {
1253			error = vnode_ref(child_proc->p_textvp);
1254			vnode_put(child_proc->p_textvp);
1255			if (error != 0)
1256				child_proc->p_textvp = NULLVP;
1257		}
1258	}
1259
1260	/*
1261	 * Copy the parents per process open file table to the child; if
1262	 * there is a per-thread current working directory, set the childs
1263	 * per-process current working directory to that instead of the
1264	 * parents.
1265	 *
1266	 * XXX may fail to copy descriptors to child
1267	 */
1268	child_proc->p_fd = fdcopy(parent_proc, parent_uthread->uu_cdir);
1269
1270#if SYSV_SHM
1271	if (parent_proc->vm_shm) {
1272		/* XXX may fail to attach shm to child */
1273		(void)shmfork(parent_proc, child_proc);
1274	}
1275#endif
1276	/*
1277	 * inherit the limit structure to child
1278	 */
1279	proc_limitfork(parent_proc, child_proc);
1280
1281	if (child_proc->p_limit->pl_rlimit[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
1282		uint64_t rlim_cur = child_proc->p_limit->pl_rlimit[RLIMIT_CPU].rlim_cur;
1283		child_proc->p_rlim_cpu.tv_sec = (rlim_cur > __INT_MAX__) ? __INT_MAX__ : rlim_cur;
1284	}
1285
1286	/* Intialize new process stats, including start time */
1287	/* <rdar://6640543> non-zeroed portion contains garbage AFAICT */
1288	bzero(child_proc->p_stats, sizeof(*child_proc->p_stats));
1289	microtime_with_abstime(&child_proc->p_start, &child_proc->p_stats->ps_start);
1290
1291	if (parent_proc->p_sigacts != NULL)
1292		(void)memcpy(child_proc->p_sigacts,
1293				parent_proc->p_sigacts, sizeof *child_proc->p_sigacts);
1294	else
1295		(void)memset(child_proc->p_sigacts, 0, sizeof *child_proc->p_sigacts);
1296
1297	sessp = proc_session(parent_proc);
1298	if (sessp->s_ttyvp != NULL && parent_proc->p_flag & P_CONTROLT)
1299		OSBitOrAtomic(P_CONTROLT, &child_proc->p_flag);
1300	session_rele(sessp);
1301
1302	/*
1303	 * block all signals to reach the process.
1304	 * no transition race should be occuring with the child yet,
1305	 * but indicate that the process is in (the creation) transition.
1306	 */
1307	proc_signalstart(child_proc, 0);
1308	proc_transstart(child_proc, 0);
1309
1310	child_proc->p_pcaction = (parent_proc->p_pcaction) & P_PCMAX;
1311	TAILQ_INIT(&child_proc->p_uthlist);
1312	TAILQ_INIT(&child_proc->p_aio_activeq);
1313	TAILQ_INIT(&child_proc->p_aio_doneq);
1314
1315	/* Inherit the parent flags for code sign */
1316	child_proc->p_csflags = (parent_proc->p_csflags & ~CS_KILLED);
1317
1318	/*
1319	 * All processes have work queue locks; cleaned up by
1320	 * reap_child_locked()
1321	 */
1322	workqueue_init_lock(child_proc);
1323
1324	/*
1325	 * Copy work queue information
1326	 *
1327	 * Note: This should probably only happen in the case where we are
1328	 *	creating a child that is a copy of the parent; since this
1329	 *	routine is called in the non-duplication case of vfork()
1330	 *	or posix_spawn(), then this information should likely not
1331	 *	be duplicated.
1332	 *
1333	 * <rdar://6640553> Work queue pointers that no longer point to code
1334	 */
1335	child_proc->p_wqthread = parent_proc->p_wqthread;
1336	child_proc->p_threadstart = parent_proc->p_threadstart;
1337	child_proc->p_pthsize = parent_proc->p_pthsize;
1338	child_proc->p_targconc = parent_proc->p_targconc;
1339	if ((parent_proc->p_lflag & P_LREGISTER) != 0) {
1340		child_proc->p_lflag |= P_LREGISTER;
1341	}
1342	child_proc->p_dispatchqueue_offset = parent_proc->p_dispatchqueue_offset;
1343	child_proc->p_dispatchqueue_serialno_offset = parent_proc->p_dispatchqueue_serialno_offset;
1344#if PSYNCH
1345	pth_proc_hashinit(child_proc);
1346#endif /* PSYNCH */
1347
1348#if CONFIG_LCTX
1349	child_proc->p_lctx = NULL;
1350	/* Add new process to login context (if any). */
1351	if (parent_proc->p_lctx != NULL) {
1352		/*
1353		 * <rdar://6640564> This should probably be delayed in the
1354		 * vfork() or posix_spawn() cases.
1355		 */
1356		LCTX_LOCK(parent_proc->p_lctx);
1357		enterlctx(child_proc, parent_proc->p_lctx, 0);
1358	}
1359#endif
1360
1361#if CONFIG_MEMORYSTATUS
1362	/* Memorystatus + jetsam init */
1363	child_proc->p_memstat_state = 0;
1364	child_proc->p_memstat_effectivepriority = JETSAM_PRIORITY_DEFAULT;
1365	child_proc->p_memstat_requestedpriority = JETSAM_PRIORITY_DEFAULT;
1366	child_proc->p_memstat_userdata = 0;
1367#if CONFIG_FREEZE
1368	child_proc->p_memstat_suspendedfootprint = 0;
1369#endif
1370	child_proc->p_memstat_dirty = 0;
1371	child_proc->p_memstat_idledeadline = 0;
1372#endif /* CONFIG_MEMORYSTATUS */
1373
1374bad:
1375	return(child_proc);
1376}
1377
1378void
1379proc_lock(proc_t p)
1380{
1381	lck_mtx_lock(&p->p_mlock);
1382}
1383
1384void
1385proc_unlock(proc_t p)
1386{
1387	lck_mtx_unlock(&p->p_mlock);
1388}
1389
1390void
1391proc_spinlock(proc_t p)
1392{
1393	lck_spin_lock(&p->p_slock);
1394}
1395
1396void
1397proc_spinunlock(proc_t p)
1398{
1399	lck_spin_unlock(&p->p_slock);
1400}
1401
1402void
1403proc_list_lock(void)
1404{
1405	lck_mtx_lock(proc_list_mlock);
1406}
1407
1408void
1409proc_list_unlock(void)
1410{
1411	lck_mtx_unlock(proc_list_mlock);
1412}
1413
1414#include <kern/zalloc.h>
1415
1416struct zone	*uthread_zone;
1417static int uthread_zone_inited = 0;
1418
1419static void
1420uthread_zone_init(void)
1421{
1422	if (!uthread_zone_inited) {
1423		uthread_zone = zinit(sizeof(struct uthread),
1424					thread_max * sizeof(struct uthread),
1425					THREAD_CHUNK * sizeof(struct uthread),
1426					"uthreads");
1427		uthread_zone_inited = 1;
1428	}
1429}
1430
1431void *
1432uthread_alloc(task_t task, thread_t thread, int noinherit)
1433{
1434	proc_t p;
1435	uthread_t uth;
1436	uthread_t uth_parent;
1437	void *ut;
1438
1439	if (!uthread_zone_inited)
1440		uthread_zone_init();
1441
1442	ut = (void *)zalloc(uthread_zone);
1443	bzero(ut, sizeof(struct uthread));
1444
1445	p = (proc_t) get_bsdtask_info(task);
1446	uth = (uthread_t)ut;
1447	uth->uu_thread = thread;
1448
1449	/*
1450	 * Thread inherits credential from the creating thread, if both
1451	 * are in the same task.
1452	 *
1453	 * If the creating thread has no credential or is from another
1454	 * task we can leave the new thread credential NULL.  If it needs
1455	 * one later, it will be lazily assigned from the task's process.
1456	 */
1457	uth_parent = (uthread_t)get_bsdthread_info(current_thread());
1458	if ((noinherit == 0) && task == current_task() &&
1459	    uth_parent != NULL &&
1460	    IS_VALID_CRED(uth_parent->uu_ucred)) {
1461		/*
1462		 * XXX The new thread is, in theory, being created in context
1463		 * XXX of parent thread, so a direct reference to the parent
1464		 * XXX is OK.
1465		 */
1466		kauth_cred_ref(uth_parent->uu_ucred);
1467		uth->uu_ucred = uth_parent->uu_ucred;
1468		/* the credential we just inherited is an assumed credential */
1469		if (uth_parent->uu_flag & UT_SETUID)
1470			uth->uu_flag |= UT_SETUID;
1471	} else {
1472		/* sometimes workqueue threads are created out task context */
1473		if ((task != kernel_task) && (p != PROC_NULL))
1474			uth->uu_ucred = kauth_cred_proc_ref(p);
1475		else
1476			uth->uu_ucred = NOCRED;
1477	}
1478
1479
1480	if ((task != kernel_task) && p) {
1481
1482		proc_lock(p);
1483		if (noinherit != 0) {
1484			/* workq threads will not inherit masks */
1485			uth->uu_sigmask = ~workq_threadmask;
1486		} else if (uth_parent) {
1487			if (uth_parent->uu_flag & UT_SAS_OLDMASK)
1488				uth->uu_sigmask = uth_parent->uu_oldmask;
1489			else
1490				uth->uu_sigmask = uth_parent->uu_sigmask;
1491		}
1492		uth->uu_context.vc_thread = thread;
1493		TAILQ_INSERT_TAIL(&p->p_uthlist, uth, uu_list);
1494		proc_unlock(p);
1495
1496#if CONFIG_DTRACE
1497		if (p->p_dtrace_ptss_pages != NULL) {
1498			uth->t_dtrace_scratch = dtrace_ptss_claim_entry(p);
1499		}
1500#endif
1501#if CONFIG_MACF
1502		mac_thread_label_init(uth);
1503#endif
1504	}
1505
1506	return (ut);
1507}
1508
1509
1510/*
1511 * This routine frees all the BSD context in uthread except the credential.
1512 * It does not free the uthread structure as well
1513 */
1514void
1515uthread_cleanup(task_t task, void *uthread, void * bsd_info)
1516{
1517	struct _select *sel;
1518	uthread_t uth = (uthread_t)uthread;
1519	proc_t p = (proc_t)bsd_info;
1520
1521
1522	if (uth->uu_lowpri_window || uth->uu_throttle_info) {
1523	        /*
1524		 * task is marked as a low priority I/O type
1525		 * and we've somehow managed to not dismiss the throttle
1526		 * through the normal exit paths back to user space...
1527		 * no need to throttle this thread since its going away
1528		 * but we do need to update our bookeeping w/r to throttled threads
1529		 *
1530		 * Calling this routine will clean up any throttle info reference
1531		 * still inuse by the thread.
1532		 */
1533		throttle_lowpri_io(0);
1534	}
1535	/*
1536	 * Per-thread audit state should never last beyond system
1537	 * call return.  Since we don't audit the thread creation/
1538	 * removal, the thread state pointer should never be
1539	 * non-NULL when we get here.
1540	 */
1541	assert(uth->uu_ar == NULL);
1542
1543	sel = &uth->uu_select;
1544	/* cleanup the select bit space */
1545	if (sel->nbytes) {
1546		FREE(sel->ibits, M_TEMP);
1547		FREE(sel->obits, M_TEMP);
1548		sel->nbytes = 0;
1549	}
1550
1551	if (uth->uu_cdir) {
1552		vnode_rele(uth->uu_cdir);
1553		uth->uu_cdir = NULLVP;
1554	}
1555
1556	if (uth->uu_allocsize && uth->uu_wqset){
1557		kfree(uth->uu_wqset, uth->uu_allocsize);
1558		uth->uu_allocsize = 0;
1559		uth->uu_wqset = 0;
1560	}
1561
1562	if(uth->pth_name != NULL)
1563	{
1564		kfree(uth->pth_name, MAXTHREADNAMESIZE);
1565		uth->pth_name = 0;
1566	}
1567	if ((task != kernel_task) && p) {
1568
1569		if (((uth->uu_flag & UT_VFORK) == UT_VFORK) && (uth->uu_proc != PROC_NULL))  {
1570			vfork_exit_internal(uth->uu_proc, 0, 1);
1571		}
1572		/*
1573		 * Remove the thread from the process list and
1574		 * transfer [appropriate] pending signals to the process.
1575		 */
1576		if (get_bsdtask_info(task) == p) {
1577			proc_lock(p);
1578			TAILQ_REMOVE(&p->p_uthlist, uth, uu_list);
1579			p->p_siglist |= (uth->uu_siglist & execmask & (~p->p_sigignore | sigcantmask));
1580			proc_unlock(p);
1581		}
1582#if CONFIG_DTRACE
1583		struct dtrace_ptss_page_entry *tmpptr = uth->t_dtrace_scratch;
1584		uth->t_dtrace_scratch = NULL;
1585		if (tmpptr != NULL) {
1586			dtrace_ptss_release_entry(p, tmpptr);
1587		}
1588#endif
1589#if CONFIG_MACF
1590		mac_thread_label_destroy(uth);
1591#endif
1592	}
1593}
1594
1595/* This routine releases the credential stored in uthread */
1596void
1597uthread_cred_free(void *uthread)
1598{
1599	uthread_t uth = (uthread_t)uthread;
1600
1601	/* and free the uthread itself */
1602	if (IS_VALID_CRED(uth->uu_ucred)) {
1603		kauth_cred_t oldcred = uth->uu_ucred;
1604		uth->uu_ucred = NOCRED;
1605		kauth_cred_unref(&oldcred);
1606	}
1607}
1608
1609/* This routine frees the uthread structure held in thread structure */
1610void
1611uthread_zone_free(void *uthread)
1612{
1613	uthread_t uth = (uthread_t)uthread;
1614
1615	if (uth->t_tombstone) {
1616		kfree(uth->t_tombstone, sizeof(struct doc_tombstone));
1617		uth->t_tombstone = NULL;
1618	}
1619
1620	/* and free the uthread itself */
1621	zfree(uthread_zone, uthread);
1622}
1623